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Abstract. In the implementation of post-quantum primitives, it is well
known that all computations that handle secret information need to be
implemented to run in constant time. Using the Fujisaki-Okamoto trans-
formation or any of its different variants, a CPA-secure primitive can be
converted into an IND-CCA secure KEM. In this paper we show that al-
though the transformation does not handle secret information apart from
calls to the CPA-secure primitive, it has to be implemented in constant
time. Namely, if the ciphertext comparison step in the transformation is
leaking side-channel information, we can launch a key-recovery attack.
Several proposed schemes in round 2 of the NIST post-quantum stan-
dardization project are susceptible to the proposed attack and we develop
and show the details of the attack on one of them, being FrodoKEM. It
is implemented on the reference implementation of FrodoKEM, which is
claimed to be secure against all timing attacks. Experiments show that
the attack code is able to extract the secret key for all security levels
using about 230 decapsulation calls.

Keywords: Lattice-based cryptography, NIST post-quantum standard-
ization, LWE, timing attacks, side-channel attacks.

1 Introduction

Post-Quantum Cryptography is the area of cryptographic research in the pres-
ence of an, assumed to be practical, quantum computer. It is well known that
most of today’s public-key solutions are insecure under this assumption since
they are based on the difficulty of factoring or the discrete log problem. These
two problems can be solved in polynomial time if a large enough quantum com-
puter exists [30]. Instead, post-quantum cryptography is based on other hard
problems, not known to be broken by a quantum computer. The two most pop-
ular areas are lattice-based schemes and code-based schemes.

Learning with errors (LWE) is a hard problem that is closely connected to
difficult problems in lattices, such as the shortest vector problem. Learning with



errors, or some version of the problem, is used in many of the recently proposed
schemes to build public-key encryption schemes (PKE) and key encapsulation
mechanisms (KEM).

Code-based schemes are similar to LWE schemes, but rely instead on difficult
coding theory problems, like finding a minimum (Hamming) weight codeword
in a binary code. Code-based schemes date back to 1978 and the McEliece PKE
scheme [26].

The importance of post-quantum cryptography is highlighted by the fact that
NIST is currently running a standardization project on post-quantum cryptog-
raphy [1] which is in the second round. Most KEM- and PKE-schemes remain-
ing in the NIST post-quantum cryptography standardization project (NIST PQ
project) are either lattice-based or code-based schemes.

A very common approach for the above mentioned types of schemes is to
construct a public-key encryption scheme that is secure in the chosen plaintext
model (CPA) and then use a generic transformation to transform the scheme
into a IND-CCA secure KEM. An IND-CCA secure primitive is secure in in the
model of indistinguishability under chosen ciphertext attacks. For definitions of
these models, we refer to any textbook on the subject [31]. The most common
generic transformation is the Fujisaki-Okamoto (FO) transformation [19] or any
of its many different variants [21]. It gives IND-CCA security in the random
oracle model, and there is also a post-quantum secure version [21]. This is also
the way lattice-based and code-based KEM schemes in the NIST PQ project are
constructed. They all use some version of the FO transformation.

In the implementation of post-quantum primitives, it is well known that all
computations that handle secret information need to be implemented to run
in constant time. Leakage of timing information can give information about
secret values. This is a hard problem in practice, as we might not trust just
any programmer to pay enough attention to such issues. There is now much
focus on constant time implementations for the remaining candidates in the
NIST PQ project and much research is devoted to examine cryptanalysis on so
called side-channels [14, 24]. This includes work showing attacks on schemes with
implementations that leak timing information when processing secret data, such
as the step of decoding an error correcting code inside the decryption scheme.

In this paper we show that even though the FO transformation itself does
not handle secret information apart from calls to the CPA-secure PKE (running
in constant time), it still has to be implemented in constant time. Namely, if
the ciphertext comparison step in the FO transformation is leaking side-channel
information, we can launch a key-recovery attack. The attack is based on gener-
ating decryption failures in the CPA-secure primitive by modifying the cipher-
text. Through timing information we can learn whether a modified ciphertext is
decrypted to the same message as the original ciphertext, or not.

This kind of attack has not been observed before, as several of the NIST
candidates provide implementations that are directly susceptible to the proposed
attack. We mention that at least the round 2 candidates FrodoKEM, LAC,
BIKE, HQC, ROLLO and RQC have all submitted reference implementations
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that potentially leaked timing information in the ciphertext comparison step,
and thus they might be susceptible to this attack.

We decided to develop and show the details of the attack on one of them,
being FrodoKEM. FrodoKEM is a lattice-based KEM where the security is based
on the LWE problem. It is a very conservative design with strong security proofs
and its design team contains many very distinguished cryptographers. In the
document [27] submitted to NIST, it is claimed that “All our implementations
avoid the use of secret address accesses and secret branches and, hence, are
protected against timing and cache attacks.” An implementation of FrodoKEM
that can be attacked also appears in Open Quantum Safe [3].

The attack on FrodoKEM is detailed in the paper and then implemented
on the reference implementation of FrodoKEM. Using experiments, we show
that the attack code, by measuring the execution time of full decapsulations,
is able to collect enough data for a complete secret key recovery using about
230 decapsulation queries. We target the FrodoKEM parameters for the highest
security level.

Previous work: Some previous work on using decryption failures in crypt-
analysis appeared in [22, 23]. More recent attacks using decryption failures on
lattice-based schemes are to be found in [8–10, 18]. None of these attacks apply
to CCA-secure schemes unless there is some misuse of the scheme.

Attacks on CCA secure schemes based on failures were modelled in [15] and
a complex attack on an NTRU version was presented. An attack on LAC [25]
using decryption errors was given in [20].

Side-channel attacks were first proposed by Kocher in [24]. In such an attack,
information obtained through physical measurements is used in the attack, be-
ing timing information, power measurements, electromagnetic radiation or other
means. Brumley and Boneh attacked OpenSSL in [14], showing that remote tim-
ing attacks are practical. Side-channel attacks on post-quantum primitives have
been proposed on signature schemes like BLISS [13]. Side-channel attacks on en-
cryption/KEM primitives have been less successful, but include [17] measuring
the robustness of the candidates in the NIST PQ project against cache-timing
attacks. An attack on LWE schemes that use error correcting codes for which
decoding is not implemented in constant time was given in [16] and the same for
code-based schemes are given in [32] and [33].

Paper organization: The remaining parts of the paper are organized as follows.
Section 2 gives basic notation and definitions used later in the paper. In Section 3
we give a high-level description of the attack and describe the general underlying
ideas used to achieve success in building the key parts of the attack. In Section 4
we describe the FrodoKEM scheme and briefly highlight the weakness in its
reference implementation. In Section 5 we give the full details on how to apply
the attack on FrodoKEM and recover the secret key. Results on implementing
the attack on the FrodoKEM reference implementation are given. Finally, we
discuss in Section 6 a few other round 2 NIST schemes where the reference
implementations can be attacked, including LWE schemes using error correction
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and pure code-based schemes. Further details on how the attack could be adapted
to LAC is found in the appendix.

2 Preliminary

We start by defining some useful notations used throughout the rest of the
paper. In post-quantum cryptography with emphasis on lattice-based or code-
based schemes, it makes sense to consider the message m ∈ M and ciphertext
c ∈ C as being vectors with entries in some alphabet Zq. A PKE is then a
triple of algorithms (KeyGen,Enc,Dec), where KeyGen generates the secret key
sk ∈ SK and the public key pk ∈ PK. The encryption algorithm Enc maps the
message to a ciphertext using the public key and the decryption algorithm Dec
maps the ciphertext back to a message using the secret key. Encryption may also
use some randomness denoted r ∈ R, that can be viewed as part of the input
to the algorithm. If c = Enc(pk,m; r), then decrypting such a ciphertext, i.e.,
computing Dec(sk, pk, c), returns the ciphertext m. Some schemes may have a
small failure probability, meaning that the decryption algorithm fails to return
a correctly encrypted message when decrypted.

A KEM is similarly defined as a triple of algorithms (KeyGen,Encaps,Decaps),
where KeyGen generates the secret key sk ∈ SK and the public key pk ∈ PK. The
encapsulation algorithm Encaps generates a random session key, denoted as s ∈
S, and computes a ciphertext c using the public key. Applying the decapsulation
algorithm Decaps on a ciphertext using the secret key returns the chosen session
key s, or possibly a random output in case the ciphertext does not fully match
a possible output of the encapsulation algorithm.

Security can be defined in many different models, but most commonly the
analysis is done in the CPA model, where the adversary essentially only have
access to the public key pk and the public encryption/encapsulation calls. In a
CCA model, the adversary is allowed to ask for decryptions/decapsulations of
her choice. So for example, the notion of IND-CCA for a KEM is defined through
the following game: Let the ciphertext c be the encapsulation of the secret key
s0 ∈ S. Consider another randomly selected key s1 ∈ S. The adversary gets the
ciphertext c as well as sb, where b ∈ {0, 1} is randomly chosen. The adversarial
task is to correctly predict b with as large probability as possible and access to
the decapsulation oracle is allowed for all ciphertext inputs except c. For more
detailed definitions of these different security models, we refer to any textbook
on the subject, for example [31].

A very common approach is to construct a public-key primitive that is secure
in the CPA model and then use a generic transformation to transform the scheme
into a IND-CCA secure primitive. A common such generic transformation is the
FO transformation [19], which has also many different variants [21]. It gives IND-
CCA security in the random oracle model and include a post-quantum secure
version [21]. This is also the way lattice-based and code-based KEM schemes in
the NIST PQ project are constructed. They use some version of the FO trans-
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formation. We will introduce and investigate the FO transformation in relation
to side-channel leakage in the next section.

3 A general description of the proposed attack

We describe the attack for post-quantum primitives in the form of KEMs, al-
though the attack could work for other types of PKC primitives as well.

Let PKE.CPA.Enc(pk,m; r) denote a public key encryption algorithm which
is secure in the CPA model. Here pk is the public key, m is the message to be
encrypted, and r is the randomness used in the scheme. The algorithm returns a
ciphertext c. Furthermore, let PKE.CPA.Dec(sk, pk, c) denote the corresponding
decryption algorithm. This algorithm returns a message, again denoted m.

We will now assume that the PKE.CPA.Dec(·) call is implemented in constant-
time and is not leaking any side-channel information.

The CCA-secure KEM is assumed to be obtained through some variant of the
FO transformation, resulting in algorithms for encapsulation and decapsulation
similar to algorithms 1 and 2 shown here.

Algorithm 1 KEM.CCA.Encaps
Input: pk
Output: c and s

1: pick a random m
2: (r,k)← H1(m, pk)
3: c← PKE.CPA.Enc(pk,m; r)
4: s← H2(c,k)
5: Return (c, s)

Algorithm 2 KEM.CCA.Decaps
Input: sk, pk, c
Output: s′

1: m′ ← PKE.CPA.Dec(sk, c)
2: (r′,k′)← H1(m′, pk)
3: c′ ← PKE.CPA.Enc(pk,m′; r′)
4: if (c′ = c) then Return s′ ← H2(c,k′)
5: else Return s′ ← H2(c,k′)
6: end if

Here k ∈ K and H1 and H2 are pseudo-random functions generating val-
ues indistinguishable from true randomness, with images R×K and S, respec-
tively. Also, (r′,k′) = (r,k) if m′ = m. The key generation algorithm, denoted
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KEM.CCA.KeyGen, randomly selects a secret key sk and computes the corre-
sponding public key pk, and returns both of them. We note that essentially all
KEM candidates in the NIST PQ project can be written in the above form or
in some similar way.

The side-channel attack is now described using calls to an oracle that deter-
mines whether, in the PKE.CPA.Dec(·) call, a modified ciphertext decrypts to
the same “message” or not. To be a bit more precise, we follow the steps in the
public KEM.CCA.Encaps algorithm and record the values of a chosen m, and
the corresponding computed r and ciphertext c. Then we modify the ciphertext
to c′ = c + d, where d denotes a predetermined modification to the ciphertext.
Finally, we require that the oracle can tell us if the modified ciphertext is still
decrypted to the same message, i.e., whether m = PKE.CPA.Dec(sk, c′). If so,
the oracle returns 0. But if PKE.CPA.Dec(sk, c′) returns a different message, the
oracle returns 1. Finally, we assume that an oracle output of −1 represents a
situation when the oracle cannot decisively give an answer. The high-level con-
struction of the oracle is given in Algorithm 3.

Algorithm 3 Decryption.Error.In.CPAcall.Oracle
Input: m, a ciphertext modification d
Output: b (decryption failure or not)
1: (r,k)← H1(m, pk)
2: c← PKE.CPA.Enc(pk,m; r)
3: c′ ← c + d
4: t← Side-channel.information[KEM.CCA.Decaps(c′)]
5: b← F (t), where F (t) uses the side.channel information to determine

whether PKE.CPA.Dec(c′) returns m or not (b = 0 means returning m,
b = 1 means not returning m, and b = −1 means inconclusive)

6: Return b

The notation t = Side-channel.information[X] means that side-channel infor-
mation of some kind is collected when executing algorithm X. This information
is then analyzed in the F (t) analysis algorithm. In our case we are collecting the
time of execution through the number of clock cycles and this is the assumed
type of side-channel information. At the end of the paper we discuss and argue
for the fact that other types of side-channel information can also be used, for ex-
ample analysis of power or electromagnetic emanations in case of microcontroller
or pure hardware implementations.

The design of F (t) is clearly a key part of the attack. Assuming we have found
an oracle that can give us decisive answers for some choices of m and ciphertext
modifications d, the final step is to extract information about the secret key
used in the PKE.CPA.Dec algorithm. This part will be highly dependent on the
actual scheme considered, but a general summary is given in Algorithm 4.
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Algorithm 4 Secret key recovery
Input: n1

Output: the secret key sk

1: for i = 0; i < n1; i← i+ 1 do
2: find (mi,di) such that Decryption.Error.In.CPAcall.Oracle(mi,di)∈ {0, 1}
3: end for
4: Use the determined set {((mi,di), 0 ≤ i < n)} to extract the secret key, by

exploring the relation between the secret key and modifications that cause
decryption errors in PKE.CPA.Dec.

5: Return sk

3.1 Designing the oracle for LWE-based schemes

The main question is how to find m and ciphertext modifications d such that the
measured timing information may reveal whether PKE.CPA.Dec(c+d) inside the
KEM.CCA.Decaps(c + d) is returning the same message m or not. The general
idea is the following.

The side-channel information t ← timing.information[X] is simply the time
(clock cycles) it takes to execute X. The ciphertext of an LWE-based scheme,
created in PKE.CPA.Enc(pk,m; r) may consist of several parts, but at a general
level we may describe it as

c = g(pk,m; r) + e(r),

where e(r) is a vector of small error values, and g(pk,m; r) represents the
remaining part of the ciphertext generation in the scheme. Unique for post-
quantum schemes is the property that the error vector e(r) may vary a bit
without affecting the ability to decrypt the ciphertext to the correct message.
So if we introduce a modified ciphertext c′ = c + d, then the new ciphertext
c′ = g(pk,m; r) + e(r) + d. Two things can then happen. Either the modifi-
cation d is small enough so that it does not cause an error in decryption and
m← PKE.CPA.Dec(sk, c′); or the modification d is big enough to cause an error
in decryption and m 6= m′ ← PKE.CPA.Dec(sk, c′);

An observation is that when we have an error in decryption of c′, receiving
m′ (6= m), then re-encrypting m′ in the decapsulation (line 3 of Algorithm 2)
results in a completely different ciphertext, which is not at all similar to c′.
The attack relies on the fact that the side-channel information can be used to
distinguish between the two cases.

The key observation used in the paper is now that if we adopt a ciphertext
modification of the form

d = (00 · · · 0︸ ︷︷ ︸
n−l

dn−ldn−l+1 · · · dn−1),

i.e., we only modify the last l entries of the ciphertext, we have the two different
cases:
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Either there is no decryption error, which leads to m = m′ ←PKE.CPA
.Dec(sk, c′), (r,k) = (r′,k′), and c = PKE.CPA.Enc(pk,m′; r′). So in the check
in line 4 of Algorithm 2, (c′ = c), we see that c′ and c are guaranteed identical
except for the last l positions.

If there is a decryption error, on the other hand, i.e., m 6= m′ ←PKE.CPA
.Dec(sk, c′), then the next step in the decapsulation, (r′,k′)← H1(m′, pk) leads
to completely different values of (r′,k′), which in turn will give a completely
different ciphertext c. In particular c′ and c will most likely have different values
already in the beginning of the vectors.

Finally, how can we separate the two cases using timing information? This
is possible since the check in line 4 of Algorithm 2, (c′ = c), involves checking
the equality of two long vectors and a standard implementation would terminate
after finding a position for which equality does not hold. In the first case above,
the first n− l positions are equal and we would have to run through and check
all of them before we terminate. In the second case, however, it is very likely to
terminate the check very quickly. Typical instructions for which this assumption
is true is the use of the memcmp function in C or the java.util.Arrays.equals
function in Java. The analysis function F (t), in its simplest form, is assumed to
have made some initial measurements to establish intervals I0, I1 for the time
of execution in the two cases and returns F (t) = 0 if the number of clock cycles
is in I0, F (t) = 1 if it is in I1 and F (t) = −1 otherwise. In practice, timing
measurements are much more complicated and more advanced methods to build
F (t) should be considered.

4 The FrodoKEM design and implementation

In the next section, we will apply our general attack on the FrodoKEM scheme, a
main candidate of round 2 in the NIST PQ project. FrodoKEM is a lattice-based
KEM with security based on the standard LWE problem. It is a conservative de-
sign with security proofs. In the document [27] submitted to NIST, it is claimed
that “All our implementations avoid the use of secret address accesses and secret
branches and, hence, are protected against timing and cache attacks.” An imple-
mentation of FrodoKEM that can be attacked also appears in Open Quantum
Safe [3].

4.1 The FrodoKEM design

FrodoKEM was firstly published in [12]. We describe the different algorithms in
FrodoKEM (from [27]) for the key generation, the key encapsulation, and the
key decapsulation in Algorithm 5–7. We refer to the design document [27] for
all the design details and provide only algorithmic descriptions of the relevant
parts in the design. We now also use the notation from the design paper.

Briefly, from an initial seed the key generation FrodoKEM.KeyGen generates
the secret and public keys. Note that from pk = (seedA,B), we generate A =
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Frodo.Gen(seedA). We have the following equation for a key pair (pk, sk),

B = AS + E, (1)

where B, E, S ∈ Zn×n̄q and A ∈ Zn×nq . Note that while A and B are publicly
known both S and E are secrets and S is saved as part of sk to be used in
the decapsulation process, later. Here E, S are error matrices and by this we
mean that the entries in the matrices are small values (compared to Zq) and
distributed according to some predetermined distribution χ.

Algorithm 5 FrodoKEM.KeyGen
Input: None.
Output: Key pair (pk, sk′) with pk ∈ {0, 1}lenseedA+D·n·n̄,
sk′ ∈ {0, 1}lens+lenseedA+D·n·n̄ × Zn×n̄q × {0, 1}lenpkh .
1: Choose uniformly random seeds s||seedSE||z←$U({0, 1}lens+lenseedSE

+lenz)
2: Generate pseudorandom seed seedA ← SHAKE(z, lenseedA)
3: Generate the matrix A ∈ Zn×nq via A← Frodo.Gen(seedA)
4: Generate pseudorandom bit string

(r(0), . . . , r(2nn̄−1))← SHAKE(0x5F||seedSE, 2nn̄ · lenχ)
5: Sample error matrix S← Frodo.SampleMatrix((r(0), . . . , r(nn̄−1)), n, n̄, Tχ)
6: Sample error matrix

E← Frodo.SampleMatrix((r(nn̄), . . . , r(2nn̄−1)), n, n̄, Tχ)
7: Compute B← AS + E
8: Compute b← Frodo.Pack(B)
9: Compute pkh← SHAKE(seedA||b, lenpkh)
10: Return public key pk← seedA||b and secret key sk′ ← (s||seedA||b,S, pkh)

In an encapsulation, a uniformly random key µ←$U({0, 1}lenµ) is first chosen.
It is then used to generate a pseudorandom bit string that in turn determines
error matrices S′,E′,E′′. A ciphertext now contains two parts, one being S′A+E′

and the second part being S′B + E′′ + Frodo.Encode(µ). These matrices are
converted to bitstrings using the Frodo.Pack and Frodo.UnPack algorithms. The
shared key ss is computed using the pseudorandomness generator SHAKE.
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Algorithm 6 FrodoKem.Encaps

Input: Public Key pk = seedA||b ∈ {0, 1}lenseedA+D·n·n̄.
Output: Ciphertext c1||c2 ∈ {0, 1}(m̄·n+m̄·n̄)D and shared secret
ss ∈ {0, 1}lenss .
1: Choose a uniformly random key µ←$U({0, 1}lenµ)
2: Compute pkh← SHAKE(pk, lenpkh)
3: Generate pseudorandom values

seedSE||k← SHAKE(pkh||µ, lenseedSE
+ lenk)

4: Generate pseudorandom bit string
(r(0), . . . , r(2m̄n+m̄n̄−1))← SHAKE(0x96||seedSE, (2m̄n+ m̄n̄) · lenχ)

5: Sample error matrix
S′ ← Frodo.SampleMatrix((r(0), . . . , r(m̄n−1)), m̄, n, Tχ)

6: Sample error matrix
E′ ← Frodo.SampleMatrix((r(m̄n), . . . , r(2m̄n−1)), m̄, n, Tχ)

7: Generate A← Frodo.Gen(seedA)
8: Compute B′ ← S′A + E′

9: Compute c1 ← Frodo.Pack(B′)
10: Sample error matrix

E′′ ← Frodo.SampleMatrix((r(2m̄n), . . . , r(2m̄n+m̄n̄−1)), m̄, n̄, Tχ)
11: Compute B← Frodo.UnPack(b, n, n̄)
12: Compute V← S′B + E′′

13: Compute C← V + Frodo.Encode(µ)
14: Compute c2 ← Frodo.Pack(C)
15: Compute ss← SHAKE(c1||c2||k, lenss)
16: Return ciphertext c1||c2 and shared secret ss
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In decapsulation, the step M ← C − B′S actually computes Frodo.En-
code(µ′) + S′E − E′S + E′′. Since S,S′,E,E′,E′′ all have small entries, also
S′E−E′S + E′′ will have somewhat small entries and is regarded as noise. The
Frodo.Decode algorithm removes this noise and returns the initial seed µ′. The
decapsulation then continues by re-encrypting using this seed to get the cor-
responding ciphertext B′′||C′. In line 16 the two ciphertexts are compared to
check equality. If they are equal, the correct shared key ss is returned.

Algorithm 7 FrodoKEM.Decaps
Input: Ciphertext c1||c2 ∈ {0, 1}(m̄·n+m̄·n̄)D, secret
sk′ ∈ {0, 1}lens+lenseedA+D·n·n̄ × Zn×n̄q × {0, 1}lenpkh .
Output: Shared secret ss ∈ {0, 1}lenss .
1: B′ ← Frodo.UnPack(c1)
2: C← Frodo.UnPack(c2)
3: Compute M← C−B′S
4: Compute µ′ ← Frodo.Decode(M)
5: Parse pk← seedA||b
6: Generate pseudorandom values

seedSE′ ||k′ ← SHAKE(pkh||µ′, lenseedSE
+ lenk)

7: Generate pseudorandom bit string
(r(0), . . . , r(2m̄n+m̄n̄−1))← SHAKE(0x96||seedSE′ , (2m̄n+ m̄n̄) · lenχ)

8: Sample error matrix
S′ ← Frodo.SampleMatrix((r(0), . . . , r(m̄n−1)), m̄, n, Tχ)

9: Sample error matrix
E′ ← Frodo.SampleMatrix((r(m̄n), . . . , r(2m̄n−1)), m̄, n, Tχ)

10: Generate A← Frodo.Gen(seedA)
11: Compute B′′ ← S′A + E′

12: Sample error matrix
E′′ ← Frodo.SampleMatrix((r(2m̄n), . . . , r(2m̄n+m̄n̄−1)), m̄, n̄, Tχ)

13: Compute B← Frodo.UnPack(b, n, n̄)
14: Compute V← S′B + E′′

15: Compute C′ ← V + Frodo.Encode(µ′)
16: if B′||C = B′′||C′ then
17: Return shared secret ss← SHAKE(c1||c2||k′, lenss)
18: else
19: Return shared secret ss← SHAKE(c1||c2||s, lenss)
20: end if

The Frodo.SampleMatrix algorithm constructs the matrices with small values
from a distribution described by a table Tχ, as given in algorithms 8 and 9.

Algorithms 10 and 11 gives the encoding and decoding procedures.
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Algorithm 8 Frodo.Sample

Input: A (random) bit string r = (r0, . . . , rlenχ−1) ∈ {0, 1}lenχ , the table
Tχ = (Tχ(0), . . . , Tχ(s)).
Output: A sample e ∈ Z.
1: t←

∑lenχ−1
i=1 ri · 2i−1

2: e← 0
3: for z = 0; z < s; z ← z + 1 do
4: if t > Tχ(z) then
5: e← e+ 1
6: end if
7: end for
8: e← (−1)

r0 · e
9: Return C

Algorithm 9 Frodo.SampleMatrix

Input: A (random) bit string r = (r(0), . . . , r(n1×n2−1)) ∈ {0, 1}n1n2·lenχ , the
table Tχ.
Output: A sample E ∈ Zn1×n2 .
1: for i = 0; i < n1; i← i+ 1 do
2: for j = 0; j < n2; j ← j + 1 do
3: Ei,j ← Frodo.Sample(r(i·n2+j), Tχ)
4: end for
5: end for
6: Return E

Algorithm 10 Frodo.Encode

Input: Bit string k ∈ {0, 1}l, l = B · m̄ · n̄.
Output: Matrix K ∈ Zm̄×n̄q .
1: for i = 0; i < m̄; i← i+ 1 do
2: for j = 0; j < n̄; j ← j + 1 do
3: k =

∑B−1
l=0 k(i·n̄+j)B+l · 2l

4: Ki,j ← ec(k) = k · q/2B
5: end for
6: end for
7: Return K = (Ki,j)0≤i≤m̄,0≤j≤n̄
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Algorithm 11 Frodo.Decode
Input: Matrix K ∈ Zm̄×n̄q .
Output: Bit string k ∈ {0, 1}l, l = B · m̄ · n̄.
1: for i = 0; i < m̄; i← i+ 1 do
2: for j = 0; j < n̄; j ← j + 1 do
3: k ← dc(Ki,j) = bKi,j · 2B/qe mod 2B

4: k =
∑B−1
l=0 kl · 2l where kl ∈ {0, 1}

5: for l = 0; l < D; l← l + 1 do
6: k(i·n̄+j)B+l ← kl
7: end for
8: end for
9: end for

10: Return k

Finally, Frodo designs packing and unpacking algorithms to transform matri-
ces with entries in Zq to bit strings and vice versa, as described in Algorithm 12
and Algorithm 13.

Algorithm 12 Frodo.Pack
Input: Matrix C ∈ Zn1×n2

q

Output: Bit string b ∈ {0, 1}D·n1·n2

1: for i = 0; i < n1; i← i+ 1 do
2: for j = 0; j < n2; j ← j + 1 do
3: Ci,j =

∑D−1
l=0 cl · 2l where cl ∈ {0, 1}

4: for l = 0; l < D; l← l + 1 do
5: b(i·n2+j)D+l ← cD−1−l
6: end for
7: end for
8: end for
9: Return b

The security parameters of FrodoKEM are listed in Table 1.

4.2 A useful observation

A useful observation is that Line 16 in Frodo.Decaps (i.e., Algorithm 7) is, in the
reference implementation, implemented in a standard way using the following
code block.

1 // Is (Bp == BBp & C == CC) = true
2 if (memcmp(Bp , BBp , 2* PARAMS_N*PARAMS_NBAR) == 0 && memcmp(C,

CC , 2* PARAMS_NBAR*PARAMS_NBAR) == 0) {
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Algorithm 13 Frodo.Unpack

Input: Bit string b ∈ {0, 1}D·n1·n2 , n1, n2.
Output: Matrix C ∈ Zn1×n2

q

1: for i = 0; i < n1; i← i+ 1 do
2: for j = 0; j < n2; j ← j + 1 do
3: Ci,j =

∑D−1
l=0 b(i·n2+j)D+l · 2D−1−l

4: end for
5: end for
6: Return C

Table 1. Proposed parameters in FrodoKEM.

n q σ support of χ B m̄× n̄ Security

Frodo-640 640 215 2.8 [−12 . . . 12] 2 8× 8 1
Frodo-976 976 216 2.3 [−10 . . . 10] 3 8× 8 3

Frodo-1344 1344 216 1.4 [−6 . . . 6] 4 8× 8 5

3 memcpy(Fin_k , kprime , CRYPTO_BYTES);
4 } else {
5 memcpy(Fin_k , sk_s , CRYPTO_BYTES);
6 }

We follow the attack strategy from the previous section and assume that the
attacker modifies the c2 part in the ciphertext. If the modification does not affect
the output of Frodo.Decode, the re-encryption procedure will generate the same
tuple (S′,E′,E′′) and the check

1 memcmp(Bp, BBp , 2* PARAMS_N*PARAMS_NBAR) == 0

will be satisfied. Thus,

1 memcmp(C, CC , 2* PARAMS_NBAR*PARAMS_NBAR) == 0

will be further executed. On the other hand, if Frodo.Decode outputs a different
message µ′, the first check will fail and the second check after the && operation
will be ignored. This type of mechanics is referred to as Short Circuit Evalua-
tion, and should not be employed to handle sensitive data. This could lead to a
significant difference when comparing the executed time.

More importantly though, the function memcmp is not implemented in a
constant time manner, meaning that if we change only the last part of C it will
lead to a longer execution time. We further explore this feature by only changing
the last part of C to enlarge the timing gap.

5 The attack applied on FrodoKEM

We first mention the adversary model, which is a CCA attack model with tim-
ing leakage. In this model, the adversary A sends a series of (valid or invalid)
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ciphertexts to the decapsulation oracle O and could obtain the corresponding
decapsulation time information. He then performs further analysis to recover the
secret key S.

5.1 The details of the attack

With a call to the PKE decryption function Frodo.Decode, FrodoKEM.Decaps
computes

M = C−B′S = Frodo.Encode(µ) + S′E−E′S + E′′.

The next lemma from [27] states the error size that can be handled by the Frodo
decode algorithm Frodo.Decode.

Lemma 1. Let q = 2D, B ≤ D. Then dc(ec(k) + e) = k for any k, e ∈ Z, such
that 0 ≤ k ≤ 2B and −q/2B+1 ≤ e < q/2B+1. Here dc is the decoding function
and ec is the encoding function.

We start by generating a valid ciphertext (c1||c2), which will be successfully
decrypted. This event happens with probability close to one since the designed
decryption failure probability of the CCA version of Frodo is very low. Let E′′′
denote the noise matrix, i.e.,

E′′′ = S′E−E′S + E′′. (2)

Note that S′,E′,E′′ are known values and E = B − AS due to Equation (1).
If we can determine E′′′, we will have linear equations in the secret key value
S. We know that all the m̄× n̄ entries in the matrix E′′′ belong to the interval
[−q/2B+1, q/2B+1) = [−2D−B−1, 2D−B−1) because the decryption succeed.

We now show how to recover E′′′i,j , the element of the i-th row and j-th
column of E′′′. We first unpack c2 to C by applying Frodo.UnPack(c2) and our
goal is to decide the value x0 such that

E′′′i,j + x0 = 2D−B−1.

If we add a positive value x to the element of the i-th row and j-th column of
C to form C′, then this operation is equivalent to adding x to E′′′i,j . We pack
C′ to c′2 and send the new ciphertext (c1||c′2) to the decapsulation procedure. If
we detect a fast execution, we know that a decryption failure occurred and the
value E′′′i,j + x should be outside the interval [−2D−B−1, 2D−B−1). Since x is
picked to be positive, then we know that

E′′′i,j + x ≥ 2D−B−1.

Otherwise, for a slow execution, we know that

E′′′i,j + x < 2D−B−1.
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Since it will definitely lead to a decryption failure if choosing x = 2D−B ,
we could start the binary search by setting the initial interval as [0, 2D−B ] and
determine x0 by (D −B − 1) different choices4 of x.

Due to the implementation of the memcmp function, we intend to introduce
the added noise at the tail part of c2, to enlarge the time difference. Therefore, we
aim to recover E′′′m̄−1,j ,where 0 ≤ j < n̄, for one valid ciphertext (c1||c2). For
such n̄ entries, the changes in the ciphertext are limited to the last n̄ positions.
Thus, if a decryption error is triggered and the re-encrypted ciphertext is a
totally different one, the timing difference could be large.

Let N denote the number of valid ciphertexts generated. One pair of gener-
ated valid ciphertexts could provide us m̄ × n̄ linear equations. For the Frodo
parameters, we always have m̄ = n̄ = 8. As described before, we only select n̄
equations corresponding to the last n̄ entries in E′′′ with the largest time differ-
ence. Since we have n × n̄ unknown entries in S, we need roughly N ≈ n valid
ciphertexts for a full key-recovery if all the collected linear equations are indepen-
dent5. Then, the complexity can be roughly estimated asN×n̄×(D−B−1)×Ndis,
where Ndis is the required number of decryption attempts to decide if it is a fast
execution or not.

Last, we point out that if errors occur in the process of recovering the value
of x0, one could use a post-processing step like lattice reduction algorithms to
handle these errors and to fully recover the secret key. In this case, it would
be helpful to reduce the post-processing complexity if a few more equations are
collected.

A summary of the attack procedure against FrodoKEM is given in Algo-
rithm 14.

Algorithm 14 Timing attack on Frodo.KEM
Input: The public key pk← (seedA,B).
Output: The secret key S.
1: for t = 0; t < N ; t← t+ 1 do
2: Generate a valid ciphertext (c1||c2)
3: for i = 0; i < n̄; i← i+ 1 do
4: Use the binary search to recover E′′′(m̄−1),i

5: end for
6: end for
7: Recover S from E′′′(m̄−1),i values by solving linear equations
8: Return S

4 Due to the distribution of E′′′i,j a minor optimization is possible; The binary search
midpoint selection is can be skewed towards the more likely values closer to the
middle of the range. This makes a small reduction in the average number of necessary
binary search evaluations.

5 As q is a large integer, the probability for a matrix to be full-rank is high. One could
also collect slightly more than n ciphertexts to ensure that a full-rank matrix will
be obtained.
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5.2 Simulation method

To increase the chances of successfully distinguishing the two outcomes for each
step of the binary search algorithm, the following actions were taken to minimize
the noise in our experiment and improving the accuracy of the measurements.

– Hyper Threading was turned off in BIOS.
– Intel SpeedStep was turned off in BIOS.
– Linux kernel’s scheduling governor was set to ‘performance’.
– All unnecessary processes in the system were turned off for the duration of

the measurements.
– The measurement program’s affinity was set to a single core.
– The remaining system processes’ CPU core affinity were set to the other

remaining cores.
– The measurement program’s priority was set to the highest value.
– The rdtscp instruction were used for measurements. This is a serializing

version of the rdtsc instruction which forces every preceding instruction to
complete before allowing the program to continue. This prevents the CPU
out-of-order execution from interfering with the measurements.

– Before starting the timer the decapsulation function is executed once, with-
out being measured, to warm up the data and instruction caches.

Despite the actions listed above the noise in the measurements are consider-
able, and critically, the amount of noise and the shape of the histogram seems
to be non-constant. We compensate both by increasing the number of samples
and also by attempting a reliability estimation of each set of measurements and
discard if they do not seem to match what we expect. The rest of this section
will be dedicated to explaining how this has been done in the experiment.

Before running the binary search a warmup-phase is executed which ensures
that the CPU frequency stabilizes, branch prediction buffers are populated and
the cache is filled. These measurements are also used to calculate a very rough
“cutoff” limit above which no timing values will be recorded, as they are deemed
too noisy to be of any interest.

We begin by observing that the most significant measurements are those
which are closest to the minimum, since these are the values least affected by
noise. In our experiments, the most effective strategy to distinguish the two
distributions was to simply count the number of measurements whose values are
lower than a certain small threshold.

We establish a good threshold by profiling with a high number of iterations
Ip in 2 stages.

First we generate a set of measurements Mlow, with |Mlow| = Ip, as the
first part of the profiling step by repeatedly measuring with a single ciphertext
modified by a low amount (x = 1). The subset Tlow ⊂Mlow is the fraction Flow
of the values in Mlow whose measurements are smallest, i.e. |Tlow| = |Mlow| ∗
Flow. Flow is a fixed value in the interval (0..1) and has been determined by
experimentation (see Section 5.3).
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Llow = max(Tlow) is used to determine the similar fraction Fhigh of values
from the second profiling stage Mhigh, whose values were generated by a high
amount of modification (x = 2D−B). That is to say

Thigh = {t|t ∈Mhigh, t ≤ Llow}

and
Fhigh =

|Thigh|
|Mhigh|

.

Flow (fixed) and Fhigh (dynamic) are used in the next measurement phase
where the binary search algorithm decides whether or not it is experiencing a
“fast” or “slow” execution for the particular modification x under evaluation.

We use the set of measurements Mx (where |Mx| = Im) to denote the mea-
surements for a certain value of x and Tx the subset of measurements whose
values are lower than Llow, so

Tx = {t|t ∈Mx, t ≤ Llow}.

If
Fx =

|Tx|
|Mx|

is closer to Fhigh than to Flow then we assume E′′′i,j + x ≥ 2D−B−1. Likewise if
Fx is closer to Flow than to Fhigh then we assume E′′′i,j + x < 2D−B−1.

Reliability estimation As previously mentioned, the measurement noise is
considerable, due to the total run-time of the decapsulation routine being so
large relative to the difference we wish to measure. The probability of making
the wrong decision in each step of the binary search algorithm is non-negligible
and therefore some additional checks are added, as detailed below.

If
Flow +

∆F

4
≤ Fx ≤ Fhigh −

∆F

4
,

where ∆F = Fhigh−Flow, then we deem Fx as too uncertain for us to draw any
conclusions. In such a case we do another round of measurements until either Fx
move beyond one of the limits or we give up. In the latter case we restart the
profiling phase and start over for that particular set of indexes (i, j).

Furthermore we additionally redo the binary search steps when they a) have
not changed direction6 in a number of steps or b) when we have narrowed the
possible range down to a single value and we wish to confirm our findings. For
case a) this helps with detection and recovery of bad early decisions. Case b) is a
way to lower the probability of finding an erroneous value due to a bad decision
later in the binary search.
6 i.e. if we either continuously lower the upper limit or continuously raise the lower
limit for a number of consecutive steps, then we retry the last step to guard against
an earlier erroneous decision.
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Lastly we make sure Fx ≤ Fhigh+∆F , otherwise we discard the measurements
since they indicates that the profile is no longer valid. In that case we restart
with a new profiling phase for the indexes i, j.

5.3 Results

The results documented in this section were generated7 on a i5–4200U CPU
running at 1.6GHz using the FrodoKEM-1344-AES variant as implemented in
the Open Quantum Safe software library8 (liboqs) and compiled with default
compiler flags.

In Figure 1 we see that the timing difference is in the order of ≈ 4800
reference clock cycles, as measured on our machine. In contrast, the entire
FrodoKEM.Decaps function requires ≈ 12.7M clock cycles, in average, to com-
plete when running on the same machine. Thus we need to distinguish differences
in the running time of less than 0.04% of the total run-time of a single decapsu-
lation.

Using the method previously described and with Flow = 1% (see the Llow
indication in Figure 1) we get 85000 measured decapsulations per E′′′i,j value, split
between 10000×2 for profiling each index of E′′′i,j and 5000 for each step of the
binary search and confirmation stage. Factoring in retries of the binary search
the average number of decapsulations ends up at ≈ 97000. Using these settings
no incorrect values of E′′′i,j were obtained after collecting data for > 3000 out
of the 1344× 8 = 10752 equations necessary for complete key recovery.

5.4 Summary

For FrodoKEM-1344-AES E′′′ is a matrix of size 1344× 8 and the attack as im-
plemented requires 97000×1344×8 ≈ 230 measured decapsulations to complete.
With an average runtime of 3.3 positions of E′′′i,j per hour (on the limited hard-
ware described above) we can make a complete key recovery in approximately
136 core-days. This is only taking the data collection phase into account, ad-
ditional computation for solving the linear equations is considered negligible in
comparison.

A strategy to lower the sample complexity would be to improve upon our
admittedly simple distinguisher for the two timing distributions. Another source
of potentially unnecessary samples is the repetition of the profiling phase for
each set of indexes and ciphertexts. It can be argued that a simple timing model
could be developed which would allow for a reuse of information from a single
or smaller number of profiling steps.

The sample complexity can be even lower if we increase the complexity of the
post-processing step using lattice reduction algorithms to deal with any decision
errors that would follow a reduced number of measured decapsulations.
7 Proof of concept implementation available at: https://github.com/atneit/
open-quantum-safe-attacks

8 The latest official reference implementation at https://github.com/Microsoft/
PQCrypto-LWEKE appear to be identical to the implementation in liboqs.
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Fig. 1. Histograms of timing measurements of only the memcmp function-call (theC =
C′ check) and the entire decapsulation function, respectively. The same ciphertext was
sent to the decapsulation function modified in the last position (i = j = n̄− 1) of Ci,j

by the amount x according to the legend. The curves are the Kernel Density Estimate
over the raw measurements. The vertical bar indicates the Llow value where F1 = 1%.
In this graph we see that the cutoff limits are at 5500 and 12730000 respectively, above
which no values were recorded. 10000 decapsulations each were measured to generate
the two figures.
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Last, the complexity for attacking Frodo-640 and Frodo-976 will be lower due
to the smaller size of n. The reason is two-folds; we need to collect less equations
and also for a fixed post-process cost (again using lattice reduction techniques),
we can handle larger decision errors in the binary search.

6 Discussion on attacking other schemes

The new timing attack could also be applied on the NIST PQC round-2 imple-
mentations of LAC [25], HQC [4], BIKE9 [6], Rollo [7], and RQC [5], where the
non constant-time function memcmp or a short circuit evaluation is employed
in the implementation of the FO transform to check the re-encrypted cipher-
texts. The similar designs indicate that they should be vulnerable to the newly
proposed attack and the leaked timing information allows a key recovery.

The attack should be slightly adjusted when being applied to schemes like
LAC and HQC where additional error-correcting codes are implemented to fur-
ther reduce the decryption failure probability. In their published implementa-
tions, efforts have been made to ensure the BCH decoding to be constant-time in
LAC and the recently revised HQC implementation, but a constant-time imple-
mentation for the FO transform do not appear to be considered. This knowledge-
gap could lead to severe security issues. We refer the interested readers to the
appendix for more details on a proposed adaptation of the attack for LAC. The
attack on HQC is similar.

We also noted a similar problem in a java implementation of NTRUEncrypt
in the NTRU Open Source Project [2], using a non constant-time comparison
java.util.Arrays.equals for implementing the FO transform.

For all of the schemes mentioned in this paper we suggest to use the constant-
time counterpart to memcmp (or similar). To do so should not impact the per-
formance of the schemes in any way.

7 Conclusions and future works

We have presented a novel timing attack that can be applied to lattice-based or
code-based schemes that use the FO transformation. It uses timing leakage in
the ciphertext comparison step of the FO transformation and it can potentially
recover the secret key. We applied it on FrodoKEM and implemented the attack
with the result that we, with experiments, extrapolated that enough information
to determine the secret key can be obtained by measuring about 230 decapsula-
tion calls. Additionally we derived some details of how the attack can be adapted
to work on LAC, see appendix.

The attack applies also a number of other round 2 candidates, although
we did not fully derive the details of the attack for other schemes, nor did we
implement the attack on them.
9 The attack discussed using the memcmp function appears to not be applicable to
BIKE’s implementation in the Open Quantum Safe project nor the latest reference
implementation (available on https://bikesuite.org).
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Note that the current attack could not directly be applied to the submitted
reference implementations of, for example, NewHope [28], Kyber [29], classic
McEliece [11], or the latest implementation of BIKE (including the BIKE im-
plementation in Open Quantum Safe).

Following the basic idea of the attack on FrodoKEM, one can note that the
bitwise sum of the two ciphertexts to be compared have quite different Hamming
weights in the two cases of generating a decryption failure or not in the call to the
CPA-secure primitive. If a modified ciphertext is decrypted to the same message,
the Hamming weights of the xor differences is very low. Such a scenario opens
up for other types of side-channel attacks like power analysis, since operations
on binary data with different Hamming weight is a typical source of leakage in
power analysis.
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A The attack on LAC

In this section, we focus on applying the new attack on LAC [25]. Similar pro-
cedures can also be used in attacking HQC after some minor modifications, and
the framework is the same as we described here for general schemes with ECC.

LAC is a lattice-based proposal to the NIST Post-quantum Standardization
project that has advanced to the second round. It includes three different ver-
sions, LAC128-v2, LAC192-v2, and LAC256-v2, aiming for the security levels of
128, 192, and 256 bits, respectively. We take LAC128-v2 as an instance to de-
scribe how the new timing attacks can be applied to the LAC proposal. The
concrete parameters of LAC128-v2 are shown in Table 2.

Table 2. Proposed parameters of LAC128-v2.

n q R h η Distribution ecc bit-er DFR Security

512 251 Zq [x]
〈xn+1〉 256 400 Ψ1, Ψ

n,h
1 BCH[511, 256, 33] 2−12.61 2−116 I

Notations. Let the modulus be q, and the underlying polynomial ring be R =
Zq/(xn + 1). The distribution Ψ1 randomly outputs 0 with probability 1/2 and
outputs 1 (or −1) with probability 1/4. For a positive integer h, the distribution
Ψn,h1 outputs a length-n vector with h/2 ones, h/2 minus-ones, and (n−h) zeros.

The LAC design. The LAC scheme has an extreme design with a very small
q and therefore the position-wise error probability (denoted as bit-er in Table 2)
is rather large. It uses an error correcting codes (ECC) to further reduce the
overall decryption error probability. The concrete code used is a BCH code with
length 511, dimension 256, and minimum distance 33. Thus, the error correcting
capability of the employed BCH code is 16. This code is a shorten code and the
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parameter η denotes the size of the information and the redundant data. In the
second round submission, the designers employ a compression function to reduce
the ciphertext size in transmission.

The algorithms in the LAC proposal for key generation, key encapsulation,
and key decapsulation can be found in [25]. We list them here for completeness.

Algorithm 1 LAC.KeyGen()

Output: A pair of public key and secret key (pk, sk).

1: seeda
$← S;

2: a← Samp(U(R); seeda) ∈ R;
3: s

$← Ψnσ ;
4: e

$← Ψnσ ;
5: b← as + e ∈ R;
6: return (pk := (seeda,b), sk := s);

Algorithm 2 LAC.CCA.Enc(pk; seedm)

Output: A ciphertext and encapsulation key pair (c,K).

1: m← Samp(U(M); seedm) ∈M;
2: seed← G(m) ∈ S;
3: c← LAC.CPA.Enc(pk,m; seed);
4: K ← H(m, c) ∈ {0, 1}lk ;
5: return (c,K);

A general approach for attacking schemes with ECC. We now describe
the general attacking framework. Similar to the FrodoKEM, the ciphertext is
generally of the form (c1||c2) and the decoding is done by computing c2 − c1s,
where s is the secret key. In the schemes with ECC, however, the ambient space
is a polynomial ring where a vector can be also treated as a polynomial. Thus,
we could mix the use of the notations of s(x) and s if there is no ambiguity.

The main tool is still to introduce additional noise in the last part of c2,
which can be done by adding a large value to a position in the Euclidean case
(for LAC) or by filliping many bits within a small chunk of positions in the
Hamming case (for HQC). The aim is then to recover the noise variables w.r.t.
certain positions, which are linear functions of the secret key by testing the
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Algorithm 3 LAC.CCA.Dec(sk; c)

Output: An encapsulation key (K).

1: m← LAC.CPA.Dec(sk, c);
2: K ← H(m, c);
3: seed← G(m) ∈ S;
4: c′ ← LAC.CPA.Enc(pk,m; seed);
5: if c′ 6= c then
6: K ← H(H(sk), c);
7: end if
8: return K;

Algorithm 4 LAC.CPA.Enc(pk = (seeda,b),m ∈M; seed ∈ S)

Output: A ciphertext c.

1: a← Samp(U(R); seeda) ∈ R;
2: cm ← ECCEnc(m) ∈ {0, 1}lv ;
3: (r, e1, e2)← Samp(Ψnσ , Ψ

n
σ , Ψ

lv
σ ; seed);

4: c1 ← ar + e1 ∈ R;
5: c2 ← (br)lv + e2 + b q2c · cm ∈ Zlvq ;
6: return c := (c1, c2) ∈ R× Zlvq ;

minimal added noise size that could lead to a decryption error. The decryption
will lead to a fast checking in the non constant-time FO implementation since
the re-encrypted ciphertext are random vectors leading to a difference at the
beginning part of the ciphertexts c1, as described. However, since the overall
decryption error happen only if strictly more than δ0 position errors occur in
the decryption phase, the attack strategy is less straightforward.

Since one could trigger a position error using the described process of intro-
ducing a rather large noise, the attacker is capable of adding position errors at
the last positions to ensure the number of position errors to be exactly δ0. The
attacker is then capable of detecting if an uncontrolled position is erroneous or
error-free — he could add a big noise to that position and this will lead to a
decryption error if the position is error-free.

The attacker picks a position close to the controlled error positions that are
error-free and tests the error value in that position by the binary search as
discussed in the previous section for FrodoKEM. The error term is generally in
the form of w(x) = e(x)r(x) − e1(x)s(x) + e2(x), where e(x) and s(x) contain
the secret key information, and r(x), e1(x), and e2(x) could be known from
the encapsulation algorithm. Thus, we can obtain one linear equation whose
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Algorithm 5 LAC.CPA.Dec(sk = s; c = (c1, c2))

Output: A plaintext m.

1: u← c1s ∈ R;
2: c′m ← c2 − (u)lv ∈ Zlvq ;
3: for i = 0 to lv − 1 do
4: if q

4 ≤ c′mi <
3q
4 then

5: cmi ← 1
6: else
7: cmi ← 0
8: end if
9: end for
10: m← ECCDec(cm);
11: return m;

unknowns are the coefficients of e(x) and s(x) from the detected one coefficient
(position) of w(x). Also, note that we already know n linear equations w.r.t.
the coefficients of e(x) and s(x) from the key generation procedure. The attack
proceeds by generating more ciphertexts until a sufficient number of equations
are collected for a full key-recovery.

Dealing with the compression function. In the round-2 submission of LAC,
a ciphertext compression technique is employed, introducing an additional round-
ing error. Thus, the general attack approach should be tweaked to handle this
unknown noise part.

In the reference implementation of LAC128-v2, the comparison between the
ciphertext and the re-encrypted one is implemented as follows.

1 // verify
2 if(memcmp(c,c_v ,CIPHER_LEN)!=0)
3 {
4 //k=hash(hash(sk)|c)
5 hash(( unsigned char*)sk,DIM_N ,buf);
6 hash(buf ,MESSAGE_LEN+CIPHER_LEN ,k);
7 }

Here, c = (c1||c2,compressed), where c1 is a length-512 vector (or polynomial)
and c2,compressed is the compressed ciphertext part of length 200, and cv is the
re-encrypted ciphertext of the same size. Each byte in c2,compressed is the con-
catenation of the 4 most significant bits in the two corresponding positions in
c2. Thus, the final noise term should include a new polynomial e3(x) from the
compression operation. Since this polynomial is from a rounding operation and
unknown to us, the above general approach can not be directly applied.

On the other hand, it is already shown in [15] that if one can detect if a
position is erroneous, then a few thousand such erroneous positions could lead
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to a full recovery. We next show in detail the procedure of determining the
erroneous positions, which is an elaboration of the method described in the
general attack.

For LAC128-v2, the position-wise decoding is successful if the error variable
corresponding to that position lies in the interval of [−62, 62], and in this case,
the value has a small absolute value with high probability. Let c2 be the vector
of length 400, which will be compressed to c2,compressed of length 200 in the ci-
phertext. Then, it will cause a position error with high probability if adding 125
to a position in c2 and compressing the new c2 to c′2,compressed by the compression
function. Since the position error probability for LAC128-v2 is only 2−12.61 (see
Table 2), it will have δ0 = 16 position errors with high probability if one adds
125 to the last 16 entries in c2. The threshold δ0 is set to be 16 since the error
correcting capability of the employed BCH codes is exactly 16. With some prob-
ability (of about 384/212.6), one could find one position error originally occurs
in the first 384 positions of c2. Thus, it will lead to a different re-encryption
if one adds 125 to the last 16 positions of c2, but not if only 15 positions are
changed. After finding this state, the attacker can keep the last 15 positions of
c2 added by 125 and also add the i-th position in c2 by 125. He then compresses
the invalid ciphertext and sends it to the decryption oracle. If the i-th position
is already erroneous, the number of position errors will not be increased and a
fast check cannot be detected via the timing channel. All additions are operated
over Zq.

The other LAC versions can be attacked in a similar manner, and the attack
version on LAC256-v2 with the D2 encoding would need a slight adjustment.
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