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Abstract. We describe two very efficient polynomial-time algorithms for
reducing module lattices defined over arbitrary cyclotomic fields that solve
the γ-Hermite Module-SVP problem. They both exploit the structure of
tower fields and the second one also uses the symplectic geometry existing
in these fields. We conjecture that a rank-2 module over a cyclotomic field
of degree n with B-bit coefficients can be heuristically reduced within
approximation factor 2Õ(n) in time Õ

(
n2B

)
. In the symplectic algorithm,

if the (log-)condition number C of the input matrix is large enough,
this complexity shrinks to Õ

(
nlog2 3C

)
. In cryptography, matrices are

well-conditioned and we can take C = B, but in the worst case, C can
be as large as nB. This last result is particularly striking as for some
matrices, we can go below the n2B swaps lower bound given by the
analysis of LLL based on the potential. These algorithms are parallel
and we provide a full implementation. We apply them on multilinear
cryptographic concrete parameters by reducing matrices of dimension
4096 with 6675-bit integers in 4 days. Finally, we give a quasicubic time
for the Gentry-Szydlo algorithm and run it in dimension 1024. It requires
efficient ideal multiplications which need fast lattice reductions.

1 Introduction

Lenstra, Lenstra, and Lovász introduced in 1984 the lll-algorithm to reduce
lattice basis over the euclidean ring Z [27] in polynomial time. Nowadays, it is
of utmost importance to extend it to non-euclidean rings. Indeed, most lattice-
based cryptosystems proposed at the NIST Post-Quantum competition base their
security on the assumed hardness of reducing structured lattices, a.k.a. ideal or
module lattices [29,25]. More specifically, they relies on the average-case/hard-
case problems, learning with errors (lwe) [39] and short integer solution (sis) [1]
problems, which have been proved to be as hard as solving worst-case instances of
lattice problems, such as finding a god basis. Furthermore, these ideal or module
lattices are usually defined over the integer rings OK of a power of two cyclotomic
number fields K for efficiency and storage considerations. These structured
lattices represent apparently easier instances than random lattice instances, but
they also enjoy worst-case / average-case reductions. Module lattices are closer
to random lattices than ideal lattices and allow better efficiency/security tradeoff.



Currently, it is widely believed that there is no weakness in using structured
lattices compared to random lattices.

An n-dimensional lattice is a discrete subgroup of Rn and reducing a lattice
consists of finding a basis with short and nearly orthogonal vectors. Reducing
lattices of high dimensions is a notoriously hard problem and we do not know
how to solve it efficiently. Many hard problems have been defined on lattices
and even finding a shortest non-zero vector is difficult. The lll algorithm allows
solving approximate versions of these two problems, Short Independent Vectors
Problem (sivp) and Shortest Vector Problem (svp) within an exponential factor
in the lattice dimension. In [27], Lenstra et al. show how to reduce lattices of
dimension n by using a reduction algorithm for 2-dimensional lattices. For 2-
dimensional euclidean lattice, Lagrange algorithm outputs optimal basis: the two
output vectors achieve the minima of the lattice, smallest elements in independent
directions. lll outputs a basis of (relatively) good quality in polynomial time and
the first vector of the basis lies within an exponential factor approximation of a
shortest non-zero vector. Yet, the approximation factor is very large, exponential
in the dimension. Many algorithms such as bkz [41] or other reductions (hkz [20],
slide [12]) have been proposed to improve the approximation factor of the basis.
In another direction, some papers have improved the running time analysis of
lll: starting from the quadratic lll algorithm of Nguyen and Stehlé [36] in
O(n3(n+B)B ·M(n)), whereM(k) is the complexity of multiplying k-bit integers,
using a nice numerical analysis for floating-point arithmetic (the algorithm is
quadratic in B the number of bits of the input matrix), to the quasi-linear
complexity, O(n5+εB + nω+1+εB1+ε), where ε > 0 and ω is the exponent for
matrix multiplication of [37] and more recently the O(n4+εB1+ε) algorithm
of Neumaier and Stehlé [35]. The two last algorithms do not only improve
the analysis, they also make significant changes and are recursive algorithms.
While [37] consider various precisions at each step of the algorithm, the way how
we choose the sublattices to recurse also changes the behavior of the algorithm:
for example [35] has a strategy close to bkz passes. Since the analysis follows
bkz analysis [16], the upper bound is only given for the first vector and not all
vectors. The main consequence is that we have a bound relative to the volume of
the lattice and not the shortest vector.

In cryptography, we often need to reduce lattices of dimension several thousand
with thousand of bits. Such lattices arise in Coppersmith cryptanalysis [8], in fhe
or multilinear map. To reduce them, we absolutely need an lll implementation
linear in the bitlength B and with the smallest exponent in the dimension. For
fhe and multilinear map, the approximation factor is not the most important
parameter and some fhe parameters have been set by using the lll complexity.

Reduction and cryptanalysis over Number Fields. The first generalization
of lll for number fields has been proposed by Napias [33]. She described such an
algorithm for norm-Euclidean rings or orders. It works for cyclotomic rings up to
n = 8. This algorithm has been extended by Kim and Lee in [21] for biquadratic
fields if their rings of integers are norm-Euclidean; meaning that it is a Euclidean
domain for the algebraic norm.



For other number fields, the natural solution is the following. A 2-rank module
is defined by a 2-by-2 matrix with coefficients in OK. Each coefficient in OK can
be transformed to a n-by-n matrix over Z representing the multiplication by α
in OK. Therefore, the module can also be defined by a (2n)-dimensional matrix
over Z. Once we get a lattice over Z, one can apply the lll algorithm which
will output a 22n-approximation of a shortest non-zero vector in polynomial
time in n. The multiplication by n in the dimension rules out every practical
computation for cryptographic instances. The problem with this approach is
that it forgets completely the geometry of the underlying number fields. Our
approach consists in reducing the matrix M directly over OK. In [26], Lee et al.
show a reduction between the computation of d-dimensional modules and the
apparently simpler task of reducing rank-2 modules in general number fields. It
is well-known by cryptanalysts that the 2-dimensional case already captures the
inherent difficulty since it is the basic case in ntru key recovery. By restricting
to cyclotomic fields rather than general number fields as it is proposed in [26],
we avoid one important problem: generally speaking, modules are not defined
by basis but by pseudo-basis which makes things harder. Moreover, the use of
cyclotomic fields always enables us to simplify some steps. In the reduction step,
we have to find an element in OK close to an element in K. Lee et al. propose a
technique to circumvent this problem, while it is known that by using Cramer et
al. result in cyclotomic fields [9], one can solve it efficiently.

The lattice reduction of ntru shares some interesting connections with
the reduction of lattice defined over cyclotomic fields. First of all, Gama et
al. in [11] propose a new lattice reduction algorithm for ntru lattice, called
symplectic reduction. They observe that it is possible to speed up by a factor 2
the computation by using symmetries in the ntru basis as the second half of
the basis can be obtained for free from the first part. Let J2n be a 2-by-2 matrix:

J2n =

(
0 Idn
−Idn 0

)
.

This is a skew-symmetric matrix of determinant 1 such that J2
2n = −Id2n. A

(2n)-by-(2n) matrix M is symplectic if M tJ2nM = J2n, i.e. the matrix M keep
invariant the quadratic form J2n. The ntru public key is a symplectic matrix.
In [11], they show that there exist transformations to reduce a basis that keeps
the symplecticity of the matrix over Z. The speed-up factor comes from the fact
that some computations can be avoided as the Gram-Schmidt vectors satisfy
the relations: b∗2n+1−i =

1
‖b∗i ‖

b∗i J2n. This symmetry is present in all cyclotomic
fields we considered and at each recursion level. Secondly, Albrecht et al. [2]
show how one can exploit subfields to solve overstretched versions of the ntru
cryptosystems used in fhe schemes. In [38], Pornin et Prest improve the runtime
of ntru-based cryptosystems key generation by using a recursive algorithm in
subfields. It is a generalization of the Extended Euclidean Algorithm to towers of
cyclotomic fields and is a one-dimensional case of the lattice reduction problem.

Our Contributions. In this work, we present two algorithms and conjecture
their complexity. To assess these conjectures, we give a first rough analysis



with more detailed information in [23]. We stress here that our aim is not to
provide a full analysis of the running time in a floating-point computational
model but to give evidence for the asymptotic behavior of our algorithms. To
achieve these complexities, it is crucial to consider the precision used at each
level of the recursion as when we descend in the recursion tree, the number
of bits of the elements increases. The analysis follows the principle of the bkz
analysis by Hanrot et al. [16] which explains why we solve the γ-Hermite Module-
svp problem. Furthermore, we are interested in reducing matrices frequently
encountered by cryptanalysts and not in worst-case instances. It is neither a
worst-case analysis nor an average case, but these complexities are important to
estimate the runtime on cryptographic instances. Besides, they conform rather
well with our experiments and the size of the instances we have reduced. Finally,
our implementation is in gp and is parallelized. If one is interested in the hidden
constants in the big-O notation, it is worth implementing it in a low-level language.

Claim 1 (Informal). Over a cyclotomic field of degree n and sufficiently smooth
conductor, one can reduce a rank-2 module represented as a 2-by-2 matrix M
whose number of bits in the input coefficients is uniformly bounded by B > n,
in time Õ

(
n2B

)
heuristically. The first column of the reduced matrix has its

coefficients uniformly bounded by

2Õ(n)(volM)
1
2n .

The second algorithm fully exploits the symplectic structure of these lattices.
It is polynomial in the (log) condition number, defined as C = log

(
‖B‖‖B−1‖

)
of the input matrix, with a dimensional factor below the classical bound in n2
plus a superpolynomial term independant of the input matrix, depending solely
on the geometry of the number field.

Claim 2 (Informal). For cyclotomic fields with power of prime q conductor
n, with the smoothness condition q = O(log n), we give a faster and heuristic
symplectic lattice reduction algorithm with approximation factor 2Õ(n) in time:

Õ
(
n2+

log(1/2+1/2q)
log q C

)
+ nO(log logn)

where C is a bound on the log condition number of the input matrix. For a power
of two cyclotomic fields and large enough C, this complexity is a polynomial
Õ
(
nlog2(3)C

)
.

Practical impacts in cryptography. Our reduction algorithms run in poly-
nomial time and only achieve an exponential approximation factor. They can not
be used per se to reevaluate directly the security parameters of NIST candidates,
as their security estimates are based on better algorithms such as thedbkz [31].

We test our algorithms on a large instance coming from multilinear map
candidates based on ideal lattices [3] where q ≈ 26675 and N = 216. It can
be solved over the smaller field n = 211 in 13 core-days. If we compare this
computation with the previous large computation with fplll [44], Albrecht et al.



were able to compute with n = 28, q ≈ 2240 in 120 hours. As the complexity
of their code is about n4 log(q)2 one can estimate an improvement factor of 4
million.

We improve the running time of the Gentry-Szydlo algorithm [14] using better
ideal arithmetic. Instead of the classical Z-basis representation, we represent
ideals with a small family of generators over the order of a subfield of K. The
product of two ideals is the family of all products of generators. To make this
work we need to sample a bit more than [L : K] random elements in the product
so that with overwhelming probability the ideal generated by these elements is
the product ideal itself. As this increases the size of the family, we need fast
lattice reductions to reduce the family as this operation is called many times.
The overall complexity is Õ

(
n3
)
, while previous implementation runs in O

(
n6
)
.

The algorithm run in dimension 1024 in 103 hours.

High-level description of the algorithms. The two algorithms leverage on
the recursive strategy of Novocin et al. [37] to change the precisions at each
level, of Albrecht et al. [2,38] to descend recursively in smaller subfields using
the relative norm functions, and the approach of Villard to make the algorithm
parallel. The symplectic algorithm deeply extends the work of Gama et al. [11] by
mixing it with the recursion strategy. Our theorems are stated for 2-dimensional
lattices, but the algorithms run for lattices of dimension d. The reason is that
even though we begin with a 2-by-2 matrix, after one recursion step, if the relative
extension degree is 2, we get a 4-by-4 matrix. Consequently, we have to deal with
more general dimensions. A more general theorem is claimed in [23]. Figure 1 is
a flowchart of the different subroutines used in the algorithms.

A module over K of rank d can be defined by a d-dimensional matrix M with
coefficients in OK. If M ∈ (OK)d×d reducing M means finding a unimodular
matrix U ∈ (OK)d×d such that MU has short and nearly orthogonal vectors
in (OK)d. Unimodular matrices in (OK)d×d form a multiplicative group whose
determinants are units in OK. It turns out that in such ring, the number of
units is usually much higher than in Z where we only have ±1. One can define
orthogonality of vectors using a positive quadratic form as a generalization
of the usual scalar product on Rd, with vectors over C. There is two natural
representations of elements for α =

∑
i aiζ

i ∈ OK with ai ∈ Z. The most simple
one is the representation by coefficients (a0, . . . , an−1). The second representation
is better in theory and is more convenient since it allows efficient computations:
multiplication and addition can be achieved coefficient-wise. It sends α to all its
conjugates: the evaluations at all nth primitive roots of unity (exp(2iπk/n) with
gcd(k, n) = 1) of the polynomial α(X) = a0 + a1X + . . .+ an−1X

n−1. Finally,
it is possible to define a geometric norm on the representation by evaluations,
a.k.a. embeddings, by extending the norm over C to vectors. This norm induces
a distance between elements of OK.

As said in [26], the major challenges for reducing algebraic lattices is that
the algebraic norm and embedding norm does not always coincide for algebraic
lattices, contrary to the Euclidean case. Some operations in lll require to work
with the algebraic norm, when the volume of the lattice is involved, while when



we have to take care of the size, we rely on a geometric norm, and unfortunately
the algebraic norm is not a geometric norm.
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Fig. 1: Flowchart of the overall toplevel of the reduction algorithm.

Reduction of rank-n. This algorithm described in Section 3.8 is the main function
of the algorithm and its goal is to reduce a lattice of rank d = n at the beginning.
It is a recursive function that at the leaves of the recursion tree (2-dimensional
lattice over Z) calls Schönhage algorithm. The idea is to progressively change
the basis making its profile flatter step-by-step during ρ iterations. The value ρ
hence controls the overall complexity. In dimension d for a precision p, ρ is in
O(d2 log p). The precision is estimated by the size of the ratio between the largest
and smallest embeddings of the Gram-Schmidt at each of the ρ iterations. The
best value for ρ is estimated via a dynamical system analysis, sharing similarities
with the one of [16]. Interestingly, the complexity equation reminds the heat
equation in physics, whose diffusion characteristic time is quadratic in the space
diameter.

A single iteration is organized in the same way as in (classical) lll pass
on the whole basis: first, the Gram-Schmidt orthogonalization process is called,
followed by a reduction in size of the Gram-Schmidt values. We call the first
stage QR-decomposition as most modern lll versions implement this algorithm.
The size-reduction algorithm allows us to keep the manipulated matrices well-
conditioned. The whole lll process aimed at making the basis well-conditioned,
i.e. making the ratio between the largest and smallest Gram-Schmidt vector as
low as possible. The idea of lll consists of pushing the weight of the heaviest



Gram-Schmidt to the lightest ones using Lagrange reduction step of 2-dimensional
lattices.

Then, the main loop of lll is applied on the whole basis by splitting the
base in 2-dimensional sublattices. This loop is orchestrated with odd-even steps
à la Villard [45] depending on the parity of the iteration. Instead of reducing the
vectors (bi, bi+1) for i = 1 to n− 1 in lll which is inherently a sequential process,
Villard proposed to reduce vectors (b2i+1, b2i+2) for i = 0 to n/2−1 in odd passes
and (b2i, b2i+1) for i = 1 to n/2− 1 in even passes. Consequently, at each pass
all 2-dimensional sublattices {(b2i+1, b2i+2)}i or {(b2i, b2i+1)}i can be reduced
in parallel. According to some condition on consecutive Gram-Schmidt norms
(similar to Lovász condition), we recurse on smaller sublattices by first calling
the Descend algorithm and then the Reduce Algorithm in smaller dimension.
Once we go back, we lift the unimodular matrix to the above subfield and apply
it on the basis matrix. At the end of this algorithm, all unimodular matrices
that have been computed during the ρ steps are multiplied together to obtain
the global unimodular transformation.

The main parameter is how we define a Lovász condition for algebraic lattices.
It is crucial to control the approximation factor of our algorithms and the slope
of the profile is named α, the approximation factor will be in 2αd. As previously
mentioned, the goal is to transfer the weight of the first vector to the second one.
Each iteration transforms consecutive Gram-Schmidt norms Ri,i and Ri+1,i+1

to their average. The caveat of our algorithms is that the approximation factor
will be higher than the one of lll because when we lift the solution, the vectors
will be a little larger. We are however able to keep it exponential in Õ(n). As
it depends on the number of subfields, this parameter will be different in the
standard and symplectic algorithms. Indeed, in the symplectic algorithm, we
cannot take any subfields and they have to be denser. Therefore, we recurse more
and the approximation factor becomes higher.

QR-decomposition. This algorithm is described in Section 2.4 and computes the
Gram-Schmidt decomposition. Since it uses purely algebraic operations, it is
easy to adapt it for algebraic lattices once the hermitian product and norm are
defined.

Size-reduce. This algorithm is given in Section 3.2 and its goal is to reduce the
size of the vectors. When the field is Q in the classical lll, we just round the
coefficients to the nearest integer. Rounding in cyclotomic fields is not as easy
as in Z as the OK lattice is less orthogonal. The idea is that we have to solve
an approx-cvp instance in the OK-lattice. In theory, we need to compute a unit
close to Ri,i as in [9] which is easy since the unit-log lattice is nearly orthogonal
in the cyclotomic case. In practice, it is not needed and as it is reported in [38],
it works well without it. This operation will not change the algebraic norm of the
elements, but make the embedding coefficients all of the same sizes, so that it
helps to make the matrix well-conditioned and avoid a blow-up in the precision.
It is also very important in the Lift algorithm for controlling the size of the
elements.



Reduction of rank-2 projected sublattices. The reduction of rank-2 projected
sublattices first extracts 2 column vectors(

Ri,i Ri+1,i

0 Ri+1,i+1

)
.

and according to Lovász condition NKh/Q(Ri,i) 6 22(1+ε)αn
2
hNKh/Q(Ri+1,i+1),

it continues the descent. The recursion to smaller subfields is composed of the
Descend and Ascend algorithm explained in Section 3.4 and is mainly depacking
/ packing values. Once the recursion terminates, it calls back the Lift algorithm.

Lift and Generalized Euclidean Algorithm. This algorithm is described in Sec-
tion 3.7. This operation requires to be careful otherwise the size of the lifted
vectors will explode. The reduction at the bottom of the tree will return a short
vector in the module. We need to complete this vector so that they both generate
the same rank-2 module as the one given at the level of the recursion. The idea is
to use a generalization of the extended Euclidean algorithm (G-Euclide) in cyclo-
tomic fields since we know that the determinant of the unimodal transformation
has a determinant equal to 1. In the end, we size-reduce the basis to make vectors
of the same size with balanced coefficients. We show that the operation works if
we start with two elements a and b in a subfield Kh so that their absolute norms
NKh/Q(a) and NKh/Q(b) in Z are coprime.

The lift operation can fail in some instances as when we lift small elements,
they do not always generate the whole rank-2 module. We work around this
problem by lifting many small elements. In practice, this heuristic always works.

Symplectic Algorithm. The algorithm is the same as the standard algorithm but it
changes the size-reduction which is presented in Section 4. It uses operations that
maintain the symplecticity of the matrix. We used the symplectic reduction [11]
at each step of the recursion. To do this, we need to show that it is possible to
define the symplectic geometry in all subfields when we descend the tower field.

Comparison with other works. More recently some independent line of re-
search started to tackle the problem of reduction of algebraic lattices [26,32].
These papers give polynomial time reduction from γ-module-svp (or γ-Hermite-
svp) in arbitrary rank to the same problem in small rank for all number fields.
In particular in [26], for rank-2 modules, they present a γ-svp heuristic algo-
rithm with approximation factor is 2(log d)

O(1)

in cyclotomic rings with quantum
polynomial time given a cvp oracle that only depends on K in dimension more
than d2. Consequently, an implementation would rely on an actual oracle for the
latter problem with running time 2d

2

.

Organization of the paper. The next section is devoted to a succinct presen-
tation of the mathematical objects required in the presentation of our framework.
In Section 3 we introduce an algorithm which reduces rank-2 modules. Then,
in Section 4, we explain how to leverage a natural symplectic structure to obtain
an even faster reduction. We give implementation details in Section 5 and some
cryptographic applications in Section 6.



2 Background

2.1 Computational model and Notations

We use the word-ram model with unit cost and logarithmic size register (see for
instance [30, Section 2.2]). An integer n ∈ Z is said log-smooth if all its prime
factors are bounded by log(n). For a field K, let us denote by Kd×d the space
of square matrices of size d over K, GLd(K) its group of invertibles. Denote
classically the elementary matrices by Ti,j(λ) and Di(λ) for respectively the
transvection (or shear mapping) and the dilatation of parameter λ. We extend
the definition of the product for any pair of matrices (A,B): for every matrix C
with compatible size with A and B, we set: (A,B)·C = (AC,BC). We will denote
the L2 norm of a vector x = (x1, . . . xd) by ‖x‖ =

√∑
i x

2
i and the Frobenius norm

of matrices by ‖A‖2 =
√∑

i

∑
j |Ai,j |2 for a matrix A = (Ai,j). The condition

number κ(A) = ‖A‖2‖A−1‖2, where A is a real or complex matrix and the norm
used here is the spectral norm. We adopt the following conventions for submatrix
extraction: for any matrix A = (Ai,j) ∈ Kd×d and 1 6 i < j 6 d, 1 6 k < ` 6 d,
define the submatrix A[i : j, k : `] = (Au,v)i6u6j,k6v6`, while Au refers to the
u-th column of A.

2.2 Cyclotomic fields and Modules over Z[ζf ]

Background on Algebraic number theory can be found in Neukirch’s book [34].
Let Φf ∈ Z[X] be the f -th cyclotomic polynomial, the unique monic polynomial
whose roots ζkf = exp(2ikπ/f) with gcd(k, f) = 1 are the f -th primitive roots
of the unity. Therefore it can be written as Φf =

∏
k∈Z×

f
(X − ζkf ) and the

cyclotomic field Q(ζf ) is obtained by adjoining a primitive root ζf to the rational
numbers. As such, Q(ζf ) is isomorphic to the field Q[X]/(Φf ). Its degree over Q
is deg (Φf ) = ϕ(f), the Euler totient of f . In this specific class of number fields,
the ring of integers is precisely Z[X]/(Φf ) ∼= Z[ζf ] (see [34, Prop. 10.2]).

Canonical Hermitian structure. LetM be a free module of rank d over the
cyclotomic ring of integers Z[ζf ]. It is isomorphic to

⊕d
i=1 αiZ[ζf ], for some

linearly independent vectors αi = (α
(1)
i , . . . , α

(d)
i ) ∈ Q(ζf )

d. The Hermitian

structure of Q(ζf )
d lifts toM as defined by 〈αi |αj〉 =

∑d
t=1 trQ(ζf )/Q

(
α
(t)
i α

(t)
j

)
on the basis elements and extended by (bi)linearity. We denote by ‖ · ‖ the
corresponding norm. We use the same notation to denote the associated induced
norm on endomorphisms (or associated matrices) over the vector space Q(ζf )

d.

Relative structure of the ring of integers in a tower. Let K ⊆ L be a
cyclotomic subfield of L of index n. Then OK is a subring of OL, so that OL is
a free module over OK

3. Henceforth, the moduleM can itself be viewed as a
free module over OK of rank dn. Indeed, consider (ξ1, . . . , ξn) a basis of OK over
3 In whole generality, it is not necessarily free, but imposing both fields to be cyclotomics
is sufficient to imply this property.



OL and (v1, . . . , vd) a basis ofM over OK. For any 1 6 i 6 d, each coefficient of
the vector vi decomposes uniquely in the basis (ξj). Grouping the corresponding
coefficients yields a decomposition vi = v

(1)
i ξ1 + · · ·+ v

(n)
i ξn, where v

(j)
i ∈ OdnL .

The family
(
v
(j)
i ξj

)
16i6d,16j6n

is a basis ofM viewed as OK-module.

2.3 Unit rounding in cyclotomic fields

The group of units of a number field is the group of invertible elements of its
ring of integers. Giving the complete description of the units of a generic number
field is a computationally hard problem in algorithmic number theory. However,
in cyclotomic fields, it is possible to describe a subgroup of finite index of the
unit group, called the cyclotomic units. This subgroup contains all the units that
are products of elements of the form ζif − 1 for any 1 6 i 6 f . As these units
are dense, structured and explicit we can use them to round an element. The
following theorem is a quasilinear variant of the result of [9, Theorem 6.3] which
is proved in [23] and Unit is the corresponding algorithm.

Theorem 1. Let K be the cyclotomic field of conductor f . There is a quasi-
linear time randomized algorithm that given any element in x ∈ (R⊗K)× finds
a unit u ∈ O×K such that for any field embedding σ : K→ C we have

σ
(
xu−1

)
= 2O(

√
f log f)NK/Q(x)

1
ϕ(f) .

Remark 1. Since f
ϕ(f) = O(log log f) and n = ϕ(f) the absolute degree of K, the

bound in theorem 1 becomes 2O(
√
n logn log logn)NK/Q(x)

1
n .

2.4 OK-lattices

We now generalize the notion of Euclidean lattice to the higher-degree context.
Recall that a Euclidean lattice is a finitely generated free Z-module Λ endowed
with a Euclidean structure on its real ambient space Λ ⊗Z R. To extend this
definition we replace the base-ring Z by the ring of integer OK of a number field
K. In the present context, we will keep the freeness condition of the module,
even if this setting is slightly too restrictive in general number fields.

Definition 1 (OK-lattice). Let K be a cyclotomic field. An OK-lattice—or
algebraic lattice over OK—is a free OK-module Λ endowed with a K⊗R-linear
positive definite self-adjoint form on the ambient vector space Λ⊗OK

R.

Orthogonalization process. Taking the basis (m1, . . . ,md) of M, one can
construct an orthogonal family (m∗1, . . . ,m

∗
d) such that the flag of subspaces

(⊕ki=1biK)16k6d is preserved. This routine is exactly the same as for Euclidean
lattices and is given in algorithm 1, Orthogonalize. We present it here in its
matrix form, which generalizes to GLd(K⊗R) QR-decomposition in GLd(R).
The volume ofM can be computed from the norms of the Gram-Schmidt stored
in the matrix R as: vol(M) = NK/Q

(∏d
i=1Ri,i

)
, while over Z, it is

∏d
i=1Ri,i.



Algorithm 1: QR-decomposition Algorithm
Input :Basis M ∈ Od×dKh

of an OKh−moduleM
Output :R part of the QR-decomposition of M

1 for j = 1 to d do Qj ←Mj −
∑j−1
i=1

〈Mj |Qi〉
〈Qi |Qi〉

Qi end for

2 return R =
(
〈Qi |Mj〉
‖Qi‖

)
16i6j6d

3 Reduction of OK-modules in cyclotomic fields

We describe now our first reduction for lattices over cyclotomic fields. Let h be a
non-negative integer, a tower of log-smooth conductor cyclotomic fields

K↑h = (Q = K0 ⊂ K1 ⊂ · · · ⊂ Kh)

and 1 = n0 < n1 < · · · < nh their respective degrees over Q. Then, we consider a
free moduleM of rank d over the upper field Kh, which is represented by a basis
(m1, . . . ,md) given as the columns of a matrix M ∈ Od×dKh

. We denote by 〈a, b〉
the OKh

-module aOKh
⊕ bOKh

. The reduction algorithm returns a unimodular
transformation such that the basis M · Reduce(M) has a small first vector.

3.1 Outer iteration

To reduce the moduleM we adopt an iterative strategy to progressively modify
the basis. For ρ steps, a reduction pass over the current basis is performed, with
ρ being a parameter whose value is computed to optimize4 the complexity of
the whole algorithm while still ensuring the reduceness of the basis. As in the
lll algorithm a size-reduction operation is conducted to control the size of the
coefficients of the basis and ensure that the running time of the reduction remains
polynomial. Note that for number fields this subroutine is adapted to deal with
units of OKh

when rounding. In a word, we make use of the numerous units of
this field to shrink the discrepancy of the embeddings of the coefficients of the
basis. This allows computation with less precision.

3.2 Unit-size-reduction for OKh-modules

As indicated, in order to adapt the size-reduction process to the module setting,
one needs to adjust the rounding function. When Kh = Q, the rounding boils
down to finding the closest element in OK = Z, which is encompassed by the
round function d·c. In the higher-dimensional context, we need to approximate
any element of Kh by a close element of OKh

.
Note that finding the closest integral element is not efficiently doable. The

naive approach consists of reducing the problem to the resolution of the closest
4 We defer the precise computation of this constant to [23].



Algorithm 2: Size-Reduce
Input :R-factor of the QR-decomposition of M ∈ Od×dKh

Output :A unimodular transformation U representing the size-reduced
basis obtained from M .

1 U ← Idd,d
2 for i = 1 to d do
3 L← Di(Unit(Ri,i))// Di is a dilation matrix
4 (U,R)← (U,R) · L−1

5 for j = i− 1 downto 1 do
6

∑n−1
`=0 r`X

` ← Ri,j/Rj,j // Extraction as a polynomial
7 µ←

∑n−1
`=0 br`eX

` // Approximate rounding of Ri,j in OKh

8 (U,R)← (U,R) · Ti,j(−µ) // Ti,j is a shear matrix
9 end for

10 end for
11 return U

integer problem in the Euclidean lattice of rank nh given by OKh
under the

embedding.
Nonetheless, finding a target vector close enough to the target suffices for our

application. We simply define the rounding of an element α ∈ Kh as the integral
rounding on its coefficients when represented in the power base of Kh.

We add here an important and necessary modification to the size-reduction
algorithm: before the actual size-reduction occurred, we compute a unit u us-
ing Theorem 1 close to Ri,i. The vector Mi is then divided by u. While not
changing the algebraic norms of the elements, this technicality forces the em-
beddings of the coefficients to be balanced and helps the reduced matrix to
be well-conditioned. This avoids a blow-up of the precision required during the
computation. This modified size-reduction is fully described in Algorithm 2,
Size-Reduce (the two technical modifications to the usual size-reduction are
encompassed at line 3 for the reconditioning using the unit rounding and at line
7 where the approximate rounding is performed coefficient-wise).

3.3 Step reduction subroutine

We now take a look at the step reduction pass, once the size-reduction has
occurred. The lll algorithm reduces to the treatment of rank-2 modules and
more precisely to iteratively reduce orthogonally projected rank-2 modules. We
use the same idea and the step reduction pass over the current basis is a sequence
of reductions of projected rank 2 OKh

−modules. However on the contrary to
the lll algorithm, we do not proceed progressively along the basis, but instead,
reduce bd/2c independent rank 2 modules at each step. This design enables an
efficient parallel implementation which reduces submodules simultaneously, in
the same way that the classical lll algorithm can be parallelized [45,17].



Formally, given the basis ofM collected in the matrix M , let us decompose
it as M = QR with Q orthogonal and R upper triangular. For 1 6 i 6 d − 1,
denote by ri the vector (Ri,i, Ri+1,i = 0), and r′i the vector (Ri,i+1, Ri+1,i+1).
The module Ri spanned by the vectors ri and r′i encodes exactly the projec-
tion of Mi =

〈
mi−1,mi

〉
over the orthogonal space to the first i − 1 vectors

(m1, . . . ,mi−1). In order to recursively call the reduction algorithm on Ri we
need to descend it to the subfield Kh−1 first. This means seeing this OKh

-module
of rank 2 as an OKh−1

-module of rank 2[Kh : Kh−1].

3.4 Interlude: descending to cyclotomic subfields

Remark now that since Kh is a cyclotomic extension of the cyclotomic field
Kh−1, there exists a root of unity ζ such that OKh

= OKh−1
⊕ ζOKh−1

⊕ · · · ⊕
ζqh−1OKh−1

, for qh = nh/nh−1 being the relative degree of Kh over Kh−1. As a
consequence, the module Ri decomposes over OKh−1

as:

Ri = riOKh
⊕ r′i+1OKh

= riOKh−1
⊕ ζriOKh−1

⊕ · · · ⊕ ζqh−1riOKh−1
⊕

r′i+1OKh−1
⊕ ζr′i+1OKh−1

⊕ · · · ⊕ ζqh−1r′i+1OKh−1
,

yielding a basis of Ri viewed as a free OKh−1
-module of rank 2× qh. This module

can then be recursively reduced, this time over a tower of height h − 1. This
conversion from an OKh

−module to an OKh−1
−module is referred as the function

Descend. Conversely, any vector u ∈ O2qh
Kh−1

can be seen with this decomposition
as a vector of O2

Kh
by grouping the coefficients as(

qh∑
i=1

u[i]ζi,

qh∑
i=1

u[qh + 1 + i]ζi

)
.

We denote by Ascend this conversion.

3.5 Back on the step reduction

We start by reducing (with a recursive call after descending) all OKh−1
-modules

R2i =
〈
r2i−1, r

′
2i

〉
for 1 6 i 6 bd/2c. By specification, each of these reductions

allows to find a small element of the OKh
-submoduleM2i =

〈
m2i−1,m2i

〉
which

is then completed5 in a basis ofM2i. But on the contrary to the classical lll
reduction, this sequence of pairwise independent reductions does not mix the
elements m2i and m2i+1, in the sense that no reduction of the module projected
from 〈m2i,m2i+1〉 is performed. To do so, we then perform the same sequence
of pairwise reductions but with all indices shifted by 1: we reduce the planes〈
r2i, r

′
2i+1

〉
for each 1 6 i 6 bd/2c, as depicted in Figure 2.

5 The precise definition of this completion and lifting is given in a dedicated paragraph.



m1 m2 m3 m4 . . . mi−1 mi mi+1 . . . mn−1 mn Basis

〈
r1 , r

′
2

〉 〈
r3 , r

′
4

〉
. . .

〈
ri−1 , r

′
i

〉
. . .

〈
rn−2 , r

′
n−1

〉
Odd steps

〈
r2 , r

′
3

〉 〈
r4 , r

′
5

〉
. . .

〈
ri , r

′
i+1

〉
. . .

〈
rn−1 , r

′
n

〉
Even steps

Fig. 2: Illustration of one pass of reduction (blocks of the shape
〈
a, b
〉
indicates a

local reduction of the module spanned by a and b.).

3.6 Reduction of the leaves

As the recursive calls descend along the tower of number fields, the bottom of
the recursion tree requires reducing OK0(= OQ = Z)-modules, that is, Euclidean
lattices. As a consequence, the step reduction performs calls to a reduction oracle
for plane Euclidean lattices. For the sake of efficiency we adapt Schönhage’s
algorithm [42] to reduce these lattices, which is faster than the traditional
Gauss’ reduction. This algorithm is an extension to the bidimensional case of
the half-GCD algorithm, in the same way, that Gauss’ algorithm can be seen as
a bidimensional generalization of the classical GCD computation. The original
algorithm of Schönhage only deals with the reduction of binary quadratic forms,
but can be straightforwardly adapted to reduce rank 2 Euclidean lattices, and
to return the corresponding unimodular transformation matrix. In all of the
following, we denote by Schonhage this modified procedure.

3.7 The lifting phase

At this point, we recursively called the reduction procedure to reduce the descent
of projected modules of rank 2 of the form Ri = 〈ri, r′i+1〉, over Kh−1. This
yields a unimodular transformation U ′ ∈ O2qh×2qh

Kh−1
where qh is the relative

degree of Kh over Kh−1. We now need to find a reduced basis of this projected
sublattice over OKh

, so that we can apply the corresponding transformation on
miOKh

⊕mi+1OKh
(like in the classical lll algorithm).

From U ′, we can find random short elements in the module (over Kh−1) by
computing a small linear combination of its first columns. By applying Ascend
on one of them, we deduce some short x = a ·mi + b ·mi+1. But then to replace
mi by x in the current basis, we need to complete this vector into a basis (x, y)
ofMi over OKh

. Saying differently, we want to complete a vector of O2
Kh

into a
unimodular transformation. Indeed, suppose that such a vector y is found and
denote by (v, u) its coordinates in the basis (mi,mi+1). By preservation of the
volume we have:

±1 = det

(
a v
b u

)
= au− bv.

Therefore, finding the element y to complete x reduces to solving the Bézout
equation in the unknown u and v au− bv = 1 over the ring OKh

. Since this ring



is in general not Euclidean we can not apply directly the Euclidean algorithm
to solve this equation using the extended gcd algorithm. However, we can use
the algebraic structure of the tower K↑h to recursively reduce the problem to the
rational integers. This generalized Euclidean algorithm works as follows:

If Kh = Q: The problem is then an instance of extended GCD search, which
can be solved efficiently by the binary-GCD algorithm.

If the tower K↑h is not trivial: We make use of the structure of K↑h and first
descend the problem to the subfield Kh−1 by applying the relative norm
NKh/Kh−1

: then, by recursive call on NKh/Kh−1
(a) and NKh/Kh−1

(b), we
find two algebraic integers µ and ν of OKh−1

fulfilling the equation:

µNKh/Kh−1
(a)− νNKh/Kh−1

(b) = 1. (1)

But now remark that for any element α ∈ OKh
we have, using the comatrix

formula and the definition of the norm as a determinant that: NKh/Kh−1
(α) ∈

αOKh
, so that α−1NKh/Kh−1

(α) ∈ OKh
. Then, from equation (1):

a · µa−1NKh/Kh−1
(a)︸ ︷︷ ︸

:=u∈OKh

−b · ν b−1NKh/Kh−1
(b)︸ ︷︷ ︸

:=v∈OKh

= 1, as desired.

Reduction of the size of solutions: The elements u, v found by the algo-
rithm are not necessarily the smallest possible elements satisfying the Bézout
equation. To avoid a blow-up in the size of the coefficients lifted, we do
need to control the size of the solution at each step. Since the function Size-
Reduce preserves the determinant by construction and reduces the norm of
the coefficients, we can use it to reduce the bitsize of u, v to (roughly) the
bitsize of a and b.

The translation of this method is given in Algorithm 3, G-Euclide. The number
of bits needed to represent the relative norms does not depend on the subfield,
and the size-reduction forces the output vector to have the same bitsize as the
input one. This is the main idea of the quasilinearity of the G-Euclide algorithm.
The algorithm needs NKh/Q(a) to be prime with NKh/Q(b). We assume that we
can always find quickly such a, b with a short x. This will lead to Heuristic 1,
and its validity is discussed in Section 5.4.

Remark 2. This algorithm is related to the one proposed in [38]. However, the
claimed complexity of their algorithm is incorrect, as the size of the lifted solutions
can not be controlled. This problem is resolved here by using the quasi-linear Unit
rounding algorithm. More generally the unit rounding is in a lll-type algorithm,
at least theoretically, mandatory. In particular, a swap when the basis is not
reduced with the definition in [21] may not lead to a reduction in potential so
that the proof of [21, Theorem 3] is incorrect. We also point out that without a
bound on the unit contributions, we have no polynomial bound on the number of
bits used in their algorithm 3. From a practical point of view, it does not seem to
be a problem. If this is the case, our algorithm can be used every time we have a
reasonable tower of number fields.



Algorithm 3: G-Euclide & Lift
1 Function G-Euclide:

Input :Tower of number fields K↑h, a, b ∈ Kh with coprime absolute
norms NKh/Q(a) and NKh/Q(b).

Output : u, v ∈ Kh, such that au+ bv = 1

2 if Kh = Q then return ExGcd(a, b)

3 µ, ν ← G-Euclide
(
K↑h−1,NKh/Kh−1

(a),NKh/Kh−1
(b)
)

4 µ′, ν′ ← µa−1NKh/Kh−1
(a), ν b−1NKh/Kh−1

(b)

5 W ←
(
a ν′

b µ′

)
6 V ← Size-Reduce(QR-decomposition(W ))
7 return W · V [2]

8 Function Lift:
Input :Tower of number fields K↑h, unimodular matrix U ′ ∈ O2qh

Kh−1

Output :Unimodular matrix U ∈ O2×2
Kh

9 (a, b)←Ascend(Kh, U [1])

10 (µ, ν)← G-Euclide
(
K↑h−1, a, b

)
11 U ←

(
a ν
b µ

)
12 return U

Algorithm 4: Reduce
Input :Tower of cyclotomic fields K↑h, Basis M ∈ O

d×d
Kh

of the
OKh−moduleM

Output :A unimodular transformation U ∈ Od×dKh
representing a reduced

basis ofM.

1 if d = 2 and Kh = Q then return Schonhage(M)
2 for i = 1 to ρ do
3 R← QR-decomposition(M)
4 Ui ← Size-Reduce(R)
5 (M,R)← (M,R) · Ui
6 for j = 1 + (i mod 2) to d by step of 2 do
7 if NKh/Q(Rj,j) 6 22(1+ε)αn

2
hNKh/Q(Rj+1,j+1) then

8 M ′ ← Descend(K↑h−1, R[j : j + 1, j : j + 1])

9 U ′ ← Reduce(K↑h−1,M
′)

10 (Ui,M)← (Ui,M) · Lift(U ′)
11 end if
12 end for
13 end for
14 return

∏ρ
i=1 Ui



3.8 Wrapping-up and complexity

The lattice reduction algorithm is described in Algorithm 4. It is parametrized
by two variables ε and α, which are related to the approximation factor of the
reduction. The precise values of these constants depend on the conductor of the
upper field. A more complete outline of the reduction is given in [23].

To express our complexity result, we introduce a mild heuristic, which claims
that the size of the elements obtained after the Lift function is not too large.

Heuristic 1 (Size of lifting) Denote by R(i) the R-part of the QR decomposi-
tion of the basis at the i-th step of the algorithm Reduce. For any 1 6 i 6 ρ and
any 1 6 j 6 d where a call to Lift happened:

NKh/Q

(
R

(i+1)
j,j

)
6 min

(
2αn

2
h

√
NKh/Q

(
R

(i)
j,jR

(i)
j+1,j+1

)
,NKh/Q

(
R

(i)
j,j

))
.

A discussion on the validity of this heuristic is done in Section 5.4.

Claim 1 Let f be a log-smooth integer. Under Heuristic 1, the complexity of
Algorithm Reduce on rank 2-modules over K = Q[x]/Φf (x), represented as a
matrix M whose number of bits in the input coefficients is uniformly bounded by
B > n, is heuristically a Õ

(
n2B

)
with n = ϕ(f). The first column of the reduced

matrix has its coefficients uniformly bounded by 2Õ(n)(volM)
1
2n .

A more technical analysis is given in [23] and we present here the basic steps.
First, remark that the input matrix can always be reconditioned using Unit
in time Õ

(
n2B

)
so that we might always suppose that its condition number

is smaller than 2B. We start by estimating the approximation factor of the
reduction and deduce a bound in O

(
d2 log p

)
on the number of rounds ρ required

to achieve the reduction of the moduleM, where p is the precision needed to
handle the full computation. We then prove that the limiting factor for the
precision has to be large enough to represent the shortest embedding of the norm
of the Gram-Schmidt orthogonalization of the initial basis. After that, we devise
a bound by looking at the sum of all the bit sizes used in the recursive calls and
conclude on the complexity. The critical part of the proof is to use the potential
to show that dividing the degrees by d

2 leads to a multiplication by a factor at
most in O

(
d2
)
of the sum of all the precisions in the recursive calls, instead of the

obvious O
(
d3 log p

)
. This discrepancy in the number of bits actually needed by

the reduction compared with the obvious bound allows to reduce at sufficiently
low precision to diminish the overall complexity.

4 Symplectic reduction

Here we demonstrate how to generate additional structure which is compatible
the tower of number fields and how to exploit it to speed-up the size-reduction
procedure of our algorithm, at every level of the recursion. This additional



structure is in substance a generalization of the so-called symplectic group to
tower of fields, which gives additional symmetries to lattices. In a word, we design
a size-reduction which is compatible with this symplectic group, in the sense that
it allows to perform the computation with only the first part of the basis and get
the rest of the reduction for free, using these symmetries.

This technique can be thought as an algebraic generalization of the work [11]
of Gama, Howgrave-Graham and Nguyen on lll-reduction for ntru lattices. In
particular, we demonstrate that such techniques can be used for all towers of
number fields. Where [11] gains a factor 2 for the reduction of structured lattices
over Z, we gain a factor 2 at each level of the recursive calls of the reduction,
which combines into an overall polynomial factor improvement.

After introducing the symplectic group and Darboux bases, we show how to
generalize these constructions to tower of fields. Then we show that this tower
of symplectic groups is compatible with the descent we use to recurse (namely
the descent of a symplectic lattice over a subfield has to remain symplectic).
Eventually, we the show that we can replace the size-reduce sub-procedure by a
tailored one for symplectic lattices.

4.1 On symplectic spaces and symplectic groups

We now briefly introduce the linear aspects of symplectic geometry and establish
the parallel between the Euclidean and Symplectic spaces.

Definitions. A symplectic space is a finite dimensional vector space E endowed
with an antisymmetric bilinear form J : E × E → E. We can define a natural
orthogonality relation between vectors x, y ∈ E as being J(x, y) = 0. The linear
transformations of E letting the symplectic structure J invariant is a group,
called the J-symplectic group(or symplectic group if the context makes J clear).
This group plays a role similar to the orthogonal group for Euclidean spaces.

Darboux bases. Contrary to Euclidean spaces, a symplectic space does not
possess an orthogonal basis, but instead a basis e1, . . . , ed, f1, . . . , fd, so that for
any indices i < j we have J(ei, ej) = 0, J(fi, fj) = 0, J(ei, fj) = 0 and J(ei, fi) =
−J(fi, ei) > 0, called a Darboux base. It implies in particular that any symplectic
space has even dimension. Recall that by Gram-Schmidt orthogonalization, we can
transform any basis of a Euclidean space in an orthogonal basis. This construction
can be adapted to the symplectic case, to construct a Darboux base iteratively.

Symplectic lattice, size reduction. Given a lattice Λ and a symplectic form
J , we say that Λ is J-symplectic if the matrix representing Λ let invariant the
form J (as a comparison, if J was an inner product form, a lattice Λ preserving
J would be represented with an orthonormal basis).

As mentioned in section 3.2, an important tool to reduce lattices is the size-
reduction procedure, which can be viewed as a discretization of the Gram-Schmidt



orthogonalization. It aims at reducing the bitsize and the condition number of
the lattice basis. When dealing with symplectic lattices, we can also discretize
the process to obtain a basis which can be seen as a discretization of a Darboux
basis. Using this process instead of the classical size-reduction would retrieve the
situation of [11].

As we generalized the lattice formalism to OK-modules in number fields, we
now generalize the notions of symplectic lattices to the algebraic context.

4.2 J-Symplectic group and compatibility with extensions

In all the following, we fix an arbitrary tower of number fields

K↑h = (Q = K0 ⊂ K1 ⊂ · · · ⊂ Kh).

For any 1 6 i 6 h we denote by qh the relative degree of Kh over Kh−1. On any
of these number fields, we can define a simple symplectic form, which derives
from the determinant form.

Definition 2. Let K be a field, and set J to be an antisymmetric bilinear form
on K2. A matrix M ∈ K2×2 is said to be J-symplectic (or simply symplectic) if
it lets the form J invariant, that is if J ◦M = J .

Let us instantiate this definition in one of the fields of the tower K↑h on the
2× 2-determinant form. Let Jh be the antisymmetric bilinear form on K2

h which
is given as the determinant of 2× 2 matrices in Kh, i.e.

Jh

((
x0
x1

)
,

(
y0
y1

))
= x0y1 − x1y0.

Remark 3. In the presented case, M is Jh-symplectic iff detM = 1. Hence, we
can always scale a basis so that this condition is verified.

At this point we have introduced a symplectic structure on Kh. But we want
to have a symplectic structure at every level of the tower, so that we can use
this structure at every level of the recursion when reducing a module. To do so,
we need that the descent of a symplectic lattice over Kh is also a symplectic
lattice over all of these subfields. Formally, this corresponds to finding a form
compatible with the descent of a symplectic matrix to Kh−1. Hence, we want to
construct a form J ′h over Kh−1, such that the following lemma is true.
Lemma 1. Let M be a 2× 2 matrix over Kh which is Jh-symplectic, then its
descent M ′ ∈ K2qh×2qh

h−1 is J ′h-symplectic.
To do so, we descend the form Jh to Kh−1 by composition with a carefully con-
structed linear form Kh → Kh−1. We then extend the definition of symplectism
to K2qh

h−1 by stating that a 2qh × 2qh matrix M ′ is symplectic if it preserves the
J ′h form, that is if J ′h ◦M ′ = J ′h.

But as the reduction is going, the current basis is subjected to transformations.
In order to be able to continue to use the symmetries induced by the symplectism
we need to ensure that the basis remains symplectic at every moment of the reduc-
tion. By induction, this boils down to show that every elementary transformations
done by our algorithm reduce preserves the symplectic structure.



4.3 Module transformations compatible with J-symplectism

We treat here the slightly simpler case of Kummer-like extensions, which is the
case we implemented in our proof-of-concept, as it encompasses the cryptographic
cases. The general case is covered in the full version of this paper [23].

Kummer-like extensions K[X]/(Xqh + a). We define Rqh as the reverse
diagonal of 1 in a square matrix of dimension qh. We use the notation As

as a shorthand for RqhATRqh , which corresponds to the reflection across the
antidiagonal, that is exchanging the coefficients Ai,j with Aqh+1−i,qh+1−j . We
adapt here the work of Sawyer [40].

Suppose that the defining polynomial of Kh/Kh−1 is Xqh + a. Recall that
Jh is the 2× 2-determinant form over K2

h. We can compose it by the linear form∣∣∣∣Kh
∼= Kh−1[X]/(Xqh + a) −→ Kh−1

y 7−→ trKh/Kh−1
(Xyqha )

,

to obtain the matrix J ′h, which becomes J ′h =

(
0 Rqh
−Rqh 0

)
in the power basis.

Lemma 2. Fix a basis of the symplectic space where the matrix corresponding to

J ′h is
(

0 Rqh
−Rqh 0

)
. For any M a J ′h-symplectic matrix and its QR-decomposition,

Q and R are both J ′h-symplectic.

Proof. Direct from the explicit Iwasawa decomposition given by [40].

In the following,X−s represents the matrix whose coefficients are the coeffients
of X−1 exchanged over the antidiagonal.

Lemma 3 (Elementary J ′h-symplectic matrices).

• For any A ∈ GL(qh,Kh),
(
A 0
0 A−s

)
is J ′h-symplectic.

• For any A ∈ GL(2,Kh) with detA = 1 the block matrix

(
Idqh−1 0 0

0 A 0
0 0 Idqh−1

)
is J ′h symplectic.

We now turn to the shape of triangular J ′h symplectic matrices.

Lemma 4. Block triangular symplectic matrices are exactly the matrices of the

form
(
A AU
0 A−s

)
where U = Us.

As we know the elementary operations that preserve the symplectism, we can
use these transformations to effectively reduce a symplectic lattice.



Size-reduction of a J ′
h-symplectic matrix. Consider M a J ′h-symplectic

matrix, we want to size-reduce using the symmetries existing by symplecticity.
Let first take the R part of the QR-decomposition of M and make appear the
factors A and U as in Lemma 4. Then, we can focus on the left-upper matrix A
and size-reducing it into a matrix A′. All elementary operations performed are
also symmetrically applied on As to obtain (A′)s. Eventually the size reduction
is completed by dealing with the upper-right block, which is done by computing
a global multiplication by (

Idqh −bUe
0 Idqh

)
.

The corresponding algorithm is given in Algorithm 5. The recursive lattice
reduction algorithm using the symplecticity is the same algorithm as Algorithm 4,
where the size-reduction call of line 4 is replaced by Symplectic-Size-Reduce.
The size reduction property on A′ implies that both A′ and A′−1 are small, and
therefore it is easy to check that the same is true for the now reduced R′ and of
course for the corresponding size reduction of the matrix M itself.

Algorithm 5: Symplectic size reduce
Input :R-factor of the QR decomposition of a J ′h-symplectic matrix

M ∈ Od×dKh

Output :A J ′h-symplectic unimodular transformation U representing the
size-reduced basis obtained from M .

1 Set A,U such that
(
A AU
0 A−s

)
= R

2 V ← Size-Reduce(A)

3 return
(
V −V bUe
0 V −s

)

This approach admits several algorithmic optimizations:

• Only the first half of the matrix R is actually needed to perform the com-
putation since we can retrieve the other parts. Indeed, with the equation
QR =M , R is upper triangular and it only depends on the first half of Q.

• We compute only the part above the antidiagonal of AU . This is actually
enough to compute the part above the antidiagonal of A−1(AU), which is
persymmetric.

• An interesting implication is that since we need to compute only half of the
QR decomposition, we need (roughly) only half the precision.

Remark 4. To perform the fast size-reduction, we used the descended form J ′h.
However, the Reduce algorithm will then call reduction of some rank 2 modules
over Kh−1. For the reduction of these modules, we will then use the form Jh−1,
and its descent J ′h−1 over the field Kh−2 and so on.



4.4 Improved complexity

We analyze the algorithm of Section 3 with the size-reduction of Section 4.3.
By Lemma 3, we can use the transition matrix found after a reduction in the first
half of the matrix to directly reduce the second half of the matrix. This means
that in the symplectic reduction, we have recursive calls only for the first qh
steps of the tour at the toplevel of reduction. These are the only modifications to
append to our algorithm. Remark that, during the entire algorithm, the R-part
of the QR decomposition of the currently reduced basis remains symplectic.

To estimate the analysis we use an experimentally validated heuristic on the
repartition of the potential during the reduction, which can be stated as follows:

Heuristic 2 The half-potential Π =
∑qh
i=1(qh + 1− i) logNL/Q(Ri,i) is, at the

end of Reduce, always larger than the potential of an orthogonal matrix with the
same volume.

Remark 5. Heuristic 2 hinges on the fact that the sequence of NL/Q(Ri,i) is
non-increasing, which is the case in practice for random lattices.

Claim 2 Let f a power of q = O(log f) integer and n = ϕ(f). Under Heuristics 1
and 2, the complexity for reducing a 2-dimensional matrixM over L = Q[x]/Φf (x)
with condition number C is

Õ
(
n2+

log(1/2+1/2q)
log q C

)
+ nO(log logn).

Moreover, the first column of the reduced matrix has coefficients bounded by

2Õ(n)
∣∣NL/Q(detM)

∣∣ 1
2n .

For C = nω(1) and ε = ω(1), we get a running time of n2+
log(1/2+1/2q)

log q +o(1)C.

Remark 6. This conjecture uses the condition number C instead of the classical bit
length B of the matrix. In practice in cryptography, matrices are well-conditioned
and we can take C = B. This is in particular the case of Coppersmith matrices.
In the worst case, C can be as large as nB. Since the number of operations is
smaller than O(n2B), a single step of linear algebra is more costly than these
operations. The condition number is a finer measure of the complexity in linear
algebra [18,15] and we use Seysen algorithm [43] to compute the size-reduction
more efficiently in [23].

5 Optimizations and Implementation

5.1 About the implementation used

The proof-of-concept program was written in the interpreted language Pari/gp [4].
It uses the native functions for multiplying field elements, which is not at all
optimal, and even more so when we multiply matrices. Only the recursive calls



were parallelized, and not the Gram-Schmidt orthogonalization nor the size
reduction, which limits the speed-up we can achieve in this way. We used the
Householder method for the QR decomposition. The symplectic optimization
was used at each step and was not found to change the quality of the reduction.
We now turn to two examples to showcase the efficiency of this program.

The algorithms given in section 3 and section 4 have been implemented and
tested. Here, we give various optimizations and implementation choices, as well
as an experimental assessment on the heuristics used in the complexity proofs.

5.2 On the choice of the base case

Let h > 0 be a non-negative integer. The setting of the reduction is a tower of
power-of-two cyclotomic fields K↑h = (Q = K0 ⊂ K1 ⊂ · · · ⊂ Kh = L).

Stopping the reduction before hitting Z. As stated before, the approxima-
tion factor increases quickly with the height of the tower. However, if we know
how to perform a reduction over a number field above Q, say K1 for instance,
directly, then there is no need to reduce up to getting a Z-module and we instead
stop at this level. Actually, the largest the ring, the better the approximation
factor becomes and the more efficient is the whole routine. It is well-known that
it is possible to come up with a direct reduction algorithm for an algebraic lattice
when the underlying ring of integer is norm-Euclidean, as first mentioned by
Napias in [33]. The reduction algorithm over such a ring OK can be done exactly
as for the classical lll algorithm, by replacing the norm over Q by the algebraic
norm over K. Hence a natural choice would be Z[x]/(xn+1) with n 6 8 as these
rings are proved to be norm-Euclidean.

The ring Z[x]/(x16 + 1). However, it turns out that while K = Z[x]/(x16 + 1)
is not norm-Euclidean, we can still use this as our base case. As such, we need
to slightly change the algorithm in case of failure of the standard algorithm.
We denote by {x}, the fractional part of x. Given a, b ∈ K given by an embed-
ding representation with complex numbers, we can compute

√
{µ} (computed

coefficient-wise), with µ = a/b. We can compute the randomized unit rounding
of
√
{µ} using Theorem 1, which outputs a unit u such that u2{µ} is rounded.

We change the Lovász condition to

NK/Q(a− b(bµe+ bu{µ}eu−1)) < NK/Q(a)

which is now randomized and we restart up to a hundred times if it fails. This
algorithm restarts on average 0.7 times and fails every 50000 times. On failure,
one can, for example, use a more complicated approach; but as long as the number
of bits is not gigantic, we can simply stop there since the other reductions around
the two Gram-Schmidt norms will randomize everything and the algorithm can
smoothly continue. The terms a, b tend to slowly accumulate a unit contribution
when n > 4, and it is therefore needed to rebalance them using randomized
rounding. For n = 16, this happens on average every 50 times.



Comparison between the base fields.We give in the Table 1 the properties of
the various possible base cases between dimension 1 over Q—that is Q itself—and
16, as described above.

Table 1: Lattice reduction with root factor α in dimension d over Z gives an element
of Λ of norm around αd/2 vol(Λ)1/d. These numbers are given for random lattices.

Dimension 1 2 4 8 16

Root factor 1.031 1.036 1.037 1.049 1.11

Remark 7. We need the base case to be (relatively) fast in our implementation.
To speed-up the reduction, even more, we followed the standard divide-and-
conquer strategy: we first reduce the input matrix with half the precision, apply
the transition matrix, and reduce the rest with about half the precision.

5.3 Decreasing the approximation factor

In several applications, it is interesting to decrease the approximation factor. To
do so our technique is, at the lowest level of recursion, and when the precision is
sufficiently low, to use a lll-type algorithm. Each time the reduction is finished,
we descend the matrix to a lower level where the approximation factor is lower.
Since the basis is already reduced (over the upper field), it is in particular
well-conditioned and the running-time of the this "over-reductions pass" is a
fraction of the first reduction. In particular, in practice, we can recover the same
approximation factor as the regular lll algorithm (over Z) for approximately
the same cost as doing the reduction over the upper tower. Hence, for practical
applications, we can consider that the defect of approximation factor induced by
our algorithm to be inexistent compare to lll.

Remark 8. This can be compared with some experimental strategies of the
fplll [44] library where a first pass of reduction is performed at low precision and
an over-pass is done right after to ensure the desired approximation factor.

5.4 Lifting a reduction

One might expect that, as soon as the ideal generated by all the NL/K(ai) and
NL/K(bi) is OK, that for most of the small x ∈ OL, we would have

NL/K(〈a |x〉)OK +NL/K(〈b |x〉)OK = OK.

There is, however, a profusion of counterexamples to this and the algorithm
often stumbles on them. This implies that the lift of a short vector can actually
be quite large, depending on the norm of the ideal generated by the elements



NL/K(〈a |x〉) and NL/K(〈b |x〉). A solution that practically works is to increase
the number of short vectors we consider in the lifting phase: instead of lifting one
vector, we lift multiple of them. As such, the lift step never causes problem when
we are reducing a random lattice. In our experiments with random lattices, the
average number of lifted vectors is around 1.5. To understand why the number
of repetition is so low, we can model the coefficients of the lifted vector in the
original basis as being random elements of OL

6. As such, since we need our lifted
vector to be primitive, we want its coefficients to be coprime. It is known7 that
the density of pairs of coprime algebraic integers is 1/ζL(2) where ζL is the zeta
function of the field L. For fields in which the reduction is tractable, this value is
indeed sufficiently big so that the number of required repetitions is very small.

When the lattice is not random, for example with a short planted element, it
sometimes completely fails: at each round in the algorithm, the lift will return
a long vector even if the recursive reduction found plenty of short ones. While
this may not be a problem for some applications – finding a short vector in a
NTRU lattice implies an ability to decrypt – it is an important one for others.
Our proposed solution to this difficulty is to use a pseudo-basis instead of a
basis. Indeed, it is a standard fact that the first element can be lifted into a
unimodular pseudo-basis [7, Corollary 1.3.5]. From that result, we can control
precisely the norm of the lifted pseudo-element. However, as pseudo-bases consist
of vectors and ideals, the elementary operations on this representation require
ideal arithmetic in OK. As such, we need to have a fast ideal arithmetic in these
rings or the bottleneck of the reduction would become these operations. Getting
faster arithmetic from the reduction process itself is however not straightforward.

6 Applications

6.1 Attacks on multilinear maps

In 2013, a construction for cryptographic multilinear maps was announced [13] by
Garg, Gentry and Halevi with a heuristic security claim. An implementation of
an optimization of the scheme was later published [3] by Albrecht et al.; however
some of its uses, in particular involving an encoding of zero, were broken [19] by
Hu and Jia. Subsequently, subfield attacks showed that the previous choice of
parameters was unsafe [2,6,24], but these attacks were only asymptotical due to
the extremely large dimension and length of the integers involved.

The improved scheme [3] gives encoding of the form ui = ei/z mod q where
‖ei‖ is around 28eN4 log(N)3/2

√
π log(8N) in the ring Z[x]/(xN + 1) with N

a power of two. The attack, attributed to Galbraith, consists in computing
u1/u2 = e1/e2 and recovering short vectors in(

q u1/u2
0 IdN

)
6 For a distribution which cannot be quantified in closed form, however.
7 As a generalization of the fact that the density of coprime integers is 1/ζ(2).



which is manifestly solving a ntru-like problem.
The present work revisits the results of the attacks presented in [24]: many

instances can be broken even with a high approximation factor. A simple instance
is with N = 216 and q ≈ 26675, rated at the time at 56 bits of security [3, Table
1]. We compute the norm of e1/e2 over Z[x]/(xn + 1) with n = 211 and solve the
lattice problem over this smaller field. It took 13 core-days and 4 wall-time days
to compute a solution. There are few running times of lattice reduction with
high approximation factor on hard instances in the literature. It was reported
in 2016 [2, Table 6] that the same problem with n = 28 and q ≈ 2240 takes 120
(single-threaded) hours with fplll [44]. As the complexity of their implementation
is roughly proportional to n4 log(q)2 we can estimate a running time of 40000
years, or 4000000 times slower than the algorithm presented in this work. This is
the largest hard instance8 of lattice reduction that we found in the literature.

6.2 Gentry-Szydlo algorithm

The fast reduction procedure for cyclotomic ideals can be used to build a fast
implementation of the Gentry-Szydlo algorithm [14]. This algorithm retrieves, in
polynomial time, a generator of a principal ideal fOK given its relative norm
ff in cyclotomic fields, or more generally in CM fields. This algorithm is a
combination of algebraic manipulations of ideals in the field and lattice reduction.

On the Gentry-Szydlo algorithm. The Gentry-Szydlo algorithm [14] aims
at solving the following problem, presented in its whole generality:

Problem 1 (Principal ideal problem with known relative norm). Let L be a CM-
field, of conjugation x 7→ x, and denote by L+ its maximal totally real subfield.
Let f ∈ OL and set f = fOL, the ideal spanned by this algebraic integer. Given the
relative norm NL/L+(f) = ff and a Z-basis of the ideal f, retrieve the element f .

It was proved by Lenstra and Silverberg that this problem can be solved in
deterministic polynomial time [28]. Among the numerous applications of this
algorithm, we shall highlight its use in cryptanalysis when some lattice-based
scheme is leaking [14,10,2], for finding a generator of an ideal [5], and for solving
geometric problems on ideals [13,22].

The idea of this process can be exposed as follows: from f and ff we start by
reducing the OL-lattice fOL√

ff
, of volume

√
|∆L| and find an element of the shape

fx where x ∈ OL and is small (say ‖x‖ = 2Õ(n)). Now we have that:

f =
ff

fx
· xOL.

8 There are easy instances with a larger dimension, for example in [11]. They considered
a ntru instance with degree 317 and modulus 128, and reduced it in 519 seconds.
The low modulus implies that we only have to reduce the middle dimension 90 matrix,
which fplll [44] reduces in 0.2 second.



As xx = fxfx

ff
, we have reduced the problem to the smaller instance (xOL, xx).

For the sake of simplicity, we give here the outline of the remaining part of the
algorithm for a cyclotomic field of conductor a power of two. The algorithm selects
an integer e such that fe mod r is known with a large r. Binary exponentiation
with the above reduction computes a xOL with a short x ∈ OL and such that
fe = Px with P known (and invertible) modulo r and qk. Now we can deduce
x mod r and since x is small, we know x.

The last step is to extract an e-th root modulo qk. We choose q such that
qOL = qq which always exists in power of two cyclotomic fields since the group
(Z/2nZ)×/{−1, 1} is cyclic. Extracting e-th root modulo q is easy, as e is smooth.
There are gcd(e, qn/2 − 1) such roots, and we can choose q such that for each p|e
with p not a Fermat prime, qn/2 6= 1 mod p. If we choose f mod q as a root, then
we know f mod q, and we also know ff so we can deduce f mod q. As a result,
we know f mod q and Hensel lifting leads to f mod qk. For k sufficiently large,
we recover f .

We choose e to be the smallest multiple of 2n, so that r, the product of
primes p such that 2n|p − 1|e, is sufficiently large. One can show [22] that
log e = O(log n log logn) is enough and heuristically taking e as the product of n
and a primorial reaches this bound.

Faster multiplication using lattice reduction. The bottleneck of the Gentry-
Szydlo algorithm is to accelerate the ideal arithmetic. We represent ideals with
a small family of elements over the order of a subfield OK. One can represent
the product of two ideals using the family of all products of generators. However,
this leads to a blow-up in the size of the family. A reasonable approach is simply
to sample a bit more than [L : K] random elements in the product so that with
overwhelming probability the ideal generated by these elements is the product
ideal itself. It then suffices to reduce the corresponding module to go back to a
representation with smaller generators.

An important piece is then the reduction of an ideal itself. Our practical
approach is here to reduce a square matrix of dimension [L : K], and every two
rounds to add a new random element with a small Gram-Schmidt norm in the
ideal at the last position. With these techniques, the overall complexity of the
Gentry-Szydlo now becomes a Õ(n3).

In our experiment, we reduce up to 1.05n (respectively 1.1n) the first ideal to
accelerate the powering with n 6 512 (respectively n = 1024). The smallest e
such that this approximation works at the end was chosen. The other reductions
are done with an approximation factor of 2n/5 (respectively 2n/3).

We emphasize that the implementation hardly used all cores: for example,
the total running time over all cores in the last case was 354 hours.

7 Conclusion

In this article, we presented two very efficient reduction algorithms for reducing
lattices defined over the ring of integers of cyclotomic fields, which exploit the



Table 2: Implementation results

Dimension e Running time Processor

256 15360 30 minutes Intel i7-8650 (4 cores)

512 79872 4 hours Intel i7-8650 (4 cores)

1024 3194880 103 hours Intel E5-2650 (16 cores)

recursive structure of tower of their subfields. The first algorithm has a complexity
close to the number of swaps O

(
n2B

)
in lll and the second one exploits the

symplectic symmetries naturally present in such towers and goes even below this
bound. One caveat of them is that their approximation factors are worse than
the classical lll approximation factor. However, such algorithms are nonetheless
useful for various applications, such as breaking graded encoding schemes or
manipulating ideals, as in the Gentry-Szydlo algorithm. We implemented all our
algorithms and their observed performances are close to the complexities that we
estimate under some assumptions. In particular, our implementation reduces to
large base cases, that is all power of two cyclotomic fields of dimension 6 16.

Our claims rely on some heuristics we introduce to justify their validity. It
would be nice to provide a rigorous complexity analysis in a relevant computational
model. It is possible to completely remove Heuristic 1 by using the pseudo-basis
representation of modules over Dedekind rings. We also leave as future work
the question of programming the algorithms in a more efficient language and to
empirically compare our claimed complexities with the experimental ones.
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