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Abstract. Recent years have seen a tremendous growth in the interest in se-
cure multiparty computation (MPC) and its applications. While much progress
has been made concerning its efficiency, many current, state-of-the-art protocols
are vulnerable to Denial of Service attacks, where a cheating party may prevent
the honest parties from learning the output of the computation, whilst remaining
anonymous. The security model of identifiable abort aims to prevent these at-
tacks, by allowing honest parties to agree upon the identity of a cheating party,
who can then be excluded in the future. Several existing MPC protocols offer
security with identifiable abort against a dishonest majority of corrupted parties.
However, all of these protocols have a round complexity that scales linearly with
the depth of the circuit (and are therefore unsuitable for use in high latency net-
works) or use cryptographic primitives or techniques that have a high computa-
tional overhead.
In this work, we present the first efficient MPC protocols with identifiable abort
in the dishonest majority setting, which run in a constant number of rounds and
make only black-box use of cryptographic primitives. Our main construction is
built from highly efficient primitives in a careful way to achieve identifiability
at a low cost. In particular, we avoid the use of public-key operations outside of
a setup phase, incurring a relatively low overhead on top of the fastest currently
known constant-round MPC protocols based on garbled circuits. Our construction
also avoids the use of adaptively secure primitives and heavy zero-knowledge
machinery, which was inherent in previous works. In addition, we show how to
upgrade our protocol to achieve public verifiability using a public bulletin board,
allowing any external party to verify correctness of the computation or identify a
cheating party.
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1 Introduction

Secure Multi-Party Computation (MPC) is a general term for techniques which allow
a set of n parties to compute a function f on their private inputs such that only the
output of the function becomes known. Using MPC as a tool to achieve security gener-
ally comes with an inherent slowdown over insecure solutions, so using the right MPC
protocol with suitable properties is crucial in order to foster adoption in practice. For
certain requirements, it is even known that MPC is impossible to achieve.

For example, while in the honest majority setting, where more than half of the par-
ties are honest, MPC for any function is possible, when there is a dishonest majority it is
well-known that fairness for MPC is impossible, in general [15]. The fairness property
means that if any corrupted party learns the output then all the honest parties do as well,
so a dishonest party cannot withhold the output from the other parties. To work around
this impossibility, most MPC protocols for dishonest majority settle for the weaker no-
tion of security with abort, which allows the adversary to abort the protocol, possibly
after learning the output.

However, a major downside of this model is that it does not protect against denial-
of-service attacks. This motivates the stronger model of MPC with identifiable abort,
or ID-MPC, where if the adversary aborts then the honest parties will agree upon the
identity of a cheating party. This allows the honest parties to exclude cheaters and re-
run the aborting protocol, and it can also be combined with a distributed ledger (such
as in [35]) to achieve monetary fairness (see e.g. [4] for an overview). The concept
of ID-MPC was first implicitly considered in the context of covert security, and more
formally studied in later works [16, 29].

A related, desirable property of an MPC protocol is public verifiability [3, 45],
which allows any external party to verify the correctness of some claimed outputs of
the protocol by, for instance, inspecting public values posted to a bulletin board. This
is important for settings where the computation is of particular interest to the public,
for example, it may be desirable for the results of a research study on private medical
data to be publicly verifiable. It is also relevant to the client-server setting, where many
clients outsource a computation to a set of non-colluding servers and wish to verify the
result, without interacting with the servers.

As well as security properties like the above, an important aspect when choosing
an MPC protocol is its efficiency. This can be measured in terms of number of rounds
of communication, total communication complexity (i.e. amount of data sent over the
network), and computational overhead (compared with computing the function in the
clear). In this work, we consider the problem of efficiently constructing MPC in the
dishonest majority setting providing security with identifiable abort and public verifia-
bility, in a constant number of rounds of interaction.

1.1 Previous Work on Constant-Round MPC, Identifiable Abort and Public
Verifiability

Constant-Round MPC. The main tool for building constant-round MPC is garbled cir-
cuits, which were introduced by Yao [49] for 2-party secure computation. Garbled cir-
cuits were generalized to the multi-party setting by Beaver, Micali and Rogaway [6],
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who constructed a constant-round MPC protocol (called “BMR”) that can support a
dishonest majority of participants. The BMR protocol makes heavy, non-black-box use
of a pseudorandom generator, so is inefficient in practice.

Subsequently, constant-round MPC making only black-box use of cryptographic
primitives was presented by Damgård and Ishai [18], for the honest majority setting,
and extended to the case of a dishonest majority by Ishai et al. [30]. Later, more effi-
cient black-box solutions with active security for dishonest majority were introduced by
Lindell et al. [36, 37], who used somewhat homomorphic encryption in a preprocessing
phase of the protocols. Currently, the most efficient protocols are those by Wang et al.
[48] and Hazay et al. [26], which use oblivious transfer (OT) instead of homomorphic
encryption, and can be instantiated very efficiently using the TinyOT-protocol [40, 21]
based on fast OT extension techniques [28, 31].

ID-MPC in the Dishonest Majority Setting. The seminal MPC protocol of Goldre-
ich, Micali and Wigderson [24] can be combined with any public-coin zero-knowledge
proof system to obtain ID-MPC for dishonest majority, and the same holds for the BMR
protocol [6] to achieve a constant round complexity. However, the resulting protocols
make extensive, non-black-box use of cryptographic primitives and are not practical.
Additionally, also [41] implies a constant-round ID-MPC scheme that is not black-box
(and secure in the stand-alone setting as observed by [7]. More recently, there has been
interest in concretely efficient ID-MPC. Ishai, Ostrovsky and Zikas [29] presented an
ID-MPC protocol in the preprocessing model, where a trusted dealer gives the par-
ties some correlated randomness, with information-theoretic security. They also gave a
general compiler that allows removing the trusted dealer, leading to the first ID-MPC
protocol making only black-box use of cryptographic primitives, namely, an adaptively
secure oblivious transfer protocol and a broadcast channel. Concurrent to this work,
Brandt et al. [9] studied the feasibility of ID-MPC from lower-cardinality primitives as
well as the relation of the conflict graph to identifiable abort. Their work is orthogonal
to ours, as we are interested in concrete and practical constructions.

Baum et al. [5] also construct ID-MPC in the preprocessing model, with better con-
crete efficiency, by combining a variant of the BDOZ protocol [8] with information-
theoretic signatures, and homomorphic encryption for the preprocessing. Other works [17,
46] have added identifiability to the practical SPDZ protocol [19], obtaining more ef-
ficient results in a similar setting. These works, while concretely quite practical, all
require a number of rounds of interaction that scales linearly with the multiplicative
depth of the circuit being evaluated.

MPC with Public Verifiability. The idea of secure computation with public verifiability
was first introduced in the two-party setting for covert security by Asharov and Orlandi
[2]. Subsequent works [33, 27] later improved upon the efficiency of their construction,
and in particular the size of the cheating certificate, for which the work of Hong et al.
[27] requires < 400 bytes for 128 bit security.

The notion of public verifiability for actively secure dishonest majority MPC (with
potentially all parties being corrupted) has been introduced independently by Baum et
al. [3] and Schoenmakers and Veeningen [45]. Their work ensures privacy if at least one
party is honest and correctness for any level of corruption. In subsequent works, [5, 17]
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independently showed how to combine public verifiability and identifiable abort for
general computations where either the correctness of the output is attested or a cheater
will be found by a third party. Both works rely on expensive tools in a preprocessing
phase (lattice-based encryption for large fields), have a circuit depth-dependent round
complexity and have not been implemented in practice. Another, more general approach
for publicly verifiable MPC with identifiable abort was given in [32] where the authors
presented a general compiler based on the approach of [29].

1.2 Contributions

In this work, we present the first concretely efficient and constant-round MPC protocols
that provide security with identifiable abort and public verifiability in the dishonest
majority setting. Note that all our protocols are in the setting of static corruptions.

Our results for identifiable abort assume access to a broadcast channel, while for
public verifiability we need a public bulletin board, and in both cases we count round
complexity by assuming that their consumes a single round. In practice, if using an
authenticated broadcast protocol [20, 43] to implement this, each broadcast requires
Ω(n) rounds of point-to-point messages [23]. Alternatively, broadcast can be realized
using a bulletin board or blockchain, giving a constant number of rounds of interaction
with this functionality. Note that it seems difficult to avoid the use of broadcast, since
MPC with identifiable abort itself implies secure broadcast [16].

We first establish the feasibility of ID-MPC with constant round complexity, with
black-box use of cryptographic primitives.

Theorem 1.1 (informal) There exists an ID-MPC protocol for securely realizing any
functionality in a constant number of rounds, given black-box access to an adaptively
secure oblivious transfer protocol and a pseudorandom function.

Next, our main result is a more concretely efficient protocol, with greatly reduced
communication complexity and allowing optimizations like efficient OT extension and
free-XOR gates.

Theorem 1.2 (informal) There exists an ID-MPC protocol for securely realizing any
functionality in a constant number of rounds, given black-box access to a statically
secure oblivious transfer protocol and a circular 2-correlation robust hash function.

Interestingly, and unlike the previous result, in this construction we manage to avoid
the need for adaptively secure OT, allowing our protocol to use efficient OT exten-
sions [28], which are impossible with adaptive security in the standard model as showed
by Lindell and Zarosim [39]. This means that Theorems 1.1 and 1.2 are incomparable
from a feasibility perspective, since although constructions of adaptively secure OT are
known from standard assumptions, it cannot be built from static OT in a black-box
manner [38].

Finally, we show how to upgrade the above protocol to achieve public verifiability
using a public bulletin board.
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Theorem 1.3 (informal) Assuming additionally a secure public bulletin board, there
is a black-box ID-MPC protocol with public verifiability, with a constant number of
rounds of interaction with the bulletin board.

We obtain our first feasibility result with a variant of the Damgård-Ishai proto-
col [18] for constant-round honest majority MPC, tailored for the dishonest majority
setting using information-theoretic signatures [13]. We then obtain a protocol with iden-
tifiable abort by combining this with a transformation from [29], which needs an adap-
tively secure OT protocol. While our construction achieves static security, we want to
remark that it is possible to construct an adaptively secure constant-round ID-MPC pro-
tocol by applying the [29] transform to the [30] protocol. This approach, on the other
hand, will make non-black box use of the underlying PRF by the [29] compiler whereas
our construction is fully black-box.

Our second protocol is much more attractive from a practical perspective, since
it builds upon recent, optimized MPC protocols that offer active security with (non-
identifiable) abort using BMR-style garbled circuits [26, 48]. We also support the free-
XOR technique [34], by assuming a suitable circular 2-correlation robust hash func-
tion [14]. Our core idea is a lightweight method of adding identifiability to the MPC
protocol of Hazay, Scholl and Soria-Vazquez [26], which creates a BMR garbled circuit
using OT and any non-constant round MPC protocol3. We obtain our efficient method
in two steps: firstly, we devise a cheater identification procedure for the online phase,
based on opening a circuit-independent number of additively homomorphic commit-
ments. The cheater identification is highly efficient as this is the only necessary inter-
action and because no heavy cryptographic tools such as zero-knowledge proofs are
necessary. Secondly, we show how to modify the preprocessing phase of [26] to pro-
duce the necessary committed values in an identifiable way. To achieve the latter, we
improve techniques by Ishai, Ostrovsky and Zikas [29] to avoid the use of adaptively
secure OT. Our approach in doing so might be of independent interest.

Concrete Efficiency. We now expand on the concrete efficiency of our protocols and
compare them with existing constant-round, non-identifiable protocols, as illustrated in
Table 1. Note that the current most practical, constant-round MPC protocols are all ob-
tained by combining garbling circuits with the so-called ‘TinyOT’ protocol [40], which
combines OT extension and additive secret sharing with information-theoretic MACs
over F2. The TinyOT part turns out to be the dominant, overall cost in the protocols, in
terms of communication complexity. The parameter B in Table 1 is related to a statisti-
cal security parameter used in cut-and-choose in TinyOT, and in practice is around 3–6.
Using the most efficient multi-party variant of TinyOT [48] has a communication com-
plexity of O(n2Bκ) bits per AND gate. The most efficient constant-round protocols
have roughly the same communication complexity as TinyOT.

Our efficient protocol from Sections 3–4 uses TinyOT in a similar way to previ-
ous works, with the difference that we also use homomorphic commitments to obtain

3 It is plausible that one could alternatively instantiate [36] with [5] as preprocessing, though
this appears to yield a slower protocol as already the non-identifiable preprocessing of [36]
has a larger overhead (4n+ 5 SPDZ multiplications vs. 1 TinyOT-AND) plus the constructed
circuit does not benefit from Free-XOR.
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Protocol ID/PV Based on Assumptions Communication

[26] 7 OT + [30] OT, free-XOR O((n2κ+ poly(n))|C|)
[26] 7 TinyOT OT, free-XOR O(n2B2κ|C|)
[48] 7 Optimized TinyOT OT, free-XOR O(n2Bκ|C|)

Full version 3 / 7 [18] + [29] adaptive OT, PRF bc(Ω(n4 · |C|))
Sections 3, 4, 5 3 / 3 TinyOT + hom. commit. OT, free-XOR O(n2Bκ|C|) + bc(n2κ|C|)

Table 1. Efficiency of constant-round MPC protocols with and without identifiable abort, for a
circuit with |C| AND gates. ID/PV means identifiability or public verifiability. Communication
complexity measured in total number of bits transmitted across the network; bc(n) is the cost of
securely broadcasting O(n) bits. The ‘free-XOR’ assumption is a circular 2-correlation robust
hash function [14]

identifiability. While most constructions of publicly verifiable homomorphic commit-
ments use public-key style assumptions like discrete log, we are able to get away with
a weaker form of homomorphic commitment that only allows a bounded number of
openings. This variant be based on any extractable commitment scheme [12], and the
main computational cost is PRG evaluations and encodings of an error-correcting code,
which can be implemented very efficiently, so we expect only a small computational
overhead on top of the non-identifiable protocols. Additionally, the introduced commu-
nication overhead from these commitments (per gate) is expected to be a factor 2-3 over
the communication that is necessary to perform the String-Oblivious Transfer required
to garble a gate as in [26].

Regarding communication complexity, the main overhead in our protocol comes
from creating and broadcasting homomorphic commitments to the O(n · |C|) wire keys
in a BMR garbled circuit. We minimize this cost by using the efficient homomorphic
commitments mentioned above, which have only a small constant communication over-
head. Using this scheme, the overhead of commitments is not much more than the cost
incurred from having each party broadcast its shares of the garbled circuit (4n2 · κ|C|
bits) at the end of our preprocessing phase. We remark that this broadcast step is not
needed in non-identifiable protocols [48, 26], which can get away with reconstructing
the garbled circuit towards a single party who then sends the sum of all shares.

To compare with existing non-constant round protocols such as [5, 46], we remark
that these use lattice-based preprocessing. Such preprocessing is much more compu-
tationally expensive than our lightweight techniques based on OT extension. In terms
of broadcasts, the offline phase of [5] has O(n3|C|κ) broadcast complexity, which is
worse than our protocol. [46] does not describe the offline phase in detail, but it likely
requires O(nκ|C|) broadcasts for threshold decryption of the homomorphic encryption
scheme. Regarding round complexity, even with the factor n overhead when imple-
menting broadcast, our protocol likely performs significantly better for complex func-
tionalities with high-depth circuits. In general, [5, 46, 17] are for arithmetic circuits and
likely applicable in different scenarios than ours, making a direct comparison difficult.
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1.3 Technical Overview

In this overview, we assume some familiarity with garbled circuits and their use in
MPC. For a more thorough introduction, we refer to the full version.

Feasibility of constant-round ID-MPC. To first establish a feasibility result, we use
a variant of the garbling scheme from [18] combined with information-theoretic signa-
tures [13, 25, 47], together with a compiler for sampling functionalities with identifiable
abort from [29]. Although this construction is quite natural, we are not aware of it being
described before.

In a little more detail, [18] is based on a garbling scheme where, similarly to BMR,
when evaluating the garbled circuit, for each wire we obtain a vector of keys (K1

w, . . . ,K
n
w),

where the component Ki
w is known to party Pi. The garbling uses a specialized en-

cryption scheme, which encrypts Ki
w by first producing verifiable secret shares (VSS)

(Ki
w[1], . . . ,K

i
w[n]) of Ki

w, and then encrypting each share Ki
w[j] under the corre-

sponding input wire key components of Pj , as:

EKu,Kv
(Ki

w) :=

H(K1
u,K

1
v )⊕Ki

w[1]
...

H(Kn
u ,K

n
v )⊕Ki

w[n]


This is amenable to secure computation in a black-box way, as Pj can input the hash
values H(Kj

u,K
j
v) to the protocol, and as long as the majority of these hash values are

correct, which is guaranteed by an honest majority, the VSS allows correct reconstruc-
tion of Ki

w.
We adapt this to the dishonest majority setting by replacing VSS with additive

secret-sharing and information-theoretic signatures. Roughly, we consider a preprocess-
ing functionality which samples additive shares of each Ki

w and augments each share
with a signature under a signing key that no-one gets, while also allowing corrupt parties
to choose their hash values for each gate. This suffices to obtain ID-MPC in an online
phase, since if any corrupt party uses an incorrect hash value then the corresponding
signature on their share will no longer verify.

To realize the preprocessing phase which outputs authenticated shares of the garbled
circuit, we apply the compiler from [29], which transforms a protocol for any sampling
functionality that is secure with abort, into one with identifiable abort. We remark that
in the preprocessing functionality, the size of each garbled gate is O(n3 · κ) bits, and
the communication complexity of the protocol to generate this is at least Ω(n4κ) due
to overheads in [29], so this approach is not practical.

For space reasons, the complete description of these protocols can be found in the
full version.

Concretely efficient ID-MPC with BMR. As mentioned before, our protocol follows
the same approach of [26] (‘HSS’) based upon BMR garbled circuits. In BMR garbling,
the vector of output wire keys (K1

w, . . . ,K
n
w) of a gate g is directly encrypted under the

input wire keys, with
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EKu,Kv (Kw) :=

n⊕
j=1

H(g,Kj
u,K

j
v)⊕ (K1

w, . . . ,K
n
w)

When using free-XOR with BMR, each pair keys on a wire is of the form (Kw,0,Kw,1 =
Kw,0 ⊕ R) for some fixed string R = (R1, . . . , Rn), with Ri known to Pi. When gar-
bling an AND gate with input wires u, v and output wire w, we need to produce the 4
rows

circg,a,b =
⊕n

j=1
H(g,Kj

u,a,K
j
v,b)⊕ (K1

w,0, . . . ,K
n
w,0)

⊕ (R1, . . . , Rn) · ((λu ⊕ a)(λv ⊕ b)⊕ λw),
(1)

for (a, b) ∈ {0, 1}2, where λu, λv, λw are the secret wire masks assigned to each wire.
In the HSS protocol, to generate additive shares of the above, each party Pi first

samples all of their key components and global string Ri, as well as secret shares of
all the wire masks. Then, a generic MPC protocol for binary circuits is used to com-
pute shares of the wire mask products λu · λv , and shares of the products between each
wire mask and every global string Ri are computed using OT. This allows the parties to
obtain additive shares of the entire garbled circuit, since each hash value in (1) can be
computed locally by party Pj . If any party uses an incorrect hash value, it was shown
in [26] that this would result in an abort in the online phase with overwhelming prob-
ability, since each party can check correctness when decrypting a gate by checking for
the presence of one of their own key components.

Identifiable online phase. Adding identifiable abort to BMR is more challenging than
with [18], since if any error is introduced to the hash values in (1), we have no direct
way of knowing which party introduced it. Note that if the parties were committed to the
entirety of the shares of the garbled circuit (i.e. all of (1)) then this would be straightfor-
ward: they could simply broadcast their shares, then attempt to run the online phase; if
any party sends an incorrect share then the protocol aborts with overwhelming probabil-
ity, and in our case everyone could then open their commitments to prove they behaved
honestly. Unfortunately, we do not know how to efficiently create commitments to all
of the shares, since in particular each share contains a hash value H(g,Kj

u,a,K
j
v,b), and

it seems challenging to reliably commit to these without resorting to proving statements
about hash function computations in zero-knowledge.

Instead, we observe that it is actually enough if each party is given commitments
to partial shares of the garbled gates, namely, shares of the whole of (1) except for the
hash values. To see this, consider that some party aborts at gate g in the computation. If
g is the first (in topological order) such gate where the parties detect an inconsistency,
then it must hold that the preceding gates were correctly garbled. This means that the
wire keys from the previous gate can be used to compute the correct H(·) values by
every party. Hence, we can verify the garbling of g by opening the commitments to the
partial shares, then reconstructing the shares that should have been sent by ‘filling in’
the remaining parts of the garbled gate that were not committed to. Finally, the resulting
shares can be compared with the shares that were actually sent, allowing us to detect a
cheating party.
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We therefore rely on a preprocessing functionality that adds XOR-homomorphic
commitments to all the wire keys and shares of the bit-string products. Since the com-
mitments are homomorphic, this easily allows computing commitments to the partial
shares as required.

Identifiable preprocessing phase. Our first challenge with the preprocessing is to create
the necessary commitments to the bit-string products in a reliable way. We show that
without identifiability, this can be done without too much difficulty, using a consistency
check based on a technique adapted from [26].

Next, the main challenge is to make the whole preprocessing identifiable. One pos-
sible approach would be to simply apply the same IOZ transformation we used for the
protocol based on Damgård-Ishai, to convert a protocol ΠPrep that realizes the prepro-
cessing functionality FPrep with abort into a new protocol Π ID

Prep that is identifiable.
Unfortunately, this transformation has two main drawbacks: Firstly, the protocol ΠPrep

needs to compute not only the outputs of FPrep, but authenticated secret shares of these
outputs, where each share has an information-theoretic signature attached to it; since IT
signatures have a multiplicative Ω(n) storage overhead, this adds a significant cost bur-
den to the protocol. Secondly, ΠPrep needs to be secure against adaptive corruptions,
which is in general much harder to achieve than static corruptions; in particular, it rules
out the use of efficient OT extensions unless we rely on the programmable random
oracle model [39, 10].

We work around these issues with careful modifications to the [29] transformation,
which are tailored specifically to our preprocessing phase. We first briefly recall the idea
behind IOZ. To construct Π ID

Prep, first each party commits to its randomness in ΠPrep,
and then if ΠPrep aborts, everyone simply opens their randomness, which is safe as the
preprocessing phase is independent of the parties’ inputs. The main challenge when
proving security of this approach is that if the protocol aborts, the simulator needs to be
able to convincingly open the honest parties’ random tapes to the adversary, explaining
the previously simulated protocol messages. This leads to the above two issues, since
(1) if the protocol aborts after a corrupt party has seen its outputs, the simulator may
not be able to produce honest parties’ outputs that match, and (2) the simulator may not
be able to come up with convincing honest parties’ random tapes, since the previous
honest parties’ messages were simulated independently of the actual outputs fromF ID

Prep

In IOZ, (1) is resolved by producing an authenticated secret-sharing of the outputs, and
(2) is resolved by requiring ΠPrep to be adaptively secure.

In our work, we address (1) by ensuring that an abort is only possible in ΠPrep be-
fore the ideal functionality FPrep has delivered outputs to the honest parties. This means
there is no danger of inconsistencies between the simulated honest parties’ outputs and
those seen by the distinguisher. Our method of resolving (2) is more complex. First,
consider a simulation strategy where when running ΠPrep within Π ID

Prep, the simulator
simply performs an honest run of ΠPrep on random inputs. If ΠPrep later aborts, there
is no problem opening the random tapes of honest parties’, since the simulator knows
these. The problem now is that the simulator can no longer extract any corrupt parties’
inputs which may have to be sent to FPrep, or ensure the corrupt parties get the corrupt
output sent by FPrep. To work around this, we combine ΠPrep with a homomorphic
commitment scheme, and require that every party commits to all values used in ΠPrep;

9



we ensure consistency of these commitments with the values in ΠPrep with a simple
test where we open random linear combinations of the commitments, and modify the
(reactive) protocol ΠPrep to open the same combinations. If the homomorphic commit-
ment scheme is UC secure with identifiable abort, then the simulator can use this to
extract and open the values in ΠPrep, allow us to prove security of the whole proto-
col. A suitable commitment scheme can be efficiently constructed, building upon any
(non-homomorphic) extractable commitment and a PRG [12].

We apply the above blueprint to the preprocessing phase of HSS, which performs
multiplications between random bits, as well as between bits and random, fixed strings,
to produce additive shares of the garbled circuit. With our transformation, the parties
actually end up producing homomorphic commitments to shares of some (but not all)
parts of the garbled circuit; namely, they are committed to the wire keys and the shares
of the bit-string products from (1).

Achieving public verifiability. Public verifiability with identifiable abort requires not
only that a party from the protocol can identify a cheater, but anyone can do so (or
verify correctness of the result) by simply inspecting some messages posted to a pub-
lic bulletin board. Adding this to our efficient construction requires modifying both
the preprocessing and online phases of the protocol. First, we modify our preprocess-
ing method so that the underlying protocol that is secure with abort satisfies a property
called public detectability, which requires that an external verifier, who is given the ran-
dom tapes of all parties in the protocol and all broadcast messages, can detect whether
any cheating occurred and identify a corrupted party if so. This is similar to the concept
of P-verifiability used in IOZ [29], but removes the requirement that the verifier is also
given the view of one honest party. We then show that any suitable, secure protocol can
be transformed to be publicly detectable, with a simple transformation that is similar to
the P-verifiable transformation from [29]. Using the publicly detectable protocol in our
identifiable preprocessing phase, and replacing the broadcast channel with a bulletin
board, we obtain a publicly verifiable preprocessing protocol with identifiable abort.

To add public verifiability to the online phase, we need to ensure that an external
evaluator can detect any cheating in the garbled circuit, given only the public transcript.
It turns out that in case of abort, almost all of the computation done by an honest party
when detecting a cheater relies only on public information; the only exception is the
0/1 wire values that are obtained when evaluating the garbled circuit, which each party
computes by looking at its private keys. To allow an external verifier to compute these
values, we modify the preprocessing with a variant of the point-and-permute technique,
which encodes these values as the last bit in the corresponding key on that wire. Now if
the protocol aborts, and the entire transcript of broadcast messages has been posted to
the public bulletin board, the verifier has all the information that is needed to detect any
inconsistency and identify a cheating party.

Notice that our public cheater identification is protocol-specific and does not require
heavy NIZK machinery. This differentiates it from [32] who gave a general compiler
that achieves publicly verifiable ID-MPC, but where the generated “cheating certificate”
is a NIZK that has to re-compute the next-message function of the compiled protocol.
That means that compiling a BMR-style protocol using their approach might require
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Fig. 1. Illustration of our efficient protocol with identifiable abort.

giving a zero-knowledge proof of correct garbling of the whole circuit, whereas our
certificate just requires a few commitments to be opened.

Paper Outline. In Figure 1 we show the relationship between our protocols and func-
tionalities in our main construction with identifiable abort. Section 3.1 contains our
publicly detectable transformation, used for both identifiable abort and public verifi-
ability, and instantiation from the OT-based preprocessing phase of [26]. Section 3.2
describes our identifiable preprocessing protocol, which uses the publicly detectable
ΠD-TinyMPC in a non-black-box way (but with black-box use of its next-message func-
tion), and combines this with homomorphic commitments. In Section 4, we present the
main MPC protocol with identifiable abort, which usesF ID

Prep to create and then evaluate
a BMR garbled circuit, with identifiable abort. In Section 5, we describe how to modify
the previous protocol to additionally obtain public verifiability, using a bulletin board
instead of a broadcast channel.

2 Preliminaries

Let κ (resp. s) denote the computational (resp. statistical) security parameter. We let
P = {P1, . . . , Pn} be the set of parties involved in any particular protocol/functionality,
and V be a verifier which might check P’s computation at a later point. Among those
parties, we denote by I ⊂ P the set of corrupted parties and by I = P \ I the honest
parties. Let Cf be a circuit computing the function f : Fnin

2 → Fnout

2 with nin inputs
and nout outputs. To ease the reading, we drop the dependence on f , when it is clear
from the context. We will define the disjunct sets input1, . . . , inputn ⊂ [n] as the
inputs which each party in P provides to the circuit C, so Pi provides the inputs in
inputi. The circuit C has the set of AND gates G, for which we denote the extended
set Gext := G×F2

2. For τ ∈ Gext, we usually denote τ = (g, a, b) where g is the AND
gate in question and a, b ∈ F2 are used to point to a specific entry in g’s (garbled) truth
table.
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2.1 Security Model and Primitives

We will prove security of our protocols in the universal composability (UC) framework
[11]. We consider a static, active adversary corrupting up to n − 1 parties. To achieve
our goals, we will make use of multiple primitives, whose ideal functionalities we now
introduce.

Identifiable Abort Version of Functionalities. In order to be able to rigorously discuss
our protocols, we now formalize what it is to enhance their ideal functionalities F to
support identifiable abort, which we denote byF ID and describe in Figure 2. As showed
in [29], the UC composition theorem extends to security with identifiable abort in a
straightforward way.

Functionality F ID

Let F be a functionality which runs with parties P = {P1, . . . , Pn} and an adversaryA who
corrupts a subset I ⊂ P of parties. F ID is exactly as F , with the following extra command:

Abort: At any time, A can send a special command (Abort,J ) where J ⊆ I,J 6= ∅.
The functionality then stores J , sends (Abort,J ) to parties in P \I and terminates the
execution of any current command.

Fig. 2. Extending a functionality F to its identifiable abort version F ID.

An F ID functionality is exactly as F , but additionally allows the adversary to send
a message (Abort,J ) at any point of time, where J denotes a non-empty set of dis-
honest parties. Upon receiving this message, the functionality ceases all computation
and outputs the set J to all honest parties. The main points of identifiable abort are
that (i) The adversary cannot abort without revealing the identity of at least one corrupt
party; and (ii) All honest parties interacting with F ID agree on the revealed corrupted
parties.

Coin Tossing. Coin tossing is used by a set of parties to fairly sample a number of coins
according to a fixed distribution. In this work we will use an identifiable version of it,
F ID

Rand, meaning that either all computing parties learn the sampled coins or, otherwise,
the honest parties agree on a subset of dishonest parties who cheated in the sampling
process. The standard FRand functionality is described in the full version.

Secure Broadcast. Our work will crucially rely on the use of secure (or, authenti-
cated) broadcast, which is a standard functionality given in the full version of the paper.
Nevertheless, in order to achieve protocols with identifiable abort, we need to enhance
the description of this functionality to F ID

Broadcast as previously described. This is not a
problem, as all standard protocols forFBroadcast such as [20, 43] are already identifiable.
Under the assumption of a Public Key Infrastructure, implementing FBroadcast requires
Ω(n) rounds of communication and signatures [23]. If the parties have access to an
authenticated bulletin board, FBroadcast can be achieved with a single call to the board.
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Functionality FHCom

FHCom is parameterized by κ ∈ N. FHCom interacts with a sender PS ∈ P , where the remain-
ing parties P \ {PS} act as receivers. A may corrupt any subset I ( P and at any point
it may send a message (Abort,J ) with ∅ 6= J ⊆ I, upon which the functionality sends
(Abort,J ) to P and halts.

Commit: Upon receiving (Commit, cid,M) from PS , where M ∈ Fκ2 , save (cid,M)
locally and send (Commit-Recorded, cid) to P andA. Every further message with this cid
to Commit is ignored.

Add: Upon receiving (Add, cid1, cid2, cid3) by PS , where (cid1,M1), (cid2,M2)
are stored but not cid3, add (cid3,M1 + M2) to the list and send
(Add-Recorded, cid1, cid2, cid3) to P and A.

Open: Upon receiving the first (Open, cid) by PS where (cid,M) was previously stored,
ignore all future messages to Commit. Send (Open, cid,M) to all parties in P and A.

Fig. 3. Functionality FHCom for homomorphic multiparty commitment with delayed verifiability.

Homomorphic Commitments. In this work, we use homomorphic commitments.
These allow a sender to commit to a message M at a certain time, such as to later
open M to a set of receivers. The properties required from commitment schemes are
that (i) M remains hidden to the receivers until the opening (hiding); and (ii) the sender
can only openM and no other value to the receivers, once committed (binding). We fur-
ther require that the commitment scheme is homomorphic, meaning that the sender can
open any linear combination of commitments that it made without revealing anything
but the combined output. The functionality FHCom is described in Figure 3.

To efficiently implement FHCom we would like to use the homomorphic commit-
ment scheme of Cascudo et al. [12], but it turns out that this is not possible directly. The
problem is that FHCom (which we use throughout this work) allows to perform multiple
rounds of Add and Open, whereas [12] permits to perform only one call to the interface
Open. In the full version, we present a slightly weaker functionality FWHComm having
multiple rounds of Open but not Add. We show that this is sufficient for our applica-
tion and also how this weaker functionality can then be implemented using the protocol
in [12].

3 Preprocessing Phase

Here we describe our preprocessing phase with identifiable abort. At a high level, we
proceed in two steps: first, we describe a protocol with the weaker property of public
detectability, and then we bootstrap it to a preprocessing protocol with identifiable abort
using homomorphic commitments.

3.1 Publicly Detectable MPC with (Non-Identifiable) Abort

We start this section by recalling the notion of the (deterministic) next message function,
nmfiΠ , of a party Pi in an n-party protocol Π that is executed in a limited number
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of rounds, say ρ. Given the VIEW of Pi at the beginning of round h, where h ≤ ρ,
i.e. the set VIEWi

h = (i,X,Xi,Rndi, (Mi,1, . . . ,Mi,h)), where i identifies party Pi,
X is the common public input, Xi and Rndi are Pi’s private input and randomness
respectively, and (Mi,1, . . . ,Mi,h) are the messages received by Pi in the first h rounds,
then nmfiΠ(VIEWi

h) = M i
h+1 are the messages that Pi has to send in round h + 1. In

particular, nmfiΠ(VIEWi
ρ) = Yi, where Yi is Pi’s output, and VIEWi = VIEWi

ρ. In other
words, the messages sent by each party Pi at each round are deterministically specified
as a function of Pi’s inputs and random coins, and messages received by Pi in previous
rounds.

We can now introduce the notion of public detectability. It is similar to that of P-
verifiability given in [29]. However, whereas the notion of P-verifiability in that work
was conceived with identifiable abort in mind, public detectability will allow us to im-
plement functionalities not only achieving identifiable abort, but also public verifiability
if required (see Section 5).

Definition 3.1 (Public detectability) Let Π be a protocol in the CRS model and D a
deterministic poly-time algorithm, called the detector, which takes as inputs the CRS,
the inputs and random tape of all parties in P involved in the execution of Π , and any
message sent over an authenticated broadcast channel during the execution of Π . We
say that the protocol Π is publicly detectable if the detector D outputs a non-empty
subset J ⊂ P corresponding to (some of) the parties that did not honestly execute Π ,
if any such subset J exists.

Notice there is a gap between the public detectability and identifiable abort prop-
erties: the latter requires that, upon abort, the adversary does not learn anything about
the honest parties’ inputs, beyond of what is deducible from the functionalities’ output;
on the other hand, running the detector requires access to all the input and random tape
of P . However, we will show, in Section 3.2, that public detectability is almost enough
to define our preprocessing with identifiable abort, which we will later on extend to a
public verifiable one in Section 5. At a high level, the main idea is that, since the goal
of the preprocessing phase is to produce random correlated values that will be used in a
very efficient online evaluation, during such a phase parties have not yet provided their
private inputs, so, if the protocol aborts, it is enough for every party to run the detector
on their own. The privacy of the overall MPC protocol is not affected then, due to the
absence of the (actual) private inputs.

We now show how to turn any protocol Π that UC-realises an ideal functional-
ity F in the CRS model with static security, into a protocol ΠV realising the same
functionality with public detectability. Given the protocol Π , and a binding and hiding
commitment scheme C = (Commit, Reveal), we apply the following changes to Π .

– Before any step of Π is executed, each party securely broadcasts a commitment to
their input and random tape using the commitment scheme.4

4 This part of the transformation is not actually needed in order to achieve public detectability,
but it will simplify the way we use transformed protocols later on in order to achieve identifi-
able abort and public verifiability.
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– In case of any broadcast communication, execute the protocol Π using instead an
authenticated broadcast functionality FBroadcast .

– Each pairwise communication between a sender PS and a receiver PR, such that
{PS , PR} ⊆ P , is implemented by first securely broadcasting a commitment c(MS)
to the message MS that has to be sent, followed by a private opening of it towards
the receiving party. If PR does not receive the correct opening from PS , then the re-
ceiver securely broadcasts a message asking for the opening of c(MS). The sender
has to reply with that information, using also secure broadcast.5 If the broadcasted
reply is a correct opening, parties inP retake the computation, otherwise they abort.

It is easy to prove that the protocol Π , modified as above, is publicly detectable.

Lemma 3.2 Let Π be a protocol that realises an ideal functionality F with static secu-
rity in the CRS model with broadcast and pairwise communication, and C a standalone-
secure commitment scheme. The protocol ΠV described above is publicly detectable
and realises the functionality F in the {CRS,FBroadcast}-hybrid model.

Publicly Detectable Preprocessing. In our preprocessing phase, we use the function-
ality FTinyMPC (Figure 4), which is a standard functionality for secret sharing-based
MPC for binary circuits augmented with the command MultBitString that allows mul-
tiplying a bit by a fixed string known to one party. This functionality is exactly what is
needed to securely preprocess a BMR garbled circuit [26] with abort, where the fixed
strings play the roles of the globalRi strings in the garbled circuit; this can be efficiently
implemented using a TinyOT-like protocol, for example [40, 21, 26], in the FOT-hybrid
model.

We can apply the transformation above to obtain a publicly detectable protocol
ΠD-TinyMPC, if we have a protocolΠTinyMPC that implements the functionalityFTinyMPC

in the CRS model. Such a protocol can be efficiently obtained by implementing the OT
functionality with OT extension [31, 1], with base OTs realized in the CRS model [42].
Thus, we obtain the following corollary.

Corollary 3.3 Let C be a commitment scheme andΠTinyMPC a protocol that UC-realises
the functionality FTinyMPC in the CRS model. The protocolΠD-TinyMPC (described in in
the full version) is publicly detectable and it securely realises the functionalityFTinyMPC

in the {FBroadcast, CRS}-hybrid model.

3.2 Implementing the Preprocessing with Identifiable Abort

We now combine the detectable protocolΠD-TinyMPC with homomorphic commitments,
FHCom, to obtain a preprocessing protocol with identifiable abort. Our preprocessing
functionality F ID

Prep is described in the full version of this work. It essentially performs
the same computations as FTinyMPC, except the output shares of the bit-string multi-
plication are now committed with homomorphic commitments, modelled in the func-
tionality by allowing them to be added together and opened. Another key difference

5 This does not break security, because such a situation can only occur if PS or PR are corrupted,
in which case A would obtain MS anyway.
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Functionality FTinyMPC

The functionality runs with parties P1, . . . , Pn and an adversary A. It has a list of corrupt
parties I which it obtains from A.
Angle brackets 〈x〉 denote a secret x ∈ F2 stored by the functionality, together with a public
identifier. The inputs to every command below are public inputs that must be provided by all
parties (where in this case, the notation 〈x〉 refers only to the identifier of the secret value x).

Init: On input (Init) from all parties, if (Init) was received before then do nothing. For
each i ∈ [n], if i ∈ I then receive Ri ∈ Fκ2 from A, otherwise sample a random Ri ← Fκ2 .
Send Ri to party Pi and store the strings Ri.

Input: On input (Input, Pi, 〈x〉) from all parties and (Input, Pi, 〈x〉, x) from Pi, where
x ∈ F2, store x.

Add: On input (Add, 〈z〉, 〈x〉, 〈y〉) from all parties, where the two bits x and y were previ-
ously stored, store z = x+ y

Mult: On input (Multiply,F2, 〈x̄〉, 〈x1〉, 〈x2〉) from all parties, where x1, x2 were stored
previously, store x̄ = x1 · x2.

MultBitString: On input (MultBitString, 〈x〉, Pi) from all parties, where x was stored
previously:

1. A inputs W j ∈ Fκ2 for each Pj ∈ I.

2. Sample W j ← Fκ2 for j ∈ I subject to the constraint that x ·Ri =
∑
j∈[n]W

j .

3. Send W j to party Pj .

Open: On input (PublicOutput, 〈x1〉, . . . , 〈xm〉) from all parties, where xi, i ∈ [m], have
been stored previously:

1. Send (Deliver, x1, . . . , xm) to A.

2. If A sends Abort, forward Abort to all parties and halt. Otherwise send
(Output, x1, . . . , xm) to all parties.

Fig. 4. Functionality FTinyMPC for Bit-MPC.

is that the outputs are only delivered at the very end of the protocol. After the initial
outputs are sent to the parties, the only further allowed command is to open values from
the homomorphic commitment scheme. This is because in the security proof for our
preprocessing protocol, the simulator can always equivocate FHCom, whereas it cannot
equivate the simulation of ΠD-TinyMPC when it is still possible for an abort to occur
(which would require opening the honest parties’ random tapes to the adversary).

The protocolΠ ID
Prep, implementingF ID

Prep and described in Figure 5, uses the publicly
detectable version of ΠTinyMPC (from Corollary 3.3) for all the F2-arithmetic, i.e. to
perform secure additions and multiplications on bits, as well as to obtain secret-shares
of the product of secret bits with the strings Ri. The protocol uses two copies of the
homomorphic commitment functionality (which we name FHCom and FBit

HCom). The first
copy is used to create commitments to values in Fκ2 , such as the fixed strings Ri as well
as the additive shares of all the bit-string products of secret bits withRi. We furthermore
employ a consistency check to verify that the committed bit-string shares are correct,
which is shown in Figure 6. The functionality FBit

HCom is used to additionally commit to
the bits which are used in ΠD-TinyMPC, and we use a second consistency check to verify
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that these two sets of bits stored in ΠD-TinyMPC and FBit
HCom are the same; this can be

found in Figure 7. We also use this functionality to open bit values during the output
phase. We remark that the necessity of using FBit

HCom for both of this is an artefact of the
proof and we leave it as an interesting open problem to remove FBit

HCom (together with
the consistency check ΠCheckBit) while retaining a provably-secure protocol.

In the case of abort, we will reveal all random tapes and committed messages of
ΠD-TinyMPC and test which party has sent inconsistent messages and when. Interest-
ingly, we can do that without requiring adaptive primitives (in comparison to previous
works): The simulation of ΠD-TinyMPC in the security proof is only ever checked using
the public detectability if no output of F ID

Prep has been revealed yet. Therefore we do not
have to ever equivocate the random tape during the simulation of ΠD-TinyMPC - reveal-
ing the tape used by the simulator is enough. This is exactly where previous work [29]
required adaptivity of the underlying primitives, which we in our case can then avoid.
To prove consistency of the committed shares of bit-string products, we use the follow-
ing lemma. Its statement and proof are very similar to [26, Lemma 3.1] and we only
provide it here for completeness. The proof of the lemma is given in the full version.

Lemma 3.4 If the protocol ΠBitStringMult does not abort, then the committed values
Rj ,W i

τ,j produced by ΠBitStringMult satisfy

n∑
i=1

W i
τ,j = xτ ·Rj ,

whereRj was computed in the Init phase and 〈x1〉, . . . , 〈xm〉were input toΠBitStringMult,
except with probability max(ε, 2−s).

We use the lemma below to verify that bits committed in both FBit
HCom and ΠD-TinyMPC

are consistent. We omit the proof, which is essentially a simplified version of the proof
of Lemma 3.4.

Lemma 3.5 If the protocol ΠCheckBit does not abort, then the inputs 〈x1〉, . . . , 〈xm〉,
[xi1]

Bit
c , . . . , [xim]Bitc satisfy

n∑
i=1

xij = xj ,

except with probability max(ε, 2−s).

These allow us to prove security of our construction.

Theorem 3.6 Assuming a secure broadcast channel, protocol Π ID
Prep implements F ID

Prep

in the {CRS,FHCom, FBit
HCom, FRand}-hybrid model with security against a static, active

adversary corrupting at most n− 1 parties.

The proof follows a simulation-based argument, along the lines described in Section
1.3. It is given in the full version.
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The Preprocessing Protocol Π ID
Prep

The protocol runs with parties P1, . . . , Pn. It runs two instances of the homomorphic com-
mitment scheme which we denote as FHCom and FBit

HCom.
NOTATION: We use 〈x〉 to denote that x ∈ F2 is stored by ΠD-TinyMPC, [x]Biti to denote that
x ∈ F2 is stored in FBit

HCom where Pi is the sender, and [X]i to denote that X ∈ Fκ2 is stored
in FHCom where Pi is the sender. The parties maintain a list PubOutputs which is initially
empty.
PHASE I: COMPUTATION

Init: The parties call ΠD-TinyMPC with input (Init) and each obtain a string Ri ∈ Fκ2 . Then
they each commit to Ri using FHCom.

Sample: Party Pi samples x← F2 or X ← Fκ2 . The parties do one of:
– x ∈ F2: use the (Input) command of ΠD-TinyMPC to obtain 〈x〉. Pi then commits to x

by calling FBit
HCom on input (Commit, id, x), obtaining [x]Biti .

– X ∈ Fκ2 : Pi commits to X by calling FHCom, to obtain [X]i.

AddBit: To add two bits 〈x〉 and 〈y〉, parties use the Add command of ΠD-TinyMPC. If
commitments {[x]Biti , [y]Biti }i are also stored in FBit

HCom, use the Add command of FBit
HCom.

AddString: To add the committed strings [X]i and [Y ]i, the parties use FHCom.

Mult:
– To multiply two bits 〈x〉 and 〈y〉, the parties use the Multiply command of ΠD-TinyMPC.

– To multiply the bit 〈x〉 with the strings R1, . . . , Rn, the parties run the subprotocol
ΠBitStringMult.

Public Output (bit): On input (PublicOutput, [x]Bit1 , . . . , [x]Bitn ) from all parties, append
{[x]Biti }i to the list PubOutputs.

Delayed Outputs: On input (DelayedOutputs) from all parties:
– Run Check of the subprotocol ΠCheckBit on input all of the bits committed to during

Sample, to check their consistency.

– Use the (Open) command of FBit
HCom to output all the xi values, for every tuple

{[x]Biti }ni=1 ∈ PubOutputs, and compute the public value x = x1 ⊕ · · · ⊕ xn.

– Each party Pi outputs the list of public openings, together with all private values that Pi
stored during Sample or the bit-string Mult step.

PHASE II: FINAL OUTPUT

Public Output (String): To output the committed string [X]j , Pj uses the Open command
of FHCom. If Pj fails to open any commitment, the parties output (Abort, Pj).

Abort: If the ΠD-TinyMPC protocol aborts:
1. Every party opens its commitments to its random tape of ΠD-TinyMPC.
2. Run the detector D of ΠD-TinyMPC. If D outputs that J ⊂ [n] cheated then output

(Abort,J ).

Fig. 5. The preprocessing protocol Π ID
Prep.

3.3 Efficiency Analysis

The main overhead of our preprocessing protocol, compared with the non-identifiable
protocol which we build upon [26], is due to the use of secure broadcast in the compila-
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Subprotocol Πm
BitStringMult

The subprotocol uses the functionalities FHCom, FRand, and the protocol ΠD-TinyMPC.
We let s denote a statistical security parameter.
INPUTS: Bits 〈x1〉, . . . , 〈xm〉, and strings [R1]1, . . . , [R

n]n, where party Pi has Ri.
OUTPUT: Shares of the bit-string products Wτ,j = xτ · Rj , for τ ∈ [m], j ∈ [n], and
commitments to every party’s share of Wτ,j under FHCom.

I: Init: The parties sample s additional random bits.
1. Each Pi calls Input onΠD-TinyMPC with s random bits (x̂i1, . . . , x̂

i
s). Compute the shared

bits 〈x̂τ 〉 =
∑
i∈[n]〈x̂

i
τ 〉 using ΠD-TinyMPC.

2. Write X = (x1, . . . , xm) and X̂ = (x̂1, . . . , x̂s) and define 〈X〉, 〈X̂〉 accordingly.

II: Multiply: For each j ∈ [n], the parties do as follows:
1. Call ΠD-TinyMPC on input (MultBitString) to obtain random shares W i

τ,j of Wτ,j =

xτ ·Rj , and shares Ŵ i
τ,j of x̂τ ·Rj .

2. Write W i
j ∈ (Fκ2 )m as Pi’s shares of X ·Rj , and Ŵ i

j ∈ (Fκ2 )s for the shares of X̂ ·Rj .

III: Commit: Each party Pi commits to W i
j and Ŵ i

j using FHCom, for each j ∈ [n].

IV: Check: The parties check correctness of the commitments as follows:
1. The parties call FRand to sample a seed for a uniformly random, ε-almost 1-universal

linear hash function, H ∈ Fs×m2 .

2. All parties compute the vector:

〈Cx〉 = H · 〈X〉 + 〈X̂〉 ∈ Fs2
and open Cx using Open of ΠD-TinyMPC. If ΠD-TinyMPC aborts, the parties run the Abort
phase of Π ID

Prep.

3. For each i ∈ [n], the parties use FHCom to obtain commitments to the vectors in (Fκ2 )s:

[Cij ]i = H · [W i
j ]i + [Ŵ i

j ]i for j 6= i, and [Cii ]i = H · [W i
i ]i + [Ŵ i

i ]i + Cx · [Ri]i.

Each Pi then opens its commitments to Cij , for j ∈ [n].

4. All parties check that, for each j ∈ [n],
∑n
i=1 C

i
j = 0. If any check fails, the parties go

to the Abort phase below.

5. The parties output the shares W i
τ,j , and commitments [W i

τ,j ]i.

Abort: If Step 4 of Check fails, the parties do as follows:
1. If FRand outputs (Abort,J ) then all parties output this. If not, continue.

2. Every party opens its commitments to its random tape of ΠD-TinyMPC.

3. Using the opened random tapes, transcript and CRS ofΠD-TinyMPC, compute each party’s
shares W i

j and Ŵ i
j , which were obtained after the Multiply step.

4. Let J ⊂ [n] be the set of indices i ∈ [n] for which Cij 6= H ·W i
j + Ŵ i

j .

5. Output (Abort,J ).

Fig. 6. Subprotocol Πm
BitStringMult to check consistency of committed bit-string multiplications.

tion with Lemma 3.2, and the use of homomorphic commitments for every wire in the
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Subprotocol ΠCheckBit

The subprotocol uses the functionalities FBit
HCom, FRand, and the protocol ΠD-TinyMPC.

NOTATION: We use 〈x〉 to denote that x ∈ F2 is stored by ΠD-TinyMPC, and [x]Bitc to denote
x ∈ F2 that is stored in FBit

HCom. We let s denote a statistical security parameter.
INPUTS: Bits 〈x1〉, . . . , 〈xm〉 stored using ΠD-TinyMPC, and FBit

HCom commitments
[xi1]Bitc , · · · , [xim]Bitc , for i ∈ [n], where Pi committed to the values xij .
OUTPUT: The protocol succeeds if xj =

∑
i x

i
j , for j ∈ [m].

Check:
1. Each party Pi samples s random bits x̂1, . . . , x̂s ← F2.

2. Pi inputs x̂ij into ΠD-TinyMPC, and commits to x̂ij with FBit
HCom, for j ∈ [m].

3. Using FRand, the parties sample a random ε-almost 1-universal hash function H ∈
Fs×m2 .

4. Writing [Xi]Bitc = ([xi1]Bitc , . . . , [xim]Bitc ), [X̂i]Bitc = ([x̂i1]Bitc , . . . , [x̂is]
Bit
c ), and simi-

larly for 〈X〉, 〈X̂〉, compute

[Ci1]Bitc = H · [Xi]Bitc + [X̂i]Bitc , 〈C2〉 = H · 〈X〉+ 〈X̂〉

5. The parties open Ci1 and C2 using FBit
HCom and ΠD-TinyMPC, respectively, and check that∑

i C
i
1 = C2. If the check fails, the parties go to Abort.

Abort:
1. All parties open their 〈xj〉-shares as xij using ΠD-TinyMPC, and each Pi opens its [xij ]

Bit
c

values as yij using FBit
HCom.

2. Let J ⊂ [n] be the set of indices i for which there exists a j ∈ [m] such that xij 6= yij .

3. Output (Abort,J ).

Fig. 7. Subprotocol ΠCheckBit to check consistency of committed bits.

garbled circuit. We now discuss these costs in more detail, and describe an optimization
to reduce the use of broadcast.

We first observe that we can run an optimistic version of Π ID
Prep, without the ad-

ditional broadcasts in Lemma 3.2. If this optimistic offline protocol ends successfully
(i.e. no abort occurs during Phase I), then the online phase will not require the identifi-
ability property of Π ID

Prep. In case of an error in the optimistic Π ID
Prep instance, we then

re-run the preprocessing with new randomness for each party and using the identifiable
version with broadcast. Observe that this may not identify a cheater in case the second
protocol succeeds, but this does not contradict the definition of identifiable abort as the
adversary now just forces the honest parties to use more resources. At the same time,
the fact that the real inputs at this point were not used for any computation and due to
the use of new randomness by each party, privacy is preserved.

Regarding the homomorphic commitments, note that the dominating cost is during
the bit-string multiplication (ΠD-TinyMPC), where each of the n parties must commit to
n ·m strings of length κ, where m is approximately the number of AND gates. Com-
putationally, this overhead is very cheap. For instance, based on the implementation
from [44] (which is similar to the non-interactive scheme we use) as a rough estimate
for computation, then for n = 5 parties and the AES circuit with 6800 AND gates, we
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estimate the cost of generating commitments in a WAN setting is around 0.3 seconds.
Compared with [48], this is only around a 10% overhead. Therefore, the main cost in-
troduced in this stage is likely having to securely broadcast these commitments. Since
for large circuits this involves the broadcast of very long strings, broadcast “extension”
techniques such as [22] may be useful to reduce the complexity.

4 Online Phase

The online phase of our computation is modeled after [26]. For completeness, in the
full version we outline the main idea of constant-round MPC, so here we focus on
the details necessary in order to achieve identifiable abort. HSS uses a BMR-approach
to achieve constant-round MPC, where the parties can identify locally if their output
was correct or not. In order to identify a cheater, we will perform a reconstruction of
a faulty gate in case of an error in that gate. This reconstruction, as it turns out, does
not reveal any information beyond the regular protocol transcript. To be able to perform
such a reconstruction we will use the new properties of our enhanced preprocessing
functionalityF ID

Prep, namely that it also provides a verification mechanism for keys. This
reconstruction consists of opening commitments to the input keys to the gate which all
parties used for evaluation as well as the supposed output key using F ID

Prep.
There are multiple cases in which aborts can happen during the online phase, which

entails different ways of how the cheater must be identified. These cases are as follows:

1. A set of parties can stop to communicate. As our protocol (apart from F ID
Prep) only

uses broadcast communication, such behaviour identifies cheaters directly.
2. The adversary can manipulate a gate in such a way that an honest party sees an

error. This is the most straightforward error from garbling and can directly be de-
tected by reconstructing the gate. In the protocol, we detect this in Steps 5, 6 of
Abort. There, we open the keys which correspond to the output of the gate in F ID

Prep

that we would expect to see, based on Init. We can then compare the opening with
the actual outputs which were derived based on sharejτ (the garbling information)
from each party, which directly shows whenever A garbled a circuit wrongly to-
wards any party.

3. The adversary may send complaints, even though a gate was garbled correctly.
In this case we reconstruct the gate normally and, as no error occurs, we identify
complaining parties as cheaters. This is the end of Step 6 of Abort.

4. The adversary may send complaints about incorrect gates that are outside the “ac-
tive path”. Here we will show that the honest parties agree on the active path, i.e.
on the rows of each garbled table which they decrypt during evaluation or - equiva-
lently - the public values Λw. Thus, honest parties can identify complaints outside
the active path as cheating, which is done in Step 2 of Abort.

5. The adversary can garble a gate incorrectly for a dishonest party and let that party
not report this. In this case, the protocol will only abort at the next AND gate g′ into
which the output of the wrongly garbled gate g is fed. In such a case we will see a
difference between the keys that the honest parties obtained as input of g and the
keys that are opened by the dishonest party that did not send a Conflict-message.
We do this by opening the committed input keys [Kj

u,Λu
]j , [K

j
v,Λv

]j in Step 5 via

21



The MPC Protocol - Π ID
MPC (Initialization)

COMMON INPUTS: A hash function H : G × F2κ
2 → Fnκ2 and a circuit Cf representing the

function f . Let the input wires of a gate be labeled u and v, and the output wire be w. Let Λu
and Λv be the public values on the input wires. The protocol uses an instance of F ID

Prep.
PRIVATE INPUTS: ρ = (ρ1, . . . , ρnin), where {ρh}h∈inputi is party Pi’s input.
If a set of parties J does not send messages during the protocol, then each party outputs
(Abort,J ) and stops. If F ID

Prep at any point outputs (Abort,J ) then each party outputs
(Abort,J ) and stops.

Init:
1. Each party Pi sends (Init) to F ID

Prep, which in turn outputs [R1]1, . . . , [R
n]n.

2. Passing topologically through all the wires w ∈W of the circuit:
– If w ∈ inputh:

(a) Each Pi sends Sample(F2, Ph) to F ID
Prep which outputs 〈λw〉.

(b) For each j ∈ [n] each Pi sends Sample(Fκ2 , Pj) toF ID
Prep which outputs [Kj

w,0]j .

(c) For each j ∈ [n] each Pi sends Add([Kj
w,0]j , [R

j ]j) to F ID
Prep which outputs

[Kj
w,1]j .

– If w is the output of an AND gate with input wires u, v:
(a) Each Pi sends Sample(F2,⊥) to F ID

Prep which outputs 〈λw〉.

(b) Each Pi sends Multiply(〈λu〉, 〈λv〉) to F ID
Prep which outputs 〈λuv〉.

(c) For each j ∈ [n] each Pi sends Sample(Fκ2 , Pj) toF ID
Prep which outputs [Kj

w,0]j .

(d) For each j ∈ [n] each Pi sends Add([Kj
w,0]j , [R

j ]j) to F ID
Prep which outputs

[Kj
w,1]j .

– If w is the output of a XOR gate, and u and v its input wires:
(a) Each Pi sends Add(〈λu〉, 〈λv〉) to F ID

Prep which outputs 〈λw〉.

(b) Each Pi for each j ∈ [n] sends Add([Kj
u,0]j , [K

j
v,0]j) to F ID

Prep which outputs
[Kj

w,0]j and Add([Kj
w,0]j , [R

j ]j) to F ID
Prep which outputs [Kj

w,1]j respectively.

3. For each τ ∈ Gext the parties use Add of F ID
Prep to compute 〈dτ 〉 = (〈λu〉 ⊕ a) · (〈λv〉 ⊕

b) ⊕ 〈λw〉 from 〈λw〉, 〈λuv〉, 〈λu〉 and 〈λv〉. Then for each j ∈ [n] each party Pi sends
MultBitString(〈dτ 〉, [Rj ]j) to F ID

Prep so that the parties obtain [W 1
τ,j ]1, . . . , [W

n
τ,j ]n re-

spectively.

4. The parties first send (PublicOutput, 〈λw〉) to F ID
Prep for each output wire w ∈ out

of Cf . Afterwards, the parties send (DelayedOutputs) to F ID
Prep so that each party Pi

obtains {λw}w∈out and {λw}w∈inputi as well as Ri, Ki
w,0 and W i

τ,j as defined above.

Fig. 8. The MPC protocol - Π ID
MPC (Initialization).

F ID
Prep and comparing these to the keys which are the inputs of the “faulty” gate g

as evaluated by every party during the circuit evaluation. This is done in Step 6 of
Abort.

Throughout the protocol, which is outlined in Figure 8, Figure 9 and Figure 10 we
letKi

w,0 be the 0-key of Pi for the wirew,Ri be the global difference used by this party
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The MPC Protocol - Π ID
MPC (Computation)

Input:
1. For all input wires in ∈ inputi with input from Pi the party computes Λin = ρin ⊕ λin.

Then, Pi broadcasts Λin to all parties.

2. Upon receiving Λin for all inputs of Cf each party Pi broadcasts Ki
in,Λin

for all in ∈
input. Denote all these input keys as K

j
in,Λin

for j ∈ [n].

Garble:
1. For all τ ∈ Gext with τ = (g, a, b) each Pi defines

share
i
τ ← H(g,Ki

u,a,K
i
v,b)⊕ (W i

τ,1, . . . ,W
i
τ,n)⊕ (0, . . . , 0,Ki

w,0, . . . , 0).

2. Each Pi broadcasts shareiτ to all parties, who set circτ =
⊕

j∈[n] share
j
τ .

Circuit Evaluation: Passing through the circuit topologically, the parties can now locally
compute the following operations for each gate g with input wires u, v, public values Λu, Λv
and keys K

j
u,Λu

,K
j
v,Λv

:
1. If g is a XOR gate, set the public value on the output wire to be Λw = Λu ⊕ Λv . In

addition, for every j ∈ [n], each party computes K
j
w,Λw

= K
j
u,Λu

⊕Kj
v,Λv

.

2. If g is an AND gate , then each party computes:

(K
1
w,Λw

, . . . ,K
n
w,Λw

) = circg,Λu,Λv ⊕
(⊕

j∈[n]
H(g,K

j
u,Λu

,K
j
v,Λv

)

)
3. IfK

i
w,Λw

6∈ {Ki
w,0,K

i
w,1}, then Pi broadcasts (Conflict, g, Λu, Λv) and enters Abort.

Otherwise, it sets Λw = c if K
i
w,Λw

= Ki
w,c.

4. The output key of g is defined to be (K
1
w,Λw

, . . . ,K
n
w,Λw

) and the public value Λw.

Output: Everyone obtained a public valueΛout for every circuit-output wire out. Each party
can obtain the actual output Y = (y1, . . . , ynout) as yout = Λout ⊕ λout, where λw was
obtained during Init.

Fig. 9. The MPC protocol - Π ID
MPC (Computation).

and define Ki
w,1 = Ki

w,0 ⊕ Ri. Overlined keys K are those obtained in the evaluation
of the circuit. We present the proof of the following theorem in the full version.

Theorem 4.1 Let H be a circular 2-correlation robust hash function. Assuming a se-
cure broadcast channel, protocolΠ ID

MPC implements the functionalityF ID
MPC in theF ID

Prep-
hybrid model with security against a static, active adversary corrupting at most n − 1
parties.

Optimistic online phase. We can define an optimistic version of Π ID
MPC, for which we

analyse its best and worst case complexity. In this variant the use of broadcast is re-
placed with that of point-to-point channels, with the exception of the broadcast of the
Λin values. We require this broadcast in order to extract the inputs of the malicious par-
ties and the unique active path for the evaluation of the garbled circuit. As MPC with
identifiable abort implies secure broadcast [16], it seems natural that we cannot avoid
broadcast in our protocol, even optimistically. Furthermore, broadcasting Λin is also
necessary in the original [26] construction.

23



The MPC Protocol - Π ID
MPC (Abort)

Abort: Receive messages of the type (Conflict, g, Λu, Λv) from the parties where g is an
AND-gate. Ignore all double or other messages. Then each party does the following checks:

1. Let {Kj
in,Λin

}in∈input be the keys that each party obtained from Pj for all inputs during
Input. Choose the smallest g in the circuit among all the Conflict-messages.

2. Assume that honest parties evaluated the gate g using the public values Λu, Λv . If a non-
empty set of parties J sent (Conflict, g, Λ′u, Λ

′
v) with (Λ′u, Λ

′
v) 6= (Λu, Λv), then out-

put (Abort,J ).

3. Let {Kj
u,Λu

,K
j
v,Λv
}j∈[n] be the input keys of g that each party computed during Circuit

Evaluation. For each j ∈ [n] recompute (K
j
w,1, . . . ,K

j
w,n) ← H(g,K

j
u,Λu

,K
j
v,Λv

).
Let Ĵ be the set of parties that sent (Conflict, g, Λu, Λv).

4. For τ = (g, Λu, Λv) all parties send Add([Kj
w,0]j , [W

j
τ,j ]j) for j ∈ [n] to F ID

Prep to obtain
[Dj

w]j .

5. The parties use Output (String) of F ID
Prep to open the following values:

(a) Send (PublicOutput, [Kj
in,Λin

]j) for all j ∈ [n], in ∈ input to obtain Kj
in,Λin

;

(b) Send (PublicOutput, [Kj
u,Λu

]j), (PublicOutput, [Kj
v,Λv

]j) for all j ∈ [n] to ob-
tain Kj

u,Λu
,Kj

v,Λv
respectively;

(c) Send (PublicOutput, [Dj
w]j) if j = ` and (PublicOutput, [W j

τ,`]j) otherwise for
all j, ` ∈ [n] to obtain Dj

w,W
j
τ,` respectively.

6. Each party tests
– For all j ∈ [n], in ∈ input that Kj

in,Λin

?
= K

j
in,Λin

;

– For all j ∈ [n] that Kj
u,Λu

?
= K

j
u,Λu

and Kj
v,Λv

?
= K

j
v,Λv

.

– Furthermore, for all j, ` ∈ [n]

if j = ` that Dj
w

?
= K

j
w,j ⊕ sharejτ [j];

if j 6= ` that W j
τ,`

?
= K

j
w,` ⊕ sharejτ [`].

Let J be the set of parties which generated values where one of the above tests does not
work out. Then output (Abort,J ). If all tests hold then output (Abort, Ĵ ).

Fig. 10. The MPC protocol - Π ID
MPC (Abort).

The main advantage of avoiding the use of broadcast in an instance of Π ID
MPC is in

the reconstruction of the garbled circuit (Step 2 of Garble). In our optimistic version we
can put the circuit together by having each party send shareiτ to a single party Pi, which
will then send the reconstructed circuit to everyone else, as in [26]. Note that replacing
the broadcast here and in Step 2 of Input, only allows an adversary to introduce additive
errors to the circuit, which can be easily derived by computing the difference between
an evaluation of the garbled circuit with the correct key and an incorrect one.

When the honest parties encounter an error that would trigger the execution of
Abort, they instead repeat the execution of Π ID

MPC from Step 2 of Input, this time using
broadcast as indicated in the protocol boxes. Any party refusing to engage in the re-run
can be trivially identified as corrupted by all honest parties. Hence, the best-case com-
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plexity is ofO(κn|C|)+bc(I), where I is the number of input wires, and the worst-case
complexity is O(κn|C|) + bc(Iκ+ n2κ|C|).

Finally, we observe that this additional optimistic evaluation of a garbled circuit
with additive errors enables an extra attempt for the adversary to guess the value Ri of
each honest party. As Ri ∈ {0, 1}κ, this has no impact on the protocol security.

5 Achieving Public Verifiability

We conclude by presenting how the previously introduced protocols and functionalities
can be transformed into publicly verifiable counterparts. To model public verifiability
formally, we assume (similar to [3]) the existence of a third party V who will not be
part of P . As a matter of fact, V does not need to be online or even exist while all the
other protocol steps are running.

The notion of public verifiability which we achieve in this work differs from [3,
46, 17] in multiple respects: while it still allows V to establish the correctness of the
output value, our model requires that at least one honest party is present during the
MPC protocol. This is in contrast to the aforementioned works which could guarantee
correctness even if all parties are corrupted. Similar to [17] (albeit different from the
other works) V will be able to identify cheaters during the verification phase (if they
existed). Note that our model lends itself to be applicable in e.g. the client-server setting
in order to prevent corrupted servers from announcing false outcomes, or when MPC is
integrated with distributed ledgers.

More formally, let F ID be the identifiable abort version of any functionality F , as
presented in Section 2.1. We denote as FPV an extension of F ID which further supports
public verifiability, as described in Figure 11. In a nutshell, publicly verifiable function-
alities incorporate an additional party, the verifier V , who can query the functionality at
any point. When doing so,FPV replies with all public outputs ofF produced so far and,
if there was an abort, the same set of corrupted parties J that F ID would have produced
towards the honest parties.

Functionality FPV

FPV is exactly as F ID, with two changes. First, FPV runs with an additional party, the verifier
V . Second, it has the following extra command:

Verify: On input (Verify) from V:
– If the functionality has received (Abort,J ) from A in the execution of any other

command, return (Abort,J ) to V .
– If the functionality has sent any message starting by PublicOutput, it forwards

that same message to V .

Fig. 11. Extending an identifiable-abort functionality F ID to its publicly verifiable version FPV.

Whereas turning functionalities into publicly verifiable ones is pretty straightfor-
ward, one has to be more careful about their corresponding protocols. At the core, we
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achieve our goal by using FPV
Broadcast, a publicly verifiable version of secure broadcast.

Such variant can be implemented by using an authenticated bulletin board FBulletinBoard

(detailed in the full version): broadcasting is equivalent to writing, and V can verify any
‘sent’ message by reading the board.

If considered on its own, adapting Π ID
Prep to implement FPV

Prep could be attained
mostly by just switching F ID

Broadcast to its publicly verifiable version. As all messages
would go through FPV

Broadcast (either in the clear, or inside commitments), an external
verifier could easily find FPV

Prep’s outputs there if no abort happened. Also, if there was
an abort, V would find in the same place all the necessary information to run the deter-
ministic detector algorithmD (cf. Definition 3.1) and conclude the same set of corrupted
parties J as the honest parties do.

On the other hand, implementing FPV
MPC based on FPV

Prep requires substantially more
work: the way the Abort procedure of Π ID

MPC identifies cheating relies on knowing the
active path in the garbled circuit corresponding to the Λin values which were broadcast
in the Input phase. Unfortunately, determining the active path in Π ID

MPC requires pri-
vate randomness from any party in P (namely, Step 3 in Figure 9), which at that point
cannot be revealed to V for running D because the parties have already provided their
private inputs to Π ID

MPC. Having all parties announce their active path does not solve the
problem, as it is unclear to V which such path could be trusted. We now explain how to
modify both Π ID

Prep and Π ID
MPC in order to achieve public verifiability.

5.1 Public Active Paths

To make the active path recognisable for V , we use the well-known technique of fixing
the last bit of a key to be its external wire value Λw, i.e., we require that each Ki

w,0 has
as last bit 0 and each Ki

w,1 has as last bit 16. The latter can be achieved by requiring
that the last bit ofRi is 1. We formalize this in the ideal functionality FPV

Prep by requiring
that vectors generated by Sample and Init have their last bit set to 0 and 1, respectively.
For the sake of formality, we denote the resulting modified functionality as FPV

P̃rep
.

In order to UC-implement FPV

P̃rep
, we first modifyΠ ID

Prep so that all messages are sent

viaFPV
Broadcast. Notice thatFHCom andFRand can be easily implemented with public veri-

fiability by having their respective protocols send all communication throughFPV
Broadcast.

Furthermore, we require that each party sets the last bit of their vectors according to the
previous description. As dishonest parties might not follow this, we add a (cheap) ran-
dom linear check using FPV

HCom to ensure correct behaviour, which is described below:

1. Each Pi ∈ P randomly samples s auxiliary masking vectors Ai1, . . . , A
i
s ∈ Fκ2 ,

subject to the constraint that the last bit of each of them is zero. Pi commits to
them using FPV

HCom as [Ai1]i, . . . , [A
i
s]i.

2. Denote by [Xi
1]i, . . . , [X

i
r]i, r = |G|+nin, Pi’s (value-zero) keys corresponding to

the circuit-input wires and the output wires of AND gates, obtained using Sample.
Let [Ri]i be the value obtained during Init. Parties in P call FPV

Rand to generate, for
every i ∈ [n], s · (r + 1) random bits bi1, . . . , b

i
s(r+1).

6 Technically, in this case we should increase the key length by one bit in order to compensate
the loss of entropy, but we omit this in order to simplify our presentation.
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3. For j ∈ [s], Pi uses FPV
HCom to compute and open the random linear combination

[Zij ]i = [Aij ]i + bij+s·r · [Ri]i +
∑r
k=1 b

i
(j−1)·r+k · [X

i
k]i towards all parties, who

check that the last bit of each opened Zij is bir·s+j . If that is not the case for any i
or j, they enter the Abort procedure.

As the last bit of every Aij , X
i
k should be zero and the last bit of Ri should be one

and all those values are committed to before the b values are sampled, any corrupted
Pi providing wrong values can only pass the j-th check with probability at most 1/2,
for every j ∈ [s]. On the other hand, and for an honest Pi, the Aij masks prevent any
leakage on Xi

k, R
i beyond their lasts bits. From this, and Theorem 3.6 it then follows:

Lemma 5.1 The transformation to Π ID
Prep outlined above implements FPV

P̃rep
in the

{FPV
Broadcast,FPV

HCom,FPV
Rand}-hybrid model with security against a static, active adver-

sary corrupting at most n− 1 parties.

5.2 Public Verifiability in the Online Phase

We now explain how to modify the online phase of Π ID
MPC in order to implement FPV

MPC.
As mentioned before, we require that all communication will be done via FPV

Broadcast.
While the Init, Garble, Output and Abort phase of our publicly verifiable protocol
will be identical to Π ID

MPC, we need to introduce some differences in Input and Circuit
Evaluation. We proceed to outline those differences:

Input: Add a third step, where parties in P additionally check if the last bit of K
i

in,Λin

is identical to Λin for every i ∈ [n]. Otherwise, they broadcast (Abort,J ), where
J contains every Pi who sent the wrong key.

Circuit Evaluation: In Step 3 of this subprotocol, parties in P additionally check if
the last bit of every K

i

w,Λw
is identical for every i ∈ [n]. If that is not the case, they

broadcast (Conflict, g, Λu, Λv) and enter Abort.

Trivially, the Abort procedure still works for parties in P the same way it did in
Π ID

MPC without the above modifications. For a verifier V looking at the transcript of
this procedure afterwards, things also work out: Due to the fact that wire keys now
indicate the corresponding Λ value on the wire, up to the smallest g in the circuit among
all Conflict messages, V can be sure of having obtained the correct Λu, Λv values.
Hence, on Step 2, he can perform the same check honest parties in P did to conclude
whether or not the (Conflict, g, Λ′u, Λ

′
v) was correct, or if a malicious party trying

to cheat. V cannot perform Step 4, but he can obtain the resulting value on Step 5,
because it is a PublicOutput of FPV

P̃rep
(cf. Figure 11). The same is true for the other

values revealed in that step, and thus V can perform the whole Abort procedure non-
interactively. From this, and Theorem 4.1, we can conclude:

Lemma 5.2 The transformation to Π ID
MPC outlined above implements FPV

MPC in the
{FPV

Broadcast,FPV

P̃rep
}-hybrid model with security against a static, active adversary cor-

rupting at most n− 1 parties.
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3. C. Baum, I. Damgård, and C. Orlandi. Publicly auditable secure multi-party computation.
In M. Abdalla and R. D. Prisco, editors, SCN 14, volume 8642 of LNCS, pages 175–196.
Springer, Heidelberg, Sept. 2014.

4. C. Baum, B. David, and R. Dowsley. Insured mpc: Efficient secure computation with fi-
nancial penalties. Financial Cryptography and Data Security (FC) 2020, 2020. Full version
available at https://eprint.iacr.org/2018/942.

5. C. Baum, E. Orsini, and P. Scholl. Efficient secure multiparty computation with identifiable
abort. In M. Hirt and A. D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages
461–490. Springer, Heidelberg, Oct. / Nov. 2016.

6. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended
abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

7. A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest major-
ity. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 538–557. Springer,
Heidelberg, Aug. 2010.
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