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Abstract. Can Alice and Bob agree on a uniformly random secret key
without having any truly secret randomness to begin with? Here we
consider a setting where Eve can get partial leakage on the internal state
of both Alice and Bob individually before the protocol starts. They then
run a protocol using their states without any additional randomness and
need to agree on a shared key that looks uniform to Eve, even after
observing the leakage and the protocol transcript. We focus on non-
interactive (one round) key exchange (NIKE), where Alice and Bob send
one message each without waiting for one another.

We first consider this problem in the symmetric-key setting, where the
states of Alice and Bob include a shared secret as well as individual uni-
form randomness. However, since Eve gets leakage on these states, Alice
and Bob need to perform privacy amplification to derive a fresh secret
key from them. Prior solutions require Alice and Bob to sample fresh
uniform randomness during the protocol, while in our setting all of their
randomness was already part of their individual states a priori and was
therefore subject to leakage. We show an information-theoretic solution
to this problem using a novel primitive that we call a two-seed extractor,
which we in turn construct by drawing a connection to communication-
complexity lower-bounds in the number-on-forehead (NOF) model.

We then turn to studying this problem in the public-key setting, where
the states of Alice and Bob consist of independent uniform random-
ness. Unfortunately, we give a black-box separation showing that leakage-
resilient NIKE in this setting cannot be proven secure via a black-box
reduction under any game-based assumption when the leakage is super-
logarithmic. This includes virtually all assumptions used in cryptogra-
phy, and even very strong assumptions such as indistinguishability ob-
fuscation (iO). Nevertheless, we also provide positive results that get
around the above separation:

– We show that every key exchange protocol (e.g., Diffie-Hellman) is
secure when the leakage amount is logarithmic, or potentially even
greater if we assume sub-exponential security without leakage.



– We notice that the black-box separation does not extend to schemes
in the common reference string (CRS) model, or to schemes with pre-
processing, where Alice and Bob can individually pre-process their
random coins to derive their secret state prior to leakage. We give a
solution in the CRS model with preprocessing using bilinear maps.
We also give solutions in just the CRS model alone (without prepro-
cessing) or just with preprocessing (without a CRS), using iO and
lossy functions.

1 Introduction

Leakage-resilient cryptography [23, 28, 17, 1, 3, 30, 2, 20, . . . ] studies the security
of cryptosystems when the adversary can get some partial information about
the secret keys of honest users. However, in almost all cases, the schemes rely on
some leak-free randomness to guarantee security. For example, leakage-resilient
encryption [1, 30] only guarantees security when the adversary gets leakage on
the secret key, but requires the encryption randomness to be leak-free. In fact,
leakage-resilience is closely related to cryptography with imperfect randomness
(conditioned on the leakage, the randomness is no longer uniform) where it was
shown that many cryptographic tasks are impossible with imperfect randomness
[15].

In this work, we study the question of leakage-resilient key exchange, where
Alice and Bob wish to agree on a nearly uniform secret key by communicating
over a public channel whose contents are being observed by an adversary Eve.
Before the protocol starts, Eve can additionally get partial leakage on the inter-
nal states of each of Alice and Bob individually. In particular, Eve can choose
two functions fA, fB with `-bit output, where ` is some leakage bound, and learn
the output of these functions when applied on the states of Alice and Bob respec-
tively. We assume that the state of each user includes all of the randomness that
will be available to them during the protocol and they cannot sample any fresh
randomness after the leakage occurs. Throughout this work, we focus on non-
interactive key-exchange (NIKE) protocols (e.g., in the style of Diffie-Hellman
key exchange) where Alice and Bob each non-adaptively send one message as a
function of their state.

Symmetric-Key Setting. We first study leakage-resilient NIKE in the symmetric-
key setting, where Alice and Bob share a uniformly random secret sk. Each of
them has some additional independent randomness rA, rB and their states are
stateA = (sk, rA) and stateB = (sk, rB) respectively. The adversary Eve can get
` bits of leakage on each of stateA and stateB , and therefore the secret key sk
is no longer fully secure from her point of view. Alice and Bob wish to run a
protocol to derive a fresh key k that looks (nearly) uniformly random to Eve.
We study this problem in the information-theoretic setting.

The above problem is similar to that of privacy amplification [6, 8, 27, 7],
where Alice and Bob have a weakly random shared secret and want to agree
on a (nearly) uniform key. The crucial difference is that privacy amplification
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allows Alice and Bob to sample fresh randomness, whereas our problem does
not. In particular, the privacy amplification problem can be easily solved using
a (strong) seeded randomness extractor Ext: Alice chooses a fresh random seed
rA that she sends to Bob, and then both Alice and Bob set their key to be
k = Ext(sk; rA). However, this solution does not work in our setting if we think
of rA as a part of Alice’s state, since the adversary can then get leakage on k
via leakage on stateA = (sk, rA).

Instead, we introduce a new primitive called a (strong) two-seed extractor
where two seeds rA, rB are used to extract randomness k = Ext(sk; rA, rB). We
require that the extracted randomness looks uniform even to an adversary that
gets partial leakage on each of the tuples (sk, rA) and (sk, rb) together with
the seeds rA, rB . Such extractors do not seem to follow easily from standard
(strong) seeded extractors or even two-source extractors. Instead, we construct
two-seed extractors by drawing a new connection to communication-complexity
lower bounds in the number-on-forehead model [4]. Using two-seed extractors,
we can easily solve our problem by having Alice and Bob exchange the messages
rA, rB respectively and having them agree on the new key k = Ext(sk; rA, rB).

As our final result in this setting, we show that if Alice and Bob have a
shared secret of length n, we get a scheme where the randomness rA, rB is of
length O(n), we tolerate a leakage bound of ` = Ω(n), the exchanged key k is of
length Ω(n), and the statistical distance from uniform is ε = 2−Ω(n). It remains
an interesting open problem to optimize the constants in the scheme.

Public-Key Setting: A Negative Result. We next turn to studying leakage-resilient
NIKE in the public-key setting, where the states of Alice and Bob consist of in-
dependent uniform randomness stateA = rA and stateB = rB with no shared
key.

We begin by giving a black-box separation showing that such schemes cannot
be proven secure via a black-box reduction under any “(single-stage) game-based
assumption,” when the leakage bound ` is super-logarithmic in the security pa-
rameter. Game-based assumptions are ones that can be expressed via a game
between a (potentially inefficient) challenger and a stateful adversary, where
any polynomial-time adversary should have at most a negligible advantage. In
particular, this includes essentially all assumptions used in cryptography such
as DDH and LWE, and even very strong assumptions such as the existence of
indistinguishability obfuscation (iO). Our results rule out black-box reductions
that treat the adversary as well as the leakage-functions as a black box, which
is the case for all known positive results in leakage-resilient cryptography we are
aware of. Our separation closely follows the framework of [35], which gave similar
separations for other leakage-resilient primitives (e.g., leakage-resilient injective
one-way functions).

Pinpointing the above barrier allows us to look for ways to overcome it. We
identify three avenues toward getting around the negative result, and follow them
to get positive results.
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Public-Key Setting: Small Leakage. The first and most obvious avenue is to con-
sider small leakage, where ` is only logarithmic in the security parameter. Inter-
estingly, some types of cryptosystems (e.g., one-way functions, signatures, public-
key encryption, weak pseudorandom functions) are known to be automatically
secure with small leakage while others (pseudorandom generators/functions, se-
mantically secure symmetric-key encryption) are known not to be [32, 16]. Where
does leakage-resilient NIKE fit in? The work of [16] gave a partial characteri-
zation of primitives that are automatically secure, but it does not appear to
capture NIKE directly. Instead, we adapt the techniques of [16] for our purposes
and show that any NIKE protocol is automatically secure when the leakage `
is logarithmic. The result also extends to allowing larger leakage ` by assuming
stronger (sub-exponential) security of the underlying NIKE.

As an example, this shows that the Diffie-Hellman key agreement is secure
with small leakage: even if an adversary gets small leakage on rA and rB individ-
ually and then sees grA , grB , the exchanged key grArB is indistinguishable from
uniform.

Public-Key Setting: CRS or Preprocessing. The other two avenues for overcom-
ing the negative result require us to add some flexibility to our setting to make
the black-box separation fail. We can consider schemes in the common reference
string (CRS) model, where the honest parties as well as the adversary get access
to a CRS generated from some specified distribution. Note that, in this set-
ting, the leakage functions can depend on the CRS. Alternately, we can consider
schemes with preprocessing, where Alice and Bob can individually preprocess
their random coins to derive their secret states prior to leakage. In particular,
instead of having the two states rA, rB consist of uniformly random coins, we
allow rA ← Gen(ρA), rB ← Gen(ρB) to be sampled from some specified dis-
tribution using uniformly random coins ρA, ρB . We assume the adversary only
gets leakage on the secret states rA, rB but not on the underlying random coins
ρA, ρB used to sample them.

We construct a leakage-resilient NIKE using bilinear maps, which simultane-
ously requires a CRS and preprocessing. It can flexibly tolerate any polynomial
leakage bound ` with states of size |rA|, |rB | = O(`). We prove security under
either the subgroup decision assumption in composite-order bilinear groups or
the decision-linear (DLIN) assumption in prime order groups. Interestingly, we
rely on two-seed extractors, which solved the problem in the symmetric setting,
as a crucial tool to aid our construction in the public-key setting.

We also give an alternate construction of leakage-resilient NIKE using in-
distinguishability obfuscation (iO) and lossy functions, which can be initialized
with either just a CRS (without preprocessing) or just preprocessing (without
a CRS). It can flexibly tolerate any polynomial leakage ` with states of size
(2 + o(1))`.

Other Related Work. Prior works have proposed constructions of leakage-resilient
NIKE, albeit under a leak-free hardware assumption, which, in particular, gives
both parties access to some (limited) leak-free randomness during the protocol
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execution [11, 12]. These results do not address the central goal of our work,
which is for two parties to non-interactively agree on a shared key without rely-
ing on any fresh randomness after the leakage occurs.

Organization In Section 4, we define and construct leakage-resilient symmetric-
key NIKE and two-seed extractors. In Section 5, we define leakage-resilient NIKE
in the public-key setting. In Section 6, we give a black-box separation of leakage-
resilient NIKE from any single-stage assumption. In Section 7, we build a leakage-
resilient NIKE in the CRS model with preprocessing from bilinear maps over
composite-order groups.

2 Technical Overview

2.1 Symmetric-Key NIKE

We first consider the problem of leakage-resilient NIKE in the symmetric-key
setting, where Alice and Bob start with a secret sk, and want to agree on a
fresh uniform key k. We assume they each have internal randomness rA and rB ,
respectively. Here we want security to hold even given the protocol transcript
together with leakages on the states of both Alice and Bob, stateA = (sk, rA)
and stateB = (sk, rB), prior to the protocol execution. We study this problem in
the information-theoretic setting.

We remark that the particular case when the messages sent by Alice and Bob
consist of their entire randomness rA and rB corresponds to a natural notion
of randomness extractors that we name (strong) two-seed extractors. Namely,
a (strong) two-seed extractor Ext(x; rA, rB) uses two seeds rA, rB to extract
randomness from a high-entropy source x in a setting where the distinguisher
gets leakages on (x, rA) and (x, rB), as well as the entire seeds rA and rB .
Given such an extractor, Alice and Bob, sharing a secret key x = sk can send
their individual randomness rA and rB respectively to each other and compute
k = Ext(x; rA, rB) as the exchanged key. Leakage resilience of this symmetric-
key NIKE exactly follows from the security of the two-seed extractor described
above.

We initially suspected that there should be simple solutions to the two-seed
extractor problem via standard (strong) seeded extractors and/or two-source
extractors. For example, we thought of applying a 2-source extractor on (rA, rB)
to derive a seed s = 2SourceExt(rA, rB) and then plugging it into a strong seeded
extractor to extract k = SeededExt(x; s). Our intuition was that the leakage
would not be able to predict s and therefore could not leak any information on x
that depends on s. However, we were unable to prove security of this candidate
(or other simple variants). The problem is that, although the leakage cannot
predict s, it can cause x to be correlated with s once rA, rB are made public.
We leave it as an open problem to explore the possibility of this construction
or some variant and either show it secure via a more complex argument or find
counter-examples.
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Instead, we construct two-seed extractors by leveraging a connection with
communication complexity lower bounds in the number-on-forehead (NOF)
model [4]. Such lower bounds were also recently used in the context of leakage-
resilient secret sharing in [24]. At a high level, the NOF communication com-
plexity of a boolean function f : (x1, · · · , xN )→ {0, 1} is the minimal transcript
size required to predict f with noticeable probability, over protocols where every
party can exactly see all the others parties’ inputs (but not their own; imagine it
is on their forehead), and where parties speak one at a time. A NOF lower bound
says that no such communication protocol of transcript length ` is sufficient to
predict the output of f on uniformly random inputs.

To see the connection with two-seed extractors, consider the case where N =
3 and think of x1 = x, x2 = rA, x3 = rB . Then an NOF lower bound implies that
small leakage on each of the tuples (x, rA), (x, rB), (rA, rB) does not allow one to

predict Ext(x; rA, rB)
def
= f(x1, x2, x2). However, in the setting of (strong) two-

seed extractors, the adversary does not just get leakage on (rA, rB) but rather
gets the entire values rA, rB in full. We show that security is preserved in the
latter setting. At a high level, if a distinguisher succeeds in the latter setting
given rA, rB in full, then we could also run that distinguisher as the leakage on
(rA, rB) to distinguish in the former setting. This is not entirely accurate, since
the distinguisher in the latter setting also expects to get the challenge value z
which is either z = Ext(x; rA, rB) or z uniform, while leakage on (rA, rB) in the
former setting cannot depend on z. However, we can remedy this by guessing z
ahead of time and taking a statistical security loss proportional to the length of
the extracted output.

Combining the above with explicit constructions of efficiently computable
boolean functions f with high NOF communication complexity [4, 13], we get
two-seed extractors with |x| = |rA| = |rB | = n that tolerate ` = Ω(n) leakage
and have security 2−Ω(n), but only extract 1 bit of output. We show a simple
generic method to get output length m = Ω(n) by choosing m independent
seeds rA = (r1

A, . . . , r
m
A ), rB = (r1

B , . . . , r
m
B ) and outputting Ext(x; riA, r

i
B)mi=1.

However, this leads to seed length Ω(n2). We also give an alternate construction
using the techniques of [14] that relies on the linearity of the underlying 1-bit
extractor and allows us to extract Ω(n) bits while preserving the seed length.

2.2 A Black-Box Separation

In the public-key setting, we show that it is impossible to construct leakage-
resilient NIKE with perfect correctness, and prove security via a black-box re-
duction from any single-stage game assumption (also called cryptographic games
in [21, 35]). An assumption is a single-stage game assumption if it can be written
in the format of an interactive game between a (potentially inefficient) challenger
and a single stateful adversary, where the challenger decides whether or not the
adversary succeeded at the end of the game. The assumption states that no
polynomial time adversary can succeed with better than negligible probability.
(This is a more general class than falsifiable assumptions [29, 18], where the
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challenger is also required to be efficient.) Such single-stage game assumptions
capture essentially all standard assumptions used in cryptography, such as the
hardness of DDH, Factoring or LWE, as well as less standard assumptions such
as the security of indistinguishability obfuscation iO.

However, the security definition for leakage-resilient NIKE (and most other
leakage-resilient primitives) is not a single-stage game. This is because the ad-
versary consists three separate components — the two leakage functions and the
distinguisher — that cannot fully communicate together or keep arbitrary state
between invocations. In particular, the distinguisher does not get to see the in-
puts given to the leakage functions as this would make its task trivial. It was
already observed in [35] that this potentially allows us to separate some cases
of leakage-resilient security from all single-stage game assumptions. However, it
was only shown to hold for a few very select cases. For example, a black-box
separation was given for leakage-resilient one-way permutations with sufficiently
large leakage, but not for one-way functions; the latter can be easily constructed
from any standard one-way function. Where does leakage-resilient NIKE fit in?

In this work, we use the framework of [35] to separate leakage-resilient NIKE
from all single-stage game assumptions. In fact, our separation even rules out
“unpredictable NIKE” where the adversary has to predict the entire exchanged
key, rather than just distinguish it from uniform. The proof follows the “simu-
latable attacker paradigm”. We construct an inefficient attacker A that breaks
the security of the primitive using brute force. However, by constructing A care-
fully, we show that there also exists an efficient simulator S such that no (even
inefficient) distinguisher can distinguish between black-box access to A versus
S. The attacker A = (A.fA,A.fB ,A.Pred) is a multi-stage attacker consisting
of three separate entities which do not communicate or keep state between in-
vocations: the two leakage functions A.fA,A.fB and the predictor A.Pred who
predicts the exchanged key given the leakage and the protocol transcript. How-
ever, the simulator S = (S.fA,S.fB ,S.Pred) is a single fully stateful entity and
can remember any inputs given to S.fA,S.fB and use them to answer calls to
S.Pred. Therefore, S is not a valid attacker on leakage-resilient NIKE. Neverthe-
less, if we had a black-box reduction from any single-stage assumption, then the
reduction would have to break the assumption given black-box oracle access to
A. However, since the reduction and the assumption challenger together cannot
distinguish between black-box access to A versus S, the reduction would also
break the assumption given the latter. But this means that the reduction to-
gether with S give a fully efficient attack against the assumption and therefore
the assumption must be insecure to begin with!

The high level idea of how to construct A and S is simple. The leakage func-
tion A.fA gets as input Alice’s randomness rA, computes the protocol message
pA that Alice will send as a function of rA, and outputs a random `-bit hash
σA = H(pA) as the leakage. The leakage function A.fB works analogously. The
predictor A.Pred(pA, pB , σA, σB) gets the protocol messages pA, pB and the leak-
ages σA, σB : it checks if σA = H(pA) and σB = H(pB) and if this does not hold
it outputs ⊥; otherwise, it performs a brute-force search on pA, pB to recover the
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exchanged key k and outputs it. We think of H as a completely random function,
which is part of the description of the inefficient attacker A. The simulator S
simulates the leakage queries to S.fA,S.fB by keeping a table of the inputs rA
and rB that were queried so far and simulating H by choosing its outputs ran-
domly on the fly for each new corresponding pA or pB . It simulates the predictor
S.Pred(pA, pB , σA, σB) by checking its table to see if it contains some values
rA, rB that yield protocol messages pA, pB and on which the leakage functions
outputted σA, σB respectively; if so, it uses these values to efficiently recover the
exchanged key k and else it outputs ⊥. If the key exchange has perfect correct-
ness, then the only way to to distinguish between oracle access to A versus S is
to “guess” some valid value σA = H(pA) or σB = H(pB) without querying the
leakage functions, and the probability of this happening is 2−`. Therefore, if ` is
super-logarithmic, then A and S are indistinguishable with polynomially many
queries except with negligible probability.

2.3 Circumventing the Black-Box Separation

Unfortunately, we are not aware of any useful non-black-box techniques in the
context of leakage-resilient cryptography. Therefore, to circumvent the black-box
separation, we consider two options. First, we consider the case of small leakage,
where ` is logarithmic in the security parameter. Second, we consider extensions
of the basic NIKE setting that are not covered by the negative result.

The Small Leakage Setting Our black-box impossibility result holds when-
ever the size of the leakage is super-logarithmic in the security parameter. It also
only applies to poly/negligible single-stage assumptions that require polynomial-
time attackers to have negligible success probability, but does not extend to
assuming stronger levels of security. We demonstrate that this dependence on
leakage size is in fact “tight.” In particular, we show that any NIKE that is se-
cure in a setting without leakage is also automatically leakage-resilient when the
leakage bound ` is logarithmic in the security parameter. This can be extended
to leakage bound ` = ω(log λ) if the original NIKE has poly(2`)-security without
leakage.

Similar results were previously known to hold for all unpredictability prim-
itives (e.g., one-way functions, message-authentication codes, signatures, etc.),
where the goal of the attacker is to win some game with non-negligible proba-
bility. In such cases, it is always possible to guess the small leakage and get a 2`

loss in security. It is also known that similar positive results hold for some but
not all indistinguishability primitives, where the goal of the attacker is to win
some game with probability that is non-negligibly larger than 1/2. In particular,
it holds for public-key encryption, CPA-secure symmetric-key encryption, and
weak pseudorandom functions, but it does not hold for pseudorandom gener-
ators, pseudorandom functions, or one-time semantically secure symmetric-key
encryption; in all of the latter cases even 1 bit of leakage can completely break
security (see [32, 16]). The aforementioned positive results can be proven using
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techniques due to [5, 16] showing that any indistinguishability primitive sat-
isfying a so-called “square friendliness” property is resilient to small leakage.
However, it is not a priori clear if these techniques apply to leakage-resilient
NIKE.

To illustrate the difficulty, we briefly recall what it means for a generic (in-
distinguishability) primitive to be “square-friendly” in the sense of [16]. Take
an arbitrary partition of the challenger’s random coins randC into randC =
(randfix

C , rand
exp
C ) (e.g. for CPA-secure symmetric-key encryption, randfix

C could
be the randomness of the secret key while randexp

C could be the challenge bit and
the encryption randomness for chosen plaintext queries). The following “square-
security” game is then defined with respect to this partition: an attacker (for
the original primitive) is asked to play the standard security game twice, where
in the first run the challenger samples both randfix

C and randexp
C at random as

in the standard game, but in the second run, the challenger re-uses the same
randfix

C coins and re-samples fresh randexp
C coins. The attacker wins the square-

security game only if it obtains the same result in both runs (win-win or lose-
lose); square-security holds if any efficient attacker’s can only win the square-
security game with probability negligibly greater than its chance of losing. [16]
refer to a primitive as “square-friendly” if standard security implies square secu-
rity. As previously mentioned, [16] prove that any square-friendly primitive with
poly(2`)-security can withstand ` bits of leakage on randfix

C .

In the NIKE setting, we would like to argue security even given leakage
on rA and rB , where rA and rB and Alice and Bob’s secret values. A naive
attempt to invoke the [16] lemma might set randfix

C = (rA, rB), but then leakage-
resilience/square-friendliness cannot possibly hold since even 1 bit of leakage on
randfix

C completely breaks security (simply leak the first bit of the shared key).

Instead, we take the following two-step approach. We first consider an alter-
nate partitioning of the challenger’s randomness where randfix

C = rA, and rB is
now viewed as part of the experiment randomness randexp

C . Under this partition-
ing, the NIKE security experiment is square-friendly, but now the [16] lemma
only implies security given leakage on rA alone.

To handle independent leakage on rA and rB , we consider yet another par-
titioning of the challenger’s randomness. However, we start from a syntactically
different NIKE security game — parameterized by leakage function fA — in
which the attacker is given leakage fA(rA) on Alice’s random coins in addition
to Alice and Bob’s public values. By our previous argument, security of the orig-
inal NIKE scheme implies security of this modified primitive provided fA has
bounded-length outputs. Since we want to handle leakage on Bob’s coins rB , we
partition the challenger’s random coins so that randfix

C = rB , and rA is now part
of randexp

C . We prove that this is indeed square-friendly, so by [16], security holds
with independent leakage on rA and rB .

Adding Setups: CRS or Preprocessing On an intuitive level, our black-box
separation result went through because, when everything can leak, there is no
meaningful place for a reduction to embed its challenge. We consider two settings
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with some additional setup that allows us to overcome the black-box separation,
precisely by creating a place for the reduction to meaningfully embed a challenge.

The first such setting considers a NIKE scheme with a common reference
string (CRS). We assume that the CRS is generated using some potentially
secret, leak-free coins. The second setting considers NIKE where users preprocess
their individual random coins to derive their secret state. In particular, instead of
having the two secret states rA, rB consist of the uniformly random coins of Alice
and Bob, we allow Alice and Bob to sample their internal secret states from some
specified (secret coin) distribution by running rA ← Gen(ρA), rB ← Gen(ρB)
on their secret random coins ρA, ρB respectively. The secret coins ρA, ρB are
discarded afterwards, and Alice and Bob can run the NIKE protocol using only
their preprocessed states rA, rB . We assume the adversary only gets leakage on
the preprocessed states rA, rB but not on the underlying random coins ρA, ρB
used to sample them. The above two settings give the reduction an opportunity
to embed its challenge in either the CRS or in the states rA, rB without having
to explain the underlying randomness.

Construction from Bilinear Maps. We first begin by constructing leakage-resilient
NIKE in a model with both a CRS and preprocessing. We give two construc-
tions. A simpler one under the subgroup decision assumption on composite-order
groups with a bilinear map, and a slightly more complex one under the decision-
linear assumption (DLIN) in prime-order groups with a bilinear map. We give a
high-level overview of the first result.

The idea is inspired by “dual-system encryption” [34, 26, 25, . . . ]. In a nut-
shell, dual-system encryption allows us to switch regular ciphertexts and secret
keys to so-called semi-functional counterparts, which individually look legiti-
mate, but when “paired” together result in some randomness that is not dic-
tated by the public key. In our case, we will switch the two states rA, rB to be
semi-functional so that when Alice and Bob run the NIKE with these values,
the exchanged key k has true entropy even given the corresponding protocol
messages pA, pB . To convert such a key into a uniformly random one, we addi-
tionally apply a two-seed extractor on it, where Alice and Bob each supply one
seed.

In more detail, our construction uses a source group G which is a cyclic of
composite order N = p1p2, so that it can be decomposed using the Chinese
Remainder Theorem into G ' Gp1 × Gp2 , where Gp1 and Gp2 are cyclic of
prime order p1 and p2 respectively. In our construction, everything happens in
the subgroup Gp1 . The CRS consists of two elements g ← Gp1 , h = gx ∈ Gp1
where x ← ZN . The secret states of Alice and Bob are pairs of group elements
rA = (ga, ha), rB = (gb, hb) ∈ G2

p1 where a, b← ZN . The key exchange protocol

consists of Alice sending pA = ga and Bob sending pB = gb. The exchanged
key is set to k = e(g, h)ab which can be computed by Alice as e(pB , h

a) and by
Bob as e(pA, h

b). Note that, both the CRS and secret states of Alice and Bob in
the above construction, are sampled from some distributions using secret coins
(namely the group G, and the exponents x, a and b) that we assume do not leak.
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To argue leakage-resilience, we switch the secret states rA, rB to being sam-
pled from the whole group G rather than the subgroup Gp1 . Namely, the whole
execution of the NIKE is indistinguishable from sampling x ← ZN , u ← G,
v = ux ∈ G, and setting rA = (ua, va) and rB = (ub, vb), while still keeping the
CRS elements g ← Gp1 and h = gx ∈ Gp1 in the subgroup. Indistinguishability
follows from a standard subgroup decision assumption, even if the adversary gets
to see the entire secret states rA, rB in full.

With the above change, even if an adversary sees the CRS (g, h = gx) and
the protocol transcript (pA = ua, pB = ub), the value of x mod p2 is uni-
formly random since h = gx only reveals x mod p1. Therefore the exchanged
key k = e(ub, va) = e(ua, vb) = e(u, v)ab = e(u, u)xab also has log p2 bits of
entropy conditioned on the above. This means that given ` bits of leakage on
each of rA, rB , the exchanged key k has log p2−2` bits of entropy. As mentioned
previously, we can upgrade this to a scheme where the exchanged key is indis-
tinguishable from uniform under leakage, by adding the two seeds of a two-seed
extractor to the states of Alice and Bob respectively, and having them exchange
these seeds during the protocol and use them to extract randomness from k as
their final exchanged key.

To allow for a larger leakage bound `, we can either choose a larger prime p2,
or we can execute many copies of this protocol in parallel. Overall, the scheme
can flexibly tolerate any polynomial leakage bound ` while keeping the size of
Alice’s and Bob’s secret states bounded by O(`).

Constructions from Indistinguishability Obfuscation. We also give a construc-
tion from indistinguishability obfuscation (iO) and lossy functions (which can be
instantiated from either DDH or LWE [31]). This construction can be initialized
with either just a CRS (without preprocessing) or just preprocessing (without
a CRS). Let us start with the CRS version of the scheme. The idea starts with
the construction of (multiparty) NIKE from iO due to Boneh and Zhandry [10].
Each party has randomness r and sets its protocol message to p = G(r) where G
is some function that we specify later. The CRS includes an obfuscated program
that has a hard-coded PRF F : it takes as input two protocol messages pA, pB
and r, and checks that either pA = G(r) or pB = G(r); if so it outputs an eval-
uation of the PRF F (pA, pB) and else it outputs ⊥. It is easy to see that this
gives correctness.

To argue security, we will set G to be a function whose description is a part of
the CRS and can be indistinguishably created in either lossy or injective mode.
We puncture the PRF F on the point (pA, pB) and program a random output
k. But instead of hard-coding k directly, we hard-code k ⊕ rA and k ⊕ rB ; i.e.,
two one-time pad encryptions of k under rA and rB respectively. This allows
the obfuscated program to decrypt k given either rA or rB and so preserves
correctness. But now we can switch G to lossy mode and argue that even given
the obfuscated program with the hard-coded ciphertexts, the protocol transcript,
and the leakages on rA, rB , the exchanged key k has high entropy. We can then
convert this into a uniformly random exchanged key by additionally applying
a two-seed extractor on top. (Our actual construction does something slightly

11



more complicated to avoid two-seed extractors and gets better parameters via
standard seeded extractors.)

The above can also be converted into a scheme with preprocessing and with-
out a CRS. In this case, Alice creates the obfuscated program as part of the
preprocessed state and sends it as her protocol message. Furthermore, instead
of putting the description of G in the CRS, we will have each of Alice and Bob
sample different functions G1, G2 that they send as part of their messages and
are used as inputs to the obfuscated program; the obfuscated program also adds
them to the input on which it evaluates the PRF F (G1, G2, pA, pB).

3 Preliminaries

Basic Notation. For an integer N , we let [N ] := {1, 2, . . . , N}. For a set S we
let x ← S denote sampling x uniformly at random from S. For a distribution
D we let x ← D denote sampling x according to the distribution. We will de-
note the security parameter by λ. We say a function f(λ) is negligible, denoted
f(λ) = negl(λ), if f(λ) = O(λ−c) for every constant c > 0. A function is f(λ) is
polynomial, denoted f(λ) = poly(λ), if f(λ) = O(λc) for some constant c > 0.

Information Theory. For two random variables X,Y with support supp(X) and
supp(Y ) respectively, we define their statistical distance SD(X,Y ) as

SD(X,Y ) :=
∑

u∈supp(X)∪supp(Y )

1

2
|Pr[X = u]− Pr[Y = u]|.

For two random variables X,Y with statistical distance SD(X,Y ) ≤ ε, we will
sometimes use the shorthand X ≈ε Y .

Two ensembles of random variables X = {Xλ}λ, Y = {Yλ}λ are statistically
close if SD(Xλ, Yλ) = negl(λ). We will occasionally denote this as X ≈S Y .

The min-entropy H∞(X) of a random variable X is defined as

H∞(X) := − log( max
x∈supp(X)

Pr[X = x]).

A random variable X with min-entropy k is referred to as a k-source. When
X is supported over {0, 1}n, we refer to it as an (n, k)-source. We denote the
uniform distribution over {0, 1}n by Un.

Definition 1 (Strong Seeded Extractors). An efficient function Ext : {0, 1}n
× {0, 1}d → {0, 1}` is a strong (k, ε)-extractor if for every (n, k)-source X,

SD((Ud,Ext(X,Ud)), (Ud, Um)) ≤ ε.

3.1 Background on Bilinear Maps

We review some definitions pertaining to bilinear maps, adapted from [26].
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Composite-Order Bilinear Groups Let G(1λ) be a group generator, which
outputs the description of a pairing-friendly group G = (G,GT , N = p1p2, e),
where G and GT are cyclic groups of order N , and p1, p2 are distinct primes of
bit-size Ω(λ), and e : G × G → GT is an efficiently computable bilinear map,
that satisfies:

1. (Bilinearity) ∀g, h ∈ G, ∀a, b ∈ ZN , we have:

e(ga, hb) = e(g, h)ab.

2. (Non-degeneracy): There exists g ∈ G such that e(g, g) ∈ GT has order N .

We will assume that the descriptions of G and GT include respective generators.
We also assume that the random coins of G reveal the factorization N = p1p2.5

We will denote by Gp1 and Gp2 the subgroups of G of order p1 and p2, respec-
tively. Observe that any g ∈ Gp1 and any h ∈ Gp2 are “orthogonal” with respect
to e, i.e. e(g, h) is the identity element in GT .

Assumption 1. Let G(1λ) be a group generator. We define the following dis-
tributions:

G = (G,GT , N = p1p2, e)← G, g ← Gp1 , T1 ← Gp1 , T1,2 ← G.

We say that G satisfies Assumption 1 if for all PPT adversaries A:∣∣ Pr[A(G, g, T1) = 1]− Pr[A(G, g, T1,2) = 1]
∣∣ ≤ negl(λ).

4 Leakage-Resilient NIKE in the Symmetric-Key Setting

4.1 Definitions

We first define leakage-resilient NIKE in the symmetric setting, where both
parties share a common secret key with sufficiently high min-entropy.

Definition 2 (Symmetric-Key Leakage-Resilient NIKE). A symmetric-
key NIKE protocol sk-NIKE with secret key space SK, private state space R,
public message space P and output key space K consists of the algorithms:

– Publish(sk, r) is a deterministic algorithm which takes as input a secret key
sk ∈ SK, a private state r ∈ R and outputs a public message p ∈ P.

– SharedKey(sk, r, p) takes as input a secret key sk ∈ SK, a private state r ∈ R
and a public message p ∈ P, and outputs a key K ∈ K.

We require sk-NIKE to satisfy the following properties.

5 More generally, the ability to sample uniformly from Gp1 given the random coins of
G would suffice for our purposes.
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Perfect Correctness. An sk-NIKE = (Publish,SharedKey) protocol is perfectly
correct if for all secret keys sk ∈ SK and all private states rA, rB ∈ R:

SharedKey(sk, rA, pB) = SharedKey(sk, rB , pA),

where pA = Publish(sk, rA) and pB = Publish(sk, rB).

Information-Theoretic Leakage Resilience. We say that a symmetric-key NIKE
protocol is (k, `, ε)-secure if for any distribution L such that H∞(L) ≥ k and all
(potentially inefficiently computable) functions fA, fB : SK × R → {0, 1}`, we
have:

(pA, pB , fA(sk, rA), fB(sk, rB),K0) ≈ε (pA, pB , fA(sk, rA), fB(sk, rB),K1),

where sk ← L, rA, rB ← R, pA = Publish(sk, rA), pB = Publish(sk, rB), K0 =
SharedKey(sk, pA, rB), and K1 ← K.

Definition 3 (Leakage Rate). For a (k, `, ε)-secure symmetric-key NIKE, we
define its leakage rate as

`

maxr∈R |r|
.

4.2 Two-Seed Extractors

We consider a new type of extractor called a two-seed extractor which suffices
to construct leakage-resilient symmetric-key NIKE.

Definition 4 (Two-Seed Extractors). A (k, 2`)-two-seed extractor Ext(X;R,S) :
{0, 1}n × {0, 1}d1 × {0, 1}d2 → {0, 1}m with error ε is an efficient function such
that for all (potentially inefficient) leakage functions f : {0, 1}n × {0, 1}d1 →
{0, 1}a, g : {0, 1}n × {0, 1}d2 → {0, 1}b with a + b = 2`, and any (n, k)-source
X, we have:(

Ext(X;R,S), R, S, f(X,R), g(X,S)
)
≈ε
(
Um, R, S, f(X,R), g(X,S)

)
,

where R,S are independent uniform random bits of length d1 and d2 respectively.

Remark 1. Our definition of a two-seed extractor corresponds to strong two-seed
extractors in the sense that the output is close to uniform even given the two
seeds R and S. For simplicity, when we say a two-seed extractor in this paper,
we always mean a strong two-seed extractor. Without the “strong” condition, a
two-seed extractor is implied by any two source extractor on R and S.

Remark 2. For all applications in this paper, we only need two-seed extractors
for full entropy k = n. However such a construction also trivially implies a
two-seed extractor for min-entropy k where the error becomes 2n−kε.

Claim 2. Any (k, 2`)-two-seed extractor Ext with error ε induces a symmetric-
key NIKE that is (k, `, ε)-secure.
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Proof. Let Ext be a (k, 2`)-two-seed extractor Ext : {0, 1}n×{0, 1}d1×{0, 1}d2 →
{0, 1}m with leakage size 2` and error ε. We can construct an sk-NIKE as follows.
Let the secret key space SK be {0, 1}n, let both the private state spaceR and the
public message space P be {0, 1}min(d1,d2), and let the key space K be {0, 1}m.
Suppose without loss of generality that d1 ≥ d2. Define Publish(sk, r) = r ∈
{0, 1}d2 and SharedKey(sk, r, p) = Ext(sk, (r‖0d1−d2), p). Then any (potentially
unbounded) distinguisher for sk-NIKE is a distinguisher for Ext with the same
advantage ε.

4.3 Construction

We show how to construct two-seed extractors from what we call BCP extrac-
tors, which are first studied implicitly in [4] and then explicitly defined in [24].6

Looking ahead, we will build both two-seed extractors and symmetric-key NIKE
that satisfy slightly stronger security definitions than standard leakage-resilience
(Definition 6 and Definition 7).

We first recall the definition of a bounded collusion protocol, following [24].

Definition 5 (Bounded Collusion Protocol (BCP) [24]). An (interactive,
potentially randomized) communication protocol π among N parties is called a
(p,N, µ)-bounded collusion protocol (BCP) if:

– the N parties start the protocol with input X1, . . . , XN , and the transcript τ
is empty at the beginning of the protocol;

– there is a function Next(τ)→ S takes as input a (partial) transcript τ , and
outputs either a set S ⊂ [N ] with |S| ≤ p along with a function g, or ⊥;

– at each round with current transcript τ , the protocol computes Next(τ). If
Next(τ) = (S, f), the message g({Xi}i∈S) is appended to the current tran-
script τ ; otherwise the protocol stops and outputs τ as the final transcript.

– the final transcript τ has size at most µ.

We say that a (p,N, µ)-BCP π ε-computes a (deterministic) boolean function
f : (X1, . . . , XN )→ b ∈ {0, 1} if there exists a (potentially unbounded) predictor
P, given a BCP transcript τ of π, that computes b with probability 1/2 + ε (over
the randomness of {Xi}i, π and P).

In this section, we will actually build a two-seed extractor with a stronger
security property than Definition 4; namely, it remains secure against leakages
computed as 3-party BCP transcripts over inputs X,R, S. This results in a
symmetric-key NIKE that is secure against the same type of leakage, by directly
adapting Claim 2.

Definition 6 (Two-Seed Extractors with BCP Leakage Resilience). A
(k, 2`)-two-seed extractor Ext(X;R,S) : {0, 1}n × {0, 1}d1 × {0, 1}d2 → {0, 1}m
with error ε is an efficient function such that for all (1, 2, 2`)-BCP protocol π :

6 In [24], these are referred to as “extractors for cylinder-intersection sources.”
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({0, 1}n × {0, 1}d1)× ({0, 1}n × {0, 1}d2 → {0, 1}2` and any (n, k)-source X, we
have:(

Ext(X;R,S), R, S, π((X,R), (X,S))
)
≈ε
(
Um, R, S, π((X,R), (X,S))

)
,

where R,S are independent uniform random bits of length d1 and d2 respectively.

Definition 7 (Symmetric-Key NIKE with BCP Leakage Resilience).
We say that a symmetric-key NIKE sk-NIKE = (Publish,SharedKey) is (k, `, ε)-
secure against interactive leakages if for any distribution L such that H∞(L) ≥ k
all (1, 2, 2`)-BCP protocol π((sk, rA), (sk, rB)) (Definition 5), we have:

(pA, pB , π((sk, rA), (sk, rB)),K0) ≈ε (pA, pB , π((sk, rA), (sk, rB)),K1),

where sk ← L, rA, rB ← R, pA = Publish(sk, rA), pB = Publish(sk, rB), K0 =
SharedKey(sk, pA, rB), and K1 ← K.

Definition 8 (BCP Extractor). Let X1, · · · , XN be N independent (n, k)-
sources. Let π be a (possibly randomized) (p,N, µ)-BCP and π(X1, · · · , XN )
be the transcript. A deterministic function Ext : ({0, 1}n)N → {0, 1}m is an
(n, k, p,N, µ)-BCP extractor with error ε if

(Ext(X1, · · · , XN ), π(X1, · · · , XN )) ≈ε (Um, π(X1, · · · , XN )).

Definition 9. The ε-distributional communication complexity of a Boolean func-
tion f : ({0, 1}n)N → {0, 1}, Cε(f) in a (p,N) bounded collusion model, is the
minimum number µ of any (p,N, µ)-BCP that ε-computes f .

Using the standard argument that unpredictability is the same as indistin-
guishability for any 1-bit random variable, we have the following theorem.

Theorem 3. A Boolean function f : ({0, 1}n)N → {0, 1} with Cε(f) ≥ µ + 1
gives an (n, n, p,N, µ)-BCP extractor with error ε, and vice versa.

Next we show that any (n, k, p,N, µ + 1)-BCP extractor with sufficiently
small error must be strong in any subset of p sources if the transcript size is at
most µ.

Theorem 4. Suppose Ext : ({0, 1}n)N → {0, 1}m is an (n, k, p,N, µ + 1)-BCP
extractor with error ε. Then for any (p,N, µ)-BCP transcript π(X1, · · · , XN )
and any subset S ⊂ [N ] with |S| = p, we have

(Ext(X1, · · · , XN ), π(X1, · · · , XN ), XS) ≈2m·ε (Um, π(X1, · · · , XN ), XS),

where XS = {Xi, i ∈ S}.

Proof. Assume that there exists a set S ⊂ [N ], a transcript π(X1, · · · , XN ) of a
(p,N, µ)-BCP, and a distinguisher D such that∣∣Pr[D(Ext(X1, · · · , XN ), π(X1, · · · , XN ), XS) = 1]

−Pr[D(Um, π(X1, · · · , XN ), XS) = 1]
∣∣ = ε′.
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Let V be a uniformly random m-bit string, and consider the following
(p,N, µ+ 1)-BCP where the transcript is (π(X1, · · · , XN ), D(V, π(X1, · · · , XN ),
XS)). Now define another distinguisher TV as follows. Given input

(W,π(X1, · · · , XN ), D(V, π(X1, · · · , XN ), XS)),

TV outputsD(V, π(X1, · · · , XN ), XS) ifW = V and outputs a uniformly random
bit otherwise. We have∣∣Pr[TV (Ext(X1, · · · , XN ), π(X1, · · · , XN ), D(V, π(X1, · · · , XN ), XS)) = 1]

− Pr[TV (Um, π(X1, · · · , XN ), D(V, π(X1, · · · , XN ), XS)) = 1]
∣∣

=
∣∣2−m(Pr[D(Ext(X1, · · · , XN ), π(X1, · · · , XN ), Xs) = 1]

− Pr[D(Um, π(X1, · · · , XN ), XS) = 1])
∣∣

=2−mε′

However, note that the new protocol is a (p,N, µ + 1)-BCP, thus we have
2−mε′ ≤ ε. This means that ε′ ≤ 2m · ε.

In the case of p = N−1, BCP extractors with one bit of output are equivalent
to hard functions in the number-on-forehead (NOF) communication model. The
communication in the NOF model is exactly an (N − 1, N, µ)-BCP, and thus we
can use the results in [4] on hard functions in the NOF model. Specifically, [4]
showed two explicit functions that are hard in the NOF model.

Generalized Inner Product (GIP) : GIPN,n : ({0, 1}n)N → {0, 1} is defined
as GIPN,n(x1, · · · , xN ) = 1 iff the number of positions where all the xi’s have
1 is odd.

Quadratic Residue (QR) QRN,n : ({0, 1}n)N → {0, 1} is defined as

QRN,n(x1, · · · , xN ) = 1 iff
∑N
i=1 xi is a quadratic residue mod p.

Theorem 5. In the NOF model with N parties, we have

1. [4] For any n-bit long prime number p, Cε(QR) = Ω( n
2N + log ε).

2. [13] Cε(GIP) = Ω( n
2N + log ε).

Using this theorem together with Theorem 3, we obtain explicit, efficient
BCP extractors, which are also two-seed extractors by Theorem 4 with N = 3:

Theorem 6. There exist explicit constructions of (n, `)-two-seed extractors Ext :
{0, 1}n × {0, 1}n × {0, 1}n → {0, 1}, with leakage size ` = Ω(n) and error ε =
2−Ω(n).

We would like to get more output bits. Below we show two different methods
to achieve this. The first method is quite general and applies to any two-seed
extractor, while the second method achieves better seed length but only applied
to the GIP extractor.
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Construction 1: Take any two-seed extractor Ext which outputs one bit, choose
m independent copies of seeds (R1, · · ·Rm) and another independent copy of seed
S. Compute Zi = Ext(X,Ri, S) for each i. The final output is Z = (Z1, · · · , Zm).

We have the following lemma.

Lemma 1. If Ext is a (k, `+m)-two-seed extractor with error ε, then Construc-
tion 1 gives a (k, `)-two-seed extractor with error mε.

Proof. Let R = (R1, · · · , Rm). Let the leakage be L1 = f(X,R) and L2 =
g(X,S). Define Z−i = (Z1, · · · , Zi−1, Zi+1, · · · , Zm). We show that for any i,

(Zi, Z−i, L1, L2, R, S) ≈ε (U1, Z−i, L1, L2, R, S).

To see this, first fix all the Rj ’s except Ri. Note that after this fixing, (Ri, S)
are still independent and uniform. Further note that conditioned on this fixing,
L1 becomes a deterministic function of X and Ri, while L2 is a deterministic
function of X and S. Now Z−i can be viewed as an extra deterministic leakage
from (X,S) with size m − 1 and therefore the total size of leakage is at most
m+ `.

Thus we have

(Zi, Z−i, L1, L2, R, S) ≈ε (U1, Z−i, L1, L2, R, S).

Now a standard hybrid argument implies that

(Z,L1, L2, R, S) ≈mε (Um, L1, L2, R, S).

This gives the following theorem.

Theorem 7. There exist explicit constructions of (n, `)-two-seed extractors Ext :
{0, 1}n × {0, 1}mn × {0, 1}n → {0, 1}m with leakage size ` = Ω(n), error ε =
2−Ω(n) and output length m = Ω(n). One seed has length mn and the other has
length n.

Next we show a construction that uses smaller seed length. First we recall
the following lemma from [14].

Lemma 2. [14] For any number n, there exists an explicit construction of n
matrices A1, · · · , An, where each Ai is an n × n matrix over F2, such that for
any S ⊆ [n] with S 6= ∅, we have that

∑
i∈S Ai has full rank.

We can now describe our second construction.
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Construction 2: Let Ext be the two-seed extractor constructed from GIP3,n. For
some m < n, let A1, · · · , Am be the first m matrices from Lemma 2. Let the
seed be (R,S) ∈ Fn2 . For each i ∈ [m] compute Zi = Ext(X,AiR,S) and let
Z = (Z1, · · · , Zm).

To analyze the lemma we will use a standard XOR lemma.

Lemma 3. [19] For any m-bit random variable T , we have:

SD(T,Um) ≤
√ ∑

0m 6=a∈{0,1}m
SD(T · a, U1)2,

where T · a denotes the inner product of T and a over F2.

We have the following lemma.

Lemma 4. Construction 2 gives an (n, `)-two-seed extractor with leakage size
` = Ω(n) and error ε = 2m−Ω(n).

Proof. Let the leakage be L1 = f(X,R) and L2 = g(X,S). For any a ∈ {0, 1}m
with a 6= 0m, let Sa ⊆ [m] denote the set of indices of a where the corresponding
bit is 1. Then Sa 6= ∅. Observe that

Z · a = GIP(X,
∑
i∈Sa

AiR,S) = GIP(X, (
∑
i∈Sa

Ai)R,S).

Since
∑
i∈Sa

Ai has full rank, (
∑
i∈Sa

Ai)R is uniform in Fn2 . Thus we have

(Z · a, L1, L2, R, S) ≈ε (U1, L1, L2, R, S),

where ε = 2−Ω(n). By Markov’s inequality, with probability 1−
√
ε over the

fixing of (L1, L2, R, S), we have that Z · a is
√
ε-close to uniform. By a union

bound, with probability 1− 2m
√
ε over the fixing of (L1, L2, R, S), we have that

for all a ∈ {0, 1}m with a 6= 0m, Z ·a is
√
ε-close to uniform. When this happens,

by Lemma 3 we have that

|Z − Um| ≤ 2m/2
√
ε.

Thus overall we have that

(Z,L1, L2, R, S) ≈ε′ (Um, L1, L2, R, S),

where ε′ ≤ 2m
√
ε+ 2m/2

√
ε = 2m−Ω(n).

This yields the following theorem.

Theorem 8. There exist explicit constructions of (n, `)-two-seed extractors Ext :
{0, 1}n×{0, 1}n×{0, 1}n → {0, 1}m with leakage size ` = Ω(n), error ε = 2−Ω(n)

and output length m = Ω(n). Each seed has length n.
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5 Definitions for Leakage-Resilient NIKE in the
Public-Key Setting

We define NIKE in the public-key setting.

Definition 10 (Non-Interactive Key Exchange). A Non-Interactive Key
Exchange NIKE over parameter space C, state space R, public message space P
and key space K consists of the following efficient algorithms:

– Setup(1λ) is a randomized algorithm that takes as input the security param-
eter 1λ and outputs public parameters params ∈ C.

– Gen(params) is a randomized algorithm that takes as input public parameters
params ∈ C and outputs a state r ∈ R.

– Publish(params, r) is a deterministic algorithm that takes as input public pa-
rameters params ∈ C and a state r ∈ R and outputs a public message p ∈ P.

– SharedKey(params, r, p) is a deterministic algorithm that takes as input public
parameters params ∈ C, a state r ∈ R and a public message p ∈ P, and
outputs a key K ∈ K.

For notational simplicity, we will omit the input params from these algorithms
in the rest of the paper.

We require a NIKE protocol to satisfy the two following properties:

Perfect Correctness. We say that NIKE is perfectly correct if, over the random-
ness of Setup and Gen:

Pr[SharedKey(rA, pB) = SharedKey(rB , pA)] = 1

where params← Setup(1λ), rA ← Gen(params), pA = Publish(rA), rB ← Gen(params),
pB = Publish(rB).

Security Against `-bit Leakage. We say that a NIKE protocol is secure against
`-bit leakage if for all PPT distinguishers D, and for all efficiently computable
leakage functions fA, fB : C ×R → {0, 1}`, we have (where we omit also params
as an input to the distinguisher D and the leakage functions fA, fB in the rest
of the paper):∣∣Pr [D (pA, pB , fA(rA), fB(rB),K0)) = 1]

− Pr [D (pA, pB , fA(rA), fB(rB),K1 ) = 1]
∣∣ ≤ negl(λ),

where params ← Setup(1λ), rA ← Gen(params), pA = Publish(rA), rB ←
Gen(params), pB = Publish(rB), K0 = SharedKey(rA, pB), and K1 ← K.

Default Definition versus Variants. We define several variants of NIKE depend-
ing on whether the Setup algorithm and the Gen algorithm just output uniformly
random coins or sample from some more complex distribution. By default, we
will only allow them to output uniformly random coins, which means that the
leakage can depend on all of the random coins used by the scheme and there is
no reliance on leak-free randomness. In particular, we say that a NIKE scheme
is:
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– a plain NIKE (default), if both Setup(1λ) and Gen(params) just output (some
specified number of) uniformly random bits. In particular Setup(1λ; ρS) = ρS
and Gen(params; ρG) = ρG. In this case, we will often exclude the algorithms
Setup,Gen from the description of NIKE.

– a NIKE in the common reference string model, if the algorithm Setup(1λ) can
be arbitrary (sample from an arbitrary distribution). Note that this means
that we rely on leak-free randomness to run the Setup algorithm.

– a NIKE in the preprocessing model, if the algorithm Gen(params) can be
arbitrary (sample from an arbitrary distribution). Note that this means we
rely on leak-free randomness to generate the states rA, rB of each party
before the protocol starts (but we do not rely on any additional leak-free
randomness during the protocol execution).

– a NIKE in the common reference string and preprocessinf model, if both the
algorithms Setup,Gen can be arbitrary (sample from an arbitrary distribu-
tion).

6 A Black-Box Separation

In this section, we show a broad black-box separation result, which rules out any
efficient black-box reduction from any single-stage assumption to the leakage-
resilience of plain NIKE with sufficiently large leakage.

6.1 Single-Stage Assumptions

Roughly following [21, 35], we define single-stage (game-based) assumptions (also
called cryptographic games). For comparison, single-stage assumptions differ
from falsifiable assumptions [29, 18] as challengers can be potentially unbounded.

Definition 11 (Single-Stage Assumption). A single-stage assumption con-
sists of an interactive (potentially inefficient, stateful) challenger C and a con-
stant c ∈ [0, 1). On security parameter λ, the challenger C(1λ) interacts with a
(stateful) machine A(1λ) called the adversary and may output a special symbol
win. If this occurs, we say that A(1λ) wins C(1λ). The assumption associated
with the tuple (C, c) states that for any PPT adversary A, we have

Pr[A(1λ) wins C(1λ)] ≤ c+ negl(λ)

where the probability is over the random coins of C and A.

Which assumptions are not single-stage? The definition above seems to cover
all most common cryptographic assumptions, so one can naturally ask which
assumptions our black-box impossibility does not cover. An example of a multi-
stage assumption is the leakage resilience of NIKE itself (defined in Section 5)!
In particular, one can equivalently define leakage-resilience as a two-stage game,
where the adversary is split into two distinct entities: a leaker that produces the
leakages fA(rA), fB(rB), and a distinguisher that uses this leakage to distinguish
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the final key from uniform. Unlike the leaker, the distinguisher in that game does
not see the secret states rA, rB , and the only state kept by the adversary between
the two stages are the leakages fA(rA) and fB(rB).

6.2 Separating Leakage-Resilient NIKE from Single-Stage
Assumptions

Next, we recall the notion of black-box reductions.

Definition 12 (Black-Box Reduction). A black-box reduction showing the
leakage-resilience (for `-bit leakage) of NIKE based on a single-stage assumption
(C, c) is an efficient oracle-access machine R(·) such that, for every (possibly
inefficient, non-uniform) distinguisher D to the NIKE with (possibily inefficient,
non-uniform) leakage functions fA, fB : R → {0, 1}`, the machine RD,fA,fB
breaks the assumption (C, c).

We are ready to state our black-box impossibility result.

Theorem 9 (Black-Box Separation). Let ` = ω(log λ). Let NIKE = (
Publish,SharedKey) be a candidate plain NIKE satisfying perfect correctness.
Then for any single-stage assumption (C, c), one of the following must hold:

– (C, c) is false.
– There is no black-box security reduction showing the leakage resilience of

NIKE against `-bit leakages based on the assumption (C, c).

Proof. Our proof strategy closely follows the ideas of [35]. Looking ahead, our
inefficient distinguisher against NIKE is a simulatable attacker in the sense of
[35, Definition 4.1].

Let (C, c) be a single-stage assumption, and let R be a black-box reduction
from the security of NIKE against `-bit leakage to the assumption (C, c). In other
words, for any (potentially inefficient, non-uniform) distinguisher D with non-
negligible advantage along with (potentially inefficient, non-uniform) leakage
functions fA, fB : R → {0, 1}`, the machine RD,fA,fB breaks (C, c) with non-
negligible advantage.

Let H : P → {0, 1}` be a random function. We first define a family of ineffi-

cient distinguishers D(H)
along with (inefficient) leakage functions fA

(H)
, fB

(H)

as follows.

– fA
(H)

takes as input a state rA ∈ R. It has the function H hard-coded (say
as a truth table). It computes pA = Publish(rA) and outputs σA = H(pA).

– fB
(H)

takes as input a state rB ∈ R. It has the function H hard-coded (say
as a truth table). It computes pB = Publish(rB) and outputs σB = H(pB).

– D(H)
(pA, pB , σA, σB ,K) takes as input public messages pA, pB ∈ P, leakages

σA, σB ∈ {0, 1}` and a key K ∈ K. It checks that H(pA) = σA and H(pB) =
σB .
If this equality holds, brute-force search for any rA ∈ R such that Publish(rA)
= pA; output 1 if K = SharedKey(rA, pB) and 0 otherwise.
Otherwise output a random bit b ∈ {0, 1}.
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Claim 10. Assume NIKE is perfectly correct. Then D(H)
along with fA

(H)
, fB

(H)

is an (inefficient) distinguisher with leakage size ` and advantage 1− 1/|K|.

Proof. By perfect correctness of NIKE, for any pB in the image of Publish and
any rA, r

′
A such that Publish(rA) = Publish(r′A), we have SharedKey(rA, pB) =

SharedKey(r′A, pB).

In particular, on input
(
pA, pB , fA

(H)
(rA), fB

(H)
(rB),K0

)
where pA = Publish

(rA) and K0 = SharedKey(rA, pB), the distinguisher D(H)
always outputs 1.

Similarly, on input
(
pA, pB , fA

(H)
(rA), fB

(H)
(rB),K1

)
where K1 ← K, the

distinguisher D(H)
outputs 1 if and only if K = SharedKey(rA, pB) (for any rA

such that pA = Publish(rA)), which happens with probability 1/|K|.

We now consider the following efficient algorithm DSim along with efficient
leakage functions f∗A, f

∗
B . These three algorithms share a look-up table T of

entries in R × {0, 1}` indexed by elements in P; we will write T [p ∈ P] =
(r, σ) ∈ R × {0, 1}`. We stress that DSim is not a distinguisher against NIKE
because of this shared state T .

– f∗A(r) takes as input r ∈ R. It computes p = Publish(r). If the entry of T
indexed by p has not yet been assigned, it samples a uniform σ ← {0, 1}`,
and define T [p] = (r, σ). Otherwise it outputs the second element of T [p].

– f∗B(r) takes as input r ∈ R. It computes p = Publish(r). If the entry of T
indexed by p has not yet been assigned, it samples a uniform σ ← {0, 1}`,
and define T [p] = (r, σ). Otherwise it outputs the second element of T [p].

– DSim takes as input public messages pA, pB ∈ P, leakages σA, σB ∈ {0, 1}`
and a key K ∈ K.
It looks up in T whether both T [pA] and T [pB ] are defined; if so it checks
that the second elements of T [pA] and T [pB ] equal σA and σB , respectively.
If this is the case, let rA be the first element of T [pA] ∈ R × {0, 1}`. It
outputs 1 if SharedKey(rA, pB) = K, and 0 otherwise.
Otherwise, it outputs a random bit b.

Claim 11. Suppose NIKE is perfectly correct. Let R be an efficient oracle-access

machine. Then the outputs of RD
(H)

, fA
(H)

, fB
(H)

and RDSim, f
∗
A, f

∗
B are within sta-

tistical distance Q/2` over the randomness of R and H, where Q is the number
of oracle queries of R, and ` is the size of the leakages.

Proof. Let Q = poly(λ) be the total number of oracle queries performed by
RD,fA,fB to D, fA, fB . It suffices to argue that the transcripts of the calls of

R to (D(H)
, fA

(H)
, fB

(H)
) and to (RDSim, f

∗
A, f

∗
B ) are within statistical distance

Q/2`.

We first note that the (transcripts of the) outputs of the calls to fA
(H)

, fB
(H)

and f∗A, f
∗
B are identically distributed. We then distinguish two cases:
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– RD,fA,fB calls D on input pA, pB , σA, σB but has either not previously called
fA on any input rA such that Publish(rA) = pA, or has not previously called
fB on any input rB such that Publish(rB) = pB . Then RDSim, f

∗
A, f

∗
B obtains

a uniformly random output bit over such calls as either T [pA] or T [pB ] has

not been defined. Further, the probability that RD
(H)

, fA
(H)

, fB
(H)

does not

get a random output bit over any such call to D(H)
is at most Q/2` (over

the randomness of H(pA) and H(pB)).
– Otherwise for every call to D that does not result in a random output bit,
RD,fA,fB has previously queried both fA on rA such that Publish(rA) = pA
and fB on rB such that Publish(rB) = pB . In particular pB is in the image

of Publish, and by perfect correctness, both DSim and D(H)
compute the

same value SharedKey(rA, pB). Therefore the two resulting distributions are
identically distributed.

By Claim 11, we have in particular:

Pr[RDSim,f
∗
A,f
∗
B wins C] ≥ Pr[RD

(H)
,fA

(H)
,fB

(H)

wins C]−Q/2`,

over the randomness of R, C and H. Note that RDSim,f
∗
A,f
∗
B is a PPT algorithm.

Now by Claim 10, RDSim,f
∗
A,f
∗
B is an efficient adversary that wins (C, c) with

advantage at least 1− 1/|K| −Q/2`, which concludes the proof.

6.3 Circumventing the Impossibility Result

The black-box impossibility result of Theorem 9 suggests several natural avenues
to avoid it. We mention below several such options, some of which lead to positive
results in subsequent sections of the paper.

Small Leakage. Our impossibility result only covers super-logarithmically-sized
leakages, and assumptions asserting security against PPT adversary with neg-
ligible advantage. One natural way around this is to restrict security to small
leakages and/or to use stronger assumptions. In the full version, we show that
any standard NIKE is actually directly secure against O(log λ)-bit leakages, and,
more generally, that any ε-secure standard NIKE (where the advantage of any
PPT distinguisher is at most ε) is (ε · 2O(`))-secure with `-bit leakage.

Multi-Stage Assumptions and Non-Black-Box Reductions. Our impossibility re-
sult only covers single-stage assumptions under black-box reductions. All the con-
structions we are aware of for leakage resilience use black-box reductions, and
essentially all standard cryptographic assumptions are phrased as single-stage
game-based assumptions.

Imperfect Correctness. We crucially use in several steps of our proof that the

NIKE is perfectly correct, to ensure that both D(H)
is an (inefficient) distin-

guisher for NIKE, and that D(H)
and DSim compute the same shared key. However

we do not see a way to leverage this gap alone to build a secure construction.
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The Common Reference String Model. On a more constructive side, an interest-
ing way to get around Theorem 9 is to further rely on trusted setup. A common
setting is to assume the availability of a common reference string (CRS), where
the randomness used to generate the CRS cannot leak. The reason our black-box
impossibility result does not apply in that case is somewhat subtle: the reduc-
tion R can call (D, fA, fB) using a malformed CRS (not in the image of Setup),
where perfect correctness might not hold. As a matter of fact, our black-box
impossibility result does extend to the common random string model. In the full
version, we build a leakage-resilient NIKE in the CRS model from iO.

The Preprocessing Model. A very similar workaround is to consider what we
call the preprocessing model, where parties generate their secret states r using
some leak-free randomness. In the preprocessing model, our impossibility result
does not apply for the same reason it does not apply in the CRS setting. This
preprocessing could either be performed by the parties themselves during an
earlier leak-free preprocessing stage, or it could be generated by a trusted third
party. In Section 7, we build a leakage-resilient NIKE in the CRS model with
preprocessing from bilinear maps; in the full version we build a leakage-resilient
NIKE in the pure preprocessing model from iO and lossy functions.

7 Constructions from Bilinear Maps

In this section we leverage bilinear maps to build leakage-resilent NIKE in the
CRS model with preprocessing. We first provide a construction using composite-
order bilinear groups. In the full version, we give an alternate construction from
the decisional linear assumption (DLIN) over prime order groups.

Construction 12. Let sk-NIKE = (sk-NIKE.Publish, sk-NIKE.SharedKey) be a
leakage-resilient symmetric key NIKE (Definition 2) over secret key space SK,
internal randomness space R, public message space P and output key space K.
We will assume that sk-NIKE.Publish does not take any secret key sk as input;
all our constructions from two-seed extractors in Section 4 satisfy this property.

Let G be a group generator for a composite-order group (defined in Sec-
tion 3.1). We will assume that there is a natural bijection GT ' SK.

We construct NIKE = (Setup,Gen,Publish,SharedKey) as follows:

– Setup(1λ): on input the security parameter, generate G = (G,GT , N =
p1p2, e) ← G(1λ) of order N = p1p2 where p1 and p2 are primes. Let u
be a generator of G.
Sample α, x← ZN and use p2 (given by the random coins used to run G) to
compute g = uα·p2 ∈ Gp1 and h = gx ∈ Gp1 .
Output params = (G, g, h).

– Gen(params): on input params, sample ρ← R. Sample a← ZN , and output
the state r = (ρ, (ga, ha)) ∈ R×G2.

– Publish(r): on input a state r = (ρ, (X,Y )) ∈ R × G2, output the public
message p = (sk-NIKE.Publish(ρ), X).
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– SharedKey(r, p): on input a state r = (ρ, (X,Y )) ∈ R × G2 and a public
message p = (P,Z) ∈ P ×G, compute:

sk = e(Y,Z),

that we identify as an element of SK, and output:

K = sk-NIKE.SharedKey(sk, ρ, P ).

Theorem 13 (Correctness). Assuming sk-NIKE is perfectly correct, Construc-
tion 12 is perfectly correct.

Proof. Let rA, rB be elements of R× G2, pA = Publish(rA), pB = Publish(rB).
By perfect correctness of sk-NIKE, it suffices to show that SharedKey(rA, pB) and
SharedKey(rB , pA) compute the same intermediate secret key sk. But this follows
as for all Y,Z ∈ G2, e(Y,Z) = e(Z, Y ).

Theorem 14 (NIKE in the CRS model with Preprocessing). Assume
that Assumption 1 holds, and that sk-NIKE is leakage resilient. Then Construc-
tion 12 is leakage-resilient.

Proof. Let D be an efficient algorithm which breaks the leakage resilience of
NIKE with leakage functions fA, fB . We proceed via a sequence of hybrid games.

Hybrid 0. This is the real security experiment: D is given as input

(params, pA, pB , fA(rA), fB(rB),Kb)

where b is the challenger’s bit.

Hybrid 1. We change how we compute params, rA, rB given to the distinguisher.
We now sample g ← Gp1 , x, y ← ZN , v ← Gp1 , and set:

h = gx, rA = (ρA, v, v
x), rB = (ρA, v

y, vxy).

The resulting input distributions to the distinguisher D in Hybrid 0 and
Hybrid 1 are statistically close. Indeed, g is uniform in Gp1 in both cases, and
for a ← ZN , ga is uniform in Gp1 , except when g = 1G which happens with
negligible probability 1/p1. If this is not the case, then ha can be computed as
(ga)x. Similarly, gy is in this case uniformly distributed in Gp1 , and therefore
follows the same distribution as (ga)y where y ← ZN , except if (ga) = 1G, which
happens with probability 1/p1 over the randomness of a ← ZN . Overall, the
statistical distance between the distributions is at most 2/p1 which is negligible.

Hybrid 2. We change how we compute rA, rB given to the distinguisher. We now
pick x, y ← ZN , w ← G, and set:

h = gx, rA = (ρA, w, w
x), rB = (ρA, w

y, wxy).

This change is undetectable to any efficient distinguisher, even given rA, rB :
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Lemma 5. Under Assumption 1, the following distributions are computation-
ally indistinguishable:(

G, g, h = gx, rA = (ρA, (v, v
x)), rB = (ρB , (v

y, vxy)),Kb

)(
G, g, h = gx, rA = (ρA, (w,w

x)), rB = (ρB , (w
y, wxy)),Kb

)
,

where G ← G, g ← Gp1 , x, y ← ZN , v ← G1, w ← G; and ρA, ρB ← R,
K0 = SharedKey(rA,Publish(rB)) and K1 ← K.

In particular since Publish, fA and fB are efficiently computable, the input
distributions — and therefore the outputs of D in Hybrid 1 and Hybrid 2 — are
statistically indistinguishable.

Proof. We define a reduction R to Assumption 1 that takes as input G, g, T ,
where G ← G, g ← Gp1 and T is either uniform in Gp1 or in G. R does the
following:

– Samples x← ZN and sets h = gx,
– Samples ρA, ρB ← R, y ← ZN , and sets rA = (ρA, T, T

x) and rB =
(ρB , T

y, T xy),
– Computes

K0 = sk-NIKE.SharedKey(e(T, T )xy, ρA, sk-NIKE.Publish(ρB)),

– Samples K1 ← K,
– Outputs (

G, g, h, rA, rB ,Kb

)
.

If T ← Gp1 then R produces the first distribution of Lemma 5, and if T ← G
then it produces the second distribution.

Hybrid 3. We again change how we compute rA, rB given to the distinguisher.
In this experiment we sample x ← ZN . We now compute h = gx, and generate
the state as r = (ρ, (ua, uax)) where a← ZN .

The distributions induced by Hybrid 2 and Hybrid 3 are statistically indis-
tinguishable. Indeed, they only differ when w ∈ Gp1 or w ∈ Gp2 , which happens
with probability (p1 + p2 − 1)/(p1p2) = negl(λ).

Lemma 6. Assume sk-NIKE is an (n, ` + (log p1)/2, ε)-secure symmetric key
NIKE with error ε = negl(λ). Then the advantage of any (even potentially un-
bounded) distinguisher in Hybrid 3 is negligible.

Proof. In Hybrid 3, the secret key sk for sk-NIKE is computed as sk = e(ua, uxy) =
e(u, u)axy. In particular, over the randomness of x alone (with high proba-
bility over a and y), sk is uniform in GT conditioned on hx ∈ Gp1 , fA(rA)
and fB(rB). In particular, hx can be computed given x mod p1, and there-
fore the view of the distinguisher can be generated using (f∗A(rA), f∗B(rB)) =
(x mod p1, fA(rA), fB(rB)) which is of size log p1 + 2`.

By (n, `+(log p1)/2, ε)-security of sk-NIKE, the advantage of any (potentially
unbounded) distinguisher is therefore at most ε = negl(λ).
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Overall we conclude that the advantage of D, fA, fB against Construction 12
is at most negligible.

The scheme above allows for a constant leakage rate. We refer to the full
version for a short discussion on the parameters involved.
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