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Abstract. Fixing a number �eld, the space of all ideal lattices, up to
isometry, is naturally an abelian group, called the Arakelov class group.
This fact, well known to number theorists, has so far not been explicitly
used in the literature on lattice-based cryptography. Remarkably, the
Arakelov class group is a combination of two groups that have already
led to signi�cant cryptanalytic advances: the class group and the unit
torus.
In the present article, we show that the Arakelov class group has more
to o�er. We start with the development of a new versatile tool: we prove
that, subject to the Riemann Hypothesis for Hecke L-functions, certain
random walks on the Arakelov class group have a rapid mixing property.
We then exploit this result to relate the average-case and the worst-case
of the Shortest Vector Problem in ideal lattices. Our reduction appears
particularly sharp: for Hermite-SVP in ideal lattices of certain cyclotomic
number �elds, it loses no more than a Õ(

√
n) factor on the Hermite

approximation factor.
Furthermore, we suggest that this rapid-mixing theorem should �nd
other applications in cryptography and in algorithmic number theory.

1 Introduction

The task of �nding short vectors in Euclidean lattices (a.k.a. the approximate
Shortest Vector Problem) is a hard problem playing a central role in complexity
theory. It is presumed to be hard even for quantum algorithms, and thanks
to the average-case to worst-case reductions of Ajtai [1] and Regev [41], it has
become the theoretical foundation for many kinds of cryptographic schemes.
Furthermore, these problems appear to have resisted the quantum-cryptanalytic
e�orts so far; the overlying cryptosystems are therefore deemed quantum-safe,
and for this reason are currently being considered for standardization.

Instantiations of these problems over ideal lattices have attracted particular
attention, as they allow very e�cient implementations. The Ring-SIS [31,29,39]
and Ring-LWE [44,30] problems were introduced, and shown to reduce to worst-
case instances of Ideal-SVP (the specialization of approx-SVP to ideal lattices).

In this work, we propose to recast algebraic lattice problems in their natural
mathematical abstraction. It is well known to number theorists (e.g. [42]) that



the space of all ideal lattices (up to isometry) in a given number �eld is naturally
an abelian group, called the Arakelov class group. Yet, this notion has never
appeared explicitly in the literature on lattice-based cryptography. The relevance
of this perspective is already illustrated by some previous work which implicitly
exploit Arakelov ideals [16,6] and even the Arakelov class group [40,27]. Beyond
its direct result, our work aims at highlighting this powerful formalism for �ner
and more rigorous analysis of computational problems in ideal lattices.

1.1 Our result

The �rst half of this work (Section 3) is dedicated to the development of a
new versatile tool: we prove that, subject to the Riemann Hypothesis for Hecke
L-functions, certain random walks on the Arakelov class group have a rapid mix-
ing property. In the second half (Section 4), we exploit this result to relate the
average-case and the worst-case of Ideal-SVP, due to the interpretation of the
Arakelov class group as the space of all ideal lattices. Note that this reduction
does not directly impact the security of existing schemes: apart from the his-
torical Fully Homomorphic Encryption scheme of Gentry [17],5 there exists no
scheme based on the average-case version of Ideal-SVP. The value of our result
lies in the introduction of a new tool, and an illustration of the cryptanalytic
insights it o�ers.

A second virtue of our technique resides in the strong similarities it shares
with a distant branch of cryptography: cryptography based on elliptic curves [23],
or more generally on abelian varieties [24]. These works established that the
discrete logarithm problem in a randomly chosen elliptic curve is as hard as in
any other in the same isogeny class. The strategy consists in doing a random
isogeny walk, to translate the discrete logarithm problem from a presumably
hard curve to a uniformly random one. The core of this result is a proof that
such walks are rapidly mixing within an isogeny graph (which is isomorphic to
the Cayley graph of the class group of a quadratic number �eld). As long as the
length of the random walk is polynomial, the reduction is e�cient.

We proceed in a very similar way. The set of ideal lattices (up to isometry) of
a given number �eld K can be identi�ed with the elements of the Arakelov class
group (also known as the degree zero part Pic0

K of the Picard Group). There
are two ways to move within this group: given an ideal, one can obtain a new
one by `distorting' it, or by `sparsifying' it. In both cases, �nding a short vector
in the target ideal also allows to �nd a short vector in the source ideal, up to a
certain loss of shortness. This makes the length of the walk even more critical in
our case than in the case of elliptic curves: it does not only a�ect the running
time, but also the quality of the result.

Nevertheless, this approach leads to a surprisingly tight reduction. In the case
of cyclotomic number �elds of conductor m = pk, under the Riemann Hypothe-
sis for Hecke L-functions (which we abbreviate ERH for the Extended Riemann

5 We here refer to the full �edge version of the scheme from Gentry's PhD Thesis, which
di�ers from the scheme in [18], the latter having been broken already [10,16,11,6].
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Hypothesis), and a mild assumption on the structure of the class groups, the

loss of approximation factor is as small as Õ(
√
m). In other words:

Main Theorem (informal). Let m = pk be a prime power. If there exists a
polynomial-time algorithm for solving Hermite-SVP with approximation factor γ
over random ideal lattices of Q(ζm), then there also exists a polynomial time al-
gorithm that solves Hermite-SVP in any ideal lattice with approximation factor
γ′ = γ ·

√
m · poly(logm).

In fact, this theorem generalizes to all number �elds, but the loss in approx-
imation factor needs to be expressed in more involved quantities. The precise
statement is the object of Theorem 4.5.

Prerequisites. The authors are aware that the theory of Arakelov class groups,
at the core of the present article, may not be familiar to all readers. Given space
constraints, some de�nitions or concepts are introduced very brie�y. We found
Chapters I and VII of Neukirch's textbook [37] to be a good primer.

1.2 Overview

The Arakelov class group. Both the unit group [11] and the class group [12] have
been shown to play a key role in the cryptanalysis of ideal lattice problems. In
these works, these groups are exploited independently, in ways that nevertheless
share strong similarities with each other. More recently, both groups have been
used in combination for cryptanalytic purposes [40,27]. It therefore seems natural
to turn to a unifying theory.

The Arakelov class group (denoted Pic0
K) is a combination of the unit torus

T = LogK0
R/Log(O∗K) and of the class group ClK . The exponent 0 here refers

to elements of algebraic norm 1 (i.e., modulo renormalization), while the sub-
script R indicates that we are working in the topological completion of K. By
`a combination' we do not exactly mean that Pic0

K is a direct product; we mean
that there is a short exact sequence

0 −→ T −→ Pic0
K −→ ClK −→ 0.

That is, T is (isomorphic to) a subgroup of Pic0
K , and ClK is (isomorphic to) the

quotient Pic0
K /T . The Arakelov class group is an abelian group which combines

an uncountable (yet compact) part T and a �nite part ClK ; topologically, it
should be thought of as |ClK | many disconnected copies of the torus T .

A worst-case to average-case reduction for ideal-SVP. An important aspect of
the Arakelov Class Group for the present work is that this group has a geometric
interpretation: it can essentially be understood as the group of all ideal lattices up
to K-linear isometries. Furthermore, being equipped with a metric, it naturally
induces a notion of near-isometry. Such a notion gives a new handle to elucidate
the question of the hardness of ideal-SVP: knowing a short vector in I, and a
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near-isometry from I to J , one can deduce a short vector of J up to a small loss
induced by the distortion of the near-isometry. This suggests a strategy towards
a worst-case to average-case reduction for ideal lattices, namely randomly distort
a worst-case ideal to a random one.

However, there are two issues with this strategy: �rst near-isometry leaves
one stuck in a �xed class of ClK ; i.e., one is stuck in one of the potentially many
separated copies of the torus that constitute the Arakelov class group. Second,
even if |ClK | = 1, the torus might be too large, and to reach the full torus from
a given point, one may need near-isometry that are too distorted.

In the language of algebraic geometry, distortion of ideal lattices corresponds
to the `in�nite places' of the �eld K, while we can also exploit the `�nite places',
i.e., the prime ideals. Indeed, if a is an integral ideal of small norm and J = aI,
then J is a sublattice of I and a short vector of J is also a somewhat short vector
of I, an idea already used in [12,40].

Random walk in the Arakelov class group. The questions of whether the above
strategy for the self-reducibility of ideal-SVP works out, and with how much loss
in the approximation factor therefore boils down to the following question:

How fast does a random walk in the Arakelov class group converges to the
uniform distribution ?

More speci�cally, this random walk has three parameters: a set P of �nite places,
i.e., a set of (small) prime ideals, a length N for the discrete walk on �nite places,
and �nally a variance s for a continuous walk (e.g. a Gaussian) on in�nite places.
The loss in approximation factor will essentially be driven by BN/n ·exp(s) where
B is the maximal algebraic norm of the prime ideals in P, and n the rank of the
number �eld.

Because the Arakelov class group is abelian and compact, such a study is car-
ried out by resorting to Fourier analysis: uniformity is demonstrated by showing
that all the Fourier coe�cients of the distribution resulting from the random
walk tend to 0 except for the coe�cient associated with the trivial character.
For discrete walks, one considers the Hecke operator acting on distributions by
making one additional random step, and shows that all its eigenvalues are sig-
ni�cantly smaller than 1, except for the eigenvalue associated with the trivial
character. This is merely an extension to compact groups of the spectral gap
theorem applied to the Cayley graph of a �nite abelian group, as done in [23].

Our study reveals that the eigenvalues are indeed su�ciently smaller than
1, but only for low-frequency characters. But this is not so surprising: these
eigenvalues only account for the discrete part of the walk, using �nite places,
which leaves discrete distributions discrete, and therefore non-uniform over a
continuous group. To reach uniformity we also need a continuous walk over the
in�nite places, and taking a Gaussian continuous walk e�ectively clears out the
Fourier coe�cients associated to high-frequency characters.
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1.3 Related work

Relation to recent cryptanalytic works. The general approach to this result was
triggered by a heuristic observation made in [15], suggesting that the worst-case
behavior of the quantum Ideal-SVP algorithm built out of [16,6,11,12] could be
made not that far of the average-case behavior they studied experimentally. More
speci�cally, we do achieve the hoped generalization of the class-group mixing
theorem of [23,24] to Arakelov class groups; but we furthermore show that this
result a�ects all algorithms, and not only the one they studied.

We also remark that recent works [40,27] were already implicitly relying
on Arakelov theory. More speci�cally, the lattice given in Section 3.1 of [40]
is precisely the lattice of Picard-class relations between the appropriate set of
(degree 0) Arakelov Divisors. In fact, our theorem also implies upper bounds for
the covering radius of the those relation lattices, at least for su�ciently large
factor bases, and with more e�ort one may be able to eliminate Heuristic 4
from [40] or Heuristic 1 of [27].

Prior self-reduction via random walks. As already mentioned, our result shares
strong similarities with a technique introduced by Jao, Miller and Venkatesan [23]
to study the discrete logarithm problem on elliptic curves. Just as ideal lattices
can be seen as elements of the Arakelov class group, elliptic curves in certain
families are in bijective correspondence with elements of the class group of a
quadratic imaginary number �eld. In [23], Jao et al. studied (discrete) random
walks in class groups, and showed that they have a rapid mixing property. They
deduced that from any elliptic curve, one can e�ciently construct a random
isogeny (a group homomorphism) to a uniformly random elliptic curve, allowing
to transfer a worst case instance of the discrete logarithm problem to an average
case instance. Instead of the �nite class group, we studied random walks in
the in�nite Arakelov class group, which led us to consequences in lattice-base
cryptography, an area seemingly unrelated to elliptic curve cryptography.

Prior self-reduction for ideal lattices. Our self-reducibility result is not the �rst
of its kind: in 2010, Gentry already proposed a self-reduction for an ideal lattice
problem [19], as part of his e�ort of basing Fully-Homomorphic Encryption on
worst-case problems [17]. Our result di�ers in several point:

� Our reduction does not rely on a factoring oracle, and is therefore classically
e�cient; this was already advertised as an open problem in [19].

� The reduction of Gentry considers the Bounded Distance Decoding problem
(BDD) in ideal lattices rather than a short vector problem. Note that this
distinction is not signi�cant with respect to quantum computers [41].

� The de�nition of average case distribution is signi�cantly di�erent, and we
view the one of [19] as being somewhat ad-hoc. Given that the Arakelov
class group captures exactly ideal lattices up to isometry, we consider the
uniform distribution in the Arakelov class group as a much more natural and
conceptually simpler choice.
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� The loss on the approximation factor of our reduction is much more favorable
than the one of Gentry [19]. For example, in the case of cyclotomic number
�elds with prime-power conductor, Gentry's reduction (on BDD) seems to
loose a factor at least Θ(n4.5), while our reduction (on Hermite-SVP) only
loses a factor Õ(

√
n) making a mild assumption on plus-part h+ of the class

number.

Other Applications. Finally, we wish to emphasise that our rapid mixing theorem
for Arakelov class groups appears to be a versatile new tool, which has already
found applications beyond hardness proofs for ideal lattices.

One such application is the object of another work in progress. Namely, we
note that many algorithms [5,4,8] rely on �nding elements a in an ideal I such
that aI−1 is easy to factor (e.g. prime, near-prime, or B-smooth). Such algo-
rithms are analyzed only heuristically, by treating aI−1 as a uniformly sampled
ideal, and applying know results on the density of prime or smooth ideals. Our
theorem allows to adjust this strategy and make the reasoning rigorous. First,
we show that if the Arakelov class of the ideal I is uniformly random, one can
rigorously analyze the probability of aI−1 being prime or smooth. Then, our
random-walk theorem allows to randomize I, while not a�ecting the usefulness
of the recovered element a. However, due to space constraints and thematic
distance, we chose to develop this application in another article.

As mentioned above, another potential application of random walk theorem
may be the elimination of heuristics in cryptanalysis of ideal and module lat-
tices [40,27].

2 Preliminaries

We denote by N,Z,Q,R the natural numbers, the integers, the rationals and the
real numbers respectively. All logarithms are in base e. For a rational number
p/q ∈ Q with p and q coprime, we let size(p/q) refer to log |p|+log |q|. We extend
this de�nition to vectors of rational numbers, by taking the sum of the sizes of
all the coe�cients.

2.1 Number theory

Throughout this paper, we use a �xed number �eld K of rank n ≥ 3 over Q,
having ring of integers OK , discriminant ∆, regulator R, class number h and
group of roots of unity µK . Minkowski's theorem [35, pp. 261�264] states that
there exists an absolute constant c > 0 such that log |∆| ≥ c·n. The number �eld
K has n �eld embeddings into C, which are divided in nR real embeddings and
nC conjugate pairs of complex embeddings, i.e., n = nR+2nC. These embeddings
combined yield the so-called Minkowski embedding Ψ : K → KR ⊆

⊕
σ:K↪→C C,

α 7→ (σ(α))σ, where

KR =

{
x ∈

⊕
σ:K↪→C

C
∣∣∣∣ xσ = xσ

}
.
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Here, σ equals the conjugate embedding of σ whenever σ is a complex embedding
and it is just σ itself whenever it is a real embedding. Note that we index
the components of the vectors in KR by the embeddings of K. Embeddings
up to conjugation are called in�nite places, denoted by ν. With any embedding
σ we denote by νσ the associated place; and for any place we choose a �xed
embedding σν .

Composing the Minkowski embedding by the component-wise logarithm of
the entries' absolute values yields the logarithmic embedding, denoted by Log.

Log : K∗ → LogKR ⊆
⊕

σ:K↪→C
R, α 7→ (log |σ(α)|)σ.

The multiplicative group of integral units O∗K under the logarithmic embedding
forms a lattice, namely the lattice ΛK = Log(O∗K) ⊆ LogKR. This so-called
logarithmic unit lattice has rank ` = nR + nC − 1, is orthogonal to the all-one
vector (1)σ, and has covolume Vol(ΛK) =

√
n·2−nC/2 ·R, where the 2−nC/2 factor

is due to the speci�c embedding we use (see Lemma A.1 of the full version [7]).
We denote by H = Span(ΛK) the hyperplane of dimension `, which can also
be de�ned as the subspace of LogKR orthogonal to the all-one vector (1)σ. We
denote by T = H/ΛK the hypertorus de�ned by the logarithmic unit lattice ΛK .

Fractional ideals of the number �eldK are denoted by a, b, . . ., but the symbol
p is generally reserved for integral prime ideals of OK . The group of fractional
ideals of K is denoted by IK . Principal ideals with generator α ∈ K∗ are usually
denoted by (α). For any integral ideal a, we de�ne the the norm N (a) of a
to be the number |OK/a|; this norm then generalizes to fractional ideals and
elements as well. The class-group of OK , denoted by Cl(OK), is the quotient of
the group IK by the subgroup of principal ideals PrincK := {(α) , α ∈ K}. For
any fractional ideal a, we denote the ideal class of a in Cl(OK) by [a].

Extra attention is paid to the cyclotomic number �elds K = Q(ζm), for
which we can prove sharper results due to their high structure. These results
rely on the size of the class group h+

K = |Cl(K+)| of the maximum real sub�eld
K+ = Q(ζm + ζ̄m) of K, which is often conjectured to be rather small [33,9]. In
this paper, we make the mild assumption that h+

K ≤ (log n)n.

Extended Riemann Hypothesis Almost all results in this paper rely heavily
on the Extended Riemann Hypothesis (in the subsequent part of this paper ab-
breviated by ERH), which refers to the Riemann Hypothesis extended to Hecke
L-functions (see [22, �5.7]). All statements that mention (ERH), such as Theo-
rem 3.3, assume the Extended Riemann Hypothesis.

Prime densities In multiple parts of this paper, we need an estimate on the
number of prime ideals with bounded norm. This is achieved in the following
theorem, obtained from [2, Thm. 8.7.4].

Theorem 2.1 (ERH). Let πK(x) be the number of prime integral ideals of K
of norm ≤ x. Then, assuming the Extended Riemann Hypothesis, there exists an
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absolute constant C (i.e., independent of K and x) such that

|πK(x)− li(x)| ≤ C ·
√
x (n log x+ log |∆|) ,

where li(x) =
∫ x

2
dt
ln t ∼

x
ln x .

Lemma 2.2 (Sampling of prime ideals, ERH). Let a basis of OK be known
and let P = {p prime ideal of K | N (p) ≤ B} be the set of prime ideals of
norm bounded by B ≥ max((12 log∆+ 8n+ 28)4, 3 · 1011). Then one can sample
uniformly from P in expected time O(n3 log2B).

Proof. The sampling algorithm goes as follows. Sample an integer uniformly in
[0, B] and check if it is a prime. If it is, factor the obtained prime p in OK
and list the di�erent prime ideal factors {p1, . . . , pk} that have norm bounded
by B. Choose one pi uniformly as random in {p1, . . . , pk} and output it with
probability k/n. Otherwise, output `failure'.

Let q ∈ P be arbitrary, and let N (q) = qj with q prime. Then, the prob-
ability of sampling q equals 1

nB , namely 1
n times the probability of sampling

q. Therefore, the probability of sampling successfully (i.e., no failure) equals
|P|
nB ≥

1
2n logB , since |P| ≥

B
2 logB , by Lemma A.3 of the full version [7].

The most costly part of the algorithm is the factorization of a prime p ≤ B
in OK . This can be performed using the Kummer-Dedekind algorithm, which
essentially amounts to factoring a degree n polynomial modulo p. Using Shoup's
algorithm [43] (which has complexity O(n2 + n log p) [45, �4.1]) yields the com-
plexity claim. ut

2.2 The Arakelov class group

The Arakelov divisor group is the group

DivK =
⊕
p

Z×
⊕
ν

R

where p ranges over the set of all prime ideals of OK , and ν over the set of in�nite
primes (embeddings into the complex numbers up to possible conjugation). We
write an arbitrary element in DivK as

a =
∑
p

np · LpM +
∑
ν

xν · LνM,

with only �nitely many non-zero np. We will consistently use the symbols a,b, e, . . .
for Arakelov divisors. Denoting ordp for the valuation at the prime p, there is a
canonical homomorphism

L·M : K∗ → DivK , α 7−→
∑
p

ordp(α)LpM−
∑
ν

log |σν(α)| · LνM.

The divisors of the form LαM for α ∈ K∗ are called principal divisors. Just as
the ideal class group is the group of ideals quotiented by the group of principal
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ideals, the Picard group is the group of Arakelov divisors quotiented by the group
of principal Arakelov divisors. In other words, the Picard group PicK is de�ned
by the following exact sequence.

0→ K∗/µK
L·M−→ DivK → PicK → 0.

For any Arakelov divisor a =
∑

p np · LpM +
∑
ν xν · LνM , we denote its Arakelov

class by [a]; in the same fashion that [a] denotes the ideal class of the ideal a.

Despite the Arakelov divisor and Picard group being interesting groups, for
our pursposes it is more useful to consider the degree-zero subgroups of these
groups. The degree map is de�ned as follows:

deg : DivK → R,
∑
p

np·LpM+
∑
ν

xν ·LνM 7→
∑
p

np·log(N (p))+
∑
ν real

xν+
∑

ν complex

2·xν .

The degree map sends principal divisors LαM to zero; therefore, the degree map
is properly de�ned on PicK , as well. We subsequently de�ne the degree-zero
Arakelov divisor group Div0

K = {a ∈ Div0
K | deg(a) = 0} and the Arakelov class

group Pic0
K = {[a] ∈ PicK | deg([a]) = 0}.

Note that by `forgetting' the in�nite part of a (degree-zero) Arakelov divi-
sor a, one arrives at a fractional ideal. This projection

Div0
K → IK ,

∑
p

np · LpM +
∑
ν

xν · LνM 7−→
∏
p

pnp ,

has the hyperplane H ⊆ LogKR as kernel under the inclusion H → Div0
K ,

(xσ)σ 7→
∑
ν xσν LνM. This projection morphism Div0

K → IK has the following
section that we will use often in the subsequent part of this paper.

d0 : IK → Div0
K , a 7−→

∑
p

ordp(a) · LpM− log(N (a))

n

∑
ν

LνM

The groups and their relations, that are treated above, �t nicely in the dia-
gram of exact sequences given in Figure 1, where the middle row sequence splits
with the section d0. It will be proven useful to show that the volume of the
Arakelov class group roughly follows the square root of the �eld discriminant.

Lemma 2.3 (Volume of Pic0
K). We have Vol(Pic0

K) = hVol(T ) = hR
√
n2−nC/2,

and

log Vol(Pic0
K) ≤ n

(
1

2
log(|∆|1/n) + log log(|∆|1/n) + 1

)
Proof. The volume of the Arakelov class group follows from the above exact
sequence and the volume computation of T in Appendix A of the full version [7].
The bound on the logarithm is obtained by applying the class number formula

9



0 0 0

0 O∗K/µK K∗/µK PrincK 0

0 H Div0
K IK 0

0 T Pic0K ClK 0

0 0 0

L·MLog d0

Fig. 1: A commutative diagram of exact sequences.

[38, VII.�5, Cor 5.11] and Louboutin's bound [28] on the residue of the Dedekind
zeta function at s = 1:

Vol(Pic0
K) = hR

√
n2−nC/2 =

ρ
√
|∆|ωK

√
n

2nR(2
√

2π)nC
≤ ρ
√
|∆| ≤

√
|∆|
(
e log |∆|

n

)n
,

where ωK = |µK | is the number of roots of unity in K. For the bound on the
logarithm, use n log(e log |∆|/n) = n log log(|∆|1/n) + n. ut

We let U(Pic0
K) = 1

Vol(Pic0K)
· 1Pic0K

denote the uniform distribution over the

Arakelov class group.

Fourier theory over the Arakelov class group As the Arakelov class group Pic0
K

is a compact abelian group, every function in6 L2(Pic0
K) = {f : Pic0

K →
C |

∫
Pic0K
|f |2 <∞} can be uniquely decomposed into a character sum

f =
∑

χ∈P̂ic0K

aχ · χ,

with aχ ∈ C. In the proof of Theorem 3.3, we will make use of Parseval's identity
[13, Thm. 3.4.8] in the following form.∫

Pic0K

|f |2 = ‖f‖22 =
1

Vol(Pic0
K)

∑
χ∈P̂ic0K

|aχ|2 (1)

6 The measure on the Arakelov class group is unique up to scaling � it is the Haar
measure. By �xing the volume of Pic0K as in Lemma 2.3, we �x this scaling as well.
We use then this particular scaling of the Haar measure for the integrals over the
Arakelov class group.
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2.3 Lattices

A lattice Λ is a discrete subgroup of a real vector space. In the following, we
assume that this real vector space has dimension m and that the lattice is full-
rank, i.e., span(Λ) equals the whole real space. A lattice can be represented by a
basis (b1, · · · , bm) such that Λ = {

∑
i xibi , xi ∈ Z}. Important notions in lattice

theory are the volume Vol(Λ), which is essentially the volume of the hypertorus
span(Λ)/Λ (alternatively, Vol(Λ) is the absolute determinant of any basis of Λ);
the �rst minimum λ1(Λ) = minv∈Λ\{0} ‖v‖ ; and the last minimum λm(Λ), which
equals the minimal radius r > 0 such that {v ∈ L | ‖v‖ ≤ r} is of full rank m.

We will be interested into the following algorithmic problem over lattices.

De�nition 2.4 (γ-Hermite-SVP). Given as input a basis of a rank m lat-
tice Λ, the problem γ-Hermite-SVP consists in computing a non-zero vector v
in λ such that

‖v‖ ≤ γ ·Vol(Λ)1/m.

For a rank-m lattice Λ ⊂ Rm, we let Λ∗ denote its dual, that is Λ∗ = {x ∈
Rm : ∀v ∈ Λ , 〈v, x〉 ∈ Z}.

2.4 Divisors and ideal lattices

It will be proven useful to view both ideals and Arakelov divisors as lattices in the
real vector space KR, where KR has its (Euclidean or maximum) norm inherited
from the complex vector space it lives in. Explicitly, the Euclidean and maximum
norm of α ∈ K are respectively de�ned by the rules ‖α‖22 =

∑
σ |σ(α)|2 and

‖α‖∞ = maxσ |σ(α)|, where σ ranges over all embeddings K → C. By default,
‖α‖ refers to the Euclidean norm ‖α‖2.

For any ideal a of K, we de�ne the associated lattice L(a) to be the image of
a ⊆ K under the Minkowski embedding Ψ, which is clearly a discrete subgroup
of KR. In particular, L(OK) is a lattice and we will always assume throughout
this article that we know a basis (b1, · · · , bn) of L(OK). For Arakelov divisors
a =

∑
p np · LpM +

∑
ν xν · LνM, the associated lattice is de�ned as follows.

L(a) =
{

(exνσ · σ(α))σ | α ∈
∏

pnp

}
= diag ((exνσ )σ) · L

(∏
pnp

)
⊆ KR,

where diag denotes a diagonal matrix. Note that we have

Vol(L(a))=
√
|∆| N (a) and Vol(L(a))=

√
|∆|·

∏
σ

exνσ ·N (
∏
p

pnp) =
√
|∆|·edeg(a)

The associated lattice L(a) of a divisor is of a special shape, which we call ideal
lattices, as in the following de�nition.

De�nition 2.5 (Ideal lattices). An ideal lattice is an OK-module I ⊆ KR for
which holds that there exists an invertible x ∈ KR such that xI = L(a) for some
ideal a of OK . We let IdLatK denote the set of all ideal lattices.

11



Note that the lattices L(a) for a ∈ IK are special cases of ideal lattices, which
we will call fractional ideal lattices. Since the Minkowski embedding is injective,
the map L(·) provides a bijection between the set of fractional ideals and the set
of fractional ideal lattices.

The set IdLatK of ideal lattices forms a group; the product of two ideal
lattices I = xL(a) and J = yL(b) is de�ned by the rule I · J = xyL(ab). It
is clear that L(OK) is the unit ideal lattice and x−1 L(a−1) is the inverse ideal
lattice of xL(a). The map L : Div0

K → IdLatK ,a 7→ L(a) sends an Arakelov
divisor to an ideal lattice. The image under this map is the following subgroup
of IdLatK .

IdLat0
K = {xL(a) | N (a)

∏
σ

xσ = 1 and xσ > 0 for all σ}.

De�nition 2.6 (Isometry of ideal lattices). For two ideal lattices L,L′ ∈
IdLat0

K , we say that L and L′ are K-isometric, denoted by L ∼ L′, when there
exists (ξσ) ∈ KR with |ξσ| = 1 such that (ξσ)σ · L = L′.

It is evident that being K-isometric is an equivalence relation on IdLat0
K that

is compatible with the group operation. Denoting IsoK for the subgroup {L ∈
IdLat0

K | L ∼ L(OK)} ⊂ IdLat0
K , we have the following result.

Lemma 2.7 (Arakelov classes are ideal lattices up to isometries). De-
noting P : IdLat0

K → Pic0
K for the map xL(a) 7−→

∑
p ordp(a)[p]+

∑
ν log(xσν )[ν]

modulo principal divisors, we have the following exact sequence.

0→ IsoK → IdLat0
K

P−→ Pic0
K → 0.

Proof. This is a well-known fact (e.g., [42]), but we give a proof for completeness.
It su�ces to show that P is a well-de�ned surjective homomorphism and its ker-
nel is IsoK. In order to be well-de�ned, P must satisfy P (xL(a)) = P (x′ L(a′))
whenever xL(a) = x′ L(a′). Assuming the latter, we obtain x−1x′ L(OK) =
L((a′)−1a) = L(αOK), for some α ∈ K∗, as the module is a free OK-module.
This implies that (x−1x′)σ = σ(ηα) for all embeddings σ : K → C, for some
unit η ∈ O∗K . Therefore, we have, P (xL(a)) − P (x′ L(a′)) =

∑
p ordp(α)[p] +∑

ν log((xσν )−1x′σν )[ν] = LηαM; i.e., their di�erence is a principal divisor, mean-

ing that their image in Pic0
K is the same.

One can check that P is a homomorphism, and its surjectivity can be proven
by constructing an ideal lattice in the pre-image of a representative divisor a =∑

p np[p] +
∑
ν xν [ν] ∈ Div0

K of an Arakelov class [a], e.g., (exνσ )σ · L(
∏

p p
np).

We �nish the proof by showing that the kernel of P indeed equals IsoK.
Suppose xL(a) ∈ ker(P ), i.e., P (xL(a)) =

∑
p ordp(a)[p] +

∑
ν log(xσν )[ν] =

LαM is a principal divisor. This means that a = αOK and x = (|σ(α)|−1)σ,

i.e., xL(a) = (|σ(α)|−1)σ L(αOK) =
(
σ(α)
|σ(α)|

)
σ
· L(OK), so xL(a) ∼ L(OK),

implying xL(a) ∈ IsoK. This shows that kerP ⊆ IsoK. The reverse inclusion
starts with the observation that xL(a) ∼ L(OK) directly implies that a = αOK

12



is principal, by the fact that xL(a) is a free OK-module. So, (xσσ(α))σ ·L(OK) =
xL(αOK) = (ξσ)σ · L(OK) for some (ξσ)σ ∈ KR with |ξσ| = 1. Therefore,
|xσσ(ηα)| = |ξσ| = 1, i.e., |xσ| = |σ(ηα)|−1 for some unit η ∈ O∗K . From here
one can directly conclude that P (xL(a)) = P ((|σ(ηα)|−1)σ L(αOK)) = LηαM, a
principal divisor. ut

Lemma 2.8. For any ideal lattice L in IdLatK , we have

λn(L) ≤
√
n · λn(L(OK)) ·Vol(L)1/n.

Moreover, it holds that λn(L(OK)) ≤
√
n ·
√
∆.

Proof. Write L = xL(a) and choose a shortest element xα ∈ xL(a). That means
‖xα‖ = λ1(xL(a)). Then xL(a) ⊃ xL(αOK), and therefore

λn(xL(a)) ≤ λn(xL(αOK)) ≤ ‖xα‖∞λn(L(OK)) ≤ ‖xα‖2λn(L(OK))

≤ λ1(xL(a)) · λn(L(OK)) ≤
√
n · λn(L(OK)) ·Vol(xL(a))1/n

where the last inequality is Minkowski's theorem. The bound on λn(L(OK)) is
proven using Minkowski's second theorem (in the in�nity norm) and the fact

that λ
(∞)
1 (L(OK)) ≥ 1. ut

2.5 The Gaussian Function and Smoothing Errors

Let n be a �xed positive integer. For any parameter s > 0, we consider the
n-dimensional Gaussian function

ρ(n)
s : Rn → C , x 7→ e−

π‖x‖2

s2 ,

(where we drop the (n) whenever it is clear from the context), which is well
known to satisfy the following basic properties.

Lemma 2.9. For all s > 0, n ∈ N and x, y ∈ Rn, we have
∫
z∈Rn ρs(z)dz = sn,

FRn{ρs} =
∫
y∈Rn ρs(y)e−2πi〈y,·〉dy = snρ1/s and ρs(x)2 = ρs/

√
2(x).

The following two results (and the variations we discuss below) will play an
important role and will be used several times in this paper: Banaszczyk's bound,
originating from [3], and the smoothing parameter, as introduced by Micciancio
and Regev [32]. They allow us to control

ρs(X) :=
∑
x∈X

ρs(x) ,

for certain discrete subsets X ⊆ Rm. For ease of notation, we let

β(n)
z :=

(
2πez2

n

)n/2
e−πz

2

,

which decays super-exponentially in z (for �xed n). In particular, we have β
(n)
t ≤

e−t
2

for all t ≥
√
n. The following formulation of Banaszczyk's lemma is obtained

from [34, Equation (1.1)].
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Lemma 2.10 (Banaszczyk's Bound). Whenever r/s ≥
√

n
2π ,

ρs
(
(Λ+ t) \Br

)
≤ β(n)

r/s · ρs(Λ) ,

where Br = Br(0) = {x ∈ Rn
∣∣ ‖x‖2 < r}.

De�nition 2.11 (Smoothing parameter). Given an ε > 0 and a lattice Λ,
the smoothing parameter ηε(Λ) is the smallest real number s > 0 such that
ρ1/s(Λ

∗) ≤ ε. Here, Λ∗ is the dual lattice of Λ.

Lemma 2.12 (Smoothing Error). Let Λ ∈ Rn be a full rank lattice, and let
s ≥ ηε(Λ). Then, for any t ∈ Rn,

(1− ε) sn

detΛ
≤ ρs(Λ+ t) ≤ (1 + ε)

sn

detΛ
. (2)

We have the following two useful upper bounds for full-rank n-dimensional lat-
tices Λ [32, Lemma 3.2 and 3.3]: ηε(Λ) ≤

√
log(2n(1 + 1/ε)) ·λn(Λ) for all ε > 0

and η1(Λ) ≤ η2−n(Λ) ≤
√
n/λ1(Λ∗) ≤

√
n · λn(Λ). The latter leads to the fol-

lowing corollary.

Corollary 2.13. Let L be an ideal lattice in IdLatK . Let t ∈ Rn be arbitrary
and s ≥ n · λn(L(OK)) ·Vol(L)1/n. Then it holds that∣∣∣∣ρs(L− t) ·Vol(L)

sn
− 1

∣∣∣∣ ≤ 2−n, (3)

Proof. By the assumption on s and by Lemma 2.8, we have s ≥ n · λn(L(OK)) ·
Vol(L)1/n ≥

√
n · λn(L) ≥ η2−n(Λ). The result follows then from Lemma 2.12.

ut

2.6 Gaussian distributions and statistical distance

Statistical distance. For two random variables X and Y , we let SD(X,Y ) denote
their statistical distance (or total variation distance). This distance is equal to
half of the `1-distance between the two corresponding distributions. In particular,
if X and Y live in a countable set S, then

SD(X,Y ) =
1

2
·
∑
s∈S
|P(X = s)− P(Y = s)|.

Continuous Gaussian distribution. For a real vector space H of dimension n, a
parameter s > 0 and a center c ∈ H, we write GH,s,c the continuous Gaussian
distribution over H with density function ρs(x− c)/sn for all x ∈ H. When the
center c is 0, we simplify the notation as GH,s.
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Discrete Gaussian distributions. For any lattice L ⊂ Rn, we de�ne the discrete
Gaussian distribution over L of standard deviation s > 0 and center c ∈ Rn by

∀x ∈ L , GL,s,c =
ρs(x− c)
ρs(L− c)

.

When the center c is 0, we simplify the notation as GL,s.
Observe that we use almost the same notation for discrete Gaussian distri-

butions and for continuous ones. What allows us to make a distinction between
them are the indexes L or H (if the index is a lattice, then the distribution
is discrete whereas if the index is a real vector space, then the distribution is
continuous).

The following lemma states that one can sample from a distribution statis-
tically close to a discrete Gaussian distribution over a lattice L (provided that
the standard deviation s is large enough).

Proposition 2.14 (Theorem 4.1 of [20]). There exists a probabilistic poly-
nomial time algorithm that takes as input a basis (b1, · · · , bn) of a lattice L ⊂ Rn,
a parameter s ≥

√
n ·maxi ‖bi‖ and a center c ∈ Rn and outputs a sample from

a distribution ĜL,s,c such that SD(GL,s,c, ĜL,s,c) ≤ 2−n.

We will refer to the algorithm mentioned in Proposition 2.14 as Klein's algo-
rithm [26]. We note that Theorem 4.1 of [20] states the result for a statistical
distance negligible (i.e., of the form n−ω(1)), but the statement and the proof
can be easily adapted to other statistical distances.

3 Random Walk Theorem for the Arakelov Class Group

In this section, we prove Theorem 3.3, on random walks in the Arakelov class
group. Starting with a point in the hyperplane H ⊆ Div0

K , sampled according
to a Gaussian distribution, we prove that multiplying this point su�ciently of-
ten by small random prime ideals yields a random divisor that is very close to
uniformly distributed in the Arakelov class group (i.e., modulo principal divi-
sors). The proof of Theorem 3.3 requires various techniques, extensively treated
in Sections 3.2 to 3.6, and summarised in the following.

Hecke operators. The most important tool for proving Theorem 3.3 is that of a
Hecke operator, whose de�nition and properties are covered in Section 3.2. This
speci�c kind of operator acts on the space of probability distributions on Pic0

K ,
and has the virtue of having the characters of Pic0

K as eigenfunctions.

Eigenvalues of Hecke operators. The aim of the proof is showing that applying
this Hecke operator repeatedly on an appropriate initial distribution yields the
uniform distribution on Pic0

K . The impact of consecutive applications of the
Hecke operator can be studied by considering its eigenvalues of the eigenfunctions
(which are the characters of Pic0

K). Classical results from analytic number theory
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show that the eigenvalues of these characters are (in absolute value) su�ciently
smaller than 1, whenever the so-called analytic conductor of the corresponding
character is not too large. An exception is the unit character, which is �xed
under each Hecke operation. This classical result and how to apply it in our
speci�c setting is covered in Section 3.3.

The analytic conductor. The Hecke operator thus quickly `damps out' all charac-
ters with small analytic conductor (except the unit character). In Section 3.4, we
examine which quantities of a character of Pic0

K de�ne the analytic conductor. It
turns out that this analytic conductor is closely related to how the character acts
on the hypertorus de�ned by the log unit lattice. The higher the frequency of this
character on the hypertorus, the larger the analytic conductor. This frequency
can be measured by the norm of the uniquely associated dual log unit lattice
point of the character. In fact, we establish a bound on the analytic conductor
of a character in terms of the norm of its associated dual lattice point.

Fourier analysis on the hypertorus. To summarize, low-frequency (non-trivial)
characters on Pic0

K (i.e., with small analytic conductor) are quickly damped out
by the action of the Hecke character, whereas for high-frequency characters we
do not have good guarantees on the speed at which they damp out. To resolve
this issue, we choose an initial distribution whose character decomposition has
only a negligible portion of high-frequency oscillatory characters. An initial dis-
tribution that nicely satis�es this condition is the Gaussian distribution (on the
hypertorus). To examine the exact amplitudes of the occuring characters of this
Gaussian distribution, we need Fourier analysis on this hypertorus, as covered
in Section 3.5.

Splitting up the character decomposition. In this last part of the proof, which is
covered in Section 3.6, we write the Gaussian distribution into its character de-
composition, where we seperate the high-frequency characters, the low-frequency
ones and the unit character. Applying the Hecke operator often enough damps
out the low-frequency ones, and as the high-frequency characters were only neg-
ligibly present anyway, one is left with (almost only) the unit character. This
corresponds to a uniform distribution.

3.1 Main result

De�nition 3.1 (Random Walk Distribution in Div0
K). We denote by

WDiv0
K

(B,N, s) the distribution on Div0
K that is obtained by the following ran-

dom walk procedure.

Sample x ∈ H ⊆ logKR according to a centered Gaussian distribution with
standard deviation s. Subsequently, sample N ideals pj uniformly from the set

of all prime ideals with norm bounded by B. Finally, output x +
∑N
j=1 d

0(pj),

where x ∈ Div0
K is understood via the injection H ↪→ Div0

K .
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De�nition 3.2 (RandomWalk Distribution in Pic0
K). ByWPic0K

(B,N, s),
we denote the distribution on the Arakelov class group obtained by sampling a
from WDiv0

K
(B,N, s) and taking the Arekalov class [a] ∈ Pic0

K .

Theorem 3.3 (Random Walks in the Arakelov Class Group, ERH).
Let ε > 0 and s > 0 be any positive real numbers and let k ∈ N>0 be a pos-
itive integer. Putting s′ = min(

√
2 · s, 1/η1(Λ∗K)), there exists a bound B =

Õ(n2k[n2(log log(1/ε))2 + n2(log(1/s′))2 + (log∆K)2]) such that for any N ≥
`
2 ·log(1/s′)+ 1

2 log(Vol(Pic0K))+log(1/ε)+1

k logn , the random walk distributionWPic0K
(B,N, s)

is ε-close to uniform in L1(Pic0
K), i.e.,∥∥∥WPic0K

(B,N, s)− U(Pic0
K)
∥∥∥

1
≤ ε.

Below, we instantiate Theorem 3.3 with speci�c choices of ε and k that are
tailored to give an optimal approximation factor in Section 4. As a consequence,
the value of B in Corollary 3.4 is exponential in n. We note however that this
value could be made as small as polynomial in n and log∆, but at the cost of a
slightly worse approximation factor for the reduction of Section 4.

The key di�erence between those two instantiations is how we deal with the
smoothing parameter of the dual log-unit lattice, η1(Λ∗K). In the general case,
we rely on works of Dobrolowski and Kessler [14,25] to lower bound the �rst
minimum of the primal log unit lattice. In the case of cyclotomics, we obtain a
sharper bound by resorting to the analysis of dual cyclotomic unit lattice from
Cramer et al. [11].

Corollary 3.4 (Application to General Number Fields, ERH).
Let s > 1/`, there exists a bound B = Õ(∆1/ logn) such that for

N ≥ (n− nC)(log n)2

log(∆)

(
1 +

30 log log n

log n

)
+
n log n

log∆

[
1

2
log(∆1/n) + log log(∆1/n)

]
holds that the random walk distribution WPic0K

(B,N, s) satis�es

SD
(
WPic0K

(B,N, s), U(Pic0
K)
)
≤ 2−n.

Corollary 3.5 (Application to Prime-Power Cyclotomic Number Fields,
ERH). Let K = Q(ζpk) be a prime-power cyclotomic number �eld and as-

sume h+
K = Cl(K+) ≤ (log n)n. For s = 1/ log2(n), there exists a bound B =

Õ(n2+2 logn) such that, for N ≥ n
2 logn

(
1/2 + 8 log(log(n))

logn

)
, the random walk

distribution WPic0K
(B,N, s) satis�es

SD
(
WPic0K

(B,N, s), U(Pic0
K)
)
≤ 2−n.

The proof of these corollaries can be found in the full version [7].
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3.2 Hecke Operators

A key tool to analyse random walks on Pic0
K are Hecke operators, which allow

to transform a given distribution into a new distribution obtained by adding one
random step.

De�nition 3.6 (The Hecke operator). Let P be a �nite subset of prime
ideals of the number �eld K, and let Pic0

K be the Arakelov class group. Then we
de�ne the Hecke operator HP : L2(Pic0

K)→ L2(Pic0
K) by the following rule:

HP(f)(x) :=
1

|P|
∑
p∈P

f(x− [d0(p)])

Lemma 3.7 (Eigenfunctions of the Hecke operator). The Hecke operator

HP : L2(Pic0
K)→ L2(Pic0

K) has the characters χ ∈ P̂ic0
K as eigenfunctions, with

eigenvalues λχ = 1
|P|
∑

p∈P χ([d0(p)]), i.e.,

HP(χ) = λχχ.

Proof. We haveHP(χ)(x) = 1
|P|
∑

p∈P χ(x−[d0(p)]) = 1
|P|
∑

p∈P χ(x)χ([d0(p)]).

So HP(χ) = λχχ with λχ = 1
|P|
∑

p∈P χ([d0(p)]). ut

Note that HP(1Pic0K
) = 1Pic0K

, for the trivial character 1Pic0K
, so λ1

Pic0
K

= 1. For

any other character χ it is evident from the above that |λχ| ≤ 1.

3.3 Bounds on Eigenvalues of Hecke Operators

Using results from analytic number theory, one can prove the following proposi-
tion.

Proposition 3.8 (Bound on the eigenvalues of the Hecke operator,
ERH). Let P be the set of all primes of K with norm bounded by B ∈ N.
Then the eigenvalue λχ of any non-constant eigenfunction χ ∈ P̂ic0

K of the
Hecke operator satis�es

λχ = O

(
log(B) log(Bn ·∆ · q∞(χ))

B1/2

)
,

where q∞(χ) is the in�nite part of the analytic conductor of the character χ, as
in De�nition 3.11 (cf. [22, Eq. (5.6)]).

The proof of this proposition can be found in the full version [7].
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3.4 The Analytic Conductor

In the bounds of Section 3.3, the in�nite part of the analytic conductor q∞(χ)
of a character χ : Pic0

K → C plays a large role. In this section, we show that this
in�nite part of the analytic conductor is closely related to the dual logaritmic unit
lattice point `∗ ∈ Λ∗K that is uniquely associated with the character χ|T : T → C.

The in�nite part of the analytic conductor can be de�ned using the so-called

local parameters of the character χ ∈ P̂ic0
K . To de�ne these, we need F 0 =

{(aν)ν ∈
⊕

ν in�nite Kν |
∏
ν |aν |ν = 1}, the norm-one subgroup of the product

of the completions Kν of K with respect to the in�nite place ν. Characters
η : F 0 → C are of the form

η((aν)ν) =
∏
ν

(
aν
|aν |

)uν
eivν log |aν |ν , (4)

where vν ∈ R, and uν ∈ Z or uν ∈ {0, 1} depending on whether ν is complex
or real (see [36, �3.3, eq. 3.3.1]). In all these de�nitions, the absolute value | · |ν
equals | · |2C or | · |R depending on whether ν is complex or real.

Since there is the map ι : F 0 → Pic0
K , (aν)ν 7−→

∑
ν log |aν |ν · LνM, we must

have that χ ◦ ι is of the form described in Equation (4) for all χ ∈ Pic0
K . This

leads to the following de�nition.

De�nition 3.9 (Local parameters of a character on Pic0
K). For a char-

acter χ : Pic0
K → C, the numbers kν(χ) = |uν | + ivν (for all in�nite places ν)

are called the local parameters of χ, where uν and vν are the numbers appearing
in the formula of χ ◦ ι : F 0 → C in Equation (4).

As characters on the Arakelov class group are actually very special Hecke charac-
ters7, the local parameters are very restricted. This is described in the following
lemma.

Lemma 3.10. Let χ ∈ P̂ic0
K and let `∗ ∈ Λ∗K such that χ|T = χ`∗ = e2πi〈`∗,·〉.

Then we have kν(χ) = 2πi`∗σν , where σν is an embedding associated with the
place ν.

Proof. As the map ι : F 0 → Pic0
K only depends on the absolute values of (aν)ν ,

it is clear that uν = 0 in the decomposition of χ◦ ι as in Equation (4). It remains
to prove that vν = 2πi`∗σν . The units O∗K ⊆ F 0 map to one under χ ◦ ι, since
any principal divisor maps to one. Here, the inclusion O∗K → F 0 is de�ned by
η 7→ (σν(η))ν , where σν is a �xed embedding associated with the in�nite place ν.
This means that

χ ◦ ι(η) =
∏
ν

eivν log |σν(η)|ν = exp

(
i
∑
σ

vνσ log |σ(η)|C

)
= 1 for all η ∈ O∗K ,

(5)

7 Hecke characters of K are characters on the idèle class group of K. As the Arakelov
class group is a speci�c quotient of the idèle class group [38, Ch. VI, pp. 360], the
characters on the Arakelov class group are essentially Hecke characters whose kernel
contains the kernel of the quotient map sending the idèle class group to the Arakelov
class group.
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where the last sum is over all embeddings σ : K → C, where νσ is the place
associated with the embedding σ, and where | · |C is the standard absolute value
on C. Vectors of the form (vνσ )σ satisfying Equation (5) are precisely the vectors
(vνσ )σ ∈ 2πΛ∗K ⊆ logKR. By De�nition 3.9, one directly obtains kν(χ) = 2πi`∗σν .

ut

De�nition 3.11 (The in�nite part of the analytic conductor). Let χ ∈
P̂ic0

K be a character with local parameters kν(χ), where ν ranges over the in�nite
places of K. Then, we de�ne the in�nite part of the analytic conductor to be

q∞(χ) =
∏

ν real

(3 + |kν |)
∏

ν complex

(3 + |kν |)(3 + |kν + 1|)

Remark 3.12. Above de�nition of the in�nite part of the analytic conductor is
obtained from [22, p. 95, eq. (5.6) with s = 0], where it is described in a slightly
di�erent form. In [22], the functional equation lacks the complex L-functions LC.
Instead, those are replaced by LR(s)LR(s+ 1) = LC(s) (see [38, Ch. 7, Prop 4.3
(iv)]. This means that the local parameters κσ, κσ̄ as in [22, p. 93, eq. (5.3)] must
equal kν , kν + 1 for the embeddings {σ, σ̄} associated with the complex place ν
(cf. [22, p. 125]).

Lemma 3.13. Let q∞(χ) be the in�nite part of the analytic conductor of the

character χ ∈ P̂ic0
K , and let `∗ ∈ Λ∗K be such that χ|T = χ`∗ , where Λ

∗
K is the

dual lattice of the log-unit lattice. Then we have

q∞(χ) ≤
(
4 + 2π ‖`∗‖ /

√
n
)n

Proof. Let |`∗| denote the vector `∗ where all entries are replaced by their abso-
lute value. Then, by applying subsequently the triangle inequality, the inequality
between ‖·‖1 and ‖·‖2 and the arithmetic-geometric mean inequality, one obtains

4
√
n+2π ‖`∗‖2 ≥ ‖4 + 2π|`∗|‖2 ≥

1√
n
‖4 + 2π|`∗|‖1 ≥

√
n

(∏
σ

(4 + 2π|`∗σ|)

)1/n

≥
√
nq∞(χ`∗)

1/n.

Dividing by
√
n and raising to the power n yields the claim. ut

3.5 Fourier Analysis on the Hypertorus

De�nition 3.14. Let H ⊆ LogKR be the hyperplane where the log unit lat-
tice ΛK = Log(O∗K) lives in. Recall the Gaussian function ρs : H → R, x 7→
e−π‖x‖

2/s2 . Denoting T = H/ΛK , , we put ρs|T : T → R, x 7→
∑
`∈ΛK ρs(x+ `).

As we have (see Lemma A.2 of the full version [7])
∥∥s−`ρs∥∥H,1 =

∫
H
s−`ρs(x)dx =

1, and
∥∥s−`ρs|T∥∥T,1 =

∫
T
s−`ρs|T (x)dx = 1, both functions s−`ρs and s

−`ρs|T
can be seen as probability distributions on their respective domains Rm and T .
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Lemma 3.15 (Fourier coe�cients of the periodized Gaussian). The
function s−`ρs|T ∈ L2(T ) satis�es

s−`ρs|T =
∑

`∗∈Λ∗K

a`∗χ`∗

where a`∗ = 1
Vol(T )ρ1/s(`

∗), where Λ∗K is the dual lattice of the log unit lattice

ΛK , and where χ`∗(x) = e−2πi〈x,`∗〉.

Proof. Note that
〈
χ`∗1 , χ`∗2

〉
= Vol(T ) · δ`∗1 ,`∗2 . Identifying T̂ and Λ∗K via the map

χ`∗ 7→ `∗, taking a fundamental domain F of ΛK and spelling out the de�nition
of ρs|T , we obtain, for all `∗ ∈ Λ∗K ,

a`∗ =
1

Vol(T )

〈
s−`ρs|T , χ`∗

〉
=

1

Vol(T )

∫
x∈F

∑
`∈ΛK

s−`ρs(x+ `)χ`∗(x)dx

=
1

Vol(T )

∫
x∈H

s−`ρs(x)χ`∗(x)dx =
1

Vol(T )
FH(s−`ρs)(`

∗) =
1

Vol(T )
ρ1/s(`

∗).

ut

3.6 Conclusion

Theorem 3.16 (ERH). Let P be the set of primes of K of norm at most B,
and let H = HP the Hecke operator for this set of primes. Then, for all r, s > 0

with rs >
√

`
4π , we have

∥∥∥∥HN (s−nρs)−
1

Vol(Pic0
K)

1Pic0K

∥∥∥∥2

2

≤
ρ 1√

2s
(Λ∗K)

Vol(T )

(
c2N + β

(`)√
2rs

)
(6)

with c = O
(

log(B) log(Bn·∆·(4+2πr/
√
n)n)

B1/2

)
.

Proof. As s−`ρs = 1
Vol(T )

∑
χ∈T̂ ρ1/s(`

∗)χ`∗ (see Lemma 3.15), Vol(Pic0
K) =

hK Vol(T ), and every χ ∈ T̂ has exactly hK extensions [13, Cor. 3.6.2] to char-
acters on Pic0

K , we directly deduce that

s−`ρs =
1

Vol(Pic0
K)

∑
χ`∗∈T̂

∑
χ′|T=χ`∗

ρ1/s(`
∗)χ′,

where χ′ ranges over all characters of Pic0
K . Therefore, by the fact that the

characters χ′ are eigenfunctions of the operator H = HP (see Lemma 3.7),

HN (s−`ρs) =
1

Vol(Pic0
K)

∑
χ`∗∈T̂

ρ1/s(`
∗)

∑
χ′|T=χ`∗

λNχ′χ
′
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where χ′ ranges over all characters of Pic0
K . By the fact that s

−`ρs is a probability
distribution, we obtain that the eigenvalue of the unit character 1 = 1Pic0K
satis�es λ1 = 1. Therefore, by Parseval's theorem (see Equation (1)) and the
fact that ρ2

1/s = ρ 1√
2s
,

∥∥∥∥HN (s−`ρs)−
1

Vol(Pic0
K)

1

∥∥∥∥2

2

=
1

Vol(Pic0
K)

∑
χ`∗∈T̂

ρ 1√
2s

(`∗)
∑

χ′|T=χ`∗
χ′ 6=1

|λχ′ |2N ,

where χ′ ranges over all characters of Pic0
K . In order to bound the quantity above,

we split up the sum into a part where ‖`∗‖ > r, and a part where ‖`∗‖ ≤ r. For
the former part we can namely bound the Gaussian ρ 1√

2s
(`∗) whereas for the

latter part we can bound the eigenvalues λχ′ (see Proposition 3.8). For the part

where ‖`∗‖ > r, we use the assumption
√

2sr >
√
`/(2π) to apply Banaszczyk's

bound (see Lemma 2.10) , and the fact that |λχ′ | ≤ 1.

1

Vol(Pic0
K)

∑
‖`∗‖>r

ρ 1√
2s

(`∗)
∑

χ′|T=χ`∗

|λχ′ |2N︸ ︷︷ ︸
≤hK

≤
ρ 1√

2s
(Λ∗K \ rB)

Vol(T )
≤
β

(`)√
2rs
· ρ 1√

2s
(Λ∗K)

Vol(T )

(7)
For the part where ‖`∗‖ < r, we have, by Lemma 3.13 that q∞(χ) ≤ (4 +
2πr/

√
n)n, and therefore, by Proposition 3.8, we have the bound |λχ′ | ≤ c =

O
(

log(B) log(Bn·∆·(4+2πr/
√
n)n)

B1/2

)
. So,

1

Vol(Pic0
K)

∑
‖`∗‖≤r

ρ 1√
2s

(`∗)
∑

χ′|T=χ`∗

|λχ′ |2N︸ ︷︷ ︸
≤hK ·c2N

≤
c2N · ρ 1√

2s
(Λ∗K)

Vol(T )
(8)

Combining Equations (7) and (8), we obtain the result. ut

Proof (of Theorem 3.3). Let 1 > ε > 0, s > 0 and k ∈ N>0 be given. As
1/s̃ = max( 1√

2s
, η1(Λ∗K)) ≥ η1(Λ∗K), the smoothing parameter of Λ∗K , we have

ρ 1√
2s

(Λ∗K)/Vol(T ) ≤ ρ1/s̃(Λ
∗
K)/Vol(T ) ≤ 2 · s̃−`. (9)

By applying subsequently Hölder's inequality (i.e., ‖f · 1‖1 ≤ ‖f‖2‖1‖2) and the

inequality ρ1/s(Λ
∗
K)/Vol(T ) ≤ 2s̃−` in Equation (6), we obtain (for rs ≥

√
`

4π )

∥∥HN (s−nρs)− U(Pic0
K)
∥∥2

1
≤ 2 Vol(Pic0

K) · s̃−`(c2N + β
(`)√

2rs
) (10)
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In the following, we will bound the two summands in Equation (10) seperately.
Putting8

r =
1√
2s
·max

(√
`,

√
2 + ` log(1/s̃) + 2 log(1/ε) + log(Vol(Pic0

K))

)
,

implies 2 ·Vol(Pic0
K) · s̃−` · β(`)√

2rs
≤ ε2/2. Subsequently, choose9

B = Õ
(
n2k · [log(∆)2 + n2 log(1/s̃)2 + n2 log(log(1/ε))2]

)
,

such that c ≤ 1/nk, where c = O
(

log(B) log(Bn·∆·(4+2πr/
√
n)n)

B1/2

)
, as in Theo-

rem 3.16. Finally, taking any N ≥ `/2·log(1/s̃)+log(1/ε)+ 1
2 log(Vol(Pic0K))+1

k logn and not-

ing that c
1

k logn ≤ 1/e, we deduce 2 Vol(Pic0
K) · s̃−`c2N ≤ 1

2ε
2.

Combining above two bounds, we can bound the right-hand side of Equa-
tion (10) by ε2. Taking square roots gives the �nal result. ut

4 Worst-Case to Average-Case Reduction

In this section, we give a worst-case to average-case reduction for approx-Hermite-
SVP in fractional ideal lattices. In the case of prime power cyclotomic number
�elds (under the assumption that h+

k ≤ (log n)n), our reduction increases the

approximation factor by a factor Õ(
√
n). In the more general case, the approxi-

mation factor increases by a factor Õ(n ·∆1/(2n)).
Our reduction works as follows. Given as input a fractional ideal a, we ran-

domize it using the random walk of the previous section, in order to obtain
something uniform in the Arakelov class group. More formally, we multiply a
by N prime ideals pi chosen uniformly among the prime ideals of norm smaller
than B (where N and B are the ones of Theorem 3.3). We then multiply the
resulting ideal a

∏
i pi by an element x ∈ KR sampled such that Log(x) follows a

Gaussian distribution of small standard deviation. Observe that this means that
the coordinates of x are somehow balanced and so multiplication by x does not
change the geometry of the ideal that much. Using Theorem 3.3, the obtained
ideal lattice L = xL(a ·

∏
i pi) has a uniform class in the Arakelov class group.

This will essentially be our average-case distribution for ideals.10

Assume now that one can e�ciently �nd a small vector v in the randomized
ideal x · L(a ·

∏
i pi). Then x

−1 · v is an element of L(a) (because L(a ·
∏
i bi) is

a subset of L(a)). Since x does not distort the geometry too much, this element

8 We use the bound β(`)
α ≤ e−α

2

for α ≥
√
`

9 In this bound on B one would expect an additional log(log(Vol(Pic0K)). But as it is
bounded by log(log(∆)) (see Lemma 2.3), it can be put in the hidden polylogarithmic
factors.

10 One can observe that this randomization process outputs an ideal lattice instead of
a fractional ideal. This will be solved by rounding the ideal lattice to a fractional
lattice with close geometry.

23



x−1 ·v is still small compared to Vol(L(a·
∏
i pi))

1/n = Vol(L(a))1/n ·N (
∏
i pi)

1/n.
The approximation factor we get is then roughly equal to N (

∏
i pi)

1/n ≤ BN/n.
Using the values of N and B in Corollaries 3.4 and 3.5, we obtain the claimed
upper bound on the increase of the approximation factors.

In this overview, we assumed for simplicity that the average-case distribution
is the uniform distribution over ideal lattices. In reality, however, for computa-
tional reasons, we will instead use a close, `rounded', fractional version of this
uniform distribution. This is because general ideal lattices (i.e., Arakelov class
group elements) can't be represented e�ciently and uniquely on a computer. In
order to make the reduction computable, we therefore resort to computing with
fractional ideals only, which can be e�ciently represented, for instance by a basis
with rational coe�cients. To be clear, elements of the Arakelov class group are
thus only used theoretically and are never actually represented on a computer.

The �rst subsection below describes the average-case distribution we con-
sider, and gives some insight on why we have to modify slightly the simple
`uniform in the Arakelov class group' distribution. In the second subsection,
we show that the randomization procedure described above indeed produces an
ideal of the desired average-case distribution. Finally, we prove the reduction in
the last subsection.

4.1 The average-case distribution

As mentioned above, the average-case distribution we would like to use is the one
obtained by sampling a uniformly distributed Arakelov class [a], and then consid-
ering the associated ideal lattice L (de�ned up to K-isometries, see Lemma 2.7).
This distribution however, su�ers from the following di�culty: we don't have a
nice way of representing ideal lattices. First of all, these lattices involve real num-
bers, which cannot be represented on a computer; but even if it was possible to
represent real numbers, we do not have a canonical way of representing an ideal
lattice. For instance, the natural representation of the ideal lattice L = xL(a) as
a pair (x,L(a)) is highly non-unique and it may leak some information on the
random walk that was performed to obtain L.

We solve both problems by introducing a speci�c rounding procedure, that
maps an ideal lattice to a fractional ideal lattice with almost the same geometry.
Once we have a fractional ideal lattice, we can compute the Hermite Normal
Form (HNF) of one of its bases. This provides us a unique representation of the
lattice, which can be e�ciently represented by a matrix with rational coe�cients.

The ideas behind the rounding procedure are the following. First, we observe
that dividing L by any element v ∈ L provides an ideal lattice v−1 · L which is
fractional. Hence, to round the ideal lattice L, it is su�cient to �nd an element
v ∈ L such that multiplication by v−1 does not distort too much the geometry
of L (this idea was already exploited by [19]). We �nd such a good v by sampling
it from a Gaussian distribution in L centered in (M,M, · · · ,M) for some M
signi�cantly larger than the standard deviation. This choice of center ensures
that v has all its coordinates close to M , hence v and v−1 are well balanced and
so multiplication by v−1 does not distort the geometry too much. To conclude,
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Algorithm 1 Randomized function Extractς,M : IdLat0
K → IK

Require: An ideal lattice L ∈ IdLat0K
Ensure: A fractional ideal lattice L(b)
1: Sample c = (cσ)σ uniformly in {(xσ)σ : |xσ| = M , ∀σ}.
2: Sample v ← GL,ς,c.
3: return L(b) = v−1 · L ⊂ KR.

we �nally consider the ideal v−1L, whose geometry is close to the one of L, and
which is a fractional ideal.

In this subsection, our only goal is to describe the average-case distribution,
from a mathematical point of view. This means that none of the functions de-
scribed here needs to be e�ciently computable, and none of the elements involved
needs to be e�ciently representable.

Let us start by describing a randomized function Extractς,M (parameterized
by some ς > 0 and M > 0), that extracts from an Arakelov class [a] a fractional
ideal b, such that the distribution of b is independent from the representation
of [a]. We �rst describe the function Extractς,M from ideal lattices of norm 1 to
fractional ideals, and we will later extend it to Arakelov classes.11

Lemma 4.1. The function Extractς,M described in Algorithm 1 outputs a frac-
tional ideal lattice of the form L(b) for a fractional ideal b ⊂ K. More pre-
cisely, b is the inverse of an integral ideal and has an algebraic norm larger than
(
√
nς+M)−n with overwhelming probability (i.e., probability at least 1−2−Ω(n)).

Proof. Let us write the ideal lattice L as L = xL(c) for some fractional ideal c.
The element v is in L, so it is of the form xΨ(w) for some w ∈ c. In particular,
there exists an (integral) ideal d such that (w) = cd. Putting everything together
we obtain that v−1L = Ψ(w)−1L(c) = L(d−1). To conclude the proof, we need
an upper-bound on the algebraic norm of d. Since L in is IdLat0

K , we know
that | N (x)| ·N (c) = 1. We also know that with overwhelming probability, every
coordinate of v is smaller (in absolute value) than

√
nς + M , and so | N (v)| ≤

(
√
nς +M)n. We conclude by using the fact that | N (v)| = | N (x)| · N (c) · N (d).

ut

Let us now show that the function Extractς,M is constant (as a probability
distribution) over K-isometric ideal lattices.

Lemma 4.2. Let L and L′ be two ideal lattices such that L ∼ L′ (i.e., there
exists (ξσ)σ ∈ KR, with |ξσ| = 1 for all σ, such that (ξσ)σ · L = L′). Then the
two probability distributions Extractς,M (L) and Extractς,M (L′) are identical.

11 Observe that contrary to the high level overview, the center c of the Gaussian dis-
tribution has been randomized (but it still holds that the sampled element v will be
balanced). This is needed in Lemma 4.2, to show that the Extractς,M (·) distributions
are identical when applied to K-isomorphic ideal lattices.
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Proof. Let ξ = (ξσ) ∈ KR be as in the lemma. Observe that the multiplication
by ξ is an isometry. This means that for any v ∈ L and c ∈ KR, the probability
that GL,ς,c outputs v is the same as the one that GL′,ς,ξc outputs ξv. In both
cases, the ideal output by the Extractς,M function will be v−1 · L = (ξv)−1 · L′.
Due to the random choice of c (uniform among {(xσ)σ : |xσ| = M for all σ}),
the distribution of ξc is the same as the one of c . We then conclude that both
�nal distributions must be identical. ut

Since Extractς,M is constant over all classes of ideal lattices modulo IsoK =
{L ∈ IdLat0

K | L ∼ L(OK)} ⊂ IdLat0
K , we can view it as a randomized function

from IdLat0
K / IsoK to IK . But recall that we have an isomorphism between

IdLat0
K / IsoK and Pic0

K . Using this isomorphism, we can �nally de�ne a function
Extractς,M from Pic0

K to IK , such that for any ideal lattice L, it holds that
the distributions Extractς,M (L) and Extractς,M (P (L)) are identical (where P :
IdLat0

K → Pic0
K is the map de�ned in Lemma 2.7).

We now describe our average-case distribution, which we will refer to as
Dperfect
ς,M (parameterized by two parameters ς,M > 0):

Dperfect
ς,M := Extractς,M (U(Pic0

K)), (11)

where U(Pic0
K) is the uniform distribution over Pic0

K . Once again, this is only the

mathematical de�nition of the distribution Dperfect
ς,M , and this does not provide

an e�cient algorithm for sampling from this distribution (in particular because
we cannot sample from U(Pic0

K)). In the next subsection, we will explain how

one can sample e�ciently from a distribution statistically close to Dperfect
ς,M , when

the parameter ς is large enough (this is possible since the output of Dperfect
ς,M are

fractional ideals of bounded algebraic norm, which can be e�ciently represented).

4.2 Sampling from the average-case distribution

In this section, we explain how one can e�ciently sample from a distribution
Dsample
ς,M that is statistically close to the distribution Dperfect

ς,M . Let us start by

describing a tool distribution Dround, which should be e�ciently samplable. In
order to use our random walk theorem, we need to be able to sample elements
x ∈ KR such that Log(x) follows a continuous Gaussian distribution of parameter
s in H = Log(K∗R). This distribution however cannot be sampled e�ciently on
a computer, as it is a continuous distribution. The objective of the distribution
Dround is to compute e�ciently a rounded version of this distribution, where the
output x lies in Ψ(K) ⊂ KR. This is formalized in the lemma below. The proof
is rather technical and is available in the full version [7].

Lemma 4.3. For any ε1, ε2 > 0, there exists a deterministic function12 Eε1 :
H → Ψ(K) such that for any y ∈ H it holds that

‖Eε1(y) · (e−yσ )σ − 1‖∞ ≤ ε1.

12 The function Eε1 plays the role of the exponential function, rounded to a near
element of K.
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Algorithm 2 Distribution Dsample
ς,M,a

Require: A fractional ideal a ⊂ K and two parameters ς,M > 0.
Ensure: A fractional ideal lattice L(b) ⊂ Ψ(K).
1: Let s = 1/(logn)2 and N , B be the smallest integers satisfying the conditions

of Corollary 3.5 (if K is a prime-power cyclotomic �eld) or Corollary 3.4 (in the
generic case).

2: Sample p1, · · · , pN uniformly among all prime ideals of norm ≤ B.
3: Sample (xσ)σ ← Dround

ε1,ε2,s for ε1 = 2−n/M and ε2 = 2−n.
4: De�ne L ∈ IdLatK to be L = (xσ)σ · L(

∏N
i=1 pi · a).

5: Sample c = (cσ)σ uniformly in {(xσ)σ : |xσ| = M , ∀σ}.
6: Let ς ′ = N (

∏N
i=1 pi · a)1/n · ς and c′ = N (

∏N
i=1 pi · a)1/n · c.

7: Sample v ← ĜL,ς′,c′ .
8: return L(b) = v−1 · L ⊂ Ψ(K).

Furthermore, for any s > 0, one can sample in time polynomial in n, maxi log ‖bi‖,
s, log(1/ε1) and log(1/ε2) from a distribution Dround

ε1,ε2,s that is ε2 close in statis-
tical distance to Eε1(GH,s). Here, (b1, · · · , bn) is a known basis of L(OK).

We can now describe the distribution Dsample
ς,M,a , which we will use as a sam-

plable replacement of Dperfect
ς,M . Observe that the distribution Dsample

ς,M,a is param-

eterized by parameters ς,M > 0 (the same as for Dperfect
ς,M ), but also by a frac-

tional ideal a ⊂ K. We will show that whatever the choice of a is, the distribu-
tion Dsample

ς,M,a is statistically close to Dperfect
ς,M . Looking forward, the distribution

Dsample
ς,M,a will be the one obtained by randomizing the ideal a in the worst-case to

average-case reduction.
Let a ⊂ K be any fractional ideal and ς,M > 0 be some parameters. Recall

that ĜL,ς,c refers to the distribution obtained by running Klein's Gaussian sam-
pling algorithm on lattice L with parameter ς and center c (see Proposition 2.14).

The distribution Dsample
ς,M,a is obtained by running the following algorithm (Algo-

rithm 2).

Theorem 4.4. Let a ⊂ K be any fractional ideal and ς ≥ 2n+1
√
n · ∆1/(2n) ·

λn(L(OK)). Assume we know a basis (b1, · · · , bn) of L(OK) and an LLL re-
duced basis of L(a), then there exists an algorithm sampling from the distribution

Dsample
ς,M,a in time polynomial in size(N (a)), log∆, maxi log ‖bi‖, logM and log ς.

Furthermore, the statistical distance between the distributions Dsample
ς,M,a and

Dperfect
ς,M is at most 2−cn for some absolute constant c > 0.

The proof of this theorem is available in the full version [7].

4.3 The reduction

We can now prove our worst-case to average-case reduction, where the average-
case distribution we consider is Dperfect

ς,M (for some well chosen parameters ς
and M). The proof of this theorem is available in the full version [7].
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Theorem 4.5. Let ς ≥ 2n+1
√
n ·∆1/(2n) · λn(L(OK)) and M ≥ 2

√
nς. Assume

we have a (randomized) algorithm A and real numbers γ ≥ 1 and p > 0 such
that A solves γ-Hermite-SVP with probability at least p when given as input
L(a)← Dperfect

ς,M (where the probability is taken over the choice of a and over the
randomness of A). Let T be an upper bound on the run time of A on any input.

Then there exists a randomized algorithm A′ solving γ′-Hermite-SVP in any
fractional ideal L(a) with probability at least p− n−ω(1) (where the probability is
taken over the randomness of A′), for an approximation factor

γ′ = O(BN/n) · γ ≤


Õ
(
n1/2

)
· γ for prime power cyclotomic �elds

(assuming h+
K ≤ (logn)n)

Õ
(
n1−nC/n ·∆1/(2n)

)
· γ for arbitrary number �elds.

The run time of A′ is bounded by T+poly(log∆,maxi log ‖bi‖, sizeN (a), log ς, logM),
where (b1, · · · , bn) is a known basis of L(OK).

Remark 4.6. Observe that from Theorem 4.4, one can sample in time polyno-
mial in log∆, maxi log ‖bi‖, log s and logM from a distribution Dsample

ς,M,OK whose

statistical distance to Dperfect
ς,M is at most 2−Ω(n).

Remark 4.7. Recall from Lemma 2.8 that λn(L(OK)) ≤
√
n∆. Hence, if one

chooses ς and M minimal (still satisfying the conditions of Theorem 4.5) and if
we are given an LLL reduced basis of L(OK) (which can always be computed
from any other basis), then the run time of Algorithm A′ in Theorem 4.5 is of
the form T + poly (log∆, size(N (a))).
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