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Abstract. In this work, we conduct a comprehensive study on estab-
lishing hardness reductions for (Module) Learning with Rounding over
rings (RLWR). Towards this, we present an algebraic framework of LWR,
inspired by a recent work of Peikert and Pepin (TCC ’19). Then we show
a search-to-decision reduction for Ring-LWR, generalizing a result in the
plain LWR setting by Bogdanov et al. (TCC ’15). Finally, we show a re-
duction from Ring-LWE to Module Ring-LWR (even for leaky secrets),
generalizing the plain LWE to LWR reduction by Alwen et al. (Crypto
’13). One of our central techniques is a new ring leftover hash lemma,
which might be of independent interests.

1 Introduction

Lattice-based cryptography has attracted significant attention due to its nice
mathematical structure and versatility – first it is one of very few promising
candidates against quantum algorithms [42], and moreover, it serves as a solid
foundation on which a wide range of (advanced) crypto systems can be based,
e.g., [36]. Particularly, many lattice-based crypto systems are directly based on
the learning with error (LWE) problem [40], which enjoys search-to-decision
reductions [29,30,33,40] and as well worst-case hardness from some lattice prob-
lems, under quantum or classical reductions [10, 33, 40]. With these results, we
are more confident in the hardness of LWE, both the decision and search forms,
and thus the derived LWE-based crypto systems.

However, the “plain” LWE-based solutions are usually considered impractical
due to the large keys/parameters and the requirement of performing rather com-
plicated Gaussian samplings (albeit significant improvements in recent years [23–
25,30,31,34]). To tackle these two technical challenges, researchers have proposed
other efficient variants of LWE:

– LWE over rings (Ring-LWE). This problem [26] is a compact variant of the
plain LWE specialized in some ring in a number field. This Ring-LWE based
schemes have significantly smaller keys, and computation of ring multipli-
cations can be further accelerated by Fast Fourier Transform [27]. These
advantages make Ring-LWE one of the most competitive candidates for de-
veloping practical post-quantum crypto schemes.

– Learning with rounding (LWR). This problem [6] is a de-randomized variant
of the plain LWE, where random errors are replaced by the deterministic



rounding. Many crypto systems can be naturally derived from LWR, such as
pseudorandom functions [6], lossy trapdoor functions, reusable extractors,
and deterministic encryption [3]. As these systems do not require Gaussian
samplings, they are in general much easier to implement and more efficient.

A natural combination of these two is learning with rounding over rings (Ring-
LWR), which in fact has been proposed in the original LWR work [6] as a more
efficient version of the plain LWR. Moreover, several submissions to the NIST’s
post-quantum competition have built their schemes with competitive efficiency
from Ring-LWR (or a more general Module Ring-LWR), such as [7,18] (round 2
submissions). Thus, Ring-LWR is also a promising direction towards developing
practical post-quantum solutions.

Even though Ring-LWR provides substantial efficiency gains, our under-
standing about its hardness is rather limited, compared with what we have
developed in the Ring-LWE [26, 38] and plain LWR [3, 5, 6, 8] settings. To fully
enjoy the efficiency brought from the ring structure, it is necessary to determine
whether the additional structure would weaken the underlying hard problem.
Toward this goal, this work focuses on the following endeavor:

Main Task: Determine the hardness of Ring-LWR.

While Ring-LWE/LWR and plain LWE/LWR share many nice mathemati-
cal features, establishing hardness results in the ring settings is however tricky.
As there are several ad-hoc instantiations of Ring-LWE that can be broken by
relatively simple attacks [11–13,20,21], the selection of parameters can be much
subtler than in the plain LWE/LWR setting. To handle this, the work [35] con-
ducted a comprehensive research about the existing attacks and hardness results,
and then pointed out that several instantiations of Ring-LWE that have security
reductions (e.g., from some worst-case ideal lattice problems [26, 38]) avoid all
the known attacks. Thus, establishing meaningful security reductions would not
only guarantee theoretic hardness but also provide important guidance of how
to avoid vulnerabilities, which is significant in practical applications. Motivated
by this, we then focus on how to build meaningful reductions for Ring-LWR.

Challenges for Ring-LWR. We know a simple reduction from (Ring)-LWE
to (Ring)-LWR if the ratio of the moduli q/p is super-polynomial [6]. This pa-
rameter setting however, requires larger dimension n for the security need of the
underlying (Ring)-LWE [1] (and its derived schemes). To achieve better efficien-
cy, the community then turned to determine the hardness of LWR for polynomial
moduli, and in subsequent work [3,5,8] several significant reductions have been
developed for plain LWR. Unfortunately, these results cannot be generalized to
the ring setting for various technical reasons as we summarize below.

– The work [8] derived a search-to-decision reduction for LWR, meaning that
LWR is pseudorandom as long as it is one-way. This reduction relies on the
ability to predict a random linear function over the secret given the help of
the distinguisher of LWR. This property however, does not hold in the ring
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setting, as there are super-polynomially many possibilities of r · s for some
random ring element r (as a random function) and secret s. Even though
there is a reduction of search Ring-LWE to search Ring-LWR via Rényi
Distance (RD) [8], there is still a disconnection for proving pseudorandom
of Ring-LWR from Ring-LWE, even for bounded samples.

– The work [3] takes another approach, proving that the plain LWR remains
pseudorandom (for bounded samples), even if the secret comes from an im-
perfect source (yet with sufficient min entropy). Their result relies on the
leftover hash lemma over Zq (i.e., inner product in Zq is a strong extractor),
which does not generalize to the ring setting. This is a critical technical ob-
stacle for porting the LWR results [3] to the ring setting. How to analyze
the ring setting was explicitly left as an open interesting question [3].

To mitigate the gap between plain LWR and Ring-LWR, a recent work [14] intro-
duced a new variant called Computational Ring-LWR, which captures security
of the following concept – an adversary’s winning probability remains similar
in a computation game (of some search problem), no matter whether the chal-
lenge is generated by using Ring-LWR samples as randomness or truly random
samples. The work [14] showed that security of Computational Ring-LWR can
be based on Search Ring-LWE via an RD analysis, and can be used to analyze
security of several NIST submissions.

This approach still leaves several fundamental questions. For example, whether
Ring-LWR is pseudorandom under some more well-studied assumptions remains
elusive. As a result, we do not know the core reason why the computational
Ring-LWR is hard – maybe Ring-LWR is already pseudorandom, or maybe it
is not pseudorandom yet just does not give significant help to solve other com-
putational problems. Additionally, the computational nature of the problem is
usually inconvenient to analyze indistinguishability-based security (e.g., security
of an encryption scheme or a PRF), as we need to reduce indistinguishability
from the search problem. Usually, this is not an easy task, and might require
the help of random oracles as the examples in the work [14]. It remains un-
clear whether the computational Ring-LWR can be used natively to analyze
indistinguishability-based security in the plain model.

1.1 Our Contributions

In this work, we conduct a systematic study on the (Module) Ring-LWR problem
(and its generalizations), even in the presence of leakage (weak secret). The
problem can be described in the following form: determine whether samples of
(a, ba ·se) are pseudorandom, where b·e is some rounding function from modulo
q to modulo p, and a, s are vectors of size k from some appropriate spaces (e.g.,
the ring of integers of some number field). For an appropriate ring and k = 1, the
problem is specialized to Ring-LWR, and for general k > 1, Module Ring-LWR.
Below we describe our contributions.

Contribution 1. As a warm up, we show that the algebraic LWE framework of
Peikert and Pepin [37] is portable to the setting of LWR while preserving many
important reduction results. Below we elaborate.
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Following the notion of Module L-LWE, we define Module L-LWR for a certain
number field lattice L – in this case, we have s ∈ (L∨q )k and a ∈ (OLq )k where L∨
denotes the dual of L, OL denotes the coefficient ring, and q is some modulus.
By using this notion, we are able to express Ring-, Module-, Order-, and Poly-
LWR in a natural way, similar to the Module L-LWE framework [37]. (We refer
the readers to the work [37] for more discussions for why we use the dual lattice
space L∨.) Next, we prove the following two L-LWR reductions similar to those
for L-LWE [37]:

– a reduction from Module L-LWR to Module L′-LWR for L′ ⊆ L, assuming
the modulus q is co-prime with the index |L/L′|, and

– a reduction from O-LWR to Middle-product-LWR for an order O with a
(tweaked) power basis.

As the ring of integers OK is the maximal Order in a number field K, via these
reductions the hardness of (Module) Ring-LWR would imply that of (Module)
O′-LWR for any other Order O′ as well as that of the Middle-Product-LWR [4].
Thus, our main focus would be the hardness of (Module) Ring-LWR, as it would
imply hardness of many other variants.

An important add-on. In addition to the above generalization to L-LWR from
the work [37], we add an important specification to the procedure of rounding a
ring element – we must specify a basis B = {bi}i∈[n] to which the ring element
is rounded with respect. More specifically, we define rounding a ring element α
with respect to B as the following steps:

1. Interpret α =
∑
i∈[n] aibi for ai ∈ Zq.

2. Output bαe =
∑
i∈[n]baiebi.

As the selection of basis can affect our reduction results, either in parameter
quality or even feasibility, this specification is critical. While all known prior
work [2, 6, 8] (to our knowledge) used the coefficient embedding (the power ba-
sis), our hardness results would suggest to work with alternative bases for certain
parameters as required by the reductions.

Below we do two important case studies: (1) Ring-LWR without leakage, and
(2) (Module) Ring-LWR with leakage. These results will provide as hardness
foundations for further algebraic structured LWR via the reduction above, such
as Order-, Poly-, Middle-Product-, and many other possible variants of LWR.

Contribution 2. We identify a sufficient condition and prove a search-to-
decision reduction for Ring-LWR. Thus under this condition, Ring-LWR is pseu-
dorandom as long as it is one-way, generalizing a plain LWR result of [8].

Particularly, let R = OK be the ring of integers over some Galois extension
K, and p be a polynomial-sized modulus such that p|q and 〈p〉 completely splits3

over OK , i.e., pOK = p1p2 . . . pn for n being the dimension of K/Q, and B be
a normal integral basis of K. Then there exists a search-to-decision reduction

3 Actually the result is more general, as the reduction only requires that 〈p〉 splits into
a product of small ideals.
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for Ring-LWR when rounding is with respect to the basis B. Furthermore, the
quality/parameters of the reduction depend on a certain “norm” of B, which is
the shorter the better.

We next derive a search Ring-LWE to search Ring-LWR reduction via an RD
analysis4, yet this only holds for a bounded number of samples. Our search-to-
decision Ring-LWR however, is not sample preserving, as the number of samples
depends on the advantage of the decision Ring-LWR distinguisher. Thus, com-
bining the two reductions can only derive a search Ring-LWE to 1/λc-secure
decision Ring-LWR, i.e., hardness of Ring-LWE can only guarantee weak pseu-
dorandomness of Ring-LWR. Nevertheless, we can apply the hardness amplifi-
cation technique of [43] to achieve negl(λ)-security by a parallel repetition up
to ω(1) times. This would give us a modular way to design fully secure schemes
such as PRFs from Ring-LWR, based on the hardness of Ring-LWE.

On the other hand, by the Hilbert-Speiser and Kronecker-Weber theorems,
normal integral bases only exist for certain cyclotomic fields (and their subfield-
s), and moreover, a field K might have multiple normal integral bases [22]. We
can choose a good one using the idea of [27]. Moreover, by selecting appropriate
rounding functions, the hardness result can be generalized to the case of cyclo-
tomic fields of power of 2, which do not have normal integer bases. We discuss
these in details in Section 4.3.

Contribution 3. Next we study whether Ring-LWR holds under leakage. To-
wards this goal, we show a negative result for Ring-LWR (i.e., k = 1). Next,
we prove some positive results for Module Ring-LWR (for bounded samples) of
larger dimensions k’s.

For Ring-LWR such that 〈p〉 completely splits, we do have a search-to-
decision reduction, and a hardness guarantee from Ring-LWR (even just 1/λc-
security) as Contribution 2. However, if information of {s mod pi}’s for a con-
stant fraction of the ideals is leaked, then one can apply a similar attack as [9]
to break search LWR completely given only one sample, with a significant prob-
ability. Thus, only an entropy lower bound is not sufficient to derive hardness of
Ring-LWR against general leakage of say 0.1 · n log q bits.

On the other hand for larger k’s, we show that Module Ring-LWR remains
pseudorandom under leakage assuming (Module) Ring-LWE (in some cases, k =
1, namely Ring-LWE, is sufficient!). Towards this goal, we prove a general ring
leftover hash lemma, showing that the inner product over ring elements is a
strong extractor, as long as the source, when taken modulo over any ideal factor
of pOK , has sufficient entropy. The leftover hash lemma holds regardless of how
pOK factors, as its factoring only affects the parameters but not feasibility. More
interestingly, it also does not require K to be Galois extension as required by

4 A similar reduction appeared in the work [8], but their Ring-LWE* adds errors in
the coefficient-embedding space. “The” Ring-LWE of [26] suggests to add errors
in the canonical-embedding space. A direct application of the analysis [8] to “the”
Ring-LWE setting would result in significantly worse parameters, e.g., [14] took this
approach and can only analyze the case with a constant number of samples.
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the search-to-decision reduction in Contribution 2. By using this new leftover
hash lemma, we generalize the plain LWR result [3] to the Ring setting, showing
Module Ring-LWR is pseudorandom, even for entropic secrets under certain
appropriate conditions. Similar to the result of [3], our analysis requires the
number of samples to be smaller to the modulus q, and thus the reduction holds
for a fixed number of samples.

Our ring leftover hash lemma generalizes prior work [27–29], and might be
of independent interests. We further elaborate on our improvements over prior
results in the next section.

1.2 Technical Overview

We overview the most interesting techniques in Contributions 2 and 3.

Search-to-decision Reduction for Ring-LWR. We first give an overview of
our first reduction when 〈q〉 completely splits. Our reduction follows the search-
to-decision framework of Ring-LWE [26], but makes several important changes.

Let K be a Galois extension over Q with dimension n, B be a normal integral
basis of K, p|q such that the rounding b·e maps ring elements from modulo q to
modulo p, and 〈p〉 = p1 . . . pn. Our reduction uses two intermediate problems:
(W)-pi-RLWR and (W)-D-RLWRi, where the former is the problem of finding s
mod pi (for worst-case secret s), and the latter is to distinguish (a, ba · se+ hi)
from (a, ba · se+hi+1) for hj being a distribution that is uniformly random over
modulo p1 . . . pj and 0 over modulo pj+1 . . . pn, for the worst-case secret. Then,
our reduction follows the path below:

Search-RLWR
(1)−−→ (W)-pi-RLWR

(2)−−→ (W)-D-RLWRi
(3)−−→ Decision-RLWR.

We first note that (3) follows from a simple hybrid argument and a worst-
case to average-case re-randomization (as the work [8]); (2) can be derived by a
similar technique use in the work [26]. Thus in this section, we just overview the
most interesting part (1).

Essentially, we would like to show that suppose one can find s mod pi for
some ideal pi, then he can find s mod pj for all the other ideals, and thus by the
Chinese Remainder Theorem, find s mod 〈p〉. This idea can be achieved in the
Ring-LWE case [26] by using the fact that automorphisms in Galois extensions
permutes ideals, i.e., for every i, j ∈ [n], there exists an automorphism σ such
that pi = σ(pj). Fixed such i, j and σ, the reduction works as follows: given a
sample (a, b = as + e), the reduction computes a′ = σ(a), b′ = σ(b) = σ(a) ·
σ(s) + σ(e), by the homomorphic property of the automorphism. The work [26]
chooses e in the canonical embedding space such that the distribution of σ(e)
remains the same for every automorphism. Therefore, the (W)-pi-RLWE solver
on input (a′, b′) would return s′ = σ(s) mod pi. Then by a simple calculation
we have σ−1(s′) = s mod pj .

In the RLWR case, we have (a, b = base), and can still compute (a′ =
σ(a), b′ = σ(b)). However, the required equation σ(b) = bσ(s)σ(a)e might not
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hold as σ and b·e might not commute in general. Consequently, (a′, b′) might not
be a valid RLWR instance, which the underlying (W)-pi-RLWR solver might fail
to solve. Thus, the straight-forward analysis would break down.

To tackle this issue, we prove a key fact that as long as the rounding is
with respect to a normal integral basis B, then rounding and automorphisms
commute. This suffices to bring the Ring-LWE result to the Ring-LWR. Below
we describe our insights.

Recall that B is a normal integral basis if it is Z-bases that can be represented
as {bi = σi(γ)}i∈[n] for some γ ∈ OK . Every element x ∈ OK can be written as∑
i∈[n] xibi for xi ∈ Z. If rounding is with respect to B, we have:

σ(bxe) = σ
( ∑
i∈[n]

bxiebi
)

=
∑
i∈[n]

bxieσ(bi).

We next observe that σ(B) = B (up to some re-ordering), as σ just permutes
the normal integral basis. Thus we can further re-write the above equation as:⌊ ∑

i∈[n]

xiσ(bi)
⌉

=
⌊
σ
( ∑
i∈[n]

xibi

)⌉
= bσ(x)e.

This proves what we desired.

Module Ring-LWR under Leakage. Next we overview how to prove pseu-
dorandom of Module Ring-LWR even for entropic secrets. Briefly speaking, the
(Module, Ring)-LWR samples have the form (A, bA·seq→p) for matrix A ∈ R`×kq

and s ∈ Rkq . Here for simplicity of exposition, we use Rq for both the secret and
randomness spaces. More general results on R∨q can be obtained via isomor-
phisms, such as R/qR ∼= R∨/qR∨.

To achieve this, we first take a look at a prior approach [3] who successful-
ly achieved the task in the plain LWR setting. Their proof framework can be
summarized as the following.

1. We first break A = (A′,a) where A′ is the first `− 1 rows.
2. We switch A′ into some lossy matrix Ã′.
3. Then we show that the conditional entropy H(s|Ã′, bÃ′ ·seq→p) is still high.

4. Thus, from a leftover hash lemma we have (Ã′, bÃ′ ·seq→p),a, ba ·seq→p) ≈
(Ã′, bÃ′ · seq→p),a, bueq→p), as a acts as a fresh random seed.

5. We switch back Ã′ to A′.

We can prove that LWR (even for entropic secrets) is pseudorandom by repeat-
edly applying Steps 2 - 5 on all rows of A as [3].

Steps 1, 2, 3, 5 are portable to the ring setting, even though we need to take
care of some mathematical subtleties in the ring. The major barrier in the ring
setting comes from the lack of a ring leftover hash lemma, i.e., showing inner
product of ring elements is a strong extractor, namely (a, 〈a, s〉) ≈ (a, u). For
this task, we only know some partial results: the lemma holds (1) if each element
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in s is uniform from a fixed domain [28]; (2) or if each element of s comes from
the Gaussian distribution [27] or some specific noisy leaky Gaussian [17]. Under
more general leakage functions, it was unclear how inner product over rings
behaves. Therefore, it is not inferred from the prior results [17, 27, 28] whether
(Module) Ring-LWR remains hard against more general leakage functions.

A Ring Leftover Hash Lemma. Next we describe our new ideas to tackle
the challenge. We start with the approach of [29], which proved that the leftover
hash lemma follows if one can bound the collision probability of D = (a, s).
Let (a,a′) and (s, s′) be two independent samples, and we are interested in the
following quantity.

Col(D) = Pr[(a = a′) ∧ (a · s = a′ · s′ mod qR)]

= Pr[a = a′] · Pr[a · s− a′ · s′ = 0 mod qR|a = a′]

=
1

qn`
· Pr[a · (s− s′) = 0 mod qR].

To further bound this quantity, in the integer case (R = Z) the work [29] parti-
tions the space using gcd(s − s′) = d for every factor d of q. For each factor d,
the distribution a · (s− s′) would be uniformly random over Zd/Zq, allowing us
to compute the exact probability of Pr[a · (s− s′) = 0 mod qR| gcd = d] = d/q.
Furthermore, Pr[gcd(s − s′) = d] ≤ Pr[s = s′ mod d] = Col(s mod d). Thus,
if the collision probability of s mod d is small for any factor of q, then we are
able to bound the collision probability of Col(D), implying the desired leftover
hash lemma.

In the ring setting however, a ring element might have multiple factoriza-
tions, so it is not clear how GCD of ring elements should be. As R might not
even be a GCD domain, a general proof cannot rely on this fact. To tackle this
issue, we move to ideal factorization instead of ring element factorization. By a
classic algebraic number theory result (thanks to Dedekind, Kummer, and oth-
ers), each proper ideal of ring of integers (i.e., R = OK) factors into a product of
prime ideals (or their power), and the factorization is unique up to permutation.
Therefore, we can write qOK = qe11 qe22 . . . q

eg
g without loss of generality. This

result holds for a general number field K, not just Galois extensions.
Next we define a notion maximal belonging for a vector x ∈ Rkq , generalizing

the spirit of GCD in the view of ideals. Let I be an ideal factor of qR, and we
denote x ∈max I if (i) every element in the vector belongs to the ideal I, and
(ii) for every ideal J such that I|J , there exists one element of x, say xj that
xj /∈ J . With this notion, we show that if x ∈max I for some factor I of qR,
then the distribution of a · x is uniform over I for a uniformly random a. This
allows us to calculate Pr[a · (s − s′) = 0 mod qR|(s − s′) ∈max I] = N(I)/qn,
and Pr[(s−s′) ∈max I] ≤ Pr[s = s′ mod I] = Col(s mod I). From these facts,
we are able to show, suppose the collision probability of s mod I is small for
any ideal factor I of qR, then the leftover hash lemma holds. This translates
into an entropy requirement of H(s mod I) for every ideal factor I.

We note that proving these results requires to tackle non-trivial mathematical
arguments in the ring setting. Particularly, we use some important observations:
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(1) I/〈q〉 ∼= qx1/qe1 × qx2/qe2 × · · · × qxg/qeg for some xi ∈ [ei] where I factors

into
∏
i∈[g] q

xi
i , and (2) each qxii /q

ei
i
∼=
(
qxii /〈q〉

)
/
(
qeii /〈q〉

)
is further isomor-

phic to a principle ideal to some power quotient the principle ideal to another
larger power. (1) is from the fact of unique ideal factorization and the Chinese
Remainder Theorem; (2) is from a theorem of Dedekind that each qi is a prime
ideal isomorphic to 〈q, fi(α)〉 for some monic irreducible polynomial fi in Zq[x].
We refer the details in Section 5.2.

Parameters and Implications. By using the leftover hash lemma, we are
able to derive some interesting entropy requirements: the lemma holds if H(s
mod I) ≥ n log q+O(log(1/ε)) + δ (for every ideal factor I). For a general field
K, we would need δ = n log q, resulting a more strict requirement on entropy.
For special cases such as (1) K is a cyclotomic field, or (2) each prime ideal
of qR has large norm, we can derive a sharper parameter δ = O(log q) or even
O(1). Intuitively, the leftover hash lemma anyway needs to extract a ring element
(entropy n log q), and thus the term n log q+O(log(1/ε)) is necessary similar to
the regular leftover hash lemma in Zq. The extra term δ may depend on the
structure of the ring and/or how qOK factors.

The next natural question is, how small can k (the dimension of the vector
a and s) be to reach the lemma’s requirement for extraction? Clearly, k = 1
is not possible as a one dimension s cannot provide sufficient entropy. Suppose
qOK only has ideals with large norms, i.e., each N(qi) is large, say qn/2, then
a constant ` might suffice for s to reach the entropy requirement. On the other
hand, if each N(qi) is small, say q, then each coordinate of s modulo qi can
only provide log q bits of entropy. To reach the entropy bound, it would require
at least k = Ω(n). Therefore, a completely-split qOK would be less favorable
for randomness extraction compared with a low-split qOK , e.g., qOK = q1q2,
where each N(qi) = qn/2. Our new leftover hash lemma would suggest to use
an appropriate q (such that qOK factors in a nice way) in future Ring-LWE/R
applications.

Open Directions. Our leftover hash lemma, together with [3], shows Module-
Ring-LWR (for sufficiently large k) remains pseudorandom for bounded samples.
An interesting open question is to determine whether Ring-LWR (k = 1) is hard
if s mod I has sufficient entropy for every ideal factor I. Proving or disprov-
ing this would require new ideas beyond the current techniques: we cannot use
leftover hash lemma in the k = 1 case as argued above. On the other hand, the
attack of [9] does not work either, as it requires to leak completely s mod I for
some ideal factor I. Another interesting question is to extend the result to the
case of unbounded samples, which is a significant open question since [6].

2 Preliminaries
Notations Let λ denote the security parameter. For an integer n, let [n] denote
the set {1, ..., n}. We use bold lowercase letters (e.g. a) to denote vectors and
bold capital letters (e.g. A) to denote matrices. For a positive integer q ≥ 2,
let Zq be the ring of integers modulo q. For a distribution on a set X, we
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write x
$←− X to denote the operation of sampling a random x according to

X. For distributions X,Y , we let SD(X,Y ) denote their statistical distance.

We write X
s
≈ Y or X

c
≈ Y to denote statistical closeness or computational

indistinguishability, respectively. We use negl(λ) to denote the set of all negligible
functions µ(λ) = λ−ω(1).

2.1 Rounding Function in Zq

For any integer modulus q ≥ 2, we use the ’rounding ’ function defined in [6] –
for q ≥ p ≥ 2, let b·ep : Zq → Zp be the function as bxep = b(p/q) · x̄ep mod p,
where x̄ ∈ Z is any integer congruent to x mod q.

2.2 The Space H

When working with number fields and algebraic number theory, it is convenient
to work with a certain linear subspace H ⊆ Rs1×C2s2 for some integers s1, s2 > 0
such that s1 + 2s2 = n, defined as

H = {(x1, · · ·xn) ∈ Rs1 × C2s2 |xs1+s2+j = xs1+j ,∀j ∈ [s2]}.

As described in the work [26], we can equip H with norms, which would naturally
define norms of elements in a number field or ideal lattice via an embedding that
maps field elements into H. We will present more details next.

It is not hard to verify that H equipped with the inner product induced
by Cn, is isomorphic to Rn as an inner product space. This can be seen via
the orthonormal basis {hi}i∈[n] defined as: for j ∈ [n], let ei ∈ Cn be the
vector with 1 in its jth coordinate, and 0 elsewhere; then for j ∈ [s1], we define
hj = ej ∈ Cn, and for s1 < j < s1 + s2 we take hj = 1√

2
(ej + ej+s2) and

hj+s2 = 1√
−2

(ej − ej+s2).

We can equip H with the `2 and `∞ norms induced on it from Cn. Namely,
for x ∈ H we have ‖x‖2 =

∑
i(|xi|2)1/2 =

√
〈x,x〉 and ‖x‖∞ = maxi |xi|. `p

norms can be defined similarly.

2.3 Algebraic Number Theory Background

Algebraic number theory is the study of number fields. Below we present the req-
uisite concepts and notations used in this work. More backgrounds and complete
proofs can be found in any introductory book on the subject, e.g., [15, 44].

Number Fields and Their Geometry

A number field can be defined as a field extension K = Q(α) obtained by adjoin-
ing an abstract element α to the field of rationals, where α satisfies the relation
f(α) = 0 for some irreducible polynomial f(x) ∈ Q[x], called minimal polyno-
mial of α, which is monic without loss of generality. The degree n of the number
field is the degree of f .
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A number field K = Q(α) of degree n has exactly n field embeddings (in-
jective homomorphisms) σi : K → C. Concretely, these embeddings map α to
each of the complex roots of its minimal polynomial f . An embedding whose
images lies in R is said to be real, or otherwise it is complex. Because roots of
f come in conjugate pairs, so do the complex embeddings. The number of real
embeddings is denoted as s1 and the number of pairs of complex embeddings
is denoted as s2, satisfying n = s1 + 2s2 with σi for 1 < i < s1 being the real
embeddings and σs1+s2+i = σs1+i for 1 ≤ i ≤ s2 being the conjugate pairs of
complex embeddings.

The canonical embedding σ : K ← Rs1 × C2s2 is then defined as σ(x) =
(σ1(x), · · ·σn(x)). Note that σ is a ring homomorphism from K to H, where
multiplication and addition in H are both component-wise.

By identifying elements of K and their canonical embeddings on H, we can
define the norms on K. For any x ∈ K and any p ∈ [1,∞], the `p norm of x is
simply ‖x‖p = ‖σ(x)‖p. Then we have that ‖xy‖p ≤ ‖x‖∞ · ‖y‖p ≤ ‖x‖p · ‖y‖p,
for any x, y ∈ K and p ∈ [1,∞].

The canonical embedding also allows us to view Gaussian distribution Dr
over H, or their discrete analogues over a lattice L ⊂ H, as distributions over
K. Formally, the continuous distribution Dr is actually over the field tensor
product KR = K ⊗Q R, which is isomorphic to H.

The trace Tr = TrK/Q : K → Q of an element a ∈ K can be defined as the
sum of the embeddings: Tr(a) =

∑
i σi(a). The norm N = NK/Q : K → Q can

be defined as the product of all the embeddings: N(a) =
∏
i σi(a). Clearly, the

trace is Q-linear, and also notice that Tr(a · b) =
∑
i σi(a)σi(b) = 〈σ(a), σ(b)〉, so

Tr(a·b) is a symmetric bilinear form akin to the inner product of the embeddings
of a and b. The norm N is multiplicative.

Ring of Integers and Ideals

An algebraic integer is an algebraic number whose minimal polynomial over the
rationals has integer coefficients. For a number field K, we denote its subset of
algebraic integers by OK . This set forms a ring, called the ring of integers of the
number field. The norm of any algebraic integer is in Z.

An (integer) ideal I ⊆ OK is an additive subgroup that is closed under
multiplication by R. Every ideal in OK is the set of all Z-linear combinations of
some basis {b1, · · · , bn} ⊂ I. The norm of an ideal I is its index as a subgroup
of OK , i.e., N(I) = |OK/I|. The sum of two ideals I,J is the set of all x+y for
x ∈ I, y ∈ J , and the product ideal IJ is the set of all sums of terms xy. We
also have that N(〈a〉) = |N(a)| for any a ∈ OK , and N(IJ ) = N(I)·N(J ). The
following lemma states the condition of an element not belonging to an ideal,
we put the proof in full version of this paper.

Lemma 2.1 Let a ∈ OK be an element, I ⊂ OK be an ideal. If ‖a‖2 <
√
n ·

N(I)
1
n , then a /∈ I.

An ideal p ( OK is prime if ab ∈ p for some a, b ∈ OK , then a ∈ p or b ∈ p
(or both). In OK , an ideal p is prime if and only if it is maximal, which implies
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that the quotient ring OK/p is a finite field of order N(p). An ideal I is called
to divide ideal J , which is written as I|J , if there exists another ideal H ∈ OK
such that J = HI. Two ideal I,J ⊆ OK are coprime if I + J = OK . The
following lemma states the coprime condition of the power of primes, we put the
proof in the full version of this paper.

Lemma 2.2 Let I,J ⊆ OK be two ideals, and I is coprime to J , then Ix is
coprime to J y for any integers x, y ≥ 1.

A fraction ideal I ⊂ K is a set such that dI ⊆ OK is an integral ideal for
some d ∈ OK . Its norm is defined as N(I) = N(dI)/|N(d)|. A fractional ideal
I is invertible if there exists a fractional ideal J such that I · J = OK , which
is unique and denoted as I−1. The set of fractional ideals form a group under
multiplication, and the norm is multiplicative homomorphism on this group.

An order O of K is a subring with unity, i.e., 1 ∈ O and O is closed under
multiplication, and the Q span of O is equal to K. It’s easy to see that OK is
an order, and it is the maximal order: every order O ⊆ OK . For any order O of
K, we have O · O∨ = O∨ and Tr((O · O∨) · O) = Tr(O∨ · O) ⊆ Z.

2.4 Duality

For any lattice L ⊆ K (i.e., for the Z-span of any Q-basis of K), its dual is
defined as L∨ = {x ∈ K : Tr(xL) ⊆ Z}.

Then L∨ embeds as the complex conjugate of the dual lattice,i.e., σ(L∨) =
σ(L)∗ due to the fact that Tr(xy) =

∑
i σi(x)σi(y) = 〈σ(x), σ(y)〉. It is easy to

check that (L∨)∨ = L, and that if L is a fractional ideal, then L∨ is one as well.

We point out that the ring of integers R = OK is not self-dual, nor are an
ideal and its inverse dual to each other. For any fractional ideal I, its dual ideal is
I∨ = I−1 ·R∨. The factor R∨ is a fractional ideal whose inverse (R∨)−1, called
the different ideal, is integral and of norm N((R∨)−1) = ∆K . The fractional
ideal R∨ itself is often called the codifferent.

For any Q-basis B = {bj} of K, we denote its dual basis by B∨ = {b∨j },
which is characterized by Tr(bi · b∨j ) = δij , the Kronecker delta. It is immediate
that (B∨)∨ = B, and if B is a Z-basis of some fractional ideal I, then B∨ is a
Z-basis of its dual ideal I∨. If a =

∑
j aj ·bj for aj ∈ R is the unique presentation

of a ∈ KR in basis B, then aj = Tr(a · b∨).

The following lemma generalized Lemma 4.4 of [28] determines the distribu-
tion of 〈a, s〉 for random a ∈ (R/IR)` and fixed s ∈ (R∨/IR∨)`, we put the
proof in full version of this paper.

Lemma 2.3 ( [28]) Let R = OK be the ring of integers of a number field K,
I be an ideal of R, and s = (s1, · · · , s`) ∈ (R∨/IR∨)` be a vector of ring
elements. If a = (a1, · · · , a`) ∈ (R/IR)` are uniformly random, then

∑
i ai ·

si mod IR∨ is uniformly random over the ideal 〈s1, · · · , s`〉/IR∨. In particular,
Pr [
∑
i ai · si = 0 mod IR∨] = 1/|〈s1, · · · , s`〉/IR∨|.
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2.5 Prime Splitting and Chinese Remainder Theorem

For an integer prime p ∈ Z, the factorization of the principal ideal 〈p〉 ⊂ R = OK
for a number field K (where K/Q is a field extension with degree n) is as follows.

Lemma 2.4 (Dedekind [16]) Let K = Q(α) be a number field for α ∈ OK ,
and F (x) be the minimal polynomial of α in Z[x]. For any prime p, the ideal
pOK factors into prime ideals as 〈p〉 = pe11 · · · p

eg
g , where N(pi) = pfi for fi =

[OK/pi : Zp], and n =
∑g
i=1 eifi.

Moreover if p does not divide the index of [OK : Z[α]], then we have further
structures as following. We can express F (x) = f1(x)e1 . . . fg(x)eg mod p, where
each fi(x) is a monic irreducible polynomial in Zp[x]. There exists a bijection
between pi’s and fi(x)’s such that pi = 〈p, fi(α)〉, and fi = deg fi(x).

For each pi, we have pi|pOK , which can be written as pi|〈p〉, and call pi a
factor of 〈p〉. Next we recall the Chinese Remainder Theorem (CRT) for the
fraction ideal over a number field K.

Lemma 2.5 (Chinese Remainder Theorem [9]) Let I be a fractional in
over K, and let pi be pairwise coprime ideals in R = OK , then natural ring

homomorphism is an isomorphism: I/
(∏

i pi

)
I →

⊕
i(I/piI).

As a corollary of Chinese Remainder Theorem above, the following lemma
states the equivalence of prime ideal factors of qR and qR∨ under isomorphism.

Lemma 2.6 (Lemma 2.35 of [9]) Let I,J be integral ideals in an order O
and let M be a fractional O-ideal. Assume that I is invertible. Given the asso-
ciated primes of J , p1, p2, . . . , pk, and an element t ∈ I \

⋃k
j=1 pjI the map

θt :M/JM→ IM/IJM
x 7→ t · x

induces an isomorphism of O-modules. Moreover, θt is efficiently inverted given
I,J ,M and t, and t can be computed given I and p1, · · · , pk.

In particular, let I = (R∨)−1,J = qR,M = R∨, then R/qR ∼= R∨/qR∨.

2.6 The Ring-LWE Problem

We now provide the formal definition of the ring-LWE problem and describe the
hardness result shown in [26,38].

Definition 2.7 (Ring-LWE Distribution) For a secret s ∈ R∨q (R = OK)
and a distribution φ over KR, a sample from the Ring-LWE distribution As,φ
over Rq× (KR/qR

∨) is generated by choosing a← Rq uniformly random, choos-
ing e← φ, and outputting (a, b = a · s+ e mod qR∨).
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Definition 2.8 (Ring-LWE, Average-case Decision Problem) The average-
case decision version of the Ring-LWE problem, denoted R-DLWE`,q,φ is to dis-
tinguish between ` independent samples from As,φ for a random choice of a secret
s← R∨q of degree n, and the same number of uniformly random and independent
samples from Rq × (KR/qR

∨).

The subscript ` of the number of samples is usually omitted if there is no
special explanation. The hardness of RLWE can be reduced from the hardness of
hard problems over ideal lattices, ref. Full version of this paper.

3 Generalized Learning with Rounding

In this section, we present a new algebraic framework of LWR that generalizes
previous RLWR notions [6, 8, 14], which mainly focused on primal ring elements
and rounding over their polynomial coefficient representations. Essentially, we
show that the unified framework of algebraic LWE in a recent work [37] can be
portable to the LWR setting while maintaining important features. Under our
algebraic LWR framework, we can naturally express several variants of Ring-
, Order-, and Poly-LWR in a single problem parameterized by a number field
lattice, and derive hardness results for these variants of LWRs and as well middle-
product LWR based on RLWR.

Moreover, we can derive new and tighter hardness results for (Module) RLWR
based on RLWE, even in the entropic secret cases. Thus, the hardness of RLWE
would provide a foundation for RLWR and these algebraic variants via our new
framework. In the rest of this section, we present the algebraic framework of
LWR and relate the hardness of RLWR to the other variants of LWRs. Later in
Sections 4 and 5, we present our new hardness results.

3.1 Rounding with Respect to Specific Basis

Recall that for a monogenic field K (e.g., cyclotomic fields), an element a ∈
Rq = (OK)q can be treated as a polynomial of integer coefficients, as (OK)q =
Zq[α] ∼= Zq[x]/f(x), where f(x) is the minimal polynomial of α. Let a(x) =
a0 + a1x + · · · + an−1x

n−1 ∈ Zq[x]/f(x), and we can naturally define rounding
b·ep of a(x) as:

ba(x)ep =: ba0ep + ba1epx+ · · ·+ ban−1epxn−1.

To our knowledge, all prior work [6, 8, 14] use this coefficient embedding in the
primal Rq when studying rounding in the ring. This choice however, is not op-
timal for ideal lattices. As “the” RLWE problem is defined in the dual form for
several analytical advantages as argued in [26], i.e., the secret and the inner
products are in the dual space R∨q = (OK)∨q , the natural analog RLWR of RLWE
should be defined in the dual form. However, an element in the dual in general
might not be able to described as an integral polynomial, and thus it is not
clear how to define rounding in this case. One might consider to use the relation
R∨q = t−1Rq for some t−1 ∈ R∨q to move elements from the dual to the primal

14



(e.g., see [35, 41]). This approach goes back to the primal RLWR (RLWE) case,
which would lose some analytical advantages, e.g., tightness of parameters in our
reduction. We explain this further in Section 4. Thus, we would like to stick to
the dual form of RLWR, similar to the RLWE setting [26].

To tackle the above issue, we observe that an element a ∈ R∨ (also R∨q ) can
also be uniquely represented as integer linear combinations of a certain Z-basis
of R∨, say B = {b1, · · · , bn}, i.e., a = x1b1 + · · · + xnbn, where all xi ∈ Z.
Under this basis, rounding an element can be easily defined. Since there are
multiple possible bases, it is important to specify to which basis the rounding is
with respect. Thus, below we explicitly define a rounding function that is also
parameterized by a basis.

Definition 3.1 Let K = Q(α) be a number field with degree n, and I be a
fractional ideal over K with a Z-basis B = {b1, · · · , bn}. Then for any integers
q ≥ p ≥ 2, we define the rounding function (with respect to basis B) b·eB,p :
Iq → Ip as

baeB,p = bx1epb1 + · · ·+ bxnepbn mod pI,

where Iq (similarly Ip) is the quotient groups I/qI, and a = x1b1 + · · ·+xnbn ∈
Iq, x1, · · · , xn ∈ Zq. The rounding function for Zq → Zp, i.e., b·ep, is the same
as we described in Section 2.1.

Throughout this paper, when we define a rounding function of a ring ele-
ments, there must be a reference basis associated with it. In situations where
the basis B is clear, we might omit it in the subscript for succinctness of notion.

3.2 L-LWR and MP-LWR Problems

Following the framework of [37], we next present an algebraic form of LWR
that captures Ring-, Order-, Poly-LWR. Similar to the work [37], we derive two
hardness results: (1) we prove a reduction from L-LWR to L′ -LWR for L′ ⊆ L,
and (2) we prove hardness of middle-product LWR (namely, MP-LWR) and a
variant multivariate MP-LWR (denoted as MV-MP-LWR), based on the hardness
of Order-LWR. Due to the limitation of space, the definitions and reductions
of MP-LWR are in full version of this paper. As OK is the maximal order, the
hardness of Order-, MP-, and Poly-LWR can be based on the hardness of RLWR.

Next we define Coefficient Ring OL of a lattice L in a number field K,
following the framework of [37]. Intuitively, we have the secret vector s ∈ L∨,
and the public random element a ∈ OL. Then the product s · a will lie in the
space L∨, consistent with the prior RLWE structure.

Coefficient Ring

Definition 3.2 (Coefficient Ring) For a lattice L ⊆ K, we define the coeffi-
cient ring of it as OL := {x ∈ K : xL ⊆ L}.

Then, the following lemmas can be derived.
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Lemma 3.3 ( [37]) OL = (L · L∨)∨, L and L∨ have the same coefficient ring
OL = OL∨ . Particularly, if L is an order O or it dual O∨ of K, then OL = O.

Lemma 3.4 ( [37]) The coefficient ring OL is an order of K, and OL ⊆ OK .

L-LWR Problem

With the definition above, we define a general algebraic LWR problem as follows.

Definition 3.5 (L-LWR distribution) Let L be a lattice in a number field K,
OL be the coefficient ring of L, q ≥ p ≥ 2, k ≥ 1 be positive integers, and B be a
basis of L∨. For s ∈ (L∨q )k, a sample from the L-LWR distribution Lks,q,p(L,B)

over (OLq )k × L∨p is generated by choosing a ← (OLq )k uniformly at random,
outputting (a, b = b〈a, s〉eB,p).

Definition 3.6 (L-LWR problem, decision) The decision problem D-L-LWRkB,q,p,`,ψ
is to distinguish between ` samples from Lks,q,p(L,B) where s← ψ, and ` samples

from U((OLq )k × L∨p ).

Definition 3.7 (L-LWR problem, search) The decision problem S-L-LWRkB,q,p,`,ψ
is given ` samples from Lks,q,p(L,B) for s← ψ, find s.

For simplicity of notation, we omit the subscript ψ for the uniform distribution
for the above two definitions. Below the computational problems are all average-
case, where distinguishability/solvability is referred to the case when the secret s
comes from some distribution. We also define their worst-case variants by adding
(W), i.e., (W)-S-L-LWR, where solvability means finding solutions for any s in
the support of ψ, i.e., for any s ∈ Supp(ψ).

The definitions above generalize the algebraic LWR variants defined over num-
ber fields or polynomial rings. Let k = 1. If L is an order O of K or its dual O∨,
then OL = O. Therefore, by takeing L = OK , we obtain the original Ring-LWR
problems defined in [6]. Alternatively, by taking L = O∨, we get the “primal”
form of Order-LWR over O, which is corresponding to the Poly-LWR problem
if further taking O = Z[α] for some α ∈ OK . Furthermore, if we take L = O,
a natural “dual” variant of Order-LWR is obtained, where s ∈ O∨/qO∨ and
bs · aep ∈ O∨/pO∨. We also get other problems that are not covered by above
ones if we take L to be neither an order nor its dual. For k ≥ 2, this generalizes
the Module RLWR to arbitrary lattices.

3.3 Reductions and Hardness Results

Below we present a L-LWR to L′ -LWR reduction. Due to space limit, we present
another reduction about MP-RLWR in full version of this paper.
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Reduction from L-LWR to L′
-LWR

For any lattices L′ ⊆ L in K, we define the natural inclusion map h : L′q → Lq
as the map that sends x + qL′ to x + qL for any x ∈ L′ . Similarly, the natural

inclusion map g : OL
′

q → OLq sends x+ qOL
′

to x+ qOL. The following lemmas
presents the conditions under which maps of this kind are bijections.

Lemma 3.8 ( [37]) Let L′ ⊆ L be lattices in number field K and q be a positive
integer. Then the natural inclusion map h : L′q → Lq is a bijection if and only

if q is coprime with the index |L/L′ |; in this case, h is efficient computable
and invertible given an arbitrary basis of L′ relative to a basis of L. The same
conclusions holds for the natural inclusion map h̄ : L∨q → (L′q)∨.

Lemma 3.9 ( [37]) Let L′ ⊆ L be lattices in number field K and q be a positive

integer that is coprime with the index |L/L′ |. If OL
′

⊆ OL, then the natural

inclusion map g : OL
′

q → OLq is a bijection.

The following Theorem presents the reduction from L-LWR to L′-LWR, due
to the limitation of space, we put the full proof of it in full version of this paper.

Theorem 3.10 Let L′ ⊆ L be lattices in a number field K with degree n, q ≥
p ≥ 2, k ≥ 1 be positive integers where p|q, and B be a basis of L∨. If OL′ ⊆ OL,
and the natural inclusion maps g : OL

′

q → OLq is an efficiently invertible bijection,
then there is an efficient deterministic transformation which:

– maps distribution U((OLq )k × L∨p ) to distribution U((OL′q )k × L′p
∨

)

– maps distribution Lks,q,p(L,B) to distribution Lks′,q,p(L′,B′), where s′ = s
mod q(L′)∨, B′ = B mod q(L′)∨.

Corollary 3.11 Adopt the notations from theorem 3.10, and assume that |L/L′|
is coprime with q, that OL′ ⊆ OL, and that bases of L′,OL′ relative to bases of
L,OL′ (respectively) are known. Then there is an efficient deterministic reduc-
tion from L-LWRkB,q,p,`,U to L′-LWRkB′,q,p,`,U ′ for both the search and decision
versions, where U and U ′ are the uniformly random distributions over L∨q and
(L′q)∨ respectively, B and B′ are Zq-bases of L∨q and (L′q)∨ respectively, and
B′ = B mod q(L′)∨.

4 New Hardness Results of Ring-LWR

4.1 Search RLWR to decision RLWR

Definition 4.1 (Normal Integral Basis) Let K/Q be a finite Galois exten-
sion with Galois group G. We say that K/Q has a normal integral basis (NIB)
if there exists an element α ∈ OK such that the Galois conjugates of α form an
Z-basis of OK .
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We denote R∗q (or (R∨q )∗) as the set that consists of all invertible elements
in Rq (or R∨q ). Next, we present a hardness result of decision RLWR based on
search RLWR under appropriate parameters.

Theorem 4.2 Let B be a normal integral basis of a Galois extension K/Q of de-
gree ϕ(m) = n, q ≥ p ≥ 2 be integers where p|q, p is a prime, and pOK = p1 · · · pg
where g = n/c for a constant c ∈ Z. Then there exists an efficient reduction
from S-RLWRB,q,p,`′,ψ to D-RLWRB,q,p,`,ψ′ , where ψ denotes the uniform distri-
bution over R∨p ∩ (R∨q )∗, ψ′ denotes the uniform distribution over U

(
(R∨q )∗

)
,

`′ = gpc` · poly(1/ε), and ε is the advantage of D-RLWRB,q,p,`,ψ′ oracle.

At a high level, the proof of Theorem 4.2 consists of three reductions following
the approach of [26]. We summarize the reduction route as follows, and explain
the parameters later:

S-RLWRB,q,p,`′,ψ
(1)−−→ (W)-pi-RLWRB,q,p,`′′,ψ

(2)−−→ (W)-D-RLWRiB,q,p,`,ψ′
(3)−−→ D-RLWRB,q,p,`,ψ′ .

We note that the above step (3) consists of two sub-steps: one is a reduction from
(W)-D-RLWRiB,q,p,`,ψ to average case D-RLWRiB,q,p,`,ψ′ , followed by another re-

duction from average case D-RLWRiB,q,p,`,ψ to (average case) D-RLWRB,q,p,`,ψ′ .

S-RLWRB,q,p,`′,ψ to (W)-pi-RLWRB,q,p,`′′,ψ

Definition 4.3 ((W)-pi-RLWRB,q,p,`′′,ψ) The worst-case (W)-pi-RLWRB,q,p,`′′,ψ

problem is: given `′′ samples from Ls,q,p(R,B) for some arbitrary s ∈ Supp(ψ),
find s mod piR

∨.

Lemma 4.4 (S-RLWRB,q,p,`′,ψ to (W)-pi-RLWRB,q,p,`′′,ψ) Let B be a nor-
mal integral basis as used in RLWR. Then for every i ∈ {1, · · · , g}, there exists a
deterministic poly-time reduction from S-RLWRB,q,p,`′,ψ to (W)-pi-RLWRB,q,p,`′′,ψ,
where ψ = R∨p ∩ (R∨q )∗, `′ = g`′′.

Proof. To prove this theorem, we will work on an arbitrary i ∈ {1, · · · , g}. The
same argument can be extended to all the other i’s. Throughout the rest of the
poof, we will view i as an arbitrary fixed index.

We first observe a simple fact. For k ∈ {1, · · · , g}, let σk be an automorphism
that maps pk to pi. We know that all these automorphisms exist as K is a Galois
extension. Then the reduction proceeds as follow.

– For each k ∈ {1, · · · , g}, the reduction runs through the following steps.

• Make `′′ queries to the oracle Ls,q,p(R,B).
• For each given sample (a, b), transform it to (σk(a), σk(b)).
• Send the `′′ transformed samples to the pi-RLWRB,q,p,`′′,ψ oracle
• Upon receiving the answer x ∈ R∨/piR∨, store σ−1

k (x) ∈ R∨/pkR∨.
– Next, the reduction combines all {σ−1

k (x)}k∈{1,··· ,g by the Chinese Remain-
der Theorem. Then it outputs the combined value s′ ∈ R∨p .

18



We now show that for each k ∈ [g], σ−1
k (x) = s mod pkR

∨. To show this, we
prove that the distribution of the transformed samples is correctly distributed as
the pi-RLWRB,q,p,`′′,ψ oracle requires. Particularly, for each (a, b)← Ls,q,p(R,B),
σk(a) is uniformly random in σk(Rq) = Rq as σk is an automorphism. Nex-
t we would like to show that σk(b) = bσk(a) · σk(s)eB,p. If this holds, then
(σk(a), σk(b)) would be the correct distribution that the pi-RLWRB,q,p,`′′,ψ or-
acle expects, and then the oracle would return x = σk(s) mod piR

∨ (with a
non-negligible probability). Thus, we have σ−1

k (x) = s mod pkR
∨. Now we focus

on proving σk(b) = bσk(a) · σk(s)eB,p.
We analyze the term b = ba · seB,p. Without loss of generality, we write

a · s mod qR∨ =
∑n
i=1 αibi under the Zq-basis B = {b1, · · · , bn} for αi ∈ Zq, i ∈

[n]. When rounding with respect to this basis, we can write b =
∑n
i=1bαiepbi ∈

R∨p . By taking the automorphism σk, we have σk(b) = σk

(∑n
i=1bαiepbi

)
=∑n

i=1bαiepσk(bi).Next we observe that σk(a·smod qR∨) = σk(a)·σk(s) mod qR∨,
which is also equal to σk

(∑n
i=1 αibi

)
. Then we have bσk(a)·σk(s)eB,p = bσk

(∑n
i=1 αibi

)
eB,p

= b
∑n
i=1 αiσk(bi)eB,p.

As B is a normal integer basis, we know that σk acts as a permutation over
the basis, i.e., σk(B) is equivalent to B up to a permutation. Thus,

bσk(a) · σk(s)eB,p = b
n∑
i=1

αiσk(bi)eB,p =

n∑
i=1

bαiepσk(bi) = σk(b).

Finally, by the Chinese Reminder Theorem, s mod pR∨ can be reconstructed
from {s mod pkR

∨}gk=1. Since the secret distribution ψ has support over R∨p ∩
(R∨q )∗, we have s = s mod pR∨. This completes the proof. ut

(W)-pi-RLWRB,q,p,`′′,ψ to (W)-D-RLWRiB,q,p,`,ψ

Definition 4.5 (Hybrid RLWR distribution) For i ∈ {1, · · · , g}, s ∈ R∨p ,

we define the distribution Lis,q,p(R,B) over Rq×R∨p as: sample (a, b)← Ls,q,p(R,B)
and output (a, b+ h) where h ∈ R∨p is uniformly random over mod piR

∨ for all
j ≤ i, and 0 over mod all the other ideals, i.e., pjR

∨’s for j > i.

We note that L0
s,q,p(R,B) is the same as Ls,q,p(R,B), Lgs,q,p(R,B) is the

uniformly random distribution over Rq × R∨p , and the other Lis,q,p(R,B)’s are
intermediate hybrids, which will be used via a hybrid argument later.

Definition 4.6 ((W)-D-RLWRiB,q,p,`,ψ′) The worst-case D-RLWRiB,q,p,`,ψ′ prob-

lem is defined as follows: given ` samples from Ljs,q,p(R,B) for arbitrary s ∈
Supp(ψ′) and j ∈ {i− 1, i}, determine j.

Lemma 4.7 (pi-RLWRB,q,p,`′′,ψ to (W)-D-RLWRiB,q,p,`,ψ′) For any i ∈ {1, · · · , g},
and ideal pi with N(pi) = pn/g = pc where c ≥ 1 is a constant integer, there
exists a probabilistic polynomial time reduction from pi-RLWRB,q,p,`′′,ψ to (W)-
D-RLWRiB,q,p,`,ψ′ where ψ = R∨p ∩ (R∨q )∗, ψ′ = (R∨q )∗, `′′ = pc` · poly(1/ε), and

ε is the advantage of the (W)-D-RLWRiB,q,p,`,ψ′ oracle.
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The proof of this lemma is similar to that of Lemma 5.9 in [26]. Due to the space
limit, we put it in full version of this paper.

(W)-D-RLWRiB,q,p,`,ψ′ to D-RLWRB,q,p,`,ψ′

Definition 4.8 (D-RLWRiB,q,p,`,ψ′) The average-case D-RLWRiB,q,p,`,ψ′ prob-

lem is defined as follows: given ` samples from Ljs,q,p(R,B) for s ← U(ψ′) and
j ∈ {i− 1, i}, determine j.

Lemma 4.9 (Worst-case to average-case) For every i ∈ {1, · · · , g} and the
uniform distribution ψ′ over (R∨q )∗, there exists a randomized poly-time reduction

from worst-case (W)-D-RLWRiB,q,p,`,ψ′ to average-case D-RLWRiB,q,p,`,ψ′ .

The lemma can be proved by the technique of re-randomization of the secret.
Due to the space limit, we put the proof in full version of this paper.

Lemma 4.10 (D-RLWRiB,q,p,`,ψ′ to D-RLWRB,q,p,`,ψ′) For any oracle solv-
ing the D-RLWRB,q,p,`,ψ′ problem with advantage ε, there exists an i ∈ {1, · · · , g}
and an efficient algorithm that solves D-RLWRiB,q,p,`,ψ′ with advantage ε/g using
this oracle.

The lemma can be proved by a simple hybrid argument. We put the proof in
full version of this paper.

The proof of Theorem 4.2 follows from Lemmas 4.4, 4.7, 4.9, and 4.10.

4.2 Search RLWE to Search RLWR

Before presenting the main theorem, we describe some notations that will be
used later. First, the ring LWE problem will take parameters to specify the
modulus, and the distributions of secret and the error. We will use φ to denote
the error distribution, ψ to denote the secret distribution (same as RLWR). Thus,
RLWEq,φ,`,ψ means the ring LWE problem with modulus q, error distribution φ, `
samples, and secret distribution ψ. Next, we use Uβ(B) to denote the distribution
over R∨q that each coefficient with respect to the basis B over R∨ is sampled
uniformly at random in the interval [−β, β].

Theorem 4.11 (S-RLWEq,φ,`,ψ to S-RLWRB,q,p,`,ψ) Let φ be a Be-bounded
distribution over the canonical imbedding space H, B be a basis of R∨ with dual
basis B′ such that ‖σ(b′j)‖2 ≤ Bd, and q ≥ 18pBdBe`n. Then there exists a poly-
time reduction from S-RLWEq,φ,`,ψ to S-RLWRB,q,p,`,ψ, where ψ = R∨p ∩ (R∨q )∗.

Our reduction can be obtained by the following two steps:

S-RLWEq,φ,`,ψ
(1)−−→ S-RLWEq,φ+Uβ(B),`,ψ

(2)−−→ S-RLWRB,q,p,`,ψ.

The first reduction is straight-forward. The second reduction uses an RD analysis
similar to the work [8]. We note that it is possible to use bound the Rènyi
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Divergence of the instances from the first and the third problems. However, this
will incur large parameter loss, e.g., the work [14] takes this approach, and they
are only able to analyze a constant number of samples, i.e., ` = O(1).

Due to space limit, we put the proof in full version of this paper.

4.3 On Normal Integer Basis and Cyclotomic Fields of Power of 2

Our hardness results require a short normal integral basis by combining The-
orem 4.2 and Theorem 4.11. As we discussed in the introduction, by Hilbert-
Speiser and Kronecker-Weber theorems, normal integral bases exist for cyclo-
tomic fields with prime-power-free periods and their subfields. It’s not hard to
determine such a basis in squared-free fields using the idea of [27]. We describe
the selection of the bases in full version of this paper.

One very special type of cyclotomic fields is the case of power of 2. This field
does not have normal integer basis, but our main Theorem 4.2 can be generalized
to this setting if we select specify types of rounding function b·e. Note: for
normal integer bases (NIB), Theorem 4.2 holds with respect to any rounding
function. With a careful inspection, the most significant property we need for
the theorem is that rounding commutes with automorphisms, which is true if B is
an NIB. However, for cyclotomic fields of power of 2, we know that there is a case
where σ(x) = −x, in which bσ(x)e might be different from σ(bxe) for a general
rounding function b·e. Nevertheless, if we use specific rounding function that
imposes this constraint, then Theorem 4.2 also holds. A particular example is to
round coefficients in the following way: for z ∈ R, define bze = Sign(z)·round(|z|)
for any rounding function round : R+ ∪ {0} → Z+ ∪ {0}.

5 Module Ring-LWR under Leakage

In this section, we study whether (Module) Ring-LWR is hard in the presence of
leakage. As discussed in the introduction, we first present a negative result for
Ring-LWR, and thus simply an entropy lower bound is not sufficient to derive
leakage resilience over Ring-LWR. Next we show general positive results for
Module Ring-LWR, for sufficiently large dimensions. As a key technical building
block, we prove a general ring leftover hash lemma.

5.1 A Negative Result for Ring-LWR under Leakage

First, we show that Ring-LWR might be completely insecure if the attacker
obtains some leakage of the secret. The idea of our attack is similar to that of
Ring-LWE by Bolboceanu et al. [9]. Below we present the details.

Let q ⊃ qR be an integral ideal in R, we let q̄ = qq−1 denote its complement
with respect to qR. Then we have that q̄∨ = (qq−1)∨ = 1

q (q−1)∨ = 1
q qR

∨ with

respect to R∨. Before presenting the attack on Ring-LWR, we first recall the
attack of Ring-LWE in [9].
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Lemma 5.1 ( [9]) Let K,R be a degree n number field and its ring of inte-
gers, q ⊃ qR be an integral R-ideal, and q̄ = qq−1 be its complement. There
exists a non-uniform algorithm such that for any secret distribution ψ, any er-
ror distribution φ satisfying that Pre←φ[‖e‖2 < 1/(2λn(q̄))] is non-negligible, the
algorithm solves search RLWEq,φ,1,ψ with a non-negligible probability.

Then the attack can be described by the the corollary below.

Corollary 5.2 (Attack for RLWR with Entropic Secrets) Let K,R be a de-
gree n cyclotomic field and its ring of integers, B be a basis of R with Bd-bounded
`∞ norm for all its elements, q = pp′ where p is a prime such that pR completely
splits as prime ideals over R.

Then for every integer η ∈ [n], letting ε = η/n, if pε > 2n5/2p′Bd, there exists
a distribution ψ over R∨p with entropy (1− ε)n log p such that RLWRB,q,p,1,ψ can
be solved with a non-negligible probability.

Proof. Let qR = pp′R =
∏n
i pi · p′R, where pR =

∏n
i pi. We define the distribu-

tion ψ as follows: given a parameter η ∈ [n], set ideal I =
∏η
i pi. Then a sample

from ψ is generated by choosing s← IR∨/pR∨ uniformly random in this ideal.
For a given Ls,q,p(R,B) sample (a, b = ba · seB,p), s ← ψ, b can be written

as b = p
qa · s+ δ, where δ = ba · seB,p− p

qa · s can be viewed as the deterministic
noise induced by rounding. The coefficients of the noise with respect to B belong
to [−1, 1] (real numbers). First we set b′ = 1

pb = 1
qa · s + 1

pδ (as an element in

KR). By Lemma 5.1, we know that if ‖ 1
pδ‖2 < 1/(2λn(q̄)) with non-negligible

probability, s can be recovered by non-negligible probability.
It remains to bound the `2 norm of 1

pδ. According the definition of δ, the

coefficients of 1
pδ with respect to B belong to [− 1

p ,
1
p ]. Writing 1

pδ = 〈B, c〉, then

by Cauchy-Schwarz inequality: ‖ 1
pδ‖2 ≤ ‖

∑n
i=1 ciσ(bi)‖2 ≤

∑n
i=1 |ci|·‖σ(bi)‖2 ≤

1
p

∑n
i=1 ‖σ(bi)‖2. Furthermore ‖σ(bi)‖2 = (

∑n
i=1 |σ(bi)|2)1/2 ≤

√
nBd. We can

bound the `2 norm of 1
pδ by 1

pn
3/2Bd.

On the other hand, by similar calculation as [9], we know that λn(q̄) ≤ nq
pη/n

=

np′p1−ε. By the parameters setting, we have that ‖ 1
pδ‖ <

1
2λn(q̄) , as desired. ut

Remark 5.3 Corollary 5.2 can be easily generalized to the case where the secret
is uniformly random over R∨/pR∨, yet the attacker learns the information of
s′ = s mod IR∨ for I =

∏η
i=1 pi. We can set b′ = 1

pb −
1
qas
′ = 1

qa · (s − s
′) +

1
pδ. Then this reduces back to the entropic secret as s − s′ ∈ I. By applying

Corollary 5.2, the attacker learns s− s′, and then he can recover s.

5.2 Towards Leakage Resilience of Module Ring-LWR

Next, we proceed to prove that Module Ring-LWR is pseudorandom for entropic
secrets (under some entropy requirements) for larger dimensions. To achieve this,
we first prove a general leftover hash lemma in the ring setting as a new tool. By
using the leftover hash lemma, we are able to generalize the plain LWR hardness
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result of [3] to the ring setting. Depending on the splitting of qR, we are able to
achieve different range of parameters. We present two important case studies: (1)
qR is low-splitting, i.e., it splits into fewer but larger ideals, and (2) general cases
where qR can be arbitrary. In the former case, we are able to achieve smaller
parameters, as low-splitting is in favor of randomness extraction by the leftover
hash lemma. We will elaborate further below.

New Tool: A New Algebraic Leftover Hash Lemma

Definition 5.4 (Hash Family over (Algebraic) Lattice) Let q, k ≥ 2 be
integers, L be lattice over the number field K, and OL, L∨ be its coefficient
ring and dual lattice, respectively. We define the following hash function family
H(OL,X , q, k) = {fa : (L∨q )k → L∨q }a∈(OLq )k as fa(x) =

∑k
i=1 xi ·ai mod q(L)∨,

for all x ∈ X ⊆ (L∨q )k, where
∑
i xi · ai is computed by using the field addition

and multiplication over K.

In this paper, we consider L = R = OK and L = O for an arbitrary order
of K = Q(α) (or their dual R∨ and O∨). We remark that for any O ⊆ OK ,
there exists an isomorphism between Oq and Rq as long as |O/R| is coprime
with q [37]. For brevity, we focus on the case of L = R = OK , and analogous
properties of O will follow by which of OK according to the isomorphism.

Next we introduce the following variant of the Leftover Hash Lemma [19],
generalized to the ring of integers of any arbitrary number field K (not neces-
sarily a Galois extension). Before presenting the description of the lemma, we
first define the distribution as follows

D(H, R∨q ) = {(fa, b)|fa
$←− H(R,X , q, k), b = fa(x) for x← X}.

For simplicity, we will use a to stand for the description of fa in the distribu-
tion D(H, R∨q ), and then D(H, R∨q ) can be simply denoted as D((Rq)

k, R∨q ) =

{(a, b)|a $←− (Rq)
k, b = fa(x) for x← X}. Our goal is to prove that D(H, R∨q ) is

statistically close to the uniform distribution if the input distribution X satisfies
a certain entropy condition.

To achieve this, we need some preparation of the following definition: we
say that vector r ∈ (R∨)k maximal belongs to a factor I of qR, abbreviated as
r ∈max IR∨ if the following conditions hold.

– For every coordinate ri of r, we have ri ∈ IR∨.
– For any ideal J |qR such that I|J , there exists at least one coordinate rj

such that rj /∈ JR∨.

Now we present our main result as follows:

Theorem 5.5 (Algebraic Leftover Hash Lemma) For any hash function fam-
ily H(R,X , q, k) over a number field K = Q(α) with degree n and gcd(q, [OK :
Z[α]]) = 1, we have

∆
(
D(H, R∨q ), U(H, R∨q )

)
≤ 1

2

√√√√∑
q6=〈1〉
q|qR

N(q)Col(Xq),
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where Xq = {x mod qR∨|x← X}, Col(Xq) is the collision probability of Xq, and
q ranges over all divisors (except 〈1〉) of the ideal 〈q〉 = qR.

Proof. As discussed above, we need to bound ∆
(
D((Rq)

k, R∨q ), U((Rq)
k, R∨q )

)
.

To do this, we first derive an upper bound on the statistical distance between
D((Rq)

k, R∨q ) and U((Rq)
k, R∨q ) (which are written as D and U for simplicity)

in terms of the collision probability Col(D).

∆
(
D, U

)
=

1

2

∑
(a,b)∈U

∣∣∣Pr[(a, b)← D]− 1

|U |

∣∣∣
≤ 1

2

√
|U |
√ ∑

(a,b)∈U

(
Pr[(a, b)← D]− 1

|U |

)2
=

1

2

√
|U |
√
− 1

|U | +
∑

(a,b)∈U

Pr[(a, b)← D]2

≤ 1

2

√
|U | · Col(D)− 1.

(1)

Next we bound Col(D) as follows, where all probabilities run through two
independently copies of a,a′ ← (Rq)

k and x,y ← X :

Col(D) = Pr[(a = a′) ∧ (a · x = a′ · y mod qR∨)]

= Pr[a = a′] · Pr[a · x− a′ · y = 0 mod qR∨|a = a′]

=
1

qnk
· Pr[a · (x− y) = 0 mod qR∨].

(2)

Now we further bound the probability Pr[a · (x − y) = 0 mod qR∨]. To do
this, we first let q = pr11 · · · p

rt
t be the prime (integer) factorization, and the

consider the the (ideal) decomposition of qR. Since gcd(q, [OK : Z[α]]) = 1,

we can apply Lemma 2.4 on each prime factor and obtain piR =
∏
j∈[gi]

p
e′i,j
i,j

where pi,j = 〈pi, fi,j(α)〉 for some monic irreducible polynomial fi,j(x) ∈ Zpi [x],
for i ∈ [t]. Thus, qR = pr11 · · · p

rt
t R =

∏
i,j p

ei,j
i,j , where ei,j = e′i,jri for every

i ∈ [t], j ∈ [gi]. We also have qR∨ =
∏
i,j p

ei,j
i,j R

∨ by Lemma 2.6.

Then we observe a simple fact that any possible x − y in the range must
maximal belong to JR∨ for only one ideal factor J |qR. We sketch a simple
proof by contradiction. Assume there are J1 6= J2 that a vector x ∈max J1 and
x ∈max J2. Then it is not hard to see that x maximal belongs to their LCM,
i.e., J1 ∩ J2, a strictly smaller ideal. Then we know that J1|J1 ∩ J2, and every
element of x belongs to J1 ∩ J2, reaching a contradiction to x ∈max J1.

As {(x− y) ∈max J }J |qR∨ forms a partition (as argued above), we can use
the total probability to re-write the following equation:

Pr[a · (x− y) = 0 mod qR∨]

=
∑

J |qR∨
Pr[a · (x− y) = 0 mod qR∨|x− y ∈max JR∨] · Pr[x− y ∈max JR∨]. (3)
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We know the probability Pr[x − y ∈max JR∨] ≤ Pr[x − y = 0 mod JR∨] =
Col(XJ ) for every J |qR. Thus, it remains to compute

Pr [a · (x− y) = 0 mod qR∨|x− y ∈max JR∨] .

Without loss of generality, we let J =
∏
i,j p

xi,j
i,j , 0 ≤ xi,j ≤ ei,j . By Chinese Re-

minder Theorem 2.5, we have R∨/qR∨ ∼=
⊕

i,j R
∨/p

ei,j
i,j . Thus, we can view

a random ring element in R∨/qR∨ as independently random coordinates in
{R∨/pei,ji,j }i,j . Therefore, we write:

Pr[a · (x− y) = 0 mod qR∨|x− y ∈max JR∨]

=
∏
i,j

Pr[a · (x− y) = 0 mod p
ei,j
i,j R

∨|x− y ∈max JR∨]

=
∏
i,j

Pr[ai,j · (x− y)i,j = 0 mod p
ei,j
i,j R

∨|x− y ∈max JR∨],

(4)

where ai,j = a mod p
ei,j
i,j , (x− y)i,j = x− y mod p

ei,j
i,j R

∨.
Next we will determine the ideal generated by the vector (x − y)i,j =

((x − y)i,j [1], · · · , (x − y)i,j [k]), so that we can apply Lemma 2.3 to bound
the probability Pr[ai · (x− y)i = 0 mod p

ei,j
i,j R

∨|x− y ∈max JR∨] for each i, j.

Claim 5.6 The ideal generated by vector (x− y)i,j is p
xi,j
i,j R

∨.

Proof. Below we will use rp to denote a ring element r modulo an integer p, i.e.,
rp = r mod p, for short.

By definition of (x−y) ∈max J , we know that for each η ∈ [k], (x−y)i,j [η] ∈
p
xi,j
i,j R

∨/p
ei,j
i,j R

∨. Therefore, the ideal 〈(x− y)i,j〉 generated by vector (x− y)i,j
satisfies 〈(x− y)i,j〉 ⊆ p

xi,j
i,j R

∨.

On the other hand, there exists k′ ∈ [k] such that (x−y)i,j [k
′] /∈ p

xi,j+1
i,j R∨/p

ei,j
i,j R

∨.
It is clear that the principle ideal 〈(x− y)i,j [k

′]〉 generated by (x− y)i,j [k
′] sat-

isfies that 〈(x − y)i,j [k
′]〉 ⊆ 〈(x − y)i,j〉. Thus in order to show 〈(x − y)i,j〉 =

p
xi,j
i,j R

∨, it suffices to show p
xi,j
i,j R

∨ ⊆ 〈(x− y)i,j [k
′]〉.

According to Lemma 2.6 and the isomorphism theorem, we have

p
xi,j
i,j R

∨/p
ei,j
i,j R

∨ ∼= p
xi,j
i,j R/p

ei,j
i,j R

∼=
(
p
xi,j
i,j /〈pi〉

)
/
(
p
ei,j
i,j /〈pi〉

)
=
〈
f
xi,j
i,j (α)pi

〉
/
〈
f
ei,j
i,j (α)pi

〉
,

and as well

p
xi,j+1
i,j R∨/p

ei,j
i,j R

∨ ∼= p
xi,j+1
i,j R/p

ei,j
i,j R

∼=
〈
f
xi,j+1
i,j (α)pi

〉
/
〈
f
ei,j
i,j (α)pi

〉
.

Then we can see that, there exists an element r·fxi,ji,j (α)pi ∈
〈
f
xi,j
i,j (α)pi

〉
/
〈
f
ei,j
i,j (α)pi

〉
that is equivalent to (x− y)i,j [k

′] under the isomorphism, satisfying r ∈ R, r /∈〈
fi,j(α)pi

〉
. Therefore, p

xi,j
i,j R

∨ ⊆ 〈(x − y)i,j [k
′]〉 is equivalent to

〈
f
xi,j
i,j (α)pi

〉
⊆〈

r·fxi,ji,j (α)pi
〉
, under the view of the isomorphism. It remains to show

〈
f
xi,j
i,j (α)pi

〉
⊆〈

r · fxi,ji,j (α)pi
〉
.

To see this, we denote u = r mod fi,j(α)pi ∈ Rpi/〈fi,j(α)pi〉. We notice that
Rpi/〈fi,j(α)pi〉 ∼= R/pi,j , which is a field as pi,j is a prime ideal according to
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Lemma 2.4. Therefore, u 6= 0 is invertible over Rpi/〈fi,j(α)pi〉, and hence there
is an element v ∈ Rpi/〈fi,j(α)pi〉 such that vr = 1 mod fi,j(α)pi . From this,
there exist vr ∈ 〈r〉, tfi,j(α)pi ∈ 〈fi,j(α)pi〉 such that vr+ tfi,j(α)pi = 1, so 〈r〉 is
coprime to 〈fi,j(α)pi〉. Furthermore, according to Lemma 2.2, 〈r〉 is coprime to
〈fei,ji,j (α)pi〉, and thus r is invertible over Rpi/〈f

ei,j
i,j (α)pi〉. Therefore, any element

µ · fxi,ji,j (α)pi = µ · r−1r · fei,ji,j (α)pi ∈
〈
f
ei,j
i,j (α)pi

〉
also belongs to

〈
r · fxi,ji,j (α)pi

〉
.

This reaches our desired conclusion that
〈
f
xi,j
i,j (α)pi

〉
⊆
〈
r · fxi,ji,j (α)pi

〉
. ut

From Lemma 2.3 and Claim 5.6, we know that Pr[ai·(x−y)i = 0 mod p
ei,j
i,j R

∨|x−

y ∈max JR∨] =
N(p

xi,j
i,j )

N(p
ei,j
i,j )

. Then we continue to compute equation (4):∏
i,j

Pr[ai · (x− y)i = 0 mod p
ei,j
i,j |x− y ∈max JR∨]

=
∏
i,j

N(p
xi,j
i,j )

N(p
ei,j
i,j )

=
∏
i,j

N(pi,j)
xi,j

N(p
ei,j
i,j )

=
N(J )∏
iN(pi)

=
N(J )

qn
.

(5)

Combine equations (1),(2),(3),and using the facts N(R) = 1, Col(XR) = 1,
yields the bound in the lemma. ut

From our leftover hash lemma, we can derive the following corollaries for
three important cases: (1) the general case, (2) K is a cyclotomic field, and (3)
qR does not have a “small” ideal factor (in the norm). Due to the limitation of
space, we defer the proof to full version of this paper.

Corollary 5.7 Let k, e, q be integers, ε ∈ (0, 1), and R = OK be the ring of
integers of a number field K = Q(α) with degree n, such that gcd(q, [OK :

Z[α]) = 1 and e ≥ 2 log
(

1
ε

)
+ 2n log q − 2. Suppose s is chosen from some

distribution X over (R∨q )k such that H∞(s mod q) ≥ e for any ideal q|qR, and

a
$←− (Rq)

k, u
$←− R∨q are uniformly random and independent of s. Then we have

that ∆
[
(a, 〈a, s〉 mod qR∨), (a, u)

]
≤ ε.

Corollary 5.8 (Cyclotomic Fields) Adopt the notations in Corollary 5.7. Let
K be a cyclotimic number field of degree n. The conclusion holds for e ≥
2 log

(
1
ε

)
+ (n+ 2) log q − 2.

Corollary 5.9 (Large Ideal Factors) Adopt the notations in Corollary 5.7.
The conclusion holds if for any prime ideal factor pi,j of qR, we have N(pi,j) ≥
n log q + 1, and e ≥ 2 log

(
1
ε

)
+ n log q.

5.3 Hardness of Module-RLWR

In this section, we present hardness results of Module Ring-LWR, by applying
our new leftover hash lemma to the proof framework of [3]. We first present
a definition of module-RLWR under weak secrets, a generalization of the plain
weak LWR in the work [3].
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Definition 5.10 (Weak Module-RLWR) Let n, p, q, `, k be positive integers,
R = OK be the ring of integers of a number field K with degree n, B be a basis
of R∨, and the decomposition of qR be qe11 · · · q

eg
g where each qi is a prime ideal

over R∨. The (decision) wRLWRkB,q,p,`,γ,e assumption is defined as: let (s, aux)
be a pair of correlated random variable where

– each coefficient si[j] of each si relative to B has range in [−γ, γ] for i ∈
[k], j ∈ [n];

– H∞(s mod qj |aux) ≥ e for each prime ideal factor qj of qR.

The task is to distinguish the following two distributions:

(aux,A, bA · seB,p) versus (aux,A, bueB,p),

where A
$←− (Rq)

`×k, u
$←− (R∨q )` are uniform and independent of (s, aux).

Below we describe two interesting case studies: (1) when qR is low-splitting,
i.e., it factors into fewer but larger ideals (in norm), and (2) the general case.
For the low-splitting case, we are able to achieve the following theorem.

Theorem 5.11 (Hardness of Module-RLWR for Low-splitting Case) Let
λ, n, p, q, `, k, γ be positive integers, R = OK be the ring of integers of a number
field K = Q(α) with degree n, B be a basis of R∨ with Bd1 bounded `∞ nor-
m for all entries, all entries of its dual basis B′ be Bd2-bounded in `∞ norm,
t ∈ (R∨)−1 such that tR∨ + qR = R, φ be a β-bounded distribution over KR for

some real β > 0, such that q ≥ 2Bd1Bd2βγk`pn
5
2 and gcd(q, [OK : Z[α]]) = 1.

Assume that the decomposition of qR can be expressed as
∏
i,j p

ei,j
i,j , where

each pi,j is a prime ideal over R, and N(pi,j) ≥ 2λ ≥ n log q + 1. Then we have
the following:

– (High entropy secret) There exists a poly-time reduction from RLWEq,t−1·φ,`
to wRLWRkB,q,p,`,γ,e, where e ≥

(
2n+ λ

)
log q + 2λ.

– (Uniform secret) There exists a poly-time reduction from RLWEq,t−1·φ,` to

RLWRkB,q,p,`, where k ≥ log q
λ log(2γ)

(
(2n+ λ) log q + 2λ

)
.

The theorem can be proved by similar techniques as [3] together with The-
orem 5.5. As the proof structure is similar to that in the prior work, for com-
pleteness we describe the proof in full version of this paper.

Theorem 5.12 (Hardness of Module-RLWR for General Cases) Let λ, n,
p, q, `, f, k, γ be positive integers, R = OK be the ring of integers of a field ex-
tension K = Q(α) with degree n, K ′ be a number field and R′ be the ring
of integers of K ′ that is a rank-f free R-module with known basis, B be a
basis of R∨ with Bd1 bounded `∞ norm for all entries, and also all entries
of its dual basis B′ be with Bd2-bounded `∞ norm, t ∈ (R′∨)−1 such that
tR′∨ + qR′ = R′, φ be a β-bounded distribution over KR for some real β > 0,
such that q ≥ 2Bd1Bd2βγk`pn

5
2 and gcd(q, [OK : Z[α]]) = 1. Then we have the

following:
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– (High entropy secret) There exists a poly-time reduction from RLWEq,t−1φ′,`

to wRLWRkB,q,p,`,γ,e, where φ′ is a distribution over K ′R such that φ = TrK′R/KR(φ′)

and e ≥
(
(f + 2)n+ λ

)
log q + 2λ− 2.

– (Uniform secret) There exists a poly-time reduction from RLWEq,t−1φ′,` to

RLWRkB,q,p,`, where φ′ is as above and k ≥ log q
log(N(qi)min) log(2γ)

(
((f + 2)n +

λ) log q + 2λ− 2
)
.

The proof of this theorem is similar to that of Theorem 5.11, we detail it in
full version of this paper.

For the case of cyclotomic fields, according to Corollary 5.8, we have the
following tighter result.

Corollary 5.13 Adopt the notations of Theorem 5.12. Let K be a cyclotomic
field of degree n, then

– (High entropy secret) There exists a poly-time reduction from RLWEq,t−1φ′,`

to wRLWRkB,q,p,`,γ,e, where k ≥
(
(f + 1)n+ λ+ 2

)
log q + 2λ− 2.

– (Uniform secret) There exists a poly-time reduction from RLWEq,t−1φ′,` to

RLWRkB,q,p,`, where k ≥ log q
log(N(qi)min) log(2γ)

(
((f + 1)n+λ+ 2) log q+ 2λ− 2

)
.
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statistical distance. In T. Iwata and J. H. Cheon, editors, ASIACRYPT 2015,
Part I, volume 9452 of LNCS, pages 3–24. Springer, Heidelberg, Nov. / Dec. 2015.

6. A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In
Pointcheval and Johansson [39], pages 719–737.

7. S. Bhattacharya, O. Garcia-Morchon, T. Laarhoven, R. Rietman, M.-J. O. Saari-
nen, L. Tolhuizen, and Z. Zhang. Round5: Compact and fast post-quantum public-
key encryption. IACR Cryptology ePrint Archive, 2018:725, 2018.

28



8. A. Bogdanov, S. Guo, D. Masny, S. Richelson, and A. Rosen. On the hardness
of learning with rounding over small modulus. In E. Kushilevitz and T. Malkin,
editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 209–224. Springer,
Heidelberg, Jan. 2016.

9. M. Bolboceanu, Z. Brakerski, R. Perlman, and D. Sharma. Order-LWE and the
hardness of ring-LWE with entropic secrets. In ASIACRYPT 2019, Part II, LNCS,
pages 91–120. Springer, Heidelberg, Dec. 2019.

10. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness
of learning with errors. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors,
45th ACM STOC, pages 575–584. ACM Press, June 2013.

11. W. Castryck, I. Iliashenko, and F. Vercauteren. Provably weak instances of ring-
LWE revisited. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part I,
volume 9665 of LNCS, pages 147–167. Springer, Heidelberg, May 2016.

12. H. Chen, K. Lauter, and K. E. Stange. Attacks on search rlwe. 2015.
13. H. Chen, K. E. Lauter, and K. E. Stange. Vulnerable galois rlwe families and

improved attacks. IACR Cryptology ePrint Archive, 2016:193, 2016.
14. L. Chen, Z. Zhang, and Z. Zhang. On the hardness of the computational ring-LWR

problem and its applications. In ASIACRYPT 2018, Part I, LNCS, pages 435–464.
Springer, Heidelberg, Dec. 2018.

15. K. Conrad. The different ideal. Expository papers. Available at: https://www.
math.uconn.edu/~kconrad/blurbs/gradnumthy/different.pdf.

16. K. Conrad. Factoring ideals after dedekind. Expository papers/Lecture
notes. Available at: https://kconrad.math.uconn.edu/blurbs/gradnumthy/

dedekindf.pdf.
17. D. Dachman-Soled, H. Gong, M. Kulkarni, and A. Shahverdi. Partial key exposure

in ring-lwe-based cryptosystems: Attacks and resilience. IACR Cryptology ePrint
Archive, 2018:1068, 2018.

18. J.-P. D’Anvers, A. Karmakar, S. Sinha Roy, and F. Vercauteren. Saber: Module-
lwr based key exchange, cpa-secure encryption and cca-secure kem. In A. Joux,
A. Nitaj, and T. Rachidi, editors, Progress in Cryptology – AFRICACRYPT 2018,
pages 282–305, Cham, 2018. Springer International Publishing.

19. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to gener-
ate strong keys from biometrics and other noisy data. SIAM journal on computing,
38(1):97–139, 2008.
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