A Polynomial-Time Algorithm for Solving the
Hidden Subset Sum Problem

Jean-Sébastien Coron and Agnese Gini

University of Luxembourg
jean-sebastien.coron@uni.lu, agnese.gini@uni.lu

Abstract. At Crypto '99, Nguyen and Stern described a lattice based
algorithm for solving the hidden subset sum problem, a variant of the
classical subset sum problem where the n weights are also hidden. While
the Nguyen-Stern algorithm works quite well in practice for moderate
values of n, we argue that its complexity is actually exponential in n;
namely in the final step one must recover a very short basis of a n-
dimensional lattice, which takes exponential-time in n, as one must apply
BKZ reduction with increasingly large block-sizes.

In this paper, we describe a variant of the Nguyen-Stern algorithm that
works in polynomial-time. The first step is the same orthogonal lattice
attack with LLL as in the original algorithm. In the second step, instead
of applying BKZ, we use a multivariate technique that recovers the short
lattice vectors and finally the hidden secrets in polynomial time. Our
algorithm works quite well in practice, as we can reach n ~ 250 in a few
hours on a single PC.

1 Introduction

The hidden subset-sum problem. At Crypto ’'99, Nguyen and Stern de-
scribed a lattice based algorithm for solving the hidden subset sum problem
[NS99], with an application to the cryptanalysis of a fast generator of random
pairs (z,¢” (mod p)) from Boyko et al. from Eurocrypt '98 [BPV98]. The hidden
subset sum problem is a variant of the classical subset sum problem where the
n weights «; are also hidden.

Definition 1 (Hidden Subset Sum Problem). Let M be an integer, and let
Qag,...,an be random integers in Zps. Let x1,...,%X, € Z™ be random vectors
with components in {0,1}. Let h = (hy, ..., hy,) € Z™ satisfying:

h=a1x1 + @exo + -+ apx, (mod M) (1)

Given M and h, recover the vector a = (au, ..., ay,) and the vectors x;’s, up to
a permutation of the «;’s and X;’s.

Recall that the classical subset sum problem with known weights «;’s can be
solved in polynomial time by a lattice based algorithm [LO85], when the density
d =n/log M is O(1/n). Provided a shortest vector oracle, the classical subset



sum problem can be solved when the density d is less than ~ 0.94. The algorithm
is based on finding a shortest vector in a lattice built from h, aq, ..., ay, M; see
[CIJLT92]. For the hidden subset sum problem, the attack is clearly not applicable
since the weights «;’s are hidden.

The Nguyen-Stern algorithm. For solving the hidden subset-sum prob-
lem, the Nguyen-Stern algorithm relies on the technique of the orthogonal lat-
tice. This technique was introduced by Nguyen and Stern at Crypto ’97 for
breaking the Qu-Vanstone cryptosystem [NS97], and it has numerous applica-
tions in cryptanalysis, for example cryptanalysis of the Ajtai-Dwork cryptosys-
tem [NS98b], cryptanalysis of the Béguin-Quisquater server-aided RSA protocol
[NS98a], fault attacks against RSA-CRT signatures [CNT10, BNNT11], attacks
against discrete-log based signature schemes [NSS04], and cryptanalysis of vari-
ous homomorphic encryption schemes [vDGHV10, LT15, FLLT15] and multilin-
ear maps [CLT13, CP19, CN19].

The orthogonal lattice attack against the hidden subset sum problem is based
on the following technique [NS99]. If a vector u is orthogonal modulo M to the
public vector of samples h, then from (1) we must have:

(u,h) =a1(u,x1) + -+ ap(u,x,) =0 (mod M)

This implies that the vector py = ((u,x1),...,{u,X,)) is orthogonal to the
hidden vector &« = (avq, . . ., @, ) modulo M. Now, if the vector u is short enough,
the vector p, will be short (since the vectors x; have components in {0, 1} only),
and if py, is shorter than the shortest vector orthogonal to @ modulo M, we must
have p, = 0, and therefore the vector u will be orthogonal in Z to all vectors
x;. The orthogonal lattice attack consists in generating with LLL many short
vectors u orthogonal to h; this reveals the lattice of vectors orthogonal to the
x;’s, and eventually the lattice £« generated by the vectors x;’s. In a second
step, by finding sufficiently short vectors in the lattice Ly, one can recover the
original vectors x;’s, and eventually the hidden weight a by solving a linear
system.

Complexity of the Nguyen-Stern algorithm. While the Nguyen-Stern al-
gorithm works quite well in practice for moderate values of n, we argue that its
complexity is actually exponential in the number of weights n. Namely in the
first step we only recover a basis of the lattice L, generated by the binary vectors
X;, but not necessarily the original vectors x;’s, because the basis vectors that
we recover can be much larger than the x;’s. In order to recover the x;’s, in a
second step one must therefore compute a very short basis of the n-dimensional
lattice L4, and in principle this takes exponential-time in n, as one must ap-
ply BKZ reduction [Sch87] with increasingly large block-sizes. In their practical
experiments, the authors of [NS99] were able to solve the hidden subset sum
problem up to n = 90; for the second step, they used a BKZ implementation
from the NTL library [Sho] with block-size 5 = 20. In our implementation of



their algorithm, with more computing power and thanks to the BKZ 2.0 [CN11]
implementation from [fpl16], we can reach n = 170 with block-size 5 = 30, but
we face an exponential barrier beyond this value.

Our contributions. Our first contribution is to provide a more detailed anal-
ysis of both steps of the Nguyen-Stern algorithm. For the first step (orthogonal
lattice attack with LLL), we first adapt the analysis of [NS99] to provide a rigor-
ous condition under which the hidden lattice Ly can be recovered. In particular,
we derive a rigorous lower bound for the bitsize of the modulus M; we show that
the knapsack density d = n/log M must be O(1/(nlogn)), and heuristically
O(1/n), as for the classical subset-sum problem.

We also provide a heuristic analysis of the second step of Nguyen-Stern. More
precisely, we provide a simple model for the minimal BKZ block-size g that can
recover the secret vectors x;, based on the gap between the shortest vectors
and the other vectors of the lattice. While relatively simplistic, our model seems
to accurately predict the minimal block-size 5 required for BKZ reduction in
the second step. We show that under our model the BKZ block-size must grow
almost linearly with the dimension n; therefore the complexity of the second step
is exponential in n. We also provide a slightly simpler approach for recovering
the hidden vectors x; from the shortest lattice vectors. Eventually we argue that
the asymptotic complexity of the full Nguyen-Stern algorithm is 2%/ logn)

Our main contribution is then to describe a variant of the Nguyen-Stern
algorithm for solving the hidden subset sum problem that works in polynomial-
time. The first step is still the same orthogonal lattice attack with LLL. In
the second step, instead of applying BKZ, we use a multivariate technique that
recovers the short lattice vectors and finally the hidden secrets in polynomial
time, using m ~ n?/2 samples instead of m = 2n as in [NS99]. Our new second
step can be of independent interest, as its shows how to recover binary vectors
in a lattice of high-dimensional vectors. Asymptotically the heuristic complexity
of our full algorithm is O(n?). We show that our algorithm performs quite well
in practice, as we can reach n ~ 250 in a few hours on a single PC.

Cryptographic applications. As an application, the authors of [NS99] showed
how to break the fast generator of random pairs (z,¢g* (mod p)) from Boyko,
Peinado and Venkatesan from Eurocrypt '98. Such generator can be used to
speed-up the generation of discrete-log based algorithms with fixed base g, such
as Schnorr identification, and Schnorr, ElGamal and DSS signatures. We show
that in practice our polynomial-time algorithm enables to break the Boyko et
al. generator for values of n that are beyond reach for the original Nguyen-Stern
attack; however, we need more samples from the generator, namely m ~ n?/2
samples instead of m = 2n.

Source code. We provide in

https://pastebin.com/ZFk1qjfP


https://pastebin.com/ZFk1qjfP

the source code of the Nguyen-Stern attack and our new attack in SageMath
[Sag19], using the L? [NS09] implementation from [fpl16].

2 Background on lattices

Lattices and bases. In this section we recall the main definitions and prop-
erties of lattices used throughout this paper; we refer to the full version of this
paper [CG20] for more details. Let by,..., by € Z™ be linearly independent
vectors. The lattice generated by the basis bq,..., by is the set

d
L(by,...,by) = {Zaibi | al,...,adEZ}.
=1

We say that a matrix B is a base matriz for the lattice generated by its rows
by, ...,bg. Two basis B, B’ generate the same lattice if and only if there exists
an unimodular matrix U € GL(Z, d) such that UB = B’. Given any basis B we
can consider its Gram-determinant d(B) = /det(BBT); this number is invariant
under base change. The determinant of a lattice £ is the Gram-determinant of
any of its basis B, namely det(£) = d(B).

The dimension dim(L), or rank, of a lattice is the dimension as vector space
of E; := Spang(L), namely the cardinality of its bases. We say that a lattice is
Sfull rank if it has maximal dimension. We say that M C L is a sublattice of a
lattice £ if it is a lattice contained in £, further we say that L is a superlattice
of M. If dim(M) = dim(L), we say that M is a full-rank sublattice of £, and
we must have det(£) < det(M).

Orthogonal lattice. Consider the Euclidean norm || - || and the standard scalar
product (-,-) of R™. The orthogonal lattice of a lattice £ C Z™ is

Lt={ver™ | VbeL, (v,b)=0}=EznNZ"

We define the completion of a lattice £ as the lattice £ = E, NZ™ = (L£*+)*.
Clearly, £ is a full rank sublattice of £. We say that a lattice is complete if it
coincides with its completion, i.e. £ = £. One can prove that dim £L+dim £+ = m
and det(£1) = det(£) < det(L); we recall the proofs in the full version of this
paper [CG20]. By Hadamard’s inequality, we have det(L£) < Hf-l:l Ib;|| for any
basis by, ..., by of a lattice £; this implies that det(£1) < H‘Ll |b;|| for any
basis bq,...,bg of L.

Lattice minima. The first minimum A;(L) of a lattice £ is the minimum of
the norm of its non-zero vectors. Lattice points whose norm is A;(£) are called
shortest vectors. The Hermite constant -4, in dimension d, is the supremum of
A1(£)2/det(L£)7 over all the lattices of rank d. Using Minkowski convex body
theorem, one can prove that for each d € N*, 0 <~y <d/4+1.



More generally, for each 1 < ¢ < dim £, the i-th minimum X\;(£) of a lat-
tice £ is the minimum of the max; {[|v;[|} among all sets {v;},_; of i linearly
independent lattice points. Minkowski’s Second Theorem states that for each
1<i<d

i

[Th© | < vAadet(o)s.
j=1

Lattice reduction. LLL-reduced bases have many good properties. In partic-
ular the first vector by of an LLL-reduced basis is not much longer than the
shortest vector of the lattice.

Lemma 1 (LLL-reduced basis). Let by,...,bg an LLL-reduced basis of a
lattice L. Then ||by] < 2%/\1(/:), and ||b;|| < 2%/\1-(/5) foreach 1 <j<i<
d.

The LLL algorithm [LLL82] outputs an LLL-reduced basis of a rank-d lat-
tice in Z™ in time O(d®mlog® B), from a basis of vectors of norm less than
B. This was further improved by Nguyen and Stehlé in [NS09] with a variant
based on proven floating point arithmetic, called L?, with complexity O(d*m (d+
log B) log B) without fast arithmetic. In this paper, when we apply LLL, we al-
ways mean the L? variant. We denote by log the logarithm in base 2.

Heuristics. For a “random lattice” we expect Ay (£) ~ v/ddet(L) by the Gaus-
sian Heuristic and all lattice minima to be approximately the same. Omitting
the V/d factor, for a lattice £ generated by a set of d “random” vectors in Z™ for
d < m, we expect the lattice £ to be of rank d, and the short vectors of £ to have
norm approximately (det £1)1/ (=) ~ (det £)1/ (=) ~ (T, |[by||)}/(m~=D).

3 The Nguyen-Stern Algorithm

In this section we recall the Nguyen-Stern algorithm for solving the hidden subset
sum problem. We explain why the algorithm has complexity exponential in n and
provide the result of practical experiments. Then in Section 4 we will describe
our polynomial-time algorithm.

Recall that in the hidden subset sum problem, given a modulus M and h =
(h1,...,hm) € Z™ satisfying

h=a1x; + aexa+ -+ apx, (mod M) (2)

we must recover the vector @ = (a, ..., o) € Z%, and the vectors x; € {0,1}™.
The Nguyen-Stern algorithm proceeds in 2 steps:

1. From the samples h, determine the lattice £y, where Ly is the lattice gen-
erated by the x;’s.

2. From Ly, recover the hidden vectors x;’s. From h, the x;’s and M, recover
the weights «;.



3.1 First step: orthogonal lattice attack

The orthogonal lattice attack. The goal of the orthogonal lattice attack is
to recover the hidden lattice Lx, where £ C Z™ is the lattice generated by the
n vectors x;. Let Ly be the lattice of vectors orthogonal to h modulo M:

Lo=A3;(h)={uecZ™|(u,h)=0 (mod M) }

Following [NS99], the main observation is that if (u,h) =0 (mod M), then from
(2) we obtain:

(u,h) = a1 {(u,x1) + -+ an{u,x,) =0 (mod M)

and therefore the vector p, = ({(u,x1),...,{u,x,)) is orthogonal to the vector
a=(ai,...,a,) modulo M. Now, if the vector u is short enough, the vector py
will be short (since the vectors x; have components in {0, 1} only), and if py, is
shorter than the shortest vector orthogonal to & modulo M, then we must have
pu = 0 and therefore u € L.

Therefore, the orthogonal lattice attack consists in first computing an LLL-
reduced basis of the lattice Lg. The first m — n short vectors uy, ..., u,,_, will
give us a generating set of the lattice £;. Then one can compute a basis of the
lattice £ = (£5)*. This gives the following algorithm, which is the first step of
the Nguyen-Stern algorithm; we explain the main steps in more details below.

Algorithm 1 Orthogonal lattice attack [NS99]
Input: h, M,n,m.
Output: A basis of Lx.

1: Compute an LLIL-reduced basis ui, ..., u, of Lo.
2: Extract a generating set of ui,..., um—n of lli.
3: Compute a basis (c1,...,¢n) of Lx = (Lx)F.

4: return (c1,...,cn)

Constructing a basis of L£g. We first explain how to construct a basis of
Ly. If the modulus M is prime we can assume h; # 0, up to permutation of
the coordinates; indeed the case h = 0 is trivial. More generally, we assume
ged(hy, M) = 1. We write u = [uy,u’] where u’ € Z™~!. Similarly we write
h = [hy,h’] where h’ € Z™~L. Since h; is invertible modulo M, we get:

ue Ly < u-h+ @, h') =0 (mod M)
> u; + W W) At =0 (mod M)

Therefore, a basis of Ly is given by the m X m matrix of row vectors:



To compute a reduced basis uy, ..., u,, of the lattice Ly we use the L? algo-
rithm. The complexity is then O(m®(m+log M) log M) without fast arithmetic.
We show in Section 3.2 below that for a sufficiently large modulus M, the first
m —n vectors uy, ..., U,_, must form a generating set of ﬁi‘.

Computing a basis of L, = (L',)J(‘)J‘. From the vectors uy, ..., u,,_, forming
a generating set of the lattice £, we can compute its orthogonal £, = (L£$)~+
using the LLL-based algorithm from [NS97]. Given a lattice £, the algorithm
from [NS97] produces an LLL-reduced basis of £+ in polynomial time; we refer
to the full version of this paper [CG20] for a detailed description of the algorithm.
Therefore we obtain an LLL-reduced basis of £, = (£+)* in polynomial-time.

3.2 Rigorous analysis of Step 1

We now provide a rigorous analysis of the orthogonal lattice attack above. More
precisely, we show that for a large enough modulus M, the orthogonal lattice
attack recovers a basis of Ly in polynomial time, for a significant fraction of the
weight a;’s.

Theorem 1. Letm > n. Assume that the lattice Ly has rank n. With probability
at least 1/2 over the choice of o, Algorithm 1 recovers a basis of Ly in polynomial
time, assuming that M is a prime integer of bitsize at least 2mnlogm. For
m = 2n, the density is d =n/logM = O(1/(nlogn)).

The proof is based on the following two lemmas. We denote by A3;(c) the
lattice of vectors orthogonal to & = (a1, ..., a,) modulo M.

Lemma 2. A§sume that the lattice Ly has rank n. Algorithm 1 computes a basis
of the lattice Ly in polynomial time under the condition m > n and

Vmn 2% A (L) < M (A (@) - (3)

Proof. As observed previously, for any u € Ly, the vector

pu = ((u,x1),...,{u,x,))

is orthogonal to the vector a¢ modulo M; therefore if p, is shorter than the
shortest non-zero vector orthogonal to @ modulo M, we must have p, = 0, and
therefore u € £5; this happens under the condition ||py| < A1 (43;(ex)). Since
pull < v/mn|lu||, given any u € £y we must have u € £ under the condition:

Vimnl[ull < A (Ayy(ev)) - (4)

The lattice L is full rank of dimension m since it contains MZ™. Now,
consider uy,...,u,, an LLL-reduced basis of Ly. From Lemma 1, for each j <
m — n we have

m
2

lujll < 2% - Apon(Lo) < 2% - i (L) ()



since £+ is a sublattice of £y of dimension m — n. Combining with (4), this
implies that when

Vmn 2% Ay (L) < M1 (A3(e)

the vectors uy,..., U, _, must belong to £;. This means that (uy,..., U, )
is a full rank sublattice of £y, and therefore (uy,..., U, )~ = Ly. Finally,
Algorithm 1 is polynomial-time, because both the LLL reduction step of £y and
the LLL-based orthogonal computation of £ are polynomial-time. O

The following Lemma is based on a counting argument; we provide the proof
in the full version of this paper [CG20].

Lemma 3. Let M be a prime. Then with probability at least 1/2 over the choice
of a, we have A\ (A3, () > M/ /4. O

Combining the two previous lemmas, we can prove Theorem 1.

Proof (of Theorem 1). In order to apply Lemma 2, we first derive an upper-
bound on Ap,,_j, (Ci‘) The lattice £+ has dimension m —n and by Minkowski’s
second theorem we have

Amen (£5) < VAmen " "det (Lx) < m™/?det (L5) . (6)

From det £+ = det £, < det £, and Hadamard’s inequality with ||x;|| < /m,
we obtain:

det L < det Ly < ] lIxill < m"/? (7)
=1

which gives the following upper-bound on A, (E,Jg):
Am—n (L'i‘) <m™2m"? < mm.
Thus, by Lemma 2, we can recover a basis of Ly when
Vmn 27 m™ < A\ (A3 (@)

From Lemma 3, with probability at least 1 /2 over the choice of a we can therefore
recover the hidden lattice Ly if:

Vmn 2% om™ < MY /4,

For m > n > 4, it suffices to have log M > 2mnlogm. ad

3.3 Heuristic analysis of Step 1

In the previous section, we have shown that the orthogonal lattice attack prov-
ably recovers the hidden lattice £y in polynomial time for a large enough mod-
ulus M, namely we can take log M = O(n?logn) when m = 2n. Below we show
that heuristically we can take log M = O(n?), which gives a knapsack density
d =n/logM = O(1/n). We also give the concrete bitsize of M used in our
experiments, and provide a heuristic complexity analysis.



Heuristic size of the modulus M. In order to derive a heuristic size for the
modulus M, we use an approximation of the terms in the condition (3) from
Lemma 2.

We start with the term \,,_,, (Ei-) For a “random lattice” we expect the
lattice minima to be balanced, and therefore \,,_,, (L,Jg) to be roughly equal to
A1 (E,Jg) This means that instead of the rigorous inequality (6) from the proof
of Theorem 1, we use the heuristic approximation:

Amn (LL) = /A det(LL) 7.

Using (7), this gives:

Amn—n (L) S vV Am—nam . (8)

For the term \; (/111\;[(04))7 using the Gaussian heuristic, we expect:

A (Air(@) = 7M.

Finally the 27/2 factor in (3) corresponds to the LLL Hermite factor with § =
3/4; in practice we will use ¢ = 0.99, and we denote by 2™ the corresponding
LLL Hermite factor. Hence from (3) we obtain the heuristic condition:

This gives the condition:

2L~m\/,ym7n n- mz(n:n;n) < \/%Ml/n

which gives:
mn

2(m —n)

If we consider m = n + k for some constant k, we can take log M = O(n?logn).
If m > c¢-n for some constant ¢ > 1, we can take log M = O(m-n). In particular,
for m = 2n we obtain the condition:

logM >¢-m-n+ glog(nﬂym,n/vn) + logm. (9)

10gM>2L‘n2+3?nlogn+n (10)

which gives log M = O(n?) and a knapsack density d = n/log M = O(1/n). In
practice for our experiments we use m = 2n and log M ~ 2in? + nlogn with
¢ = 0.035. Finally, we note that smaller values of M could be achieved by using
BKZ reduction of £j instead of LLL.

Heuristic complexity. Recall that for a rank-d lattice in Z™, the complex-
ity of computing an LLL-reduced basis with the L? algorithm is O(d*m(d +
log B) log B) without fast integer arithmetic, for vectors of Euclidean norm less
than B. At Step 1 we must apply LLL-reduction twice.



The first LLL is applied to the rank-m lattice Ly € Z™. Therefore the com-
plexity of the first LLL is O(m®(m + log M)log M). If m = n + k for some
constant k, the heuristic complexity is therefore O(n? log? n). If m > ¢-n for
some constant c, the heuristic complexity is O(m7 - n?).

The second LLL is applied to compute the orthogonal of £(U) where U is

the matrix basis of the vectors uy,...,un—, € Z™. From (5) and (8), we can
heuristically assume | U|| < 2™/2.\/m-m2m-= . For m = n+k for some constant
k, this gives log ||U|| = O(nlogn), while for m > ¢-n for some constant ¢ > 1, we

obtain log ||U|| = O(m). The heuristic complexity of computing the orthogonal
of U is O(m®(m + (m/n)log ||U||)?) (see the full version of this paper [CG20]).
For m = n + k, the complexity is therefore O(n” log? n), while for m > ¢ n, the
complexity is O(m?/n?).

We summarize the complexities of the two LLL operations in Table 1; we
see that the complexities are optimal for m = ¢ - n for some constant ¢ > 1,
so for simplicity we take m = 2n. In that case the heuristic complexity of the
first step is O(n?), and the density is d = n/log M = O(1/n), as in the classical
subset-sum problem.

| m || logM | LLLLo [ LLL (£x)* |
>n| On-m) o(m” -n?) O(m?/n?)
n? O(n®) O(n'%) O(n'%)
2n O(n?) O(n®) omn")

n+1|| O(n?logn) | O(n°logn) | O(n"log®n)

Table 1. Modulus size and time complexity of Algorithm 1 as a function of the pa-
rameter m.

3.4 Second step of the Nguyen-Stern Attack

From the first step we have obtained an LLL-reduced basis (c1,...,c,) of the
completed lattice £, C Z™. However this does not necessarily reveal the vectors
x;. Namely, because of the LLL approximation factor, the recovered basis vectors
(c1,...,Cy,) can be much larger than the original vectors x;, which are among the
shortest vectors in L. Therefore, to recover the original vectors x;, one must
apply BKZ instead of LLL, in order to obtain a better approximation factor;
eventually from h, the x;’s and M, one can recover the weights a; by solving a
linear system; this is the second step of the Nguyen-Stern algorithm.

The authors of [NS99] did not provide a time complexity analysis of their
algorithm. In the following, we provide a heuristic analysis of the second step of
the Nguyen-Stern algorithm, based on a model of the gap between the shortest
vectors of Ly (the vectors x;), and the “generic” short vectors of L. While
relatively simplistic, our model seems to accurately predict the minimal block-
size [ required for BKZ reduction; we provide the result of practical experiments

10



in the next section. Under this model the BKZ block-size S must increase almost
linearly with n; the complexity of the attack is therefore exponential in n. In
our analysis below, for simplicity we heuristically assume that the lattice Ly is
complete, i.e. Ly = Lx.

Short vectors in L. The average norm of the original binary vectors x; €
Z™ is roughly /m/2. If we take the difference between some x; and x;, the
components remain in {—1,0,1}, and the average norm is also roughly /m/2.
Therefore, we can assume that the vectors x; and x; — x; for ¢ # j are the
shortest vectors of the lattice L.

We can construct “generic” short vectors in L4 by taking a linear combination
with {0, 1} coefficients of vectors of the form x; —x;. For x; —x;, the variance of
each component is 1/2. If we take a linear combination of n/4 such differences
(so that roughly half of the coefficients with respect to the vectors x; are 0), the
variance for each component will be n/4-1/2 = n/8, and for m components the
norm of the resulting vector will be about \/nm/8. Therefore heuristically the
gap between these generic vectors and the shortest vectors is:

nm/8 \/n

m/2 2’

Running time with BKZ. To recover the shortest vectors, the BKZ approxi-
mation factor 2“™ should be less than the above gap, which gives the condition:

v

2L-1’L <
-2

(11)
which gives ¢ < (log(n/4))/(2n). Achieving an Hermite factor of 2‘™ heuris-
tically requires at least 22(1/*) time, by using BKZ reduction with block-size
B = w(1/¢) [HPS11]. Therefore the running time of the Nguyen-Stern algorithm
is 22(n/1ogn) " with BKZ block-size 8 = w(n/logn) in the second step.

Recovering the vectors x;. It remains to show how to recover the vectors x;.
Namely as explained above the binary vectors x; are not the only short vectors
in Ly; the vectors x; —x; are roughly equally short. The approach from [NS99] is
as follows. Since the short vectors in £y probably have components in {—1,0, 1},
the authors suggest to transform the lattice £y into a new one £, = 2Ly + €Z,
where e = (1,...,1). Namely in that case a vector v € Ly with components in
{=1,0,1} will give a vector 2v € L with components in {—2,0,2}, whereas a
vector x € Ly with components in {0,1} will give a vector 2x — e € L] with
components in {—1,1}, hence shorter. This should enable to recover the secret
vectors x; as the shortest vectors in Ll

Below we describe a slightly simpler approach in which we stay in the lattice
L. First, we explain why for large enough values of m, we are unlikely to obtain
vectors in {0,+1} as combination of more that two x;’s. Namely if we take a

11



linear combination of the form x; —x; +xy, each component will be in {—1,0,1}
with probability 7/8; therefore for m components the probability will be (7/8)™.
There are at most n® such triples to consider, so we want n3 - (7/8)™ < ¢,
which gives the condition m > 16logn — 6loge. With m = 2n and ¢ = 274,
this condition is satisfied for n > 60; for smaller values of n, one should take
m = max(2n, 16 logn + 24).

Hence after BKZ reduction with a large enough block-size 5 as above, we
expect that each of the basis vectors (cy, ..., c,) is either equal to +x;, or equal
to a combination of the form x; — x; for ¢ # j. Conversely, this implies that all
rows of the transition matrix between (cy,...,c,) and (x1,...,X,) must have
Hamming weight at most 4. Therefore while staying in the lattice £x we can
recover each of the original binary vectors x; from the basis vectors (cy, ..., ¢,),
by exhaustive search with O(n*) tests. In the full version of this paper [CG20] we
describe a greedy algorithm that recovers the original binary vectors x; relatively
efficiently.

Recovering the weights ;. Finally, from the samples h, the vectors x;’s and
the modulus M, recovering the weights «; is straightforward as this amounts to
solving a linear system:

h:Oé1X1+Ot2X2+"'+Oann (HlOd M)

Letting X’ be the n x n matrix with the first n» components of the column
vectors x; and letting h’ be the vector with the first n components of h, we have
h' = X' a where a = (ay,...,a,) (mod M). Assuming that X’ is invertible
modulo M, we get o = X'~ 'h’ (mod M).

3.5 Practical experiments

Running times. We provide in Table 2 the result of practical experiments.
The first step is the orthogonal lattice attack with two applications of LLL. For
the second step, we receive as input from Step 1 an LLL-reduced basis of the
lattice L. We see in Table 2 that for n = 70 this is sufficient to recover the
hidden vectors x;. Otherwise, we apply BKZ with block-size g = 10, 20, 30, ...
until we recover the vectors x;. We see that the two LLLs from Step 1 run in
reasonable time up to n = 250, while for Step 2 the running time of BKZ grows
exponentially, so we could not run Step 2 for n > 170. We provide the source code
of our SageMath implementation in https://pastebin. com/ZFk1qjfP, based on
the L? [NS09] and BKZ 2.0 [CN11] implementations from [fpl16].

Hermite factors. Recall that from our heuristic model from Section 3.4 the
target Hermite factor for the second step of the Nguyen-Stern algorithm is v =
V/11/2, which can be written v = a” with a = (n/4)"/(??). We provide in Table
2 above the corresponding target Hermite factors as a function of n.

In order to predict the Hermite factor achievable by BKZ as a function of the
block-size 3, we have run some experiments on a different lattice, independent

12


https://pastebin.com/ZFk1qjfP

Step 1 Step 2

n | m |logM | LLL Lo | LLL £i | Hermite Reduction Total
70 | 140 | 772 3s 1s 1.021™ LLL € 6s

90 | 180 | 1151 10 s 4s 1.017™ | BKZ-10 1s 18 s
110 | 220 | 1592 28 s 12 s 1.015™ | BKZ-10 3s 50 s
130 | 260 | 2095 8ls 24s 1.013™ | BKZ-20 10 s 127 s

150 | 300 | 2659 159 s 44 s 1.012" | BKZ-30 | 4 min 8 min
170 | 340 | 3282 | 6 min 115 s 1.011™ | BKZ-30 | 438 min | 447 min
190 | 380 | 3965 | 13 min | 3 min 1.010" — — —
220 | 440 | 5099 | 63 min | 29 min | 1.009" — - -
250 | 500 | 6366 | 119 min | 56 min | 1.008" — — —

Table 2. Running time of the [NS99] attack, under a 3,2 GHz Intel Core i5 processor.

from our model of Section 3.4. For this we have considered the lattice £ € Z" of
row vectors:

Cpoq e 1

for some prime p, with random ¢;’s modulo p. Since det £ = p, by applying LLL
or BKZ we expect to obtain vectors of norm 2“(det L)Y/" = 2" . p'/" where
2" is the Hermite factor. We summarize our results in Table 3 below. Values up
to S = 40 are from our experiments with the lattice £ above, while for § > 85
the values are reproduced from [CN11], based on a simulation approach.

Block-size g | 2 | 10 | 20 | 30 | 40 | 8 | 106 | 133 |
Hermite factor |1.020™ [ 1.015" | 1.014™ [ 1.013" [ 1.012" [[ 1.010" [ 1.009™ | 1.008" |

Table 3. Experimental and simulated Hermite factors for LLL (8 = 2) and for BKZ
with block-size £3.

In summary, the minimal BKZ block-sizes S required experimentally in Table
2 to apply Step 2 of Nguyen-Stern, seem coherent with the target Hermite factors
from our model, and the experimental Hermite factors from Table 3. For example,
for n = 70, this explains why an LLL-reduced basis is sufficient, because the
target Hermite factor is 1.021", while LLL can achieve 1.020™. From Table 3,
BKZ-10 can achieve 1.015", so in Table 2 it was able to break the instances
n = 90 and n = 110, but not n = 130 which has target Hermite factor 1.013™.
However we see that BKZ-20 and BKZ-30 worked better than expected; for
example BKZ-30 could break the instance n = 170 with target Hermite factor
1.011™, while in principle from Table 3 it can only achieve 1.013™. So it could

13



be that our model from Section 3.4 underestimates the target Hermite factor.
Nevertheless, we believe that our model and the above experiments confirm that
the complexity of the Nguyen-Stern algorithm is indeed exponential in n.

4 Our polynomial-time algorithm for solving the hidden
subset-sum problem

Recall that the Nguyen-Stern attack is divided in the two following steps.

1. From the samples h, determine the lattice £y, where Ly is the lattice gen-
erated by the x;’s.

2. From Ly, recover the hidden vectors x;’s. From h, the x;’s and M, recover
the weights «;.

In the previous section we have argued that the complexity of the second step
of the Nguyen-Stern attack is exponential in n. In this section we describe an
alternative second step with polynomial-time complexity. However, our second
step requires more samples than in [NS99], namely we need m ~ n?/2 samples
instead of m = 2n. This means that in the first step we must produce a basis of
the rank-n lattice £y C Z™, with the much higher vector dimension m ~ n?/2
instead of m = 2n.

For this, the naive method would be to apply directly Algorithm 1 from
Section 3.1 to the vector h of dimension m ~ n?/2. But for n ~ 200 one would
need to apply LLL on a m x m matrix with m ~ n?/2 ~ 20000, which is
not practical; moreover the bitsize of the modulus M would need to be much
larger due to the Hermite factor of LLL in such large dimension (see Table 1).
Therefore, we first explain how to modify Step 1 in order to efficiently generate
a lattice basis of £, C Z™ for large m. Our technique is as follows: instead of
applying LLL on a square matrix of dimension n?/2, we apply LLL in parallel
on n/2 square matrices of dimension 2n, which is much faster. Eventually we
show in Section 5 that a single application of LLL is sufficient.

4.1 First step: obtaining a basis of £, for m > n

In this section, we show how to adapt the first step, namely the orthogonal lattice
attack from [NS99] recalled in Section 3.1, to the case m > n. More precisely,
we show how to generate a basis of n vectors of £, C Z™ for m ~ n?/2, while
applying LLL on matrices of dimension ¢t = 2n only. As illustrated in Figure 1,
this is relatively straightforward: we apply Algorithm 1 from Section 3.1 on 2n
components of the vector h € Z™ at a time, and each time we recover roughly
the projection of a lattice basis of £, on those 2n components; eventually we
recombine those projections to obtain a full lattice basis of L.

More precisely, writing h = [hy, ..., hy] where m = (d+ 1) - n and h; € Z",
we apply Algorithm 1 on each of the d sub-vectors of the form (hg,h;) € Z2"
for 1 <1 < d. For each 1 <14 < d this gives us C(()Z)HCZ- € Z™*?"_ the completion

14



1

oo [ePfe] - ] o [afel -]

e [eP[-Je] - ] » [ao]-Ta] - |

Lo [e] - Jed - (o] - o
i

s EACACARNEA

Fig. 1. Computation of a lattice basis of L.

of the projection of a lattice basis of L. To recover the m components of the
basis, we simply need to ensure that the projected bases C(()Z) |C; € Z"*?" always
start with the same matrix Cy on the first n components; see Figure 1 for an
illustration. This gives Algorithm 2 below. We denote Algorithm 1 from Section
3.1 by Ortholat.

Algorithm 2 Orthogonal lattice attack with m = d - n samples
Input: he Z™ M,n,m=d-n.

Output: A base matrix of L.

1: Write h = [h, ..., hg] where h; € Z" for all 0 < ¢ < d.

2: for i < 1 to d do

3 Yi < [h()7 hz]
4 Céi)HCi < Ortholat(y;, M, n, 2n)

5 QY (cy)!
6.

7
8

C,+—Q;-C;
: end for
: return [Co, C1,Ch, -+, CY]

A minor difficulty is that in principle, when applying OrtholLat (Algorithm
1) to a subset y; € Z2" of the sample h € Z™, we actually recover the com-
pletion of the projection of Ly over the corresponding coordinates, rather than
the projection of the completion £y of L. More precisely, denote by 7 a generic
projection on some coordinates of a lattice L. It is always true that 7(Ly) C
7(Lx) C 7(Lyx). Thus applying Algorithm 1 with a certain projection m we re-
cover the completion 7(Lx). Assuming that the projection 7(Ly) is complete, we
obtain 7(Lyx) = 7m(Lx) = 7(Lx). Therefore, to simplify the analysis of Algorithm
2, we assume that the projection over the first n coordinates has rank n, and

that the projection over the first 2n coordinates is complete. This implies that

15



the transition matrices Q; < Cél) . (Cg))’1 for 2 < i < d must be integral; in
our practical experiments this was always the case.

Theorem 2. Let m = d-n for d € N and d > 1. Assume that the projection
of the lattice Lx € Z™ owver the first n components has rank n, and that the
projection of Ly over the first 2n coordinates is complete. With probability at
least 1/2 over the choice of o, Algorithm 2 recovers a basis of Ly in polynomial
time, assuming that M is a prime of bitsize at least 4n?(logn + 1).

Proof. From Theorem 1, we recover for each 1 < ¢ < d a basis CBZ)HCZ- corre-
sponding to the completed projection of Ly to the first n coordinates and the
i + 1-th subset of n coordinates, with probability at least 1/2 over the choice
of a. Let us denote by X the base matrix whose rows are the vectors x;’s. By
assumption the vectors x; are linear independent, the first n X n minor Xy is
invertible and the matrices Céz) for i = 1,...,d must generate a superlattice
of Xy. In particular, there exists an invertible integral matrix Q; such that
Q;- C(()i) = C(()l) for each ¢ = 1,...,d. So, applying Q; = C((]l)(C(()i))*1 to C; we
find C, which contains the i + 1-th subset of n coordinates of the vectors in a

basis having Cy = Cél) as projection on the first n coordinates. This implies
that [Cg, Cy, Ch, - - - Cl)] is a basis of Lx. O

Heuristic analysis. For the size of the modulus M, since we are working with
lattices in Z2", we can take the same modulus size as in the heuristic analysis
of Step 1 from Section 3.3, namely

log M ~ 2un? + nlogn

with ¢+ = 0.035. The time complexity of Algorithm 2 is dominated by the cost of
applying OrtholLat (Algorithm 1) to each y;, which is heuristically O(n°) from
Section 3.3. Therefore, the heuristic complexity of Algorithm 2 is d - O(n?) =
O(m - n®). In particular, for m ~ n?/2, the heuristic complexity of Algorithm 2
is O(n'?), instead of O(n'®) with the naive method (see Table 1). In Section 5
we will describe an improved algorithm with complexity O(n?).

4.2 Second Step: recovering the hidden vectors x;’s

By the first step we recover a basis C = (ci,...,¢,) of the hidden lattice
Ly € Z™. The goal of the second step is then to recover the original vectors
X1,...,X, € Ly, namely to solve the following problem:

Problem 1. Let X + {0,1}"*™. Given C € Z"*™ such that WC = X for
some W € Z"*" N GL(Q, n), recover W and X.

We show that for m ~ n?/2 the above problem can be solved in heuristic
polynomial time, using a multivariate approach. Namely we reduce the prob-
lem to solving a system of multivariate quadratic equations and we provide an
appropriate algorithm to solve it.

16



Heuristically we expect the solution to be unique up to permutations of the
rows when m > n. Indeed for large enough m we expect the vectors x; to be the
unique vectors in £, with binary coefficients. More precisely, consider a vector
vV =X; +X;j or v=x; — X; for ¢ # j. The probability that all components of v
are in {0,1} is (3/4)™, so for n?/2 possible choices of i,j the probability is at
most n? - (3/4)™, which for m ~ n?/2 is a negligible function of n. Therefore we
can consider the equivalent problem:

Problem 2. Given C € Z™"*™ of rank n, suppose there exist exactly n vectors
w; € Z"™ such that w; - C = x; € {0,1}" fori=1,...,n, and assume that the

vectors w; are linearly independent. Find w1, ..., W,.
We denote by €4, ..., C,, the column vectors of C, which gives:
W1 X1
€1 - &p| =
Wn Xn

Multivariate approach. The crucial observation is that since all components
of the vectors x; are binary, they must all satisfy the quadratic equation y> —y =
0. Therefore for each i = 1,...,n we have:

w;-Ce{0,1}" <= Vje[l,m], (w; &)>—w; & =0
<~ VJ € [1,m], (Wl . EJ)(WZ . éj)T — W, éj =0

— Vje[l,m], Wl(éjé;r)w;r_wléjzo

Given the known column vectors €q,...,C,,, the vectors wy,...,w, and 0 are
therefore solutions of the quadratic polynomial multivariate system

w-Cie] - wi—w-¢ =0
(12)

wW-CpCl Wl —w-Cp, =0

In the following we provide a heuristic polynomial-time algorithm to solve this
quadratic multivariate system, via linearization and computation of eigenspaces.
More precisely, as in the XL algorithm [CKPS00] we first linearize (12); then we
prove that the w;’s are eigenvectors of some submatrices of the kernel matrix,
and we provide a method to recover them in polynomial time. We observe that
such approach is deeply related to Grobner basis techniques for zero dimensional
ideals. Namely, the system (12) of polynomial equations defines an ideal J. If the
homogeneous degree 2 parts of such polynomials generate the space of monomials
of degree 2, a Grobner basis of J can be obtained via linear transformations, and
the x;’s recovered in polynomial time. We refer to [CLO05] for the Grébner basis
perspective. For this approach the minimal condition is clearly m = (n? +n)/2.

17



Linearization. Since (¢;); = C;;, for all 1 < j < m, we can write:

n n

n n
y-¢cf yT = Z YiyeCijCrj = Z Zyzyk(2 — 0i,k)CijCyj
i=1 k=1 i=1 k=i

with d;, = 1 if ¢ = k and 0 otherwise. In the above equation the coefficient of
the degree 2 monomial y;y;, for 1 < i < k < nis (2 — ;1)C;;Cs;. Thus, we
consider the corresponding vectors of coefficients for 1 < j < m:

n24n
2 .

rj = ((2—0;1)CijCrj)i<i<k<n € Z (13)
71.2 n
We set R € Z 3% Xm 6 be the matrix whose columns are the r;’s and
we obtain that (12) is equivalent to
Z CE=0
[ ‘ Y } n24n (14)
z = (YilYr)1<i<k<n € L 2

For m > (n?+n)/2 we expect the matrix R to be of rank (n?+n)/2. In that
case we must have rank E > (n? + n)/2, and so dimker E < n. On the other
hand, consider the set of vectors

n243n

W = {((wiwg)1<i<k<n, W) €L 2

w e {wy,...,Wp}}

Since by assumption the vectors w;’s are linearly independent, Span(W) is a
subspace of dimension n of ker E. This implies that dimker E = n, and that a
basis of ker E is given by the set W. In the following, we show how to recover
W, from which we recover the matrix W and eventually the n vectors x;.

Kernel computation. Since the set of n vectors in W form a basis of ker E,

the first step is to compute a basis of ker E over Q from the known matrix
71/2 n . . . .
E € Z" 5" *™ However this does not immediately reveal W since the n vectors

of W form a privileged basis of ker E; namely the vectors in W have the following
structure:

2430
((wiwk)lgigkgn,wl, .. wn) S Zn e .

To recover the vectors in W we proceed as follows. Note that the last n
components in the vectors in VW correspond to the linear part in the quadratic

7L2 n
equations of (12). Therefore we consider the base matrix K € Q™* =" of ker E
such that the matrix corresponding to the linear part is the identity matrix:

K=|[M]|L,] (15)

18



n2+n

where M € Q"* "z . A vector v = (v1,...,0,) € Z" is then a solution of (14)
if and only if v - K € W, which gives:

v - M = (v;0)1<i<k<n-

By2 duplicating some columns of the matrix M, we can obtain a matrix M’ €
Z™ *™ such that:

v-M' = (v;vg)1<i<ni<k<n-

We write M/ = [My, ..., M,,] where M; € Z"*". This gives:
v-M; =v;-v

forall 1 <i¢<n.

This means that the eigenvalues of each M; are exactly all the possible i-th
coordinates of the target vectors wi, ..., w,. Therefore the vectors w;’s are the
intersections of the left eigenspaces corresponding to their coordinates.

Eigenspace computation. Consider for example the first coordinates w; ; of
the vectors w;. From the previous equation, we have:

Wj . M1 = ’LUj71 . Wj.

Therefore the vectors w; are the eigenvectors of the matrix M;, and their first
coordinates w; 1 are the eigenvalues. Assume that those n eigenvalues are dis-
tinct; in that case we can immediately compute the n corresponding eigenvectors
w; and solve the problem. More generally, we can recover the vectors w; that
belong to a dimension 1 eigenspace of M;; namely in that case w; is the unique
vector of its eigenspace such that w; - C € {0,1}"™, and we recover the corre-
sponding x; = w; - C.

Our approach is therefore as follows. We first compute the eigenspaces F1, . . .,
Es of Mj. For every 1 < k < s, if dimE, = 1 then we can compute the
corresponding target vector, as explained above. Otherwise, we compute My
the restriction map of Ms at Ej and we check the dimensions of its eigenspaces.
As we find eigenspaces of dimension 1 we compute more target vectors, otherwise
we compute the restrictions of M3 at the new eigenspaces and so on. We iterate
this process until we find all the solutions; see Algorithm 3 below.

In order to better analyze this procedure, we observe that we essentially
construct a tree of subspaces of Q", performing a breadth-first search algorithm.
The root corresponds to the entire space, and each node at depth 7 is a son of
a node E at depth ¢ — 1 if and only if it represents a non-trivial intersection of
E with one of the eigenspaces of M;. Since these non-trivial intersections are
exactly the eigenspaces of the restriction of M; to E, our algorithm does not
compute unnecessary intersections. Moreover, we know that when the dimension
of the node is 1 all its successors represent the same space; hence that branch of
the algorithm can be closed; see Fig. 2 for an illustration.

19



Algorithm 3 Multivariate attack

Input: C € Z™*™ a basis of Lx.
Output: x1,...,%, € {0,1}™, such that w; - C =x; fori=1,...,n.

21,

: Let rj = ((2—0i,%)CijChj)i<i<k<n € 272" for 1< Jj<m.

2
ry---r n“43n
B |:1 m GZTxm

n?43n

K «Ker E with K= [ M |I,] € Q"* >
Write M = [ﬁlik}lgigkgn where m;; € Qn.
Let M; € ann with M; = [l’hik}lgkgn, using m;g := My; for ¢ > k.
L + [1,]
for i < 1 ton do
L2 — H
for all V € L do
if rankV = 1 then
Append a generator v of V to La.
else
Compute A such that V-M; = A - V.
Append all eigenspaces U of A to La.
end if
end for
L+ L2
: end for
X ]
: for all v € L do

Find ¢ # 0 such that x =c-v-C € {0,1}", and append x to X.

: end for
: return X

20



@) (D) M,
OO 0 M
a a 0 M;

Fig. 2. Example of the tree we obtain for wy = (2,1,1), w2 = (1,0,1),ws = (1,1,1).
The matrix M; has an eigenspace of dimension 1 Ei > and one of dimension 2 Ej ;.
At the first iteration we obtain therefore wi. Then we compute the restriction of
M to FEji,1; this has two distinct eigenvalues 0 and 1, which enables to recover the
eigenvectors wz and wg. All the nodes at depth 2 represent dimension one spaces,
hence the algorithm terminates.

Analysis and reduction modulo p. Our algorithm is heuristic as we must
assume that the matrix R € 23" %™ has rank (n? +n)/2. In our experiments
we took m = (n? +4n)/2 and this hypothesis was always satisfied. The running
time of the algorithm is dominated by the cost of computing the kernel of a
matrix E of dimension ”27;3" x m. For m = (n? + 4n)/2, this requires O(n®)
arithmetic operations. Thus we have shown:

n2+n

Lemma 4. Let C € Z™*™ be an instance of Problem 2 and R € Z= =2 *™ the

2
matriz whose columns are the r; constructed as in (13). If R has rank » 2“'”,
then the vectors x; can be recovered in O(n®) arithmetic operations.

In practice it is more efficient to work modulo a prime p instead of over Q.
Namely Problem 1 is defined over the integers, so we can consider its reduction
modulo a prime p:

WC =X (mod p)

and since X has coefficients in {0,1} we obtain a system which is exactly the
reduction of (12) modulo p. In particular, we can compute K = ker E modulo
p instead of over Q, and also compute the eigenspaces modulo p. Setting R =
R mod p, if R has rank ”2%7 then X can be recovered by O(nS - log?p) bit
operations.

Note that we cannot take p = 2 as in that case any vector w; would be a
solution of w;-C = x; (mod 2), since x; € {0, 1}™. In practice we took p = 3 and
m = (n? +4n)/2, which was sufficient to recover the original vectors X, .. .,X,.
In that case, the heuristic time complexity is O(n®), while the space complexity
is O(n*). We provide the results of practical experiments in Section 7, and the
source code in https://pastebin.com/ZFk1qjfP.

21


https://pastebin.com/ZFk1qjfP

5 Improvement of the algorithm first step

The first step of our new attack is the same as in [NS99], except that we need to
produce m — n orthogonal vectors in £ from m = n(n + 4)/2 samples, instead
of only m = 2n samples in the original Nguyen-Stern attack. Therefore, we need
to produce n(n + 2)/2 orthogonal vectors in £, instead of only n. In Section
4.1, this required m/n ~ n/2 parallel applications of LLL to compute those
m —n vectors in Ly, and similarly n/2 parallel applications of LLL to compute
the orthogonal £, = (£1)* € Z™. Overall the heuristic time complexity was
O(nt0).

In this section, we show that only a single application of LLL (with the same
dimension) is required to produce the m — n orthogonal vectors in £;. Namely
we show that once the first n orthogonal vectors have been produced, we can
very quickly generate the remaining m — 2n other vectors, by size-reducing the
original basis vectors with respect to an LLL-reduced submatrix. Similarly a
single application of LLL is required to recover a basis of L. Eventually the
heuristic time complexity of the first step is O(n?), as in the original Nguyen-
Stern algorithm. This implies that the heuristic complexity of our full algorithm
for solving the hidden subset sum problem is also O(n?).

5.1 Closest vector problem

Size reduction with respect to an LLL-reduced sub-matrix essentially amounts
to solving the approximate closest vector problem (CVP) in the corresponding
lattice.

Definition 2 (Approximate closest vector problem). Fiz v > 1. Given
a basis for a lattice L C Z% and a vector t € R?, compute v € L such that
It —v|| <~|lt —ul| for allue L.

To solve approximate-CVP, Babai’s nearest plane method [Bab86] induc-
tively finds a lattice vector close to a vector t, based on a Gram-Schmidt basis.
Alternatively, Babai’s rounding technique has a worse approximation factor -~y
but is easier to implement in practice.

Algorithm 4 Babai’s rounding method

Input: a basis b1, ..., by of a lattice £ C Z%. A vector t € Z<.
Output: a vector v € L.

1: Write t = Z‘Z:l u;b; with u; € R.

2: return v =7 |u;]b;

i=1

Theorem 3 (Babai’s rounding [Bab86]). Let by,...,by be an LLL-reduced
basis (with respect to the Euclidean norm and with factor 6 = 3/4) for a lattice
L C R%. Then the output v of the Babai rounding method on input t € R?
satisfies ||t — v|| < (1 4+ 2d(9/2)%?)||t — ul| for allu € L.

22



5.2 Generating orthogonal vectors in Ei‘

We start with the computation of the orthogonal vectors in £}. Consider the
large m X m matrix of vectors orthogonal to hq, ..., h,, modulo M corresponding
to the lattice Ly. Our improved technique is based on the fact that once LLL has
been applied to the small upper-left (2n) x (2n) sub-matrix of vectors orthogonal
to (h,...,hey) modulo M, we do not need to apply LLL anymore to get more
orthogonal vectors; namely it suffices to size-reduce the other rows with respect
to these 2n already LLL-reduced vectors. After size-reduction we obtain short
vectors in Ly, and as previously if these vectors are short enough, they are
guaranteed to belong to the orthogonal lattice £;; see Figure 3 for an illustration.
Such size-reduction is much faster than repeatedly applying LLL as in Section
4.1. We describe the corresponding algorithm below.

Ly : JR.

Fig. 3. In the initial basis matrix the components of the first column are big. Then by
applying LLL on the 2n X 2n submatrix the corresponding components become small;
this already gives n orthogonal vectors in £3. Then by size-reducing the remaining
m — 2n rows, one obtains small components on the 2n columns, and therefore m — 2n
additional orthogonal vectors. In total we obtain m — n orthogonal vectors.

Algorithm 5 Fast generation of orthogonal vectors
Input: h € Z™, M, n, m.
Output: A generating set of £ C Z™.
1: Let B € Z™*™ be a basis of row vectors of the lattice Lo of vectors orthogonal to
h modulo M, in lower triangular form.
Apply LLL to the upper-left (2n) x (2n) submatrix of B.
Let a1,...,a2, € 7Z>™ be the 2n vectors of the LLL-reduced basis.
for i =2n+ 1 to m do
Let t; = [—hzhfl[M] 0--- O] S 72",
Apply Babai’s rounding to t;, with respect to (ai,...,as2,). Let v € Z*" be the
resulting vector.
Let aj = [(t; —v) 0 1 0] € Z™ where the 1 component is at index i.
end for
For 1 < i < n, extend the vectors a; to aj € Z™, padding with zeros.
: Output the n vectors aj for 1 < i < n, and the m—2n vectors aj for 2n+1 < i < m.

S L X2

—_

23



The following Lemma shows that under certain conditions on the lattice £3,
Algorithm 5 outputs a generating set of m — n vectors of L£&. More specifi-
cally, we have to assume that the lattice £ contains short vectors of the form
[c; 0 ... 1...0]with ¢; € Z?"; this assumption seems to be always verified in
practice. We provide the proof in the full version of this paper [CG20].

Lemma 5. Assume that the lattice L contains n linearly independent vectors
of the form ¢} =[c; 0--- 0] € Z™ for 1 < i < n with c; € Z*" and ||c;| < B,
and m — 2n wvectors of the form ¢, = [¢; 0 ... 1 ... 0] € Z™ where the 1
component is at index i, for 2n + 1 < i < m with ¢; € Z*" and ||c;|| < B. Then
if (YB + 1)y/mn < Ay (Af;(e)) where v =14 4n(9/2)", Algorithm 5 returns a
set of m —n linearly independent vectors in Ly, namely n vectors a; € L+ for

X

1<i<n, andm—2n vectorsage[,ifOTZn—i—lSigm.

Complexity analysis. Since the approximation factor v for CVP is similar to
the LLL Hermite factor, we use the same modulus size as previously, namely
log M ~ 2in? 4+ n -logn with ¢ = 0.035. As in Section 3.3 the complexity of the
first LLL reduction with L? is O(n®log®> M) = O(n?).

‘We now consider the size-reductions with Babai’s rounding. To apply Babai’s
rounding we must first invert a 2n x 2n matrix with log M bits of precision; this
has to be done only once, and takes O(n?log? M) = O(n7) time. Then for each
Babai’s rounding we need one vector matrix multiplication, with precision log M
bits. Since the vector has actually a single non-zero component, the complexity
is O(nlog® M) = O(n®). With m = O(n?), the total complexity of size-reduction
is therefore O(n7). In the full version of this paper [CG20], we describe a further
improvement of the size-reduction step, with complexity O(n?%/3) instead of
on").

Overall the heuristic complexity of Algorithm 5 for computing a generating
set of £ is therefore O(n?), instead of O(n'?) in Section 4.1.

5.3 Computing the orthogonal of Li‘

As in the original [NS99] attack, once we have computed a generating set of
the rank m — n lattice £ C Z™, we need to compute its orthogonal, with
m = n(n+4)/2 instead of m = 2n. As previously, this will not take significantly
more time, because of the structure of the generating set of vectors in £;. Namely
as illustrated in Figure 4, the matrix defining the m — n orthogonal vectors in
L3+ is already almost in Hermite Normal Form (after the first 2n components),
and therefore once the first 2n components of a basis of n vectors of £, = (LL)~+
have been computed (with LLL), computing the remaining m — 2n components
is straightforward.

More precisely, from Algorithm 5, we obtain a matrix A € Z(m=")*™ of row
vectors generating £, of the form:

U
A_ =
|:V Im—Qn]

24



Fig. 4. Structure of the generating set of £y .

where U € Z"*?" and V € Z(m~=2)%2n  Ag in Section 3.1, using the LLL-based
algorithm from [NS97], we first compute a matrix basis P € Z?"*" of column
vectors orthogonal to the rows of U, that is U - P = 0. We then compute the
matrix:
— P mXn
C= {VP] ez

and we obtain A - C = 0 as required. Therefore the matrix C of column vectors
is a basis of £, = (£L)*.

6 Cryptographic applications

In [NS99], the authors showed how to break the fast generator of random pairs
(x,9* (mod p)) from Boyko et al. [BPV98], using their algorithm for solving
the hidden subset-sum problem. Such generator can be used to speed-up the
generation of discrete-log based algorithms with fixed base g, such as Schnorr
identification, and Schnorr, El1Gamal and DSS signatures. The generator of ran-
dom pairs (z,¢” (mod p)) works as follows. We consider a prime number p and
g € Zy, of order M.

Preprocessing Step: Take ay,...,a, < Zj; and compute 3; = g* for each
J € [1,n] and store (¢, B;).

Pair Generation: To generate a pair (g,¢” mod p), randomly generate a sub-
set S C [1,n] such that |S| = &; compute b = Zjesaj mod M, if b =0
restart, otherwise compute B = Hjes B; mod p. Return (b, B).

In [NS99] the authors described a very nice passive attack against the gener-
ator used in Schnorr’s signatures, based on a variant of the hidden subset-sum
problem, called the affine hidden subset-sum problem; the attack is also appli-
cable to ElGamal and DSS signatures. Under this variant, there is an additional
secret s, and given h, e € Z™ one must recover s, the x;’s and the o;’s such that:

h+se=a1x1 + asxa + -+ + ap%x, (mod M)

Namely consider the Schnorr’s signature scheme. Let ¢ be a prime dividing
p—1,let g € Z, be a g-th root of unity, and y = ¢~ mod p be the public key. The

25



signer must generate a pair (k, g¥ mod p) and compute the hash e = H(mes, z)
of the message mes; it then computes y = k + se mod ¢; the signature is the pair
(y,e). We see that the signatures (y;, e;) give us an instance of the affine hidden
subset-sum problem above, with h = (y;), e = (—¢;) and M = q.

In the full version of this paper [CG20], we recall how to solve the affine
hidden subset-sum problem using a variant of the Nguyen-Stern algorithm (in
exponential time), and then using our multivariate algorithm (in polynomial
time).

7 Implementation results

We provide in Table 4 the result of practical experiments with our new algorithm;
we provide the source code in https://pastebin.com/ZFk1qjfP, based on the
L? implementation from [fpl16]. We see that for the first step, the most time
consuming part is the first application of LLL to the (2n) x (2n) submatrix
of Ly; this first step produces the first n orthogonal vectors. The subsequent
size-reduction (SR) produces the remaining m — n ~ n?/2 orthogonal vectors,
and is much faster; for these size-reductions, we apply the technique described
in Section 5, with the improvement described in the full version of this paper
[CG20], with parameter k = 4. Finally, the running time of the second LLL to
compute the orthogonal of £} has running time comparable to the first LLL.
As explained previously we use the modulus bitsize log M ~ 2un?+n-log n with
¢ = 0.035.

Step 1 Step 2
n m |logM|LLL £o| SR |LLL Ly | Kernel mod 3 |Eigenspaces | Total
70 | 2590 | 772 3s 3s 1s 8s 7s 24 s
90 | 4230 | 1151 10 s 8s 5s 23 s 17 s 66 s
110 | 6270 | 1592 32s 18 s 11s 528 37s 153 s
130 | 8710 | 2095 87 s 40 s 26 s 112 s 71 s 6 min
150 | 11550 | 2659 | 3 min 70 s 48 s 3 min 122 s 12 min
170114790 | 3282 | 7 min | 125 s 81 s 5 min 3 min 20 min
19018430 | 3965 | 23 min | 3 min | 3 min 9 min 5 min 46 min
22024640 | 5099 | 54 min | 7 min | 34 min 18 min 8 min 124 min
250( 31750 | 6366 | 119 min |12 min| 65 min 30 min 15 min 245 min

Table 4. Running time of our new algorithm, for various values of n, under a 3,2
GHz Intel Core i5 processor. We provide the source code and the complete timings in
https://pastebin.com/ZFk1qjfP.

In the second step, we receive as input from Step 1 an LLL-reduced basis of
the lattice L. As described in Algorithm 3 (Step 2), one must first generate a
big matrix E of dimension roughly n?/2 x n?/2, on which we compute the kernel

26


https://pastebin.com/ZFk1qjfP
https://pastebin.com/ZFk1qjfP

K = ker E; as explained in Section 4.2, this can be done modulo 3. As illustrated
in Table 4, computing the kernel is the most time consuming part of Step 2. The
computation of the eigenspaces (also modulo 3) to recover the original vectors
x; is faster.

Comparison with Nguyen-Stern. We compare the two algorithms in Table
5. We see that our polynomial time algorithm enables to solve the hidden subset-
sum problem for values of n that are beyond reach for the original Nguyen-Stern
attack. Namely our algorithm has heuristic complexity O(n), while the Nguyen-
Stern algorithm has heuristic complexity 2°("/1°8m)  However, we need more
samples, namely m ~ n?/2 samples instead of m = 2n.

n 90 | 110 | 130 150 170 190 220 250
Nguyen-Stern | m || 180 | 220 | 260 300 340
attack [NS99] |time || 18 s| 50 s | 127 s | 8 min |447 min
m ||4230] 6270 | 8710 | 11550 | 14790 | 18430 | 24640 | 31750
time || 66 s 153 s |6 min |12 min| 20 min |46 min | 124 min | 245 min

Our attack

Table 5. Timing comparison between the Nguyen-Stern algorithm and our algorithm,
for various values of n, where m is the number of samples from the generator.

Reducing the number of samples. In the full version of this paper [CG20]
we show how to slightly reduce the number of samples m required for our attack,
with two different methods; in both cases the attack remains heuristically poly-
nomial time under the condition m = n?/2 — O(nlogn). We provide the results
of practical experiments in Table 6, showing that in practice the running time
grows relatively quickly for only a moderate decrease in the number of samples
m.

Method 1 Method 2

n m | Eigenspaces| Total |Eigenspaces| Total

19017670 13 min 43 min 2 min 39 min
190 | 17480 18 min 57 min 4 min 55 min
190 | 17290 29 min 71 min 5 min 50 min
190 | 17100 68 min 99 min 8 min 54 min
19016910 | 182 min |217 min 15 min 66 min
190|116 720 — — 32 min 80 min
190 | 16 530 - — 72 min 116 min

Table 6. Running time of our new algorithm for n = 190, for smaller values of m, for
the two methods described in the full version of this paper [CG20].

27



Bibliography

[Bab86]

[BNNT11]

[BPV9S]

[CG20]

[CIL*92]

[CKPS00]

[CLOO5]

[CLT13]

[CN11]

[CN19]

[CNT10]

Laszlé Babai. On Lovasz’ lattice reduction and the nearest lattice
point problem. Combinatorica, 6(1):1-13, 1986.

Eric Brier, David Naccache, Phong Q. Nguyen, and Mehdi Ti-
bouchi. Modulus fault attacks against RSA-CRT signatures. In
Cryptographic Hardware and Embedded Systems - CHES 2011 -
13th International Workshop, Nara, Japan, September 28 - October
1, 2011. Proceedings, pages 192-206, 2011.

Victor Boyko, Marcus Peinado, and Ramarathnam Venkatesan.
Speeding up discrete log and factoring based schemes via precom-
putations. In Kaisa Nyberg, editor, Advances in Cryptology — EU-
ROCRYPT’98, pages 221-235, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

Jean-Sébastien Coron and Agnese Gini. A polynomial-time algo-
rithm for solving the hidden subset sum problem. Full version
of this paper. Cryptology ePrint Archive, Report 2020/461, 2020.
https://eprint.iacr.org/2020/461.

Matthijs J. Coster, Antoine Joux, Brian A. LaMacchia, Andrew M.
Odlyzko, Claus-Peter Schnorr, and Jacques Stern. Improved low-
density subset sum algorithms. Computational Complexity, 2:111—
128, 1992.

Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi
Shamir. Efficient algorithms for solving overdefined systems of mul-
tivariate polynomial equations. In Proceedings of EUROCRYPT
2000, pages 392-407, 2000.

David A. Cox, John Little, and Donal Oshea. Using Algebraic Ge-
ometry. Springer, 2005.

Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi.
Practical multilinear maps over the integers. In Advances in Cryp-
tology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I,
pages 476-493, 2013.

Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice se-
curity estimates. In Advances in Cryptology - ASIACRYPT 2011
- 17th International Conference on the Theory and Application of
Cryptology and Information Security, Seoul, South Korea, Decem-
ber 4-8, 2011. Proceedings, pages 1-20, 2011.

Jean-Sébastien Coron and Luca Notarnicola. Cryptanalysis of
CLT13 multilinear maps with independent slots. In Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference
on the Theory and Application of Cryptology and Information Se-
curity, Kobe, Japan, December 8-12, 2019, Proceedings, Part II,
pages 356-385, 2019.

Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Fault
attacks against emv signatures. In Topics in Cryptology - CT-RSA

28


https://eprint.iacr.org/2020/461

[CP19]

[FLLT15)

[fpl16]

[HPS11]

[LLL82]
[LO85)

[LT15]

[NS97]

[NS98a]

[NS98b]

2010, The Cryptographers’ Track at the RSA Conference 2010, San
Francisco, CA, USA, March 1-5, 2010. Proceedings, pages 208-220,
2010.

Jean-Sébastien Coron and Hilder V. L. Pereira. On Kilian’s ran-
domization of multilinear map encodings. In Advances in Cryp-
tology - ASIACRYPT 2019 - 25th International Conference on the
Theory and Application of Cryptology and Information Security,
Kobe, Japan, December 8-12, 2019, Proceedings, Part I, pages 325—
355, 2019.

Pierre-Alain Fouque, Moon Sung Lee, Tancrede Lepoint, and Mehdi
Tibouchi. Cryptanalysis of the co-acd assumption. In Advances in
Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I,
pages 561-580, 2015.

The FPLLL development team. fplll, a lattice reduction library,
2016. Available at https://github.com/fpl11/fplll.
Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing
blockwise lattice algorithms using dynamical systems. In CRYPTO
2011, 2011.

A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring polynomials
with rational coefficients. MATH. ANN, 261:515-534, 1982.

J. C. Lagarias and Andrew M. Odlyzko. Solving low-density subset
sum problems. J. ACM, 32(1):229-246, 1985.

Tancréde Lepoint and Mehdi Tibouchi. Cryptanalysis of a (some-
what) additively homomorphic encryption scheme used in PIR. In
Financial Cryptography and Data Security - FC 2015 International
Workshops, BITCOIN, WAHC, and Wearable, San Juan, Puerto
Rico, January 30, 2015, Revised Selected Papers, pages 184-193,
2015.

Phong Q. Nguyen and Jacques Stern. Merkle-hellman revisited:
A cryptanalysis of the Qu-Vanstone cryptosystem based on group
factorizations. In Advances in Cryptology - CRYPTO 97, 17th An-
nual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 17-21, 1997, Proceedings, pages 198-212, 1997.
Phong Q. Nguyen and Jacques Stern. The Béguin-Quisquater
server-aided RSA protocol from Crypto '95 is not secure. In Ad-
vances in Cryptology - ASIACRYPT 98, International Conference
on the Theory and Applications of Cryptology and Information Se-
curity, Beijing, China, October 18-22, 1998, Proceedings, pages
372-379, 1998.

Phong Q. Nguyen and Jacques Stern. Cryptanalysis of the Ajtai-
Dwork cryptosystem. In Advances in Cryptology - CRYPTO 98,
18th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 23-27, 1998, Proceedings, pages 223-242,
1998.

29


https://github.com/fplll/fplll

[NS99]

[NSO09]

INSS04]

[Sagl9]

[Sch87]
[Sho]

[VDGHV10]

Phong Q. Nguyen and Jacques Stern. The hardness of the hid-
den subset sum problem and its cryptographic implications. In
Advances in Cryptology - CRYPTO 99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, pages 31-46, 1999.

Phong Q. Nguyen and Damien Stehlé. An LLL algorithm with
quadratic complexity. SIAM J. Comput., 39(3):874-903, August
2009.

David Naccache, Nigel P. Smart, and Jacques Stern. Projective co-
ordinates leak. In Advances in Cryptology - EUROCRYPT 2004,
International Conference on the Theory and Applications of Cryp-
tographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Pro-
ceedings, pages 257-267, 2004.

The Sage Developers. Sagemath, the Sage Mathematics Software
System (Version 8.9). Available at https://www.sagemath.org,
2019.

Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis
reduction algorithms. Theor. Comput. Sci., 53:201-224, 1987.

V. Shoup. Number theory c++ library (ntl) version 3.6. Available
at http://www.shoup.net/ntl/.

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. Fully homomorphic encryption over the integers. In Ad-
vances in Cryptology - EUROCRYPT 2010, 29th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Pro-
ceedings, pages 24—43, 2010.

30


https://www.sagemath.org
http://www.shoup.net/ntl/

	A Polynomial-Time Algorithm for Solving the Hidden Subset Sum Problem
	Introduction
	Background on lattices
	The Nguyen-Stern Algorithm
	First step: orthogonal lattice attack
	Rigorous analysis of Step 1
	Heuristic analysis of Step 1
	Second step of the Nguyen-Stern Attack
	Practical experiments

	Our polynomial-time algorithm for solving the hidden subset-sum problem
	First step: obtaining a basis of Lx for m>>n
	Second Step: recovering the hidden vectors xis

	Improvement of the algorithm first step
	Closest vector problem
	Generating orthogonal vectors in Lx
	Computing the orthogonal of Lx

	Cryptographic applications
	Implementation results


