
LWE with Side Information:
Attacks and Concrete Security Estimation?
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Abstract. We propose a framework for cryptanalysis of lattice-based
schemes, when side information—in the form of “hints”— about the se-
cret and/or error is available. Our framework generalizes the so-called
primal lattice reduction attack, and allows the progressive integration
of hints before running a final lattice reduction step. Our techniques for
integrating hints include sparsifying the lattice, projecting onto and in-
tersecting with hyperplanes, and/or altering the distribution of the secret
vector. Our main contribution is to propose a toolbox and a methodol-
ogy to integrate such hints into lattice reduction attacks and to predict
the performance of those lattice attacks with side information.

While initially designed for side-channel information, our framework can
also be used in other cases: exploiting decryption failures, or simply ex-
ploiting constraints imposed by certain schemes (LAC, Round5, NTRU).

We implement a Sage 9.0 toolkit to actually mount such attacks with
hints when computationally feasible, and to predict their performances
on larger instances. We provide several end-to-end application examples,
such as an improvement of a single trace attack on Frodo by Bos et
al (SAC 2018). In particular, our work can estimates security loss even
given very little side information, leading to a smooth measurement/-
computation trade-off for side-channel attacks.
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Fig. 1. Primal attack without hints (prior art).
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1 Introduction

A large effort is currently underway to replace standardized public key cryp-
tosystems, which are quantum-insecure, with newly developed “post-quantum”
cryptosystems, conjectured to be secure against quantum attack. Lattice-based
cryptography has been widely recognized as a foremost candidate for practi-
cal, post-quantum security and accordingly, a large effort has been made to
develop and analyze lattice-based cryptosystems. The ongoing standardization
process and anticipated deployment of lattice-based cryptography raises an im-
portant question: How resilient are lattices to side-channel attacks or other forms
of side information? While there are numerous works addressing this question
for specific cryptosystems (See [2,17,18,33,32,9] for side channel attacks target-
ing lattice-based NIST candidates), these works use rather ad-hoc methods to
reconstruct the secret key, requiring new techniques and algorithms to be de-
veloped for each setting. For example, the work of [9] uses brute-force methods
for a portion of the attack, while [7] exploits linear regression techniques. More-
over, ad-hoc methods do not allow (1) to take advantage of decades worth of
research and (2) optimization of standard lattice attacks. Second, most of the
side-channel attacks from prior work consider substantial amounts of informa-
tion leakage and show that it leads to feasible recovery of the entire key, whereas
one may be interested in more precise tradeoffs in terms of information leakage
versus concrete security of the scheme. The above motivates the focus of this
work: Can one integrate side information into a standard lattice attack, and if
so, by how much does the information reduce the cost of this attack? Given that
side-channel resistance is the next step toward the technological readiness of
lattice-based cryptography, and that we expect numerous works in this growing
area, we believe that a general framework and a prediction software are in order.

Contributions. First, we propose a framework that generalizes the so-called pri-
mal lattice reduction attack, and allows the progressive integration of “hints”
(i.e. side information that takes one of several forms) before running the final
lattice reduction step. This contribution is summarized in Figures 1 and 2 and
developed in Section 3.

Second, we implement a Sage 9.0 toolkit to actually mount such attacks with
hints when computationally feasible, and to predict their performance on larger
instances. Our predictions are validated by extensive experiments. Our tool and



these experiments are described in Section 5. Our toolkit is open-source, available
at: https://github.com/lducas/leaky-LWE-Estimator.

Third, we demonstrate the usefulness of our framework and tool via three
example applications. Our main example (Section 6.1) revisits the side channel
information obtained from the first side-channel attack of [9] against Frodo. In
that article, it was concluded that a divide-and-conquer side-channel template
attack would not lead to a meaningful attack using standard combinatorial search
for reconstruction of the secret. Our technique allows to integrate this side-
channel information into lattice attacks, and to predict the exact security drop.
For example, the CCS2 parameter set very conservatively aims for 128-bits of
post-quantum security (or 448 “bikz” as defined in Section 3.4); but after the
leakage of [9] we predict that its security drops to 29 “bikz”, i.e. that it can
be broken with BKZ-29, a computation that should be more than feasible, but
would require a dedicated re-implementation of our framework.

Interestingly, we note that our framework is not only useful in the side-
channel scenario; we are for example also able to model decryption failures
as hints fitting our framework. This allows us to reproduce some predictions
from [14]. This is discussed in Section 6.2.

Perhaps more surprisingly, we also find a novel improvement to attack a
few schemes (LAC [25], Round5 [16], NTRU [35]) without any side-channel or
oracle queries. Indeed, such schemes use ternary distribution for secrets, with
a prescribed numbers of 1 and −1: this hint fits our framework, and lead to a
(very) minor improvement, discussed in Section 6.3.

Lastly, our framework also encompasses and streamlines existing tweaks of
the primal attack: the choice of ignoring certain LWE equations to optimize
the volume-dimension trade-off, as well as the re-centering [30] and isotropiza-
tion [19,12] accounting for potential a-priori distortions of the secret. It also
implicitly solves the question of the optimal choice of the coefficient for Kan-
nan’s Embedding from the Bounded Distance Decoding problem (BDD) to the
unique Shortest Vector Problem (uSVP) [21] (See Remark 22).

As a side contribution, we also propose in the full version of our paper [13] a
refined method to estimate the required blocksize to solve an LWE/BDD/uSVP
instance. This refinement was motivated by the inaccuracy of the standard
method from the literature [3,4] in experimentally reachable blocksizes, which
was making the validation of our contribution difficult. While experimentally
much more accurate, this new methodology certainly deserves further scrutiny.

Technical overview. Our work is based on a generalization of the Bounded Dis-
tance Decoding problem (BDD) to a Distorted version (DBDD), which allows to
account for the potentially non-spherical covariance of the secret vector to be
found.

Each hint will affect the lattice itself, the mean and/or the covariance pa-
rameter of the DBDD instance, making the problem easier (see Figure 2). At
last, we make the distribution spherical again by applying a well-chosen linear
transformation, reverting to a spherical BDD instance before running the attack.
Thanks to the hints, this new instance will be easier than the initial one. Let us

https://github.com/lducas/leaky-LWE-Estimator
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Fig. 2. The primal attack with hints (our work).

assume that v, l, k and σ are parameters known by the attacker. Our framework
can handle four types of hints on the secret s or on the lattice Λ.

– Perfect hints: 〈s, v〉 = l intersect the lattice with an hyperplane.
– Modular hints : 〈s, v〉 = l mod k sparsify the lattice.
– Approximate hints : 〈s, v〉 = l + εσ decrease the covariance of the secret.
– Short vector hints : v ∈ Λ project orthogonally to v.

While the first three hints are clear wins for the performance of lattice attacks,
the last one is a trade-off between the dimension and the volume of the lattice.
This last type of hint is in fact meant to generalize the standard trick consisting
of ‘ignoring’ certain LWE equations; ignoring such an equation can be interpreted
geometrically as such a projection orthogonally to a so-called q-vector.

All the transformations of the lattice above can be computed in polynomial
time. However, computing with general distribution in large dimension is not
possible; we restrict our study to the case of Gaussian distributions of arbitrary
covariance, for which such computations are also poly-time.

Some of these transformations remain quite expensive, in particular because
they involve rational numbers with very large denominators, and it remains
rather impractical to run them on cryptographic-grade instances. Fortunately,
up to a necessary hypothesis of primitivity of the vector v (with respect to either
Λ or its dual depending on the type of hint), we can also predict the effect of
each hint on the lattice parameters, and therefore run faster predictions of the
attack cost.

From Leaks to Hints. At first, it may not be so clear that the types of hints
above are so useful in realistic applications, in particular since they need to be
linear on the secret. Of course our framework can handle rather trivial hints such
as the perfect leak of a secret coefficient si = l. Slightly less trivial is the case
where the only the low-order bits leaks, a hint of the form si = l mod 2.

We note that most of the computations done during an LWE decryption are
linear: leaking any intermediate register during a matrix vector product leads to
a hint of the same form (possibly mod q). Similarly, the leak of a NTT coefficient
of a secret in a Ring/Module variant can also be viewed as such.



Admittedly, such ideal leaks of a full register are not the typical scenario and
leaks are typically not linear on the content of the register. However, such non-
linearities can be handled by approximate hints. For instance, let s0 be a secret
coefficient (represented by a signed 16-bits integer), whose a priori distribution
is supported by {−5, . . . , 5}. Consider the case where we learn the Hamming
weight of s0, say H(s0) = 2. Then, we can narrow down the possibilities to
s0 ∈ {3, 5}. This leads to two hints:

– a modular hint: s0 = 1 mod 2,
– an approximate hint: s0 = 4 + ε1, where ε1 has variance 1.

While closer to a realistic scenario, the above example remains rather sim-
plified. A detailed example of how realistic leaks can be integrated as hint will
be given in Section 6.1, based on the leakage data from [9].
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2 Preliminaries

2.1 Linear Algebra

We use bold lower case letters to denote vectors, and bold upper case letters
to denote matrices. We use row notations for vectors, and start indexing from
0. Let Id denote the d-dimensional identity matrix. Let 〈·, ·〉 denote the inner
product of two vectors of the same size. Let us introduce the row span of a matrix
(denoted Span(·)) as the subspace generated by all R-linear combinations of the
rows of its input.

Definition 1 (Positive Semidefinite). A n× n symmetric real matrix M is
positive semidefinite if scalar xMxT ≥ 0 for all x ∈ Rn; if so we write M ≥ 0.
Given two n × n real matrix A and B, we note A ≥ B if A − B is positive
semidefinite.

Definition 2. A matrix M is a square root of Σ, denoted
√

Σ, if

MT ·M = Σ,



Our techniques involve keeping track of the covariance matrix Σ of the secret
and error vectors as hints are progressively integrated. The covariance matrix
may become singular during this process and will not have an inverse. Therefore,
in the following we introduce some degenerate notions for the inverse and the
determinant of a square matrix. Essentially, we restrict these notions to the row
span of their input. For X ∈ Rd×k (with any d, k ∈ N), we will denote ΠX the
orthogonal projection matrix onto Span(X). More formally, let Y be a maximal
set of independent row-vectors of X; the orthogonal projection matrix is given
by ΠX = YT · (Y ·YT )−1 ·Y. Its complement (the projection orthogonally to
Span(X)) is denoted Π⊥X := Id − ΠX. We naturally extend the notation ΠF

and Π⊥F to subspaces F ⊂ Rd. By definition, the projection matrices satisfy
Π2
F = ΠF , ΠT

F = ΠF and ΠF ·Π⊥F = Π⊥F ·ΠF = 0.

Definition 3 (Restricted inverse and determinant). Let Σ be a symmetric
matrix. We define a restricted inverse denoted Σ∼ as

Σ∼ := (Σ + Π⊥Σ)−1 −Π⊥Σ.

It satisfies Span(Σ∼) = Span(Σ) and Σ ·Σ∼ = ΠΣ.
We also denote rdet(Σ) as the restricted determinant defined as follows.

rdet(Σ) := det(Σ + Π⊥Σ).

The idea behind Definition 3 is to provide an (artificial) invertibility prop-
erty to the input Σ by adding the missing orthogonal part and to remove it

afterwards. For example, if Σ =

[
A 0
0 0

]
where A is invertible,

Σ∼ =

([
A 0
0 0

]
+

[
0 0
0 1

])−1

−
[
0 0
0 1

]
=

[
A−1 0

0 0

]
and rdet Σ = det(A).

2.2 Statistics

Random variables, i.e. variables whose values depend on outcomes of a random
phenomenon, are denoted in lowercase calligraphic letters e.g. a, b, e. Random
vectors are denoted in uppercase calligraphic letters e.g. C ,X ,Z.

Before hints are integrated, we will assume that the secret and error vectors
follow a multidimensional normal (Gaussian) distribution. Hints will typically
correspond to learning a (noisy, modular or perfect) linear equation on the secret.
We must then consider the altered distribution on the secret, conditioned on this
information. Fortunately, this will also be a multidimensional normal distribution
with an altered covariance and mean. In the following, we present the precise
formulae for the covariance and mean of these conditional distributions.

Definition 4 (Multidimensional normal distribution). Let d ∈ Z, for µ ∈
Zd and Σ being a symmetric matrix of dimension d× d, we denote by Dd

Σ,µ the
multidimensional normal distribution supported by µ+Span(Σ) by the following

x 7→ 1√
(2π)rank(Σ) · rdet(Σ)

exp

(
−1

2
(x− µ) ·Σ∼ · (x− µ)T

)
.



The following states how a normal distribution is altered under linear transfor-
mation.

Lemma 5. Suppose X has a Dd
Σ,µ distribution. Let A be a n× d matrix. Then

X AT has a Dn
AΣAT ,µAT distribution.

Lemma 6 shows the altered distribution of a normal random variable con-
ditioned on its noisy linear transformation value, following from [24, Equations
(6) and (7)].

Lemma 6 (Conditional distribution X |X AT + b from [24]). Suppose that
X ∈ Zd has a Dd

Σ,µ distribution, and b ∈ Zn has a Dn
Σb ,0

distribution. Let us fix A

as a n×d matrix and z ∈ Zn. The conditional distribution of X
∣∣∣ (X AT + b = z

)
is Dd

Σ′,µ′ , where

µ′ = µ+ (z− µAT )(AΣAT + Σb)−1AΣ

Σ′ = Σ−ΣAT (AΣAT + Σb)−1AΣ.

Corollary 7 (Conditional distribution X |〈X ,v〉 + e). Suppose that X ∈ Zd
has a Dd

Σ,µ distribution and e has a D1
σ2

e ,0
distribution. Let us fix v ∈ Rd as a

nonzero vector and z ∈ Z. We define the following scalars:

y = 〈X ,v〉+ e, µ2 = 〈v,µ〉 and σ2 = vΣvT + σ2
e

If σ2 6= 0, the conditional distribution of X
∣∣∣ (y = z

)
is Dd

Σ′,µ′ , where

µ′ = µ+
(z − µ2)

σ2
vΣ, Σ′ = Σ− ΣvTvΣ

σ2
. (1)

If σ2 = 0, the conditional distribution of X
∣∣∣ (y = z

)
is Dd

Σ,µ.

Remark 8. We note that Corollary 7 is also useful to describe for X |〈X ,v〉 by
letting σe = 0.

2.3 Lattices

A lattice, denoted as Λ, is a discrete additive subgroup of Rm, which is generated
as the set of all linear integer combinations of n (m ≥ n) linearly independent
basis vectors {bj} ⊂ Rm, namely,

Λ :=
{∑

j
zjbj : zj ∈ Z

}
,

We say that m is the dimension of Λ and n is its rank. A lattice is full rank
if n = m. A matrix B having the basis vectors as rows is called a basis. The

volume of a lattice Λ is defined as Vol(Λ) :=
√

det(BBT ). The dual lattice of Λ

in Rn is defined as follows.

Λ∗ := {y ∈ Span(B) | ∀x ∈ Λ, 〈x,y〉 ∈ Z}.

Note that, (Λ∗)∗ = Λ, and Vol(Λ∗) = 1/Vol(Λ).



Lemma 9 ([26, Proposition 1.3.4]). Let Λ be a lattice and let F be a subspace
of Rn. If Λ ∩ F is a lattice, then the dual of Λ ∩ F is the orthogonal projection
onto F of the dual of Λ. In other words, each element of Λ∗ is multiplied by the
projection matrix ΠF :

(Λ ∩ F )∗ = Λ∗ ·ΠF .

Definition 10 (Primitive vectors). A set of vector y1, . . . ,yk ∈ Λ is said
primitive with respect to Λ if Λ∩Span(y1, . . . ,yk) is equal to the lattice generated
by y1, . . . ,yk. Equivalently, it is primitive if it can be extended to a basis of Λ.
If k = 1, y1, this is equivalent to y1/i 6∈ Λ for any integer i ≥ 2.

To predict the hardness of the lattice reduction on altered instances, we must
compute the volume of the final transformed lattice. We devise a highly efficient
way to do this, by observing that each time a hint is integrated, we can update
the volume of the transformed lattice, given only the volume of the previous
lattice and information about the current hint (under mild restrictions on the
form of the hint). Lemmas 11 and 12 are proved in the full version of our paper
[13].

Lemma 11 (Volume of a lattice slice). Given a lattice Λ with volume Vol(Λ),
and a primitive vector v with respect to Λ∗. Let v⊥ denote subspace orthogonal
to v. Then Λ ∩ v⊥ is a lattice with volume Vol(Λ ∩ v⊥) = ‖v‖ ·Vol(Λ).

Lemma 12 (Volume of a sparsified lattice). Let Λ be a lattice, v ∈ Λ∗ be
a primitive vector of Λ∗, and k > 0 be an integer. Let Λ′ = {x ∈ Λ | 〈x,v〉 =
0 mod k} be a sublattice of Λ. Then Vol(Λ′) = k ·Vol(Λ).

Fact 13 (Volume of a projected lattice) Let Λ be a lattice, v ∈ Λ be a
primitive vector of Λ. Let Λ′ = Λ · Π⊥v be a sublattice of Λ. Then Vol(Λ′) =
Vol(Λ)/‖v‖. More generally, if V is a primitive set of vectors of Λ, then Λ′ =
Λ ·Π⊥V has volume Vol(Λ′) = Vol(Λ)/

√
det(VVT ).

Fact 14 (Lattice volume under linear transformations) Let Λ be a lat-
tice in Rn, and M ∈ Rn×n a matrix such that ker M = Span(Λ)⊥. Then we
have Vol(Λ ·M) = rdet(M) Vol(Λ).

3 Distorted Bounded Distance Decoding

3.1 Definition

We first recall the definition of the (search) LWE problem, in its short-secret
variant which is the most relevant to practical LWE-based encryption.

Definition 15 (Search LWE problem with short secrets.). Let n,m and q
be positive integers, and let χ be a distribution over Z. The search LWE problem
(with short secrets) for parameters (n,m, q, χ) is:

Given the pair
(
A ∈ Zm×nq ,b = zAT + e ∈ Zmq

)
where:



1. A ∈ Zm×nq is sampled uniformly at random,
2. z ← χn, and e ← χm are sampled with independent and identically

distributed coefficients following the distribution χ.
Find z.

The primal attack (See for example [3]) against (search)-LWE proceeds by view-
ing the LWE instance as an instance of a Bounded Distance Decoding (BDD)
problem, converting it to a uSVP instance (via Kannan’s embedding [21]), and
finally applying a lattice reduction algorithm to solve the uSVP instance. The
central tool of our framework is a generalization of BDD that accounts for po-
tential distortion in the distribution of the secret noise vector that is to be
recovered.

Definition 16 (Distorted Bounded Distance Decoding problem). Let
Λ ⊂ Rd be a lattice, Σ ∈ Rd×d be a symmetric matrix and µ ∈ Span(Λ) ⊂ Rd
such that

Span(Σ) ( Span(Σ + µT · µ) = Span(Λ). (2)

The Distorted Bounded Distance Decoding problem DBDDΛ,µ,Σ is the following
problem:

Given µ,Σ and a basis of Λ.
Find the unique vector x ∈ Λ ∩ E(µ,Σ)

where E(µ,Σ) denotes the ellipsoid

E(µ,Σ) := {x ∈ µ+ Span(Σ)|(x− µ) ·Σ∼ · (x− µ)T ≤ rank(Σ)}.

We will refer to the triple I = (Λ,µ,Σ) as the instance of the DBDDΛ,µ,Σ
problem.

Intuitively, Definition 16 corresponds to knowing that the secret vector x to
be recovered follows a distribution of variance Σ and average µ. The quantity
(x−µ) ·Σ∼ · (x−µ)T can be interpreted as a non-canonical Euclidean squared
distance ‖x−µ‖2Σ, and the expected value of such a distance for a Gaussian x of
variance Σ and average µ is rank(Σ). One can argue that, for such a Gaussian,
there is a constant probability that ‖x − µ‖2Σ is slightly greater than rank(Σ).
Since we are interested in the average behavior of our attack, we ignore this
benign technical detail. In fact, we will typically interpret DBDD as the promise
that the secret follows a Gaussian distribution of center µ and covariance Σ.

The ellipsoid can be seen as an affine transformation (that we call “distor-
tion”) of the centered hyperball of radius rank(Σ). Let us introduce a notation
for the hyperball; for any d ∈ N

Bd := {x ∈ Rd | ‖x‖2 ≤ d}. (3)

One can thus write using Definition 2:

E(µ,Σ) = Brank(Σ) ·
√

Σ + µ. (4)



DBDD BDD uSVP

Fig. 3. Graphical intuition of DBDD, BDD and uSVP in dimension two: the problem
consists in finding a nonzero element of Λ in the colored zone. The identity hyperball
is larger for uSVP to represent the fact that, during the reduction, the uSVP lattice
has one dimension more than for BDD.

From the Span inclusion in Equation (2), one can deduce that the condition
is equivalent to requiring µ /∈ Span(Σ) and rank(Σ + µT · µ) = rank(Σ) + 1 =
rank(Λ). This technical detail is necessary for embedding it properly into a uSVP
instance (See later in Section 3.3).

Particular cases of Definition 16. Let us temporarily ignore the condition in
Equation (2) to study some particular cases. As shown in Figure 3, when Σ = Id,
DBDDΛ,µ,Id is BDD instance. Indeed, the ellipsoid becomes a shifted hyperball
E(µ, Id) = {x ∈ µ + Rd×d | ‖x − µ‖2 ≤ d} = Bd + µ. If in addition µ = 0,
DBDDΛ,0,Id becomes a uSVP instance on Λ.

3.2 Embedding LWE into DBDD

In the typical primal attack framework (Figure 1), one directly views LWE as a
BDD instance of the same dimension. For our purposes, however, it will be useful
to apply Kannan’s Embedding at this stage and therefore increase the dimension
of the lattice by 1. While it could be delayed to the last stage of our attack, this
extra fixed coefficient 1 will be particularly convenient when we integrate hints
(see Remark 22 in Section 4). It should be noted that no information is lost
through this transformation, since the parameters µ and Σ allow us to encode
the knowledge that the solution we are looking for has its last coefficient set to
1 and nothing else. In more details, the solution s := (e, z) of an LWE instance
is extended to

s̄ := (e, z, 1) (5)

which is a short vector in the lattice Λ =
{

(x,y, w) |x + yAT − bw = 0 mod q
}

.
A basis of this lattice is given by the row vectors ofqIm 0 0

AT −In 0
b 0 1

 .
Denoting µχ and σ2

χ the average and variance of the LWE distribution χ (See
Definition 15), we can convert this LWE instance to a DBDDΛ,µ,Σ instance with



µ = [µχ · · ·µχ 1] and Σ =
[
σ2
χIm+n 0

0 0

]
. The lattice Λ is of full rank in Rd where

d := m+ n+ 1, and its volume is qm. Note that the rank of Σ is only d− 1: the
ellipsoid has one less dimension than the lattice. It then validates the requirement
of Equation (2).

Remark 17. Typically, Kannan’s embedding from BDD to uSVP leaves the bot-
tom right matrix coefficient as a free parameter, say c, to be chosen optimally.
The optimal value is the one maximizing

‖(z; c)‖
det(Λ)1/d

=
(m+ n)σχ + c

(c · qm)1/d
,

namely, c = σχ according to the arithmetic-geometric mean inequality. Some
prior works [3,5] instead chose c = 1. While this is benign since σχ is typically
not too far from 1, it remains a sub-optimal choice. Looking ahead, in our DBDD
framework, this choice becomes irrelevant thanks to the isotropization step in-
troduced in the next section; we can therefore choose c = 1 without worwsening
the attack.

3.3 Converting DBDD to uSVP

In this Section, we explain how a DBDD instance (Λ,µ,Σ) is converted into a
uSVP one. Two modifications are necessary. First, we need to homogeneize the
problem. Let us show that the ellipsoid in Definition 16 is contained in a larger
centered ellipsoid (with one more dimension) as follows:

E(µ,Σ) ⊂ E(0,Σ + µT · µ). (6)

Using Equation (4), one can write

E(µ,Σ) = Brank(Σ) ·
√

Σ + µ ⊂ Brank(Σ) ·
√

Σ± µ,

where Brank(Σ) is defined in Equation (3). And, with Equation (2), one can
deduce rank(Σ + µT · µ) = rank(Σ) + 1, then:

Brank(Σ) ·
√

Σ± µ ⊂ Brank(Σ)+1 ·
[√

Σ
µ

]
.

We apply Definition 2 which confirms the inclusion of Equation (6):

E(µ,Σ) ⊂ Brank(Σ)+1 ·
[√

Σ
µ

]
= E(0,Σ + µT · µ).

Thus, we can homogenize and transform the instance into a centered one with
Σ′ := Σ + µT · µ.

Secondly, to get an isotropic distribution (i.e. with all its eigenvalues being
1), one can just multiply every element of the lattice with the pseudoinverse of



√
Σ′. We get a new covariance matrix Σ′′ =

√
Σ′
∼ ·Σ′ ·

√
Σ′
∼T

= ΠΣ′ ·ΠΣ′
T .

And with orthogonal projection properties (see Section 2.1), Σ′′ = ΠΣ′ = ΠΛ,
the last equality coming from Equation (2).

In summary, one must make by the two following changes:

homogenize: (Λ,µ,Σ) 7→ (Λ,0,Σ′ := Σ + µT · µ)

isotropize: (Λ,0,Σ′) 7→ (Λ ·M,0,ΠΛ)

where M := (
√

Σ′)∼. From the solution x to the uSVPΛ·M problem, one can
derive x′ = xM∼ the solution to the DBDDΛ,µ,Σ problem.

Remark 18. One may note that we could solve a DBDD instance without isotropiza-
tion simply by including the ellipsoid in a larger ball, and directly apply lattice
reduction before the second step. This leads, however, to less efficient attacks.
One may also note that the first homogenization step “forgets” some informa-
tion about the secret’s distribution. This, however, is inherent to the conversion
to a unique-SVP problem which is geometrically homogeneous, and is already
present in the original primal attack.

3.4 Security estimates of uSVP: bikz versus bits

The attack on a uSVP instance consists of applying BKZ-β on the uSVP lattice
Λ for an appropriate block size parameter β. The cost of the attack grows with
β, however, modeling this cost precisely is at the moment rather delicate, as the
state of the art seems to still be in motion. Numerous NIST candidates choose to
underestimate this cost, keeping a margin to accommodate future improvements,
and there seems to be no clear consensus on which model to use (see [1] for a
summary of existing cost models).

While this problem is orthogonal to our work, we still wish to be able to
formulate quantitative security losses. We therefore express all concrete security
estimates using the blocksize β as our measure of the level of security, and treat
the latter as a measurement of the security level in a unit called the bikz. We
thereby leave the question of the exact bikz-to-bit conversion estimate outside the
scope of this paper, and recall that those conversion formulae are not necessarily
linear, and may have small dependency in other parameters. For the sake of
concreteness, we note that certain choose, for example, to claim 128 bits of
security for 380 bikz, and in this range, most models suggest a security increase
of one bit every 2 to 4 bikz.

Remark 19. We also clarify that the estimates given in this paper only concern
the pure lattice attack via the uSVP embedding discussed above. In particular,
we note that some NIST candidates with ternary secrets [25] also consider the
hybrid attack of [20], which we ignore in this work. We nevertheless think that
the compatibility with our framework is plausible, with some effort.



Predicting β from a uSVP instance The state-of-the-art predictions for solving
uSVP instances using BKZ were given in [4,3]. Namely, for Λ a lattice of dimen-
sion dim(Λ), it is predicted that BKZ-β can solve a uSVPΛ instance with secret
s when √

β/dim(Λ) · ‖s‖ ≤ δ2β−dim(Λ)−1
β ·Vol(Λ)1/ dim(Λ) (7)

where δβ is the so called root-Hermite-Factor of BKZ-β. For β ≥ 50, the Root-
Hermite-Factor is predictable using the Gaussian Heuristic [11]:

δβ =

(
(πβ)

1
β · β

2πe

)1/(2β−2)

. (8)

Note that the uSVP instances we generate are isotropic and centered so that
the secret has covariance Σ = I (or Σ = ΠΛ if Λ is not of full rank) and
µ = 0. Thus, on average, we have ‖s‖2 = rank(Σ) = dim(Λ). Therefore, β can
be estimated as the minimum integer that satisfies√

β ≤ δ2β−dim(Λ)−1
β ·Vol(Λ)1/ dim(Λ). (9)

While β must be an integer as a BKZ parameter, we nevertheless provide a
continuous value, for a finer comparison of the difficulty of an instance. Below,
we will call this method the ”GSA-Intersect” method.

Remark 20. To predict security, one does not need the basis of Λ, but only its
dimension and its volume. Similarly, it is not necessary to explicitly compute
the isotropization matrix M of Section 3.3, thanks to Fact 14: Vol(Λ ·M) =
rdet(M) Vol(Λ) = rdet(Σ′)−1/2 Vol(Λ). These two shortcuts will allow us to effi-
ciently make predictions for cryptographically large instances, in our lightweight
implementation of Section 5.

Refined prediction for small blocksizes For experimental validation purposes of
our work, we prefer to have accurate prediction even for small blocksizes; a regime
where those predictions are not accurate with the current state of the art. We
therefore present a refined strategy using BKZ-simulation and a probabilistic
model in the full version of our paper [13].

As depicted in Figure 4, this methodology (coined Probabilistic-simulation)
leads to much more satisfactory estimates compared to the model from the liter-
ature [3,4]. In particular, for low blocksize the literature widely underestimates
the required blocksize, which is due to only considering detectability at posi-
tion d − β. For large blocksize, it somewhat overestimates it, which could be
attributed to the fact that it does not account for luck. On the contrary, our
new methodology seems quite precise in all regimes, making errors of at most
1 bikz. This new methodology certainly deserves further study and refinement,
which we leave to future work.
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Fig. 4. The difference ∆β = real−predicted, as a function of the average experimental
beta β. The experiment consists in running a single tour of BKZ-β for β = 2, 3, 4, . . .
until the secret short vector is found. This was averaged over 256 many LWE instances
per data-point, for parameters q = 3301, σ = 20 and n = m ∈ {30, 32, 34, . . . , 88}.

4 Hints and their integration

In this Section, we define several categories of hints—perfect hints, modular
hints, approximate hints (conditioning and a posteriori), and short vec-
tor hints—and show that these types of hints can be integrated into a DBDD
instance. Hints belonging to these categories typically have the form of a linear
equation in s (and possibly additional variables). As emphasized in Section 1,
these hints have lattice-friendly forms and their usefulness in realistic applica-
tions may not be obvious. We refer to Section 6 for detailed applications of these
hints.

The technical challenge, therefore, is to characterize the effect of such hints on
the DBDD instance—i.e. determine the resulting (Λ′,µ′,Σ′) of the new DBDD
instance, after the hint is incorporated.

Henceforth, let I = DBDDΛ,µ,Σ be a fixed instance constructed from an LWE
instance with secret s = (z, e). Each hint will introduce new constraints on s
and will ultimately decrease the security level.

Non-Commutativity It should be noted that many types of hints commute: In-
tegrating them in any order will lead to the same DBDD instance. Potential
exceptions are non-smooth modular hints (See later in Section 4.2) and
aposteriori approximate hints (See later in Section 4.4): they do not always
commute with the other types of hints, and do not always commute between
themselves, unless the vectors v’s of those hints are all orthogonal to each other.
The reason is: in these cases, the distribution in the direction of v is redefined
which erases the prior information.



4.1 Perfect Hints

Definition 21 (Perfect hint). A perfect hint on the secret s is the knowledge
of v ∈ Zd−1 and l ∈ Z, such that

〈s, v〉 = l.

A perfect hint is quite strong in terms of additional knowledge. It allows
decreasing the dimension of the lattice by one and increases its volume. One
could expect such hints to arise from the following scenarios:

– The full leak without noise of an original coefficient, or even an unreduced
intermediate register since most of the computations are linear. For the sec-
ond case, one may note that optimized implementations of NTT typically
attempt to delay the first reduction modulo q, so leaking a register on one
of the first few levels of the NTT would indeed lead to such a hint.

– A noisy leakage of the same registers, but with still a rather high guessing
confidence. In that case it may be worth making the guess while decreasing
the success probability of the attack.7 This could happen in a cold-boot
attack scenario. This is also the case in the single trace attack on Frodo [9]
that we will study as one of our examples in Section 6.1.

– More surprisingly, certain schemes, including some NIST candidates offer
such a hint ‘by design’. Indeed, LAC, Round5 and NTRU-HPS all choose
ternary secret vectors with a prescribed number of 1’s and −1’s, which di-
rectly induce one or two such perfect hints. This will be detailed in Sec-
tion 6.3.

Integrating a perfect hint into a DBDD instance Let v ∈ Zd−1 and l ∈ Z be such
that 〈s,v〉 = l. Note that the hint can also be written as

〈s̄, v̄〉 = 0,

where s̄ is the extended LWE secret as defined in Equation (5) and v̄ := (v ; −l).

Remark 22. Here we understand the interest of using Kannan’s embedding before
integrating hints rather than after: it allows to also homogenize the hint, and
therefore to make Λ′ a proper lattice rather than a lattice coset (i.e. a shifted
lattice).

Including this hint is done by modifying the DBDDΛ,µ,Σ to DBDDΛ′,µ′,Σ′ ,
where:

Λ′ = Λ ∩
{
x ∈ Zd | 〈x, v̄〉 = 0

}
Σ′ = Σ− (v̄Σ)T v̄Σ

v̄Σv̄T
(10)

µ′ = µ− 〈v̄,µ〉
v̄Σv̄T

v̄Σ (11)

7 One may then re-amplify the success probability by retrying the attack making
guesses at different locations.



We now explain how to derive the new mean µ′ and the new covariance Σ′.
Let y be the random variable 〈s̄, v̄〉, where s̄ has mean µ and covariance Σ.
Then µ′ is the mean of s̄ conditioned on y = 0, and Σ′ is the covariance of s̄
conditioned on y = 0. Using Corollary 7, we obtain the corresponding conditional
mean and covariance.

We note that lattice Λ′ is an intersection of Λ and a hyperplane orthogonal
to v̄. Given B as basis of Λ, by Lemma 9 a basis of Λ′ can be computed as
follows:

1. Let D be dual basis of B. Compute D⊥ := D ·Π⊥v̄ .
2. Apply the LLL algorithm on D⊥ to eliminate linear dependencies. Then

delete the first row of D⊥ (which is 0 because with the hyperplane intersec-
tion, the dimension of the lattice is decremented).

3. Output the dual of the resulting matrix.

While polynomial time, the above computation is quite heavy, especially as there
is no convenient library offering a parallel version of LLL. Fortunately, for pre-
dicting attack costs, one only needs the dimension of the lattice Λ and its volume.
These can easily be computed assuming v̄ is a primitive vector (see Definition
10) of the dual lattice: the dimension decreases by 1, and the volume increases
by a factor ||v̄||. This is stated and proved in Lemma 11. Intuitively, the prim-
itivity condition is needed since then one can scale the leak to 〈s, fv〉 = fl for
any non-zero factor f ∈ R and get an equivalent leak; however there is only one
factor f that can ensure that f v̄ ∈ Λ∗, and is primitive in it.

Remark 23. Note that if v̄ is not in the span of Λ—as typically occurs if other
non-orthogonal perfect hints have already been integrated—Lemma 11 should
be applied to the orthogonal projection v̄′ = v̄ ·ΠΛ of v̄ onto Λ. Indeed, the
perfect hint 〈s̄, v̄′〉 = 0 replacing v̄ by v̄′ is equally valid.

4.2 Modular Hints

Definition 24 (Modular hint). A modular hint on the secret s is the knowl-
edge of v ∈ Zd−1, k ∈ Z and l ∈ Z, such that

〈s, v〉 = l mod k.

We can expect such hints to arise from several scenarios:

– obtaining the value of an intermediate register during LWE decryption would
likely correspond to giving such a modular equation modulo q. This is also
the case if an NTT coefficient leaks in a Ring-LWE scheme. It can also occur
“by design” if the LWE secret is chosen so that certain NTT coordinates are
fixed to 0 modulo q, as is the case in some instances of Order LWE [6].

– obtaining the absolute value a = |s| of a coefficient s implies s = a mod 2a,
and such a hint could be obtained by a timing attack on an unprotected
implementation of a table-based sampler, in the spirit of [17].



– obtaining the Hamming weight of the string b1b2 . . . b
′
1b
′
2 . . . used to sample

a centered binomial coefficient s =
∑
bi −

∑
b′i (as done in NewHope and

Kyber [34,31]) reveals in particular s mod 2. Indeed, the latter string (or at
least some parts of it) is more likely to be leaked than the Hamming weight
of s.

Integrating a modular hint into a DBDD instance. Let v ∈ Zd−1; k ∈ Z and
l ∈ Z be such that 〈s,v〉 = l mod k. Note that the hint can also be written as

〈s̄, v̄〉 = 0 mod k (12)

where s̄ is the extended LWE secret as defined in Equation 5 and v̄ := (v ; −l).
We refer to Remark 22 for the legitimacy of such dimension increase.

Smooth case. Intuitively, such a hint should only sparsify the lattice, and leave
the average and the variance unchanged. This is not entirely true, this is only
(approximately) true when the variance is sufficiently large in the direction of v
to ensure smoothness, i.e. when k2 � vΣvT ; one can refer to [28, Lemma 3.3
and Lemma 4.2] for the quality of that approximation. In this smooth case, we
therefore have:

Λ′ = Λ ∩
{
x ∈ Zd | 〈x, v̄〉 = 0 mod k

}
(13)

µ′ = µ (14)

Σ′ = Σ (15)

On the other hand, if k2 � vΣvT , then the residual distribution will be highly
concentrated on a single value, and one should therefore instead use a perfect
〈s, v〉 = l + ik for some i.

General case. In the general case, one can resort to a numerical computation
of the average µc and the variance σ2

c of the one-dimensional centered discrete
Gaussian of variance σ2 = vΣvT over the coset l+kZ, and apply the corrections:

µ′ = µ+
µc − 〈v̄,µ〉

v̄Σv̄T
v̄Σ (16)

Σ′ = Σ +

(
σ2
c

(v̄Σv̄T )2
− 1

v̄Σv̄T

)
(v̄Σ)T (v̄Σ) (17)

Intuitively, these formulae completely erase prior information on 〈s, v̄〉, before it
is replaced by the new average and variance in the adequate direction. Both can
be derived8 using Corollary 7.

As for perfect hints, the computation of Λ′ can be done by working on the
dual lattice. More specifically:

8 We are thankful to Thibauld Feneuil for pointing out an incorrect equation in a
previous version of this paper.



1. Let D be dual basis of B.
2. Redefine v̄← v̄ ·ΠΛ, noting that this does not affect the validity of the hint.
3. Append v̄/k to D and obtain D′

4. Apply the LLL algorithm on D′ to eliminate linear dependencies. Then delete
the first row of D′ (which is 0 since we introduced a linear dependency).

5. Output the dual of the resulting matrix.

Also, as for perfect hints the parameters of the new lattice Λ′ can be predicted:
the dimension is unchanged, and the volume increases by a factor k under a
primitivity condition, which is proved by Lemma 12.

4.3 Approximate Hints (conditioning)

Definition 25 (Approximate hint). An approximate hint on the secret s is
the knowledge of v ∈ Zd−1 and l ∈ Z, such that

〈s, v〉+ e = l,

where e models noise following a distribution N1(0, σ2
e), independent of s.

One can expect such hints from:

– any noisy side channel information about a secret coefficient. This is the case
of our study in Section 6.1.

– decryption failures. In Section 6.2, we show how this type of hint can repre-
sent the information gained by a decryption failure.

To include this knowledge in the DBDD instance, we must combine this knowl-
edge with the prior knowledge on the solution s of the instance.

Integrating an approximate hint into a DBDD instance Let v ∈ Zd−1 and l ∈ Z
be such that 〈s,v〉 ≈ l. Note that the hint can also be written as

〈s̄, v̄〉+ e = 0 (18)

where s̄ is the extended LWE secret as defined in Equation (5), v̄ := (v ; −l), and
e hasN1(0, σ2

e) distribution. The unique shortest non-zero solution of DBDDΛ,µ,Σ,
is also the unique solution of the instance DBDDΛ′,µ′,Σ′ where

Λ′ = Λ (19)

Σ′ = Σ− (v̄Σ)T v̄Σ

v̄Σv̄T + σ2
e

(20)

µ′ = µ− 〈v̄,µ〉
v̄Σv̄T + σ2

e

v̄Σ (21)

We note that Equation (19) comes from

Λ′ := Λ ∩
{
x ∈ Zd | 〈x, v̄〉+ e = 0, for all possible e ∼ N1(0, σ2

e)
}

= Λ.

The new covariance and mean follow from Corollary 7.



Consistency with Perfect Hint Note that if σe = 0, we fall back to a perfect hint
〈s,v〉 = l. The above computation of Σ′ (20) (resp. µ′ (21)) is indeed equivalent
to Equation (10) (resp. Equation (11)) from Section 4.1. Note however, in our
implementation, that to avoid singularities, we require the span of Span(Σ +
µTµ) = Span(Λ) (See the requirement in Equation (2)): If σe = 0, one must
instead use a Perfect hint.

Multi-dimensional approximate hints The formulae of [24] are even more general,
and one could consider a multidimensional hint of the form sV + e = l, where
V ∈ Rn×k and e a gaussian noise of any covariance Σe. However, those general
formulae require explicit matrix inversion which becomes impractical in large
dimension. We therefore only implemented full-dimensional (k = n) hint inte-
gration in the super-lightweight version of our tool, which assumes all covariance
matrices to be diagonal. These will be used for hints obtained from decryption
failures in Section 6.2.

4.4 Approximate Hint (a posteriori)

In certain scenarios, one may more naturally obtain directly the a posteriori
distribution of 〈s,v〉, rather than a hint 〈s,v〉+e = l for some error e independent
of s. Such a scenario is typical in template attacks, as we exemplify via the single
trace attack on Frodo from [9], which we study in Section 6.1.

Given the a posteriori distribution of 〈s̄, v̄〉, one can derive its mean µap and
variance σ2

ap and apply the corrections to compute the new mean and covariance
exactly as in Equations (16) and (17).

4.5 Short vector hints

Definition 26 (Short vector hint). A short vector hint on the lattice Λ is
the knowledge of a short vector v̄ such that

v̄ ∈ Λ.

Note that such hints are not related to the secret, and are not expected to
be obtained by side-channel information, but rather by the very design of the
scheme. In particular, the lattice Λ underlying LWE instance modulo q contains
the so-called q-vectors, i.e. the vectors (q, 0, 0, . . . , 0) and its permutations. These
vectors are in fact implicitly exploited in the literature on the cryptanalysis of
LWE since at least [23]. Indeed, in some regimes, the best attacks are obtained by
‘forgetting’ certain LWE equations, which can be geometrically interpreted as a
projection orthogonally to a q-vector. Note that, among all hints, the short vector
hints should be the last to be integrated. In our context, we need to generalize
this idea beyond q-vector because the q-vectors may simply disappear after the
integration of a perfect or modular hint. For example, after the integration of a
perfect hint 〈s, (1, 1, . . . , 1)〉 = 0, all the q-vectors are no longer in the lattice,
but (q,−q, 0, . . . , 0) still is, and so are all its permutations.



Resolving the DBDD problem resulting from this projection will not directly
lead to the original secret, as projection is not injective. However, as long as
we keep n+ 1 dimensions out of the n+m+ 1 dimensions of the original LWE
instance, we can still efficiently reconstruct the full LWE secret by solving a linear
system over the rationals.

Integrating a short vector hint into a DBDD instance It is the case when the
secret vector is short enough to be a solution after applying projection Π⊥v̄ on
DBDDΛ,Σ,µ .

Λ′ = Λ ·Π⊥v̄ (22)

Σ′ = (Π⊥v̄ )T ·Σ ·Π⊥v̄ (23)

µ′ = µ ·Π⊥v̄ (24)

To compute a basis of Λ′ one can simply apply the projection to all the vectors
of its current basis, and then eliminate linear dependencies in the resulting basis
using LLL.

Remark 27. Once a short vector hint v̄ ∈ Λ has been integrated, Λ has been
transformed into Λ′. And, if one has to perform another short vector hint in-
tegration v̄1 ∈ Λ, v̄1 should be projected onto Λ′ with v̄ · ΠΛ′ ∈ Λ′. In our
implementation however, this has been taken into account and one can sim-
ply apply the same transformation as above, replacing a single vector v̄ by a
matrix V.

The dimension of the lattice decreases by one (or by k, if one directly in-
tegrates a matrix of k vectors) and the volume of the lattice also decreases
according to Fact 13. One can also predict the decrease of the determinant of Σ
via the identity:

rdet(Σ′) = rdet(Σ) · ‖v̄‖
2

v̄Σv̄T
, or rdet(Σ′) = rdet(Σ) · det(VVT )

det(VΣVT )
. (25)

Worthiness and choice of short vector hints Integrating such a hint induces a
trade-off between the dimension and the volume, and therefore it is not always
advantageous to integrate.

This raises the following potentially hard problem: given a set W of short
vectors of Λ (viewed as a matrix), which subset V ⊂ W of size k lead to the
easiest DBDD instance? Because the hardness of the new problem grows with

rdet(Σ′)

Vol(Λ′)2
=

rdet(Σ)

Vol(Λ)2
· det(VVT )2

det(VΣVT )
(26)

In the case of an un-hinted DBDD instance directly obtained from the LWE
problem, for V being the set of (primitive) q-vectors, the problem is easier: all
subsets of size k lead to instances with the same parameters.



But this is not true anymore as soon as Σ has been altered or if the set W is
arbitrary. For example, setting Σ = I, one simply wishes to minimize det(VVT );
but for an arbitrary set W the problem of finding the optimal subset V ⊂W is
NP-hard [22], and remains NP-hard up to exponential approximation factors.

A natural approach to try to get an approximate solution in polynomial time
consists in making sequential greedy choices. This involves computing |V| · |W|
many matrix-vector products over increasingly large rationals, and appeared
painfully slow in practice for making prediction on cryptographically large in-
stances. Fortunately, in the typical cases where the vectors of W are the q-
vectors, this can be made somewhat practical (See Section 6.3 for example).

Remark 28. When the basis of an LWE-lattice is given in its systematic form, the
q-vectors are already explicitly given to lattice reduction algorithms, and these
algorithms will implicitly make use of them when they are worthy, as if we had
integrated them. The reason is that lattice reduction algorithm naturally work
with projected sublattices, and if a q-vector is shorter than what the algorithm
can produce, those q-vectors will remain untouched at the beginning of the basis;
the reduction algorithm will effectively work on the lattice projected orthogonally
to them. In other words, integrating q-vectors is important to understand and
predict how lattice reduction algorithm will work, but, in certain cases they
may be automatically detected and exploited by lattice reduction algorithms
themselves.

5 Implementation

5.1 Our Sage implementation

We propose three implementations of our framework, all following the same
python/sage 9.0 API.9 More specifically, the API and some common functions
are defined in DBDD generic.sage, as a class DBDD Generic. Three derived classes
are then given:

1. The class DBDD (provided in DBDD.sage) is the full-fledged implementation:
i.e. it fully maintains all information about a DBDD instance as one in-
tegrates hints: the lattice Λ, the covariance matrix Σ and the average µ.
While polynomial time, maintaining the lattice information can be quite
slow, especially since consecutive intersections with hyperplanes can lead to
manipulations on rationals with large denominators. It also allows to finalize
the attack, running the homogenization, isotropization and lattice reduction,
based on the fplll [15] library available through sage.
We note that if one were to repeatedly use perfect or modular hints, a lot
of effort would be spent on uselessly alternating between the primal and the
dual lattice. Instead, we implement a caching mechanism for the primal and
dual basis, and only update them when necessary.

9 While we would have preferred a full python implementation, we are making a heavy
use of linear algebra over the rationals for which we could find no convenient python
library.



2. The class DBDD predict (provided in DBDD predict.sage) is the lightweight
implementation: it only fully maintains the covariance information, and the
parameters of the lattice (dimension, volume). It must therefore work under
assumptions about the primitivity of the vector v; in particular, it cannot
detect hints that are redundant. If one must resort to this faster variant on
large instances, it is advised to consider potential (even partial) redundancy
between the given hints, and to run a comparison with the previous on small
instances with similarly generated hints.

3. The class DBDD predict diag (provided in DBDD predict diag.sage) is the
super-lightweight implementation. It maintains the same information as the
above, but requires the covariance matrix to remain diagonal at all times. In
particular, one can only integrate hints for which the directional vector v is
colinear with a canonical vector.

5.2 Tests and validation

In the full version of our paper, we present a demonstration of our tool with
some extracts of Sage 9.0 code. We implement two tests to verify the correctness
of our scripts, and more generally the validity of our predictions.

Consistency checks. Our first test (check consistency.sage) simply verifies that all
three classes always agree perfectly. More specifically we run all three versions on
a given instances, integrating the same random hint in all of them, and compare
their hardness prediction. We first test using the full-fledged version that the
primitivity condition does hold, and discard the hint if not, as we know that
predictions cannot be correct on such hints. This verification passes.

Prediction verifications. We now verify experimentally the prediction made by
our tool for various types of hints, by comparing those predictions to actual at-
tack experiments (see compare usvp models.sage for the prediction without hints
and prediction verifications.sage for the prediction with hints). This is done for a
given set of LWE parameters, and increasing the number of hints. The details
of the experiments and the results are given in Figure 5.

While our predictions seem overall accurate, we still note a minor discrepancy
of up to 2 or 3 bikz in the low blocksize regime. This exceeds the error made
by prediction on the attack without any hint, which was below 1 bikz, even in
the same low blocksize regime. We suspected that this discrepancy is due to
residual q-vectors, or small combinations of them, that are hard to predict for
randomly generated hints, but would still benefit by lattice reduction. We tested
that hypothesis by running similar experiments, but leaving certain coordinates
untouched by hints, so to still explicitly know some q-vectors for short-vector
hint integration, if they are “worthy”. This didn’t to improve the accuracy of
our prediction, which infirms our suspected explanation. We are at the moment
unable to explain this innacuracy. We nevertheless find our predictions satisfac-
tory, considering that even without hints, previous predictions [3] were much less
accurate (see Figure 4).
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Fig. 5. Experimental verification of the security decay predictions for each type of
hints. Each data point was averaged over 256 samples.

6 Applications examples

6.1 Hints from side channels

In [9], W. Bos et al. study the feasibility of a single-trace power analysis of the
Frodo Key Encapsulation Mechanism (FrodoKEM) [29]. Specifically, in the first
approach, they analyze the possibility of a divide-and-conquer attack targeting
a multiplication in the key generation. This attack was claimed unsuccessful in
[9] because the bruteforce phase after recovering a candidate for the private key
was too expensive. Along with this unsuccessful result, a successful powerful
extend-and-prune attack is provided in [9].

We emphasize that the purpose of this section is to exemplify our tool on a
standard side-channel attack, and this is why we choose the former unsuccessful



divide-and-conquer attack of [9]. The point of this section is to show that our
framework can indeed lead to improvements in the algorithmic phase of a side-
channel attack, once the leak has been fixed.

FrodoKEM. FrodoKEM is based on small-secret-LWE; we outline here some
details necessary to understand the attack. Note that we use different letter
notations from [29] for consistency. For parameters n and q, the private key
is (z ∈ Znq , e ∈ Znq ) where the coefficients of z and e, denoted zi and ei,
can take several values in a small set that we denote L. The public key is(
A ∈ Zn×nq ,b = zA + e

)
. The goal of the attack is to recover z by making mea-

surements during the multiplication between z and A when computing b in the
key generation. Note that there is no multiplication involving e and thus it is
not targeted in this attack. Six sets of parameters are considered: CCS1, CCS2,
CCS3 and CCS4 introduced in [8] and NIST1 and NIST2 introduced in [29]. For
example, with NIST1 parameters, n = 640, q = 215 and L = {−11, · · · , 11}.

Side-channel simulation. The divide-and-conquer attack provided by [9] sim-
ulates side-channel information using ELMO, a power simulator for a Cortex
M0 [27]. This tool outputs simulated power traces using an elaborate leakage
model with Gaussian noise. Thus, it is parametrized by the standard deviation
of the side-channel noise. For proofs of concept, the authors of [27] suggest to
choose the standard deviation of the simulated noise as σSimNoise := 0.0045 for
realistic leakage modeling. This standard deviation was also the one chosen in
[9, Fig. 2b] and W. Bos et al. implemented a Matlab script that calls ELMO
to simulate the side-channel information applied on Frodo. This precise side-
channel simulator was provided to us by the authors of [9] and we were able to
re-generate all their data with Matlab, again using σSimNoise = 0.0045.

Template attack. The divide-and-conquer side-channel attack proposed by W. Bos
et al. belongs in the template attack family. Template attacks were introduced
in [10]. In a nutshell, these attacks include a profiling phase and an online phase.
Let us detail the template attack for Frodo implemented in [9].

1. The profiling phase consists in using a copy of the device and recording
a large number of traces using many different known secret values. From
these measures, the attacker can derive the multidimensional distribution of
several points of interest when the traces share the same secret coefficient.
More precisely, in the case of FrodoKEM, for a given index i ∈ [0, n−1], the
points of interest will be the instants in the trace when zi is multiplied by
the coefficients of A (n interest points in total). Let us define

ci := (T [ti,0], . . . , T [ti,n−1]) c ∈ Rn, (27)

where T denotes the trace measurement and (ti,k) denotes the instants of
the multiplication of zi with the coefficients Ai,k for (i, k) ∈ [0, n − 1]. The
random variable vector associated to ci is denoted by Ci. For each i ∈ [0, n−1]



and x ∈ L, the goal of the profiling phase is to learn the center of the
probability distribution

Ai,x(c) := P [Ci = c | zi = x] .

By hypothesis, for template attacks (see [10, Section 2.1]), Ai,x is assumed
to follow a multidimenstional normal distribution of standard deviation
σSimNoise · In. Thus, the attacker recovers the center of Ai,x for each i ∈
[0, n − 1] and x ∈ L by averaging all the measured ci that validate zi = x.
The center of Ai,x is denoted ti,x and we call it a template. W. Bos et al. [9]
actually assume that ti,x depends only on x and is independent from the
index i. Thus, ti,x = tx. Essentially, this common assumption implies that
the index i ∈ [0, n−1] of the target coefficient does not influence the leakage.
Consequently, the attacker only has to derive t0,x, for example.

2. In a second step, the attacker knows the templates tx for all x ∈ L. She also
knows the points of interest ti,k as defined above in Equation 27. She will
construct a candidate z̃ for the secret z by recovering the coefficients one
by one. For each unknown secret coefficient zi, she takes the measurement
ci as defined in Equation 27. Using this measurement, she can derive an a
posteriori probability distribution: With her fixed i ∈ [0, n−1] and measured
ci ∈ R, she computes for all x ∈ L,

P [zi = x | Ci = ci] =
P [zi = x]

P [Ci = ci]
· P [Ci = ci | zi = x] (28)

∝ P [zi = x] · exp

(
−‖ci − tx‖22

2σ2
SimNoise

)
(29)

In [9], a score table, denoted (Si[x])x∈L is derived from the a posteriori
distribution as follows,

Si[x] := ln (P [zi = x | Ci = ci]) (30)

= ln (P [zi = x])− ‖ci − tx‖22
2σ2

SimNoise

. (31)

Finally, the output candidate for zi is z̃i := argmaxx∈L(Si[x]).

One can use the presented attack as a “black-box” to generate the score
tables using the script from [9]. As an example, using the NIST1 parameters,
we show several measured scores (S[−11], · · · , S[11]) corresponding to several
secret coefficients in Table 1. The first line corresponds to a secret equal to 0,
the second line to 1 and the third and fourth line to −1. The last line is an
example of failed guessing because we see that the outputted candidate is not
−1. We remark that the values having the opposite sign are assigned a very low
score, we conjecture that it is because the sign is filling the register and then the
Hamming weight of the register will be very far from the correct one.



zi
S

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

0 -4098 -3918 -4344 -2580 -3212 -3108 -3758 -3155 -3583 -3498 -3900 -340
1 -3273 -3114 -3491 -1951 -2495 -2405 -2972 -2445 -2819 -2744 -3098 -365
−1 -341 -335 -352 -465 -358 -369 -329 -362 -331 -334 -328 -3712
−1 -306 -298 -319 -414 -314 -323 -290 -317 -291 -293 -291 -3608

. . . 1 2 3 4 5 6 7 8 9 10 11

0 . . . -380 -367 -452 -818 -975 -933 -1084 -368 -459 -453 -592
1 . . . -325 -328 -338 -546 -657 -627 -737 -333 -344 -342 -407
−1 . . . -3079 -3195 -2656 -1696 -1461 -1521 -1329 -3231 -2648 -2685 -2201
−1 . . . -2982 -3097 -2564 -1617 -1385 -1444 -1256 -3132 -2556 -2593 -2115

Table 1: Examples of scores associated to the secret values si ∈ {0,±1}, after
the side-channel analysis of [9] for NIST1 parameters. The best score in each
score table is highlighted. This best guess is correct for the first 3 score table,
but incorrect for the last one.

With this template attack, one can recover z̃ ≈ z. However, W. Bos et al. [9]
could not conclude the attack with a key recovery even though much informa-
tion leaked about the secret. Frustratingly, a bruteforce phase to derive z from
z̃ did not lead to any security threat as stated in [9, Section 3]. They actually
pointed out an interesting open question of whether “novel lattice reduction al-
gorithms [can] take into account side-channel information”. Our work solves this
open question by combining the knowledge obtained in the divide-and-conquer
template attack of [9] with our framework.

From scores to hints. We first instantiate a DBDD instance with a chosen set
of parameters. Then we assume that, for each secret coefficient zi, we are given
the associated score table Si, thanks to the template attack that has already
been carried out. We go back to the a posteriori distribution in Equation 29 by
applying the exp() function and renormalizing the score table. As an example,
we show the probability distributions derived from Table 1, along with their
variances and centers, in Table 2.

Finally, we use our framework to introduce n a posteriori approximate hints
to our DBDD instance with the derived centers and variances for each score
table. When the variance is exactly 0, we integrate perfect hints instead.

Results. One can reproduce this attack using the Sage 9.0 script
exploiting SCA from Bos et al.sage. The experimentally derived data containing
the score tables is in the folder Scores tables SCA for which, as mentioned earlier,
was generated with a simulated noise variance of 0.0045. One can note that the
obtained security fluctuates a bit from instance to instance, as it depends on
the strength of the hints, which themselves depend on the randomness of the



zi
A posteriori distribution

−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0.26 0 0.04 0.00 0.70 0
−1 0 0 0 0 0 0 0.56 0 0.21 0.03 0.21 0

. . . 1 2 3 4 5 6 7 8 9 10 11 center variance

0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 . . . 0.95 0.04 0 0 0 0 0 0.01 0 0 0 1.05 0.06
−1 . . . 0 0 0 0 0 0 0 0 0 0 0 -2.11 3.11
−1 . . . 0 0 0 0 0 0 0 0 0 0 0 -3.68 2.63

Table 2: Probability distributions derived from Table 1, along with variances
and centers.

scheme. In the first two lines of Table 3, we show the new security with the
inclusion of the approximate hints averaged on 50 tests per set of parameters.

NIST1 NIST2 CCS1 CCS2 CCS3 CCS4

Attack without hints (bikz) 487 708 239 448 492 584
Attack with hints (bikz) 330 423 128 123 219 230

Attack with hints & guesses (bikz) 292 298 70 29 124 129
Number of guesses g 100 250 200 300 250 250
Success probability 0.86 0.64 0.87 0.77 0.81 0.84

Table 3: Cost of the attacks without/with hints without/with guesses.

Guessing. To improve the attack further, one can note from Table 2 that certain
key values have a very high probability of being correct, and assuming each of
these values are correct, one can replace an approximate hint with a perfect one.
For example, considering the second line of Table 2, the secret has a probability
of 0.95 to be 1 and thus guessing it trades a perfect hint for a decrease of the
success probability of the attack by 5%. This hybrid attack exploiting hints,
guesses and lattice reduction, works as follows. Let g be a parameter.

1. Include all the approximate and perfect hints given by the score tables,
2. Order the coefficients of the secret zi according to the maximum value of

their a posteriori distribution table,
3. Include perfect hints for the g first coefficients and then solve and check the

solution.

Increasing the number of guesses g leads to a trade-off between the cost of the
attack and its success probability. We have chosen here a success probability
larger than 0.6, while reducing the attack cost by 38 to 145 bikz depending on



the parameter set. Given that 1 bit of security corresponds roughly to 3 or 4
bikz, this is undoubtedly advantageous.

Remark 29. The refinement presented above are very recent (lastly improved on
June 2020). We are grateful to the authors of [9] of for helping us reconstructing
distributions from the score table.

We remark that, with these results, the attacks with guesses on the pa-
rameters CCS1 and CCS2 seem doable in practice while it was not the case
with our original results. However, some improvements of the implementation
remain to be done in order to actually mount the attack. The full-fledged im-
plementation cannot handle in reasonable time the large matrices of the orig-
inal DBDD instance. We require another class of implementation which fully
maintains all information about the instance, like the DBDD class, and assumes
that the covariance matrix Σ is diagonal to simplify the computations, like the
DBDD predict diag class. We hope to report on such an implementation in a
future update of this report.

Remark 30. It should be noted that, given a single trace, one cannot naively
retry the attack to boost its success probability. Indeed, the “second-best” guess
may already have a much lower success probability than the first. Setting up such
an hybrid attack mixing lattice reduction within our framework and key-ranking
appears to be an interesting problem.

6.2 Hints from decryption failures

Another kind of hint our framework can model are hints provided by decryption
failures. Using our framework, we produce prediction on a decryption failure
attack on FrodoKEM-976 that match very closely the ad-hoc analysis of [14].
Our analysis is deferred to the full version of this paper [13].

6.3 Structural hints from Design

Interestingly, we can also incorporate structural information on the secret or
error that is present in certain schemes. We present (slightly) improved attacks
on several Round 2 NIST submissions (such as LAC, Round5, and NTRU) which
use ternary distribution for secrets, with a prescribed numbers of 1’s and −1’s
in the full version of our paper [13].
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