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Abstract. When analyzing the round complexity of multi-party com-
putation (MPC), one often overlooks the fact that underlying resources,
such as a broadcast channel, can by themselves be expensive to imple-
ment. For example, it is impossible to implement a broadcast channel
by a (deterministic) protocol in a sub-linear (in the number of corrupted
parties) number of rounds. The seminal works of Rabin and Ben-Or
from the early 80’s demonstrated that limitations as the above can be
overcome by allowing parties to terminate in different rounds, igniting
the study of protocols with probabilistic termination. However, absent a
rigorous simulation-based definition, the suggested protocols are proven
secure in a property-based manner, guaranteeing limited composability.
In this work, we define MPC with probabilistic termination in the UC
framework. We further prove a special universal composition theorem
for probabilistic-termination protocols, which allows to compile a pro-
tocol using deterministic-termination hybrids into a protocol that uses
expected-constant-round protocols for emulating these hybrids, preserv-
ing the expected round complexity of the calling protocol.

We showcase our definitions and compiler by providing the first com-
posable protocols (with simulation-based security proofs) for the follow-
ing primitives, relying on point-to-point channels: (1) expected-constant-
round perfect Byzantine agreement, (2) expected-constant-round perfect
parallel broadcast, and (3) perfectly secure MPC with round complexity
independent of the number of parties.
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1 Introduction

In secure multi-party computation (MPC) [49,27] n parties Py, ..., P, wish to
jointly perform a computation on their private inputs in a secure way, so that
no coalition of cheating parties can learn more information than their outputs
(privacy) or affect the outputs of the computation any more than by choosing
their own inputs (correctness).

While the original security definitions had the above property-based flavor
(i.e., the protocols were required to satisfy correctness and privacy—potentially
along with other security properties, such as fairness and input independence), it
is by now widely accepted that security of multi-party cryptographic protocols
should be argued in a simulation-based manner. Informally, in the simulation
paradigm for security, the protocol execution is compared to an ideal world
where the parties have access to a trusted third party (TTP, aka the “ideal
functionality”) that captures the security properties the protocol is required to
achieve. The TTP takes the parties’ inputs and performs the computation on
their behalf. A protocol is regarded as secure if for any adversary attacking it,
there exists an ideal adversary (the simulator) attacking the execution in the
ideal world, such that no external distinguisher (environment) can tell the real
and the ideal executions apart.

There are several advantages in proving a protocol secure in this way. For
starters, the definition of the functionality captures all security properties the
protocol is supposed to have, and therefore its design process along with the secu-
rity proof often exposes potential design flaws or issues that have been overlooked
in the protocol design. A very important feature of many simulation-based secu-
rity definitions is composability, which ensures that a protocol can be composed
with other protocols without compromising its security. Intuitively, composabil-
ity ensures that if a protocol 79 which uses a “hybrid” G (a broadcast channel,
for example) securely realizes functionality F, and protocol p securely realizes
the functionality G, then the protocol 7#/9, which results by replacing in 7 calls
to G by invocations of p, securely realizes F. In fact, simulation-based security
is the one and only way known to ensure that a protocol can be generically used
to implement its specification within an arbitrary environment.

Round complexity. The prevalent model for the design of MPC protocols is
the synchronous model, where the protocol proceeds in rounds and all mes-
sages sent in any given round are received by the beginning of the next round.
In fact, most if not all implemented and highly optimized MPC protocols
(e.g., [18,20,37,15,43]) are in this model. When executing such synchronous pro-
tocols over large networks, one needs to impose a long round duration in order
to account for potential delay at the network level, since if the duration of the
rounds is too short, then it is likely that some of the messages that arrive late
will be ignored or, worse, assigned to a later round. Thus, the round complex-
ity, i.e., the number of rounds it takes for a protocol to deliver outputs, is an
important efficiency metric for such protocols and, depending on the network
parameters, can play a dominant role in the protocol’s running time.



An issue often overlooked in the analysis of the round complexity of proto-
cols is that the relation between a protocol’s round complexity and its actual
running time is sensitive to the “hybrids” (e.g., network primitives) that the
protocol is assumed to have access to. For example, starting with the seminal
MPC works [49,27,6,14,47], a common assumption is that the parties have access
to a broadcast channel, which they invoke in every round. In reality, however,
such a broadcast channel might not be available and would have to be imple-
mented by a broadcast protocol designed for a point-to-point network. Using
a standard (deterministic) broadcast protocol for this purpose incurs a linear
(in n, the number of parties®) blow-up on the round complexity of the MPC
protocol, as no deterministic broadcast protocol can tolerate a linear number of
corruptions and terminate in a sublinear number of rounds [24,22]. Thus, even
though the round complexity of these protocols is usually considered to be linear
in the multiplicative depth d of the computed circuit, in reality their running
time could become linear in nd (which can be improved to O(n + d) [34]) when
executed over point-to-point channels.5

In fact, all so-called constant-round  multi-party  protocols
(e.g., [38,3,17,32,1,25,30,44]) rely on broadcast rounds—rounds in which
parties make calls to a broadcast channel—and therefore their running time
when broadcast is implemented by a standard protocol would explode to be
linear in n instead of constant.” As the results from [24,22] imply, this is not a
consequence of the specific choice of protocol but a limitation of any protocol in
which there is a round such that all parties are guaranteed to have received their
output; consistently with the literature on fault-tolerant distributed computing,
we shall refer to protocols satisfying this property as deterministic-termination
protocols. In fact, to the best of our knowledge, even if we allow a negligible
chance for the broadcast to fail, the fastest known solutions tolerating a constant
fraction of corruptions follow the paradigm from [23] (see below), which requires
a poly-logarithmic (in n) number of rounds.®

Protocols with probabilistic termination. A major breakthrough in fault-tolerant
distributed algorithms (recently honored with the 2015 Dijkstra Prize in Dis-
tributed Computing), was the introduction of randomization to the field by
Ben-Or [4] and Rabin [46], which, effectively, showed how to circumvent the
above limitation by using randomization. Most relevant to this submission,
Rabin [46] showed that linearly resilient Byzantine agreement protocols [45,40)

5More precisely, in the number of corruptions a protocol can tolerate, which is a
constant fraction of n.

SThroughout this work we will consider protocols in which all parties receive their
output. If one relaxes this requirement (i.e., allows that some parties may not receive
their output and give up on fairness) then the techniques of Goldwasser and Lindell [29]
allow for replacing broadcast with a constant-round multi-cast primitive.

"We remark that even though those protocols are for the computational setting,
the lower bound on broadcast round complexity also applies.

8Note that this includes even FHE-based protocols, as they also assume a broadcast
channel and their security fails if multi-cast over point-to-point channels is used instead.



(BA, related to broadcast, possibility- and impossibility-wise) in expected con-
stant rounds were possible, provided that all parties have access to a “common
coin” (i.e., a common source of randomness).? This line of research culminated
with the work of Feldman and Micali [23], who showed how to obtain a shared
random coin with constant probability from “scratch,” yielding a probabilistic
BA protocol tolerating the maximum number of misbehaving parties (t < n/3)
that runs in expected constant number of rounds. The randomized BA proto-
col in [23] works in the information-theoretic setting; these results were later
extended to the computational setting by Katz and Koo [33], who showed that
assuming digital signatures there exists an (expected-)constant-round protocol
for BA tolerating ¢t < n/2 corruptions. The speed-up on the running time in
all these protocols, however, comes at the cost of uncertainty, as now they need
to give up on guaranteed (eventual) termination (no fixed upper bound on their
running time'®) as well as on simultaneous termination (a party that terminates
cannot be sure that other parties have also terminated!!) [21]. These issues make
the simulation-based proof of these protocols a very delicate task, which is the
motivation for the current work.

What made the simulation-based approach a more accessible technique in
security proofs was the introduction simulation-based security frameworks. The
ones that stand out in this development—and are most often used in the
literature—are Canetti’s modular composition (aka stand-alone security) [9] and
the universal composition (UC) frameworks [10,11]. The former defines security
of synchronous protocols executed in isolation (i.e., only a single protocol is run
at a time, and whenever a subroutine-protocol is called, it is run until its com-
pletion); the latter allows protocols to be executed alongside arbitrary (other)
protocols and be interleaved in an arbitrary manner. We remark that although
the UC framework is inherently asynchronous, several mechanisms have been
proposed to allow for a synchronous execution within it (e.g., [11,39,36,12]).

Despite the wide-spread use of the simulation-based paradigm to prove se-
curity of protocols with deterministic termination, the situation has been quite
different when probabilistic-termination protocols are considered. Here, despite
the existence of round-efficient BA protocols as mentioned above [23,33], to our
knowledge, no formal treatment of the problem in a simulation-based model ex-
ists, which would allow us to apply the ingenious ideas of Rabin and Ben-Or
in order to speed up cryptographic protocols. We note that Katz and Koo [33]
even provided an expected-constant-round MPC protocol using their fast BA
protocol as a subroutine, employing several techniques to ensure proper use of
randomized BA. In lack, however, of a formal treatment, existing constructions

9Essentially, the value of the coin can be adopted by the honest parties in case
disagreement at any given round is detected, a process that is repeated multiple times.

0Throughout this paper we use running time and round complexity interchangeably.

11t should be noted however that in many of these protocols there is a known
(constant) “slack” of ¢ rounds, such that if a party terminates in round r, then it can
be sure that every honest party will have terminated by round r + c.



are usually proved secure in a property-based manner or rely on ad hoc, less
studied security frameworks [42].12

A simulation-based and composable treatment of such probabilistic-
termination (PT for short) protocols would naturally allow, for example, to
replace the commonly used broadcast channel with a broadcast protocol, so that
the expected running time of the resulting protocol is the same as the one of the
original (broadcast-hybrid) protocol. A closer look at this replacement, however,
exposes several issues that have to do not only with the lack of simulation-based
security but also with other inherent limitations. Concretely, it is usually the
case in an MPC protocol that the broadcast channel is accessed by several (in
many cases by all) parties in the same (broadcast) round in parallel. Ben-Or
and El-Yaniv [5] observed that if one naively replaces each such invocation by a
PT broadcast protocol with expected constant running-time, then the expected
number of rounds until all broadcasts terminate is no longer constant; in fact, it
is not hard to see that in the case of [23], the expected round complexity would be
logarithmic in the number of instances (and therefore also in the player-set size).
Nevertheless, in [5] a mechanism was proposed for implementing such parallel
calls to broadcast so that the total number of rounds remains constant.

The difficulties arising with generic parallel composition are not the only issue
with PT protocols. As observed by Lindell et al. [42], composing such protocols in
sequence is also problematic. The main issue here is that, as already mentioned,
PT protocols do not have simultaneous termination and therefore a party cannot
be sure how long after he receives his output from a call to such a PT protocol
he can safely carry on with the execution of the calling protocol. Although PT
protocols usually guarantee a constant “slack” of rounds (say, ¢) in the output of
any two honest parties, the naive approach of using this property to synchronize
the parties—i.e., wait ¢ rounds after the first call, 2¢ rounds after the second
call, and so on—imposes an exponential blow-up on the round complexity of
the calling protocol. To resolve this, [42] proposed using fixed points in time at
which a re-synchronization subroutine is executed, allowing the parties to ensure
that they never get too far out-of-sync. Alternative approaches for solving this
issue was also proposed in [8,33] but, again, with a restricted (property-based)
proof.

Despite their novel aspects, the aforementioned results on composition of PT
protocols do not use simulation-based security, and therefore it is unclear how
(or if) they could be used to, for example, instantiate broadcast within a higher-
level cryptographic protocol. In addition, they do not deal with other impor-
tant features of modern security definitions, such as adaptive security and strict
polynomial time execution. In fact, this lack of a formal cryptographic treat-
ment places some of their claims at odds with the state-of-the-art cryptographic
definitions—somewhat pointedly, [5] claims adaptive security, which, although it

12As we discuss below, the protocol of Katz and Koo has an additional issue with
adaptive security in the rushing adversary model, as defined in the UC framework,
similar to the issue exploited in [31].



can be shown to hold in a property-based definition, is not achieved by the spec-
ified construction when simulation-based security is considered (cf. Section 5).

Our contributions. In this paper we provide the first formal simulation-based
(and composable) treatment of MPC with probabilistic termination. Our treat-
ment builds on Canetti’s universal composition (UC) framework [10,11]. In order
to take advantage of the fast termination of PT protocols, parties typically pro-
ceed at different paces and therefore protocols might need to be run in an inter-
leaved manner—e.g., in an MPC protocol a party might initiate the protocol for
broadcasting his r-round message before other parties have received output from
the broadcasting of messages for round r — 1. This inherent concurrency along
with its support for synchrony makes the UC framework the natural candidate
for our treatment.

Our motivating goal, which we achieve, is to provide a generic compiler
that allows us to transform any UC protocol 7= making calls to deterministic-
termination UC protocols p; in a “stand-alone fashion” (similar to [9], i.e., the
protocols p; are invoked sequentially and in each round exactly one protocol is
being executed by all the parties) into a protocol in which each p; is replaced by
a (faster) PT protocol pj. The compiled protocol achieves the same security as
7 and has (expected) round complexity proportional to ). d;r;, where d; is the
expected number of calls 7 makes to p; and r; is the expected round complexity
of p;.

Towards this goal, the first step is to define what it means for a proto-
col to (UC-)securely realize a functionality with probabilistic termination in
a simulation-based manner, by proposing an explicit formulation of the func-
tionality that captures this important protocol aspect. The high-level idea is to
parameterize the functionality with an efficiently sampleable distribution D that
provides an upper bound on the protocol’s running time (i.e., number of rounds),
so that the adversary cannot delay outputs beyond this point (but is allowed to
deliver the output to honest parties earlier, and even in different rounds).

Next, we prove our universal composability result. Informally, our result pro-
vides a generic compiler that takes as input a “stand-alone” protocol p, realizing
a probabilistic-termination functionality F2 (for a given distribution D) while
making sequential calls to (deterministic-termination) secure function evaluation
(SFE)-like functionalities, and compiles it into a new protocol p’ in which the
calls to the SFEs are replaced by probabilistic-termination protocols realizing
them. The important feature of our compiler is that in the compiled protocol,
the parties do not need to wait for every party to terminate their emulation of
each SFE to proceed to the emulation of the next SFE. Rather, shortly after a
party (locally) receives its output from one emulation, it proceeds to the next
one. This yields an (at most) multiplicative blow-up on the expected round com-
plexity as discussed above. In particular, if the protocols used to emulate the
SFE’s are expected constant round, then the expected round complexity of p’ is
the same (asymptotically) as that of p.

We then showcase our definition and composition theorem by provid-
ing simulation-based (therefore composable) probabilistic-termination protocols



and security proofs for several primitives relying on point-to-point channels:
expected-constant-round perfect Byzantine agreement, expected-constant-round
perfect parallel broadcast, and perfectly secure MPC with round complexity
independent of the number of parties. Not surprisingly, the simulation-based
treatment reveals several issues, both at the formal and at the intuitive levels,
that are not present in a property-based analysis, and which we discuss along
the way. We now elaborate on each application in turn. Regarding Byzantine
agreement, we present a protocol that perfectly securely UC-implements the
probabilistic-termination Byzantine agreement functionality for ¢ < n/3 in an
expected-constant number of rounds. (We will use RBA to denote probabilistic-
termination BA, as it is often referred to as “randomized BA.”*?) Our protocol
follows the structure of the protocol in [23], with a modification inspired by Gol-
dreich and Petrank [28] to make it strict polynomial time (see the discussion
below), and in a sense it can be viewed as the analogue for RBA of the well-
known “CLOS” protocol for MPC [13]. Indeed, similarly to how [13] converted
(and proved) the “GMW?” protocol [26] from statically secure in the stand-alone
setting into an adaptively secure UC version, our work transforms the broadcast
and BA protocols from [23] into adaptively UC-secure randomized broadcast
and RBA protocols.'*

Our first construction above serves as a good showcase of the power of our
composition theorem, demonstrating how UC-secure RBA is built in a modular
manner: First, we de-compose the sub-routines that are invoked in [23] and de-
scribe simple(r) (SFE-like) functionalities corresponding to these sub-routines;
this provides us with a simple “backbone” of the protocol in [23] making calls
to these hybrids, which can be easily proved to implement expected-constant-
round RBA. Next, we feed this simplified protocol to our compiler which outputs
a protocol that implements RBA from point-to-point secure channels; our com-
position theorem ensures that the resulting protocol is also expected constant
round.

There is a sticky issue here that we need to resolve for the above to work:
the protocol in [23] does not have guaranteed termination and therefore the dis-
tribution of the terminating round is not sampleable by a strict probabilistic
polynomial-time (PPT) machine.'® A way around this issue would be to modify
the UC model of execution so that the corresponding ITMs are expected PPTs.
Such a modification, however, would impact the UC model of computation, and
would therefore require a new proof of the composition theorem—a trickier task
than one might expect, as the shift to expected polynomial-time simulation is
known to introduce additional conceptual and technical difficulties (cf. [35]),

I3BA is a deterministic output primitive and it should be clear that the term “ran-
domized” can only refer to the actual number of rounds; however, to avoid confusion
we will abstain from using this term for functionalities other than BA whose output
might also be probabilistic.

1 As we show, the protocol in [23] does not satisfy input independence, and therefore
is not adaptively secure in a simulation-based manner (cf. [31]).

15 A1l entities in UC, and in particular ideal functionalities, are strict interactive PPT
Turing machines, and the UC composition theorem is proved for such PPT ITMs.



whose resolution is beyond the scope of this work. Instead, here we take a dif-
ferent approach which preserves full compatibility with the UC framework: We
adapt the protocol from [23] using ideas from [28] so that it implements a func-
tionality which samples the terminating round with almost the same probability
distribution as in [23], but from a finite (linear-size) domain; as we show, this
distribution is sampleable in strict polynomial time and can therefore be used
by a standard UC functionality.

Next, we use our composition theorem to derive the first simulation-based
and adaptively (UC) secure parallel broadcast protocol, which guarantees that
all broadcast values are received within an expected constant number of rounds.
This extends the results from [5,33] in several ways: first, our protocol is perfectly
UC-secure which means that we can now use it within a UC-secure SFE proto-
col to implement secure channels, and second, it is adaptively secure against a
rushing adversary.'¢

Finally, by applying once again our compiler to replace calls to the broad-
cast channel in the SFE protocol by Ben-Or, Goldwasser, and Wigderson [6]
(which, recall, is perfectly secure against ¢ < n/3 corruptions in the broadcast-
hybrid model [2]) by invocations to our adaptively secure UC parallel broadcast
protocol, we obtain the first UC-secure PT MPC protocol in the point-to-point
secure channels model with (expected) round complexity O(d), independently of
the number of parties, where d is the multiplicative depth of the circuit being
computed. As with RBA, this result can be seen as the first analogue of the UC
compiler by Canetti et al. [13] for SFE protocols with probabilistic termination.

We stress that the use of perfect security to showcase our composition the-
orem is just our choice and not a restriction of our composition theorem. In
fact, our theorem can be also applied to statistically or computationally secure
protocols. Moreover, if one is interested in achieving better constants in the
(expected) round complexity then one can use SFE protocols that attempt to
minimize the use of the broadcast channel (e.g., [34]). Our composition theorem
will give a direct methodology for this replacement and will, as before, eliminate
the dependency of the round complexity from the number of parties.!”

2 Model

We consider n parties P, ..., P, and an adaptive t-adversary, i.e., the adversary
corrupts up to t parties during the protocol execution.'® We work in the UC
model and assume the reader has some familiarity with its basics. To capture
synchronous protocols in UC we use the framework of Katz et al. [36]. Concretely,

6 Although security against a “dynamic” adversary is also claimed in [5], the pro-
tocol does not implement the natural parallel broadcast functionality in the presence
of an adaptive adversary (see Section 5).

"Note that even a single round of broadcast is enough to create the issues with
parallel composition and non-simultaneous termination discussed above.

18Tn contrast, a static adversary chooses the set of corrupted parties at the onset of
the computation.



the assumption that parties are synchronized is captured by assuming that the
protocol has access to a “clock” functionality Feock- The functionality Fepock
maintains an indicator bit which is switched once all honest parties request the
functionality to do it. At any given round, a party asks Fepocx to turn the bit
on only after having finished with all operations for the current round. Thus,
this bit’s value can be used to detect when every party has completed his round,
in which case they can proceed to the next round. As a result, this mechanism
ensures that no party sends his messages for round r 4+ 1 before every party has
completed round r. For clarity, we retain from writing this clock functionality
in our theorem statement; however, all our results assume access to such a clock
functionality.

In the communication network of [36], parties have access to bounded-delay
secure channels. These channels work in a so-called “fetch” mode, i.e., in order
to receive his output the receiver issues a fetch-output command. This allows
to capture the property of a channel between a sender Ps; and a receiver P,
delaying the delivery of a message by an amount d: as soon as the sender P
submits an input y (message to be sent to the receiver) the channel function-
ality starts counting how many times the receiver requests it.!” The first § — 1
such fetch-output requests (plus all such requests that are sent before the
sender submits input) are ignored (and the adversary is notified about them);
the dth fetch-output request following a submitted input y from the sender
results in the channel sending (output,y) to P,. In this work we take an alter-
native approach and model secure channels as special simple SFE functionalities.
These SFEs also work in a fetch mode?® and provide the same guarantee as the
bounded-delay channels.

There are two important considerations in proving the security of a syn-
chronous UC protocol: (1) The simulator needs to keep track of the protocol’s
current round, and (2) because parties proceed at the same pace, they can syn-
chronize their reaction to the environment; most fully synchronous protocols,
for example, deliver output exactly after a given number of rounds. In [36] this
property is captured as follows: The functionality keeps track of which round
the protocol would be in by counting the number of activations it receives from
honest parties. Thus, if the protocol has a regular structure, where every party
advances the round after receiving a fixed number p of activations from its en-
vironment (all protocols described herein will be in this form), the functionality
can easily simulate how rounds in the protocol advance by incrementing its round
index whenever it receives u messages from all honest parties; we shall refer to
such a functionality as a synchronous functionality. Without loss of generality, in
this work we will describe all functionalities for u = 1, i.e., once a functionality
receives a message from every party it proceeds to the simulation of the next
protocol round. We stress that this is done to simplify the description, and the

YFollowing the simplifying approach of [36], we assume that communication chan-
nels are single use, thus each message transmission uses an independent instance of the
channel

20Tn fact, for simplicity we assume that they deliver output on the first “fetch”.



in an actual evaluation, as in the synchronous setting of [36], in order to give
the simulator sufficiently many activations to perform its simulation, function-
alities typically have to wait for g > 1 messages from each party where the last
w — 1 of these messages are typically “dummy” activations (usually of the type
fetch-output).

To further simplify the description of our functionalities, we introduce the
following terminology. We say that a synchronous functionality F is in round
p if the current value of the above internal round counter in F is 7 = p. All
synchronous functionalities considered in this work have the following format:
They treat the first message they receive from any party P; as P;’s input?!—if
this message is not of the right form (input,-) then a default value is taken as
P; input; as soon as an honest party sends its first message, any future message
by this party is treated as a fetch-output message.

3 Secure Computation with Probabilistic Termination

The work of Katz et al. [36] addresses (synchronous) cryptographic protocols
that terminate in a fixed number of rounds for all honest parties. However, as
mentioned in Section 1, Ben-Or [4] and Rabin [46] showed that in some cases,
great asymptotic improvements on the expected termination of protocols can
be achieved through the use of randomization. Recall, for example, that in the
case of BA, even though a lower bound of O(n) on the round complexity of
any deterministic BA protocol tolerating ¢ = {2(n) corruptions exists [24,22],
Rabin’s global-coin technique (fully realized later on in [23]) yields an expected-
constant-round protocol. This speed-up, however, comes at a price, namely, of
relinquishing both fized and simultaneous termination [21]: the round complexity
of the corresponding protocols may depend on random choices made during the
execution, and parties may obtain output from the protocol in different rounds.

In this section we show how to capture protocols with such probabilistic termi-
nation (PT), i.e., without fixed and without simultaneous termination, within
the UC framework. To capture probabilistic termination, we first introduce a
functionality template Fegr called a canonical synchronous functionality (CSF).
Fesr 18 a simple two-round functionality with explicit (one-round) input and
(one-round) output phases. Computation with probabilistic termination is then
defined by wrapping F.¢r with an appropriate functionality wrapper that enables
non-fixed, non-simultaneous termination.

3.1 Canonical Synchronous Functionalities

At a high level, Fcgr corresponds to a generalization of the UC secure function
evaluation (SFE) functionality to allow for potential leakage on the inputs to the

2INote that this implies that also protocol machines treats its first message as their
input.

10



adversary and potential adversarial influence on the outputs.?? In more detail,
Fesr has two parameters: (1) a (possibly) randomized function f that receives n+
1 inputs (n inputs from the parties and one additional input from the adversary)
and (2) a leakage function [ that leaks some information about the input values
to the adversary.

Fesr proceeds in two rounds: in the first round all the parties hand Fegpr their
input values, and in the second round each party receives its output. This is
very similar to the standard (UC) SFE functionality; the difference here is that
whenever some input is submitted to Fcgr, the adversary is handed some leakage
function of this input—similarly, for example, to how UC secure channels leak
the message length to the adversary. The adversary can use this leakage when
deciding the inputs of corrupted parties. Additionally, he is allowed to input an
extra message, which—depending on the function f—might affect the output(s).
The detailed description of Fcgr is given in Figure 1.

Functionality FZ!(P)
Fose proceeds as follows, parametrized by a function f: ({0,1}* U {1} —
({0,1}*)™ and a leakage function I: ({0,1}* U{L})™ — {0,1}", and running with
parties P = {Py,..., P,} and an adversary S.

— Initially, set the input values z1,...,x,, the output values yi,...,yn, and the
adversary’s value a to L.
— In round p=1:
e Upon receiving (adv-input, sid, v) from the adversary, set a < v.
e Upon receiving a message (input,sid,v) from some party P; € P, set x; < v
and send (leakage,sid, P;,l(z1,...,%s)) to the adversary.
— In round p = 2:
e Upon receiving (adv-input,sid,v) from the adversary, if y1 = ... =y = L,
set a <— v. Otherwise, discard the message.
e Upon receiving (fetch-output, sid) from some party P; € P, ify1 = ... =y, =
L compute (y1,...,yn) = f(x1,...,2n,a). Next, send (output,sid,y;) to P;
and (fetch-output,sid, P;) to the adversary.

Fig. 1: The canonical synchronous functionality

Next, we point out a few technical issues about the description of Fegp.
Following the simplifications from Section 2, Fcgr advances its round as soon as it
receives u = 1 message from each honest party. This ensures that the adversary
cannot make the functionality stall indefinitely. Thus, formally speaking, the
functionality Fesp is not well-formed (cf. [13]), as its behavior depends on the
identities of the corrupted parties.2?> We emphasize that the non-well-formedness

22Looking ahead, this adversarial influence will allow us to describe BA-like func-
tionalities as simple and intuitive CSF's.
Z3This is, in fact, also the case for the standard UC SFE funtionality.
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relates only to advancing the rounds, and is unavoidable if we want to restrict
the adversary not to block the evaluation indefinitely (cf. [36]).

We point out that as a generalization of the SFE functionality, CSFs are

powerful enough to capture any deterministic well-formed functionality. In fact,
all the basic (unwrapped) functionalities considered in this work will be CSFs.
We now describe how standard functionalities from the MPC literature can be
cast as CSFs:

SECURE MESSAGE TRANSMISSION (AKA SECURE CHANNEL). In the se-
cure message transmission (SMT) functionality, a sender P; with input x;
sends its input to P;. Since Fcer is an n-party functionality and involves
receiving input messages from all n parties, we define the two-party task
using an n-party function. The function to compute is &7 (zy,...,7,,a) =
(A, ..., 24y, A) (where z; is the value of the j’th coordinate) and the leak-
age function is %7 (z1,...,x,) = y, where y = |z;| in case P; is honest and
y = x; in case P; is corrupted. We denote by f;{T the functionality Fegr
when parametrized with the above functions f%J and [, for sender P; and
receiver P;.

BROADCAST. In the (standard) broadcast functionality, a sender P; with

input z; distributes its input to all the parties, i.e., the function to com-

pute is fi(z1,...,2n,a) = (24,...,7;). The adversary only learns the
length of the message x; before its distribution, i.e., the leakage function
is I! (z1,...,25) = |z;|. This means that the adversary does not gain new

information about the input of an honest sender before the output value for
all the parties is determined, and in particular, the adversary cannot cor-
rupt an honest sender and change its input after learning the input message.
We denote by Fi, the functionality Fege when parametrized with the above
functions f¢ and (¢, for sender P;.

SECURE FUNCTION EVALUATION. In the secure function evaluation func-
tionality, the parties compute a randomized function g(x1,...,x,), i.e., the
function to compute is f9 (z1,...,2n,a) = g(x1,...,2,). The adversary
learns the length of the input values via the leakage function, i.e., the leak-
age function is Iy, (71,...,2,) = (Jz1],...,|2zs]). We denote by Fi the
functionality Fogr when parametrized with the above functions f¢ and [,
for computing the n-party function g.

BYZANTINE AGREEMENT (AKA CONSENSUS). In the Byzantine agreement
functionality, defined for the set V', each party P; has input x; € V. The
common output is computed such that if n — ¢ of the input values are the
same, this will be the output; otherwise the adversary gets to decide on the
output. The adversary is allowed to learn the content of each input value
from the leakage (and so it can corrupt parties and change their inputs
based on this information). The function to compute is f,,(z1,...,z,,a) =
(y,...,y) such that y = z if there exists a value x such that z = z; for
at least n — t input values x;; otherwise y = a. The leakage function is
L(x1,. .., 2,) = (x1,...,2,). We denote by FY, the functionality Fegs when
parametrized with the above functions f,, and [,,, defined for the set V.

12



3.2 Probabilistic Termination in UC

Having defined CSFs, we turn to the notion of (non-reactive) computation with
probabilistic termination. This is achieved by defining the notion of an output-
round randomizing wrapper. Such a wrapper is parametrized by an efficient prob-
abilistic algorithm D, termed the round sampler, that may depend on a specific
protocol implementing the functionality. The round sampler D samples a round
number pierm by which all parties are guaranteed to receive their outputs no mat-
ter what the adversary strategy is. Moreover, since there are protocols in which
all parties terminate in the same round and protocols in which they do not, we
consider two wrappers: the first, denoted Wiyrict, €nsures in a strict manner that
all (honest) parties terminate in the same round, whereas the second, denoted
Wiex, 18 more flexible and allows the adversary to deliver outputs to individual
parties at any time before round pierm-

A delicate issue that needs to be addressed is the following: While an ideal
functionality can be used to abstractly describe a protocol’s task, it cannot hide
the protocol’s round complexity. This phenomenon is inherent in the synchronous
communication model: any environment can observe how many rounds the ex-
ecution of a protocol takes, and, therefore, the execution of the corresponding
ideal functionality must take the same number of rounds.?*

As an illustration of this issue, let F be an arbitrary functionality realized by
some protocol 7. If F is to provide guaranteed termination (whether probabilistic
or not), it must enforce an upper bound on the number of rounds that elapse
until all parties receive their output. If the termination round of « is not fixed
(but may depend on random choices made during its execution), this upper
bound must be chosen according to the distribution induced by 7.

Thus, in order to simulate correctly, the functionality F and 7’s simulator
S must coordinate the termination round, and therefore F must pass the up-
per bound it samples to S. However, it is not sufficient to simply inform the
simulator about the guaranteed-termination upper bound pierm. Intuitively, the
reason is that protocol m may make probabilistic choices as to the order in which
it calls its hybrids (and, even worse, these hybrids may even have probabilistic
termination themselves). Thus, F needs to sample the upper bound based on 7
and the protocols realizing the hybrids called by 7. As S needs to emulate the
entire protocol execution, it is now left with the task of trying to sample the
protocol’s choices conditioned on the upper bound it receives from F. In gen-
eral, however, it is unclear whether such a reverse sampling can be performed in
(strict) polynomial time.

To avoid this issue and allow for an efficient simulation, we have F output
all the coins that were used for sampling round pierm to S. Because S knows the
round sampler algorithm, it can reproduce the entire computation of the sampler
and use it in its simulation. In fact, as we discuss below, it suffices for our proofs
to have F output a trace of its choices to the simulator instead of all the coins

24In particular, this means that most CSFs are not realizable, since they always
guarantee output after two rounds.
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that were used to sample this trace. In the remainder of this section, we motivate
and formally describe our formulation of such traces. The formal description of
the wrappers, which in particular sample traces, can then be found at the end
of this section.

Execution traces. As mentioned above, in the synchronous communication
model, the execution of the ideal functionality must take the same number of
rounds as the protocol. For example, suppose that the functionality F in our
illustration above is used as a hybrid by a higher-level protocol #’. The func-
tionality G realized by 7’ must, similarly to F, choose an upper bound on the
number of rounds that elapse before parties obtain their output. However, this
upper bound now not only depends on 7’ itself but also on 7 (in particular, when
7 is a probabilistic-termination protocol).

Given the above, the round sampler of a functionality needs to keep track
of how the functionality was realized. This can be achieved via the notion of
trace. A trace basically records which hybrids were called by a protocol, and
in a recursive way, for each hybrid, which hybrids would have been called by
a protocol realizing that hybrid. The recursion ends with the hybrids that are
“assumed” by the model, called atomic functionalities.?

Building on our running illustration above, suppose protocol 7’ (realizing G)
makes ideal hybrid calls to F and to some atomic functionality H. Assume that
in an example execution, 7’ happens to make (sequential) calls to instances of H
and F in the following order: F, then H, and finally F again. Moreover, assume
that F is replaced by protocol 7 (realizing F) and that 7w happens to make two
(sequential) calls to H upon the first invocation by #’, and three (sequential)
calls to H the second time. Then, this would result in the trace depicted in
Figure 2.

g
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H H H H H

Fig. 2: Example of an execution trace

Assume that 7 is a probabilistic-termination protocol and 7’ a deterministic-
termination protocol. Consequently, this means that F is in fact a flexibly
wrapped functionality of some CSF F', ie., F = Wfi’; (F"), where the dis-

tribution Dz samples (from a distribution induced by m) depth-1 traces with

25In this work, atomic functionalities are always Fpsyr CSFs.
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root Wfij: (F") and leaves H.?5 Similarly, G is a strictly wrapped functionality
of some CSF @', ie., G = wre (G"), where the distribution Dg first samples

strict

(from a distribution induced by 7’) a depth-1 trace with root wre (G') and

strict
leaves Wfﬁi (F') as well as H. Then, each leaf node Wff; (F") is replaced by a
trace (independently) sampled from Dx. Thus, the example trace from Figure 2
would look as in Figure 3.
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Fig.3: An execution trace with probabilistic-termination and deterministic-
termination protocols

Formally, a trace is defined as follows:

Definition 1 (traces). A trace is a rooted tree of depth at least 1, in which all
nodes are labeled by functionalities and where every node’s children are ordered.
The root and all internal nodes are labeled by wrapped CSFs (by either of the two
wrappers), and the leaves are labeled by unwrapped CSFs. The trace complexity
of a trace T, denoted ¢y, (T), is the number of leaves in T. Moreover, denote by
flexy (T) the number of flexibly wrapped CSFs in T.

Remark. The actual trace of a protocol may depend on the input values and the
behavior of the adversary. For example, in the setting of Byzantine agreement,
the honest parties may get the output faster in case they all have the same input,
which results in a different trace. However, the wrappers defined below sample
traces independently of the inputs. All protocols considered in this work can be
shown to realize useful ideal functionalities in spite of this restriction.

Strict wrapper functionality. We now proceed to give the formal descrip-
tions of the wrappers. The strict wrapper functionality, defined in Figure 4,
is parametrized by (a sampler that induces) a distribution D over traces, and
internally runs a copy of a CSF functionality F. Initially, a trace T is sampled
from D; this trace is given to the adversary once the first honest party provides

26Note that the root node of the trace sampled from Dz is merely labeled by
Dr
W,

flex

(F"), i.e., this is not a circular definition.
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its input. The trace T is used by the wrapper to define the termination round
Prerm < Ci(T). In the first round, the wrapper forwards all the messages from
the parties and the adversary to (and from) the functionality F. Next, the wrap-
per essentially waits until round prerm, with the exception that the adversary is
allowed to send (adv-input,sid, -) messages and change its input to the function
computed by the CSF. Finally, when round pierm arrives, the wrapper provides
the output generated by F to all parties.

Wrapper Functionality WZX,;.. (F)

Witrict, parametrized by an efficiently sampleable distribution D, internally runs a
copy of F and proceeds as follows:

— Initially, sample a trace T' +— D and compute the output round prerm  cer(T).
Send (trace,sid,T") to the adversary.”

— At all times, forward (adv-input,sid, -) messages from the adversary to F.

— In round p = 1: Forward (input,sid, -) messages from each party P; € P to F. In
addition, forward (leakage,sid,-) messages from F to the adversary.

— In rounds p > 1: Upon receiving a message (fetch-output,sid) from some party
P; € P, proceed as follows:
e If p = prerm, forward the message to F, and the response (output,sid, y;) to P;.
e Else, send (fetch-output,sid, P;) to the adversary.

Fig. 4: The strict-wrapper functionality

“Technically, the trace is sent to the adversary at the first activation of the
functionality along with the first message.

Flexible-wrapper functionality. The flexible-wrapper functionality, defined in Fig-
ure 5, follows in similar lines to the strict wrapper. The difference is that the
adversary is allowed to instruct the wrapper to deliver the output to each party
at any round. In order to accomplish this, the wrapper assigns a termination
indicator term;, initially set to 0, to each party. Once the wrapper receives an
early-output request from the adversary for P;, it sets term; <— 1. Now, when
a party P; sends a fetch-output request, the wrapper checks if term; = 1, and
lets the party receive its output in this case (by forwarding the fetch-output re-
quest to F). When the guaranteed-termination round pierm arrives, the wrapper
provides the output to all parties that didn’t receive it yet.

16



Wrapper Functionality Wi (F)

Whex, parametrized by an efficiently sampleable distribution D, internally runs a
copy of F and proceeds as follows:

— Initially, sample a trace T" <~ D and compute the output round prerm < cer (7).
Send (trace,sid, T') to the adversary.® In addition, initialize termination indicators
termy,...,term, < O.

— At all times, forward (adv-input,sid, -) messages from the adversary to F.

— In round p = 1: Forward (input,sid, -) messages from each party P; € P to F. In
addition, forward (leakage, sid,-) messages from F to the adversary.

— In rounds p > 1:

e Upon receiving (fetch-output, sid) from some party P; € P, proceed as follows:
x If term; = 1 or p = prem (and P; did not receive output yet), forward the
message to F, and the output (output,sid,y;) to P;.
* Else, send (fetch-output,sid, P;) to the adversary.
e Upon receiving (early-output,sid, P;) from the adversary, set term; + 1.

Fig. 5: The flexible-wrapper functionality

“Technically, the trace is sent to the adversary at the first activation of the
functionality along with the first message.

4 (Fast) Composition of PT Protocols

Canonical synchronous functionalities that are wrapped using the flexible wrap-
per (cf. Section 3.2), i.e., functionalities that correspond to protocols with non-
simultaneous termination, are cumbersome to be used as hybrid functionalities
for protocols. The reason is that the adversary can cause parties to finish in dif-
ferent rounds, and, as a result, after the execution of the first such functionality,
the parties might be out of sync.

This “slack” can be reduced, however, only to a difference of one round, unless
one is willing to pay a linear blow-up in round complexity [24,22]. Hence, all
protocols must be modified to deal with a non-simultaneous start of (at least) one
round, and protocols that introduce slack must be followed by a slack-reduction
procedure. Since this is a tedious, yet systematic task, in this section we provide
a generic compiler that transforms protocols designed in a simpler “stand-alone”
setting, where all parties remain synchronized throughout the protocol (and no
slack and round-complexity issues arise) into UC protocols that deal with these
issues while maintaining their security.

Out starting point are protocols that are defined in the “stand-alone” setting.
In such protocols all the hybrids are CSFs and are called in a strictly sequential
manner.

Definition 2 (SNF). Let F1,...,Fy, be canonical synchronous functionalities.
A synchronous protocol 7 in the (Fu, ..., Fm)-hybrid model is in synchronous
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normal form (SNF) if in every round exactly one ideal functionality F; is invoked
by all honest parties, and in addition, no honest party hands inputs to other CSF's
before this instance halts.

Clearly, designing and proving the security of SNF protocols, which only make
calls to simple two-round CSFs is a much simpler task than dealing with proto-
cols that invoke more complicated hybrids, potentially with probabilistic termi-
nation (see Section 5 for concrete examples).

SNF protocols are designed as an intermediate step, since the hybrid func-
tionalities F; are two-round CSFs, and can, in general, not be realized by real-
world protocols. To that end, we define a protocol compiler that transforms SNF
protocols into (non-SNF') protocols making calls to wrapped hybrids that can
be realized in the real world, while maintaining their security and asymptotic
(expected) round complexity. At the same time, the compiler takes care of any
potential slack that is introduced by the protocol and ensures that the protocol
can be executed even if the parties do not start the protocol simultaneously.

In Section 4.1 we apply this approach to deterministic-termination protocols
that use deterministic-termination hybrids, and in Section 4.2 generalize it to
the probabilistic-termination setting. Section 4.3 covers the base case of realizing
the wrapped Fpgyr using only Fgyr functionalities.

4.1 Composition with Deterministic Termination

We start by defining a slack-tolerant variant of the strict wrapper (cf. Sec-
tion 3.2), which can be used even when parties operate with a (known) slack.
Then, we show how to compile an SNF protocol 7 realizing a strictly-wrapped
CSF F into a (non-SNF) protocol 7’ realizing a version of F wrapped with the
slack-tolerant strict wrapper and making calls to wrapped hybrids.

Slack-tolerant strict wrapper. The slack-tolerant strict wrapper WS?_ X ey for-
mally defined in Figure 6, is parametrized by an integer ¢ > 0, which denotes
the amount of slack tolerance that is added, and a distribution D over traces.
The wrapper Wslstrict 1S similar to Wirict but allows parties to provide input
within a window of 2¢ + 1 rounds and ensures that they obtain output with the
same slack they started with. The wrapper essentially increases the termination
round by a factor of B, = 3¢ + 1, which is due to the slack-tolerance technique
used to implement the wrapped version of the atomic parallel SMT functionality
(cf. Section 4.3).

Deterministic-termination compiler. Let F,Fi,...,F,, be canonical syn-
chronous functionalities, and let m an SNF protocol that UC-realizes the strictly
wrapped functionality WX, . (F), for some distribution D, in the (Fi,. .., F,,)-
hybrid model, assuming that all honest parties receive their inputs at the same
round. We define a compiler Compy,,., parametrized with a slack parameter ¢ > 0,

that receives as input the protocol 7w and distributions Dy, ..., D,, over traces

18



and replaces every call to a CSF F; with a call to the wrapped CSF whi-e (Fi)-

sl-strict

We denote the output of the compiler by 7’ = Comp%, (7, D1, ..., Dy).%"

Wrapper Functionality W2¢ . (F)

sl-strict

wh-e parametrized by an efficiently sampleable distribution D and a non-

sl-strict?
negative integer c, internally runs a copy of F and proceeds as follows:

— Initially, sample a trace T" <— D and compute the output round pierm « Be -
cr(T'), where B := 3¢+ 1. Send (trace,sid,T) to the adversary.” Initialize slack

indicators c1,...,cn < 0.
— At all times, forward (adv-input,sid, -) messages from the adversary to F.
— In rounds p = 1,...,2c+ 1: Upon receiving a message from some party P; € P,

proceed as follows:

e If the message is (input,sid,-), forward it to F, forward the (leakage,sid,-)
message F subsequently outputs to the adversary, and set P;’s local slack ¢; <+
p— 1.

e FElse, send (fetch-output,sid, P;) to the adversary.

— In rounds p > 2¢ + 1: Upon receiving a message (fetch-output,sid) from some

party P; € P, proceed as follows:

e If p = prerm + ¢i, send the message to F, and the output (output,sid,y;) to P;.

e Else, send (fetch-output,sid, P;) to the adversary.

Fig. 6: The slack-tolerant strict wrapper functionality

“Technically, the trace is sent to the adversary at the first activation of the
functionality along with the first message.

. Dfull
As shown below, 7’ realizes W, ¢

Lstrict (F), for a suitably adapted distribution
D assuming all parties start within ¢ + 1 consecutive rounds. Consequently,
the compiled protocol 7’ can handle a slack of up to ¢ rounds while using hybrids
that are realizable themselves.

Calling the wrapped CSFs instead of the CSFs (Fy, ..., F,,) affects the trace
corresponding to F. The new trace D! = full-trace(D, Dy, ..., D,,) is obtained

as follows:

1. Sample a trace T < D, which is a depth-1 tree with root label W2, . (F)
and leaves from the set {Fi,...,Fn}.

2. For each leaf node F' = F;, for some i € [m], sample a trace T; «+ D, and
replace node F' by the trace T;.

3. Output the resulting trace T".

The following theorem states that the compiled protocol 7/ UC-realizes the
full
wrapped functionality W2 _ ¢ (F).

sl-strict

2"The distributions D; depend on the protocols realizing the strictly wrapped func-
tionalities Ws?—?tcrict (Fi). Note, however, that the composition theorems in Sections 4.1

and 4.2 actually work for arbitrary distributions D;.
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Theorem 1. Let F, Fy,...,Fn be canonical synchronous functionalities, and
let © an SNF protocol that UC-realizes WE2. (F) in the (Fi,...,Fm)-
hybrid model, for some distribution D, assuming that all honest parties re-
cetve their inputs at the same round. Let Di,...,D,, be arbitrary dis-

tributions over traces, Dl = full-trace(D, Dy,...,Dy,), and ¢ > 0.
full
Then, protocol 7' = CompCy(m,Dy,...,Dy) UC-realizes W2 _ S (F) in the

sl-strict

W (F1), ..., WEme (Fon))-hybrid model, assuming that all honest par-
ties receive their inputs within ¢ + 1 consecutive rounds.

The expected round complexity of the compiled protocol ' is

B+ Y di- Elew(Ty)],
i€[m]

where d; is the expected number of calls in 7 to hybrid F;, T; is a trace sampled
full
from D;, and B, = 3c+ 1 is the blow-up factor in wh e

sl-strict

The proof of Theorem 1 can be found in the full version [16].

4.2 Composition with Probabilistic Termination

The composition theorem in Section 4.1 does not work if the protocol 7 itself
introduces slack (e.g., the fast broadcast protocol by Feldman and Micali [23]) or
if one of the hybrids needs to be replaced by a slack-introducing protocol (e.g.,
instantiating the broadcast hybrids with fast broadcast protocols in BGW [6]).

As in Section 4.1, we start by adjusting the flexible wrapper (cf. Section 3.2)
to be slack-tolerant. In addition, the slack-tolerant flexible wrapper ensures that
all parties will obtain their outputs within two consecutive rounds. Then, we
show how to compile an SNF protocol 7 realizing a CSF F, wrapped with the
flexible wrapper, into a (non-SNF) protocol 7’ realizing a version of F wrapped
with slack-tolerant flexible wrapper. The case where m implements a strictly
wrapped CSF, but some of the hybrids are wrapped with the slack-tolerant
flexible wrapper follows along similar lines.

Slack-tolerant flexible wrapper. The slack-tolerant flexible wrapper WSIID_ oy fOI-
mally defined in Figure 7, is parametrized by an integer ¢ > 0, which denotes the
amount of slack tolerance that is added, and a distribution D over traces. The
wrapper Wslfiex i similar to Whex but allows parties to provide input within a
window of 2¢ + 1 rounds and ensures that all honest parties will receive their
output within two consecutive rounds. The wrapper essentially increases the
termination round to

Pterm = B. - Ctr(T) +2- ﬂeXtF(T) )

where the blow-up factor B, is as explained in Section 4.1, and the additional fac-
tor of 2 results from the termination protocol described below for every flexibly
wrapped CSF, which increases the round complexity by at most two additional
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rounds (recall that flex, (T") denotes the number of such CSFs), and ¢ is due to
the potential slack. Wyfex allows the adversary to deliver output at any round
prior to perm but ensures that all parties obtain output with a slack of at most
one round. Moreover, it allows the adversary to obtain the output using the
(get-output,sid) command, which is necessary in order to simulate the above
termination protocol.

Wrapper Functionality WS?_ o (F)

WEi¢ | parametrized by an efficiently sampleable distribution D and a non-negative

S.
integer ¢, internally runs a copy of F and proceeds as follows:

— Initially, sample a trace T" <~ D and compute the output round pterm « Be -
c(T) + B’ - flexe(T) + ¢, where B. := 3c+ 1 and B’ = 2. Send (trace,sid, T)) to
the adversary.? Initialize termination indicators termq, ..., term, <+ 0.

— At all times, forward (adv-input,-) messages from the adversary to F.

— In rounds p = 1,...,2c+ 1: Upon receiving a message from some party P; € P,
proceed as follows:

e If the message is (input,sid,-), forward it to F, forward the (leakage,sid,-)
message F subsequently outputs to the adversary.

e Else, send (fetch-output,sid, P;) to the adversary.

— In rounds p > 2c + 1:

e Upon receiving a message (fetch-output,sid) from some party P; € P, proceed
as follows:

* If term; = 1 or p = prerm, forward the message to F, and the output
(output,sid, y) to P;.
x Else, output (fetch-output,sid, P;) to the adversary.

e Upon receiving (get-output,sid) from the adversary, if the output value y was
not copmuted yet, send (fetch-output,sid) to F on behalf of some party P;.
Next, send (output,sid, y) to the adversary.

e Upon receiving (early-output,sid, P;) from the adversary, set term; < 1 and
Prerm — Min{ peerm, p + 1}.

Fig. 7: The slack-tolerant flexible wrapper functionality

“Technically, the trace is sent to the adversary at the first activation of the
functionality along with the first message.

Probabilistic-termination compilers. Let F,Fi,...,F,, be canonical syn-
chronous functionalities, and let @ be an SNF protocol that UC-realizes
the flexibly wrapped functionality WL (F), for some distribution D, in the
(Fi,...,Fm)-hybrid model, assuming all parties start at the same round. De-
fine the following compiler Comp,,, parametrized by a slack parameter ¢ > 0.
It receives as input the protocol 7, distributions Dy,..., D,, over traces, and
a subset I C [m] indexing which CSFs F; are to be wrapped with Wy fex and
which with Wgstrict; it replaces every call to a CSF F; with a call to the wrapped
CSF W2ie (F))ifie I or to WHoe (Fi)ifi ¢ I.

s sl-strict
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In addition, the compiler adds the following termination procedure, based on
an approach originally suggested by Bracha [7], which ensures all honest parties
will terminate within two consecutive rounds:

— As soon as a party is ready to output a value y (according to the prescribed
protocol) or upon receiving at least ¢+ 1 messages (end, y) for the same value
y (whichever happens first), it sends (end, sid, y) to all parties.

— Upon receiving n—t messages (end, sid, y) for a single value y, a party outputs
y as the result of the computation and halts.

Observe that this technique only works for public-output functionalities, and,
therefore, only CSFs with public output can be wrapped by Ws_gex. We denote
the output of the compiler by n’ = Compyy (7, D1, ..., D, I).

The following theorem states that the compiled protocol 7/ UC-realizes the

wrapped functionality Wfl)_ ;Lf (F), again for an adapted distribution D", Con-
sequently, the compiled protocol n’ can handle a slack of up to ¢ rounds, while
using hybrids that are realizable themselves, and ensuring that the output slack
is at most one round (as opposed to 7). Calling the wrapped hybrids instead of
the CSFs affects the trace corresponding to F in exactly the same way as in the

case with deterministic termination (cf. Section 4.1).%%

Theorem 2. Let F, Fy,...,Fm be canonical synchronous functionalities, and
let m an SNF protocol that UC-realizes Wé?ax(]-"), for some distribution D, in the
(Fi1, ..., Fm)-hybrid model, assuming that all honest parties receive their inputs

at the same round. Let I C [m] be the subset (of indices) of functionalities to
be wrapped using the flexible wrapper, let Dy, ..., Dy, be arbitrary distributions
over traces, denote D™ = full-trace(D, D1, ..., D,,) and let ¢ > 0. Assume that
F and F; for every i € I are public-output functionalities.

Then, protocol Compp,.(m,D1,...,Dm,I) UC-realizes Ws?fﬂl;;/(f) in the
W(F1), ... , W(Fm))-hybrid model, assuming that all honest parties receive
their inputs within ¢ + 1 consecutive rounds, where W(F;) = Wg_}igx(fi) if
i €1 and W(F;) = Wi (Fo) ifi ¢ 1.

The expected round complexity of the compiled protocol m; is

B.- Z di - Elew(T3)] + 2 Z di - Elflexy (T3)] + 2

i€[m] i€[m]

where d; is the expected number of calls in w to hybrid F;, T; is a trace sampled
from D;, and B, = 3¢+ 1 is the blow-up factor.

The proof of Theorem 2 can be found in the full version [16].

Consider now the scenario where SNF protocol 7 realizes a strictly wrapped
functionality, yet soem of the CSF hybrids are to be wrapped by flexible wrap-
pers. The corresponding compiler Comp,,, works as Comp,, except that it does
not perform the slack-reduction protocol in the end. The proof of the following
theorem follows that of Theorem 2.

280f course, the root of the trace T' sampled from D is a flexibly wrapped function-
ality WL . (F) in the probabilistic-termination case.
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Theorem 3. Let F,Fy,...,Fm be canonical synchronous functionalities, and
let © an SNF protocol that UC-realizes WX, .. (F) for some distribution D, in the
(Fi1, ..., Fm)-hybrid model, assuming that all honest parties receive their inputs
at the same round. Let I C [m] be the subset (of indices) of functionalities to
be wrapped using the flexible wrapper, let Dy, ..., Dy, be arbitrary distributions
over traces, denote D™ = full-trace(D, D1, ..., D,,) and let ¢ > 0. Assume that
Fi for every i € I is a public-output functionalities.

Then, protocol w'Compi.(m, Dy,..., Dy, I) UC-realizes Ws?mf;lei(}") in the
OW(FL), ..., W(Fm))-hybrid model, where W(F;) = WX (Fi) if i € T and

W(F;) = W:ﬁis,t(;ict(‘ri) if 1 ¢ I, assuming that all honest parties receive their
inputs within ¢ + 1 consecutive rounds.

The expected round complexity of the compiled protocol ' is

B.- Y di- Elee(T)] +2- Y d; - Elflexy(T7)]

i€[m] i€[m]

where d; is the expected number of calls in 7 to hybrid F;, T; is a trace sampled
from D;, and B, = 3¢+ 1 is the blow-up factor.

4.3 Wrapping Secure Channels

The basis of the top-down, inductive approach taken in this work consists of
providing protocols realizing wrapped atomic functionalities, using merely secure
channels Fgr. Due to the restriction to SNF protocols, which may only call a
single CSF hybrid in any given round, a parallel variant Fpgyr of Fgyr (defined
below) is used as an atomic functionality. This ensures that in SNF protocols
parties can securely send messages to each other simultaneously.

Parallel SMT. The parallel secure message transmission functionality Fpsyr
is a CSF for the following functions f,,, and Z_PWT Each party P; has a

vector of input values (z7,...,z}) such that z’ is sent from P; to Pj.
That is, the function to compute is fo.((z1,...,2L),..., (2}, ..., 2"),a) =
((z1,...,27),...,(zL, ..., 2")). As we consider rushing adversaries, that can de-

termine the messages sent by the corrupted parties after receiving the messages
sent by the honest parties, the leakage function should leak the messages that
are to be delivered from honest parties to corrupted parties. Therefore, the leak-
age function is L. (1, ..., 22), ... (2%, ..., 2") = (yi, 93, ...,y _1,y"), where
y; = \J:;| in case P; is honest and y; = a:; in case P; is corrupted.

Realizing wrapped parallel SMT. The remainder of this section deals with se-
curely realizing Wsjlj_ :@;Ti’cct(fpsm) in the Fgyr-hybrid model, for a particular dis-
tribution Dpgyr and an arbitrary non-negative integer c. Note that the corre-
sponding protocol mpsyr is not an SNF protocol; this is of no concern since it
directly realizes a wrapped functionality and therefore need not be compiled.
There is a straight-forward (non-SNF) protocol realizing Fegyr in the Fgyr-
hybrid model, and therefore (due to the UC composition theorem) it suffices

to describe protocol mpgyr in the Fpgyr-hybrid model.
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A standard solution to overcome asynchrony by a constant number of rounds
¢ > 0, introduced by Lindell et al. [41] and used by Katz and Koo [33], is
to expand each communication round to 2¢ + 1 rounds. Each party listens for
messages throughout all 2¢ + 1 rounds, and sends its own messages in round
¢+ 1. It is straight-forward to verify that if the slack is ¢, i.e., the parties start
within ¢+ 1 rounds from each other, round r-messages (in the original protocol,
without round-expansion) are sent, and delivered, before round (r + 1)-messages
and after round (r — 1)-messages.

The solution described above does not immediately apply to our case, due
to the nature of canonical synchronous functionalities. Recall that in a CSF the
adversary can send an adv-input message (and affect the output) only before
any honest party has received an output from the functionality. If only 2¢ + 1
rounds are used a subtle problem arises: Assume for simplicity that ¢ = 1 and
say that P; is a fast party and P, is a slow party. Initially, P; listens for one
round. In the second round P, listens and P; send its messages to all the parties.
In the third round P> sends its messages and P; receives its message, produces
output and completes the round. Now, P, listens for an additional round, and the
adversary can send it messages on behalf of corrupted parties. In other words, the
adversary can choose the value for P,’s output after P; has received its output
— such a phenomena cannot be modeled using CSFs. For this reason we add an
additional round where each party is idle; if P; waits one more round (without
listening) before it produces its output, then P» will receive all the messages
that determine its output, and so once P; produces output and completes, the
adversary cannot affect the output of Ps.

As a result, in protocol mpgyr, each round is expanded to 3¢+ 1 rounds, where
during the final ¢ rounds, parties are simply idle and ignore any messages they
receive. Denote by Dpgyr the deterministic distribution that outputs a depth-1
trace consisting of a single leaf Fpgyr. In the full version [16] of this paper, we
prove the following lemma.

Lemma 1. Let ¢ > 0. Protocol mpsyr UC-realizes S?_ ‘f’s%‘l',“i’cct(fpsm) m the Fayr-
hybrid model, assuming that all honest parties receive their inputs within ¢ + 1
consecutive rounds.

5 Applications of Our Fast Composition Theorem

In this section we demonstrate the power of our framework by providing some
concrete applications. All of the protocols we present in this section enjoy perfect
security facing adaptive adversaries corrupting less than a third of the parties.

5.1 Fast and Perfectly Secure Byzantine Agreement

We start by describing the binary and multi-valued randomized Byzantine agree-
ment protocols (the definition of Fy, appears in Section 3.1). These protocols are
based on techniques due to Feldman and Micali [23] and Turpin and Coan [48],
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with modifications to work in the UC framework. We provide simulation-based
proofs for these protocols.

At a high level, protocol 7y, proceeds as follows. Initially, each party sends
its input to all other parties over a point-to-pint channel using Frgyr, and sets its
vote to be its input bit. Next, the parties proceed in phases, where each phase
consists of invoking the oblivious coin functionality Foc (see the full version)
followed by a voting process consisting of three rounds of sending messages via
Frsur- The voting ensures that (1) if all honest parties agree on their votes at
the beginning of the phase, they will terminate at the end of the phase, (2)
in each phase, all honest parties will agree on their votes at the end of each
phase with probability at least p, and (3) if an honest party terminates in some
phase then all honest parties will terminate with the same value by the end of
the next phase. In the negligible event that the parties do not terminate after
T= logl's(k) + 1 phases, the parties use the Byzantine agreement functionality
JFia in order to ensure termination.

In the full version [16] we prove the following theorem.

Theorem 4. Let ¢ > 0 and t < n/3. There exists an efficiently sampleable dis-

tribution D such that the functionality Wi’;fex( B{g’l}) has an expected constant
round complezity, and can be UC-realized in the Fgyr-hybrid model, with perfect
security, in the presence of an adaptive malicious t-adversary, assuming that all

honest parties receive their inputs within ¢ + 1 consecutive rounds.

5.2 Fast and Perfectly Secure Parallel Broadcast

As discussed in Section 1 composing protocols with probabilistic termination
naively does not retain expected round complexity. Ben-Or and El-Yaniv [5]
constructed an elegant protocol for probabilistic-termination parallel broadcast?’
with a constant round complexity in expectation, albeit under a property-based
security definition. In this section we adapt the [5] protocol to the UC framework
and show that it does not realize the parallel broadcast functionality, but rather
a weaker variant which we call unfair parallel broadcast. Next, we show how to
use unfair parallel broadcast in order to compute (fair) parallel broadcast in
constant excepted number of rounds.

In a standard broadcast functionality (cf. Section 3.1), the sender provides a
message to the functionality which delivers it to the parties. Hirt and Zikas [31]
defined the unfair version of the broadcast functionality, in which the function-
ality informs the adversary which message it received, and allows the adversary,
based on this information, to corrupt the sender and replace the message. Fol-
lowing the spirit of [31], we now define the unfair parallel broadcast functionality,
using the language of CSF.

— UNFAIR PARALLEL BROADCAST. In the unfair parallel broadcast function-
ality, each party P; with input x; distributes its input to all the parties. The

29Tn [5] the problem is referred to as “interactive consistency.”
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adversary is allowed to learn the content of each input value from the leak-
age function (and so it can corrupt parties and change their messages prior
to their distribution, based on this information). The function to compute
i fome(Z1,. -y Znya) = (x1,...,20), ..., (z1,...,2,)) and the leakage func-
tion is lyppe(21, .« -y ) = (21, .., T, ). We denote by Fyppe the functionality
Fesr when parametrized with the above functions f,,. and [,,,..

In the full version [16] we present an adaptation of the [5] protocol, show that
it perfectly UC-realizes (a wrapped version of) Fyppc, and prove the following
result.

Theorem 5. Let ¢ > 0 and t < n/3. There exists an efficiently sampleable dis-
tribution D such that the functionality Wsllj_ ’gex(}'Uch) has an expected constant
round complexity, and can be UC-realized in the Fgyr-hybrid model, with perfect
security, in the presence of an adaptive malicious t-adversary, assuming that all

honest parties receive their inputs within ¢ + 1 consecutive rounds.

We now turn to define the (fair) parallel broadcast functionality.

— PARALLEL BROADCAST. In the parallel broadcast functionality, each party
P; with input x; distributes its input to all the parties. Unlike the unfair
version, the adversary only learns the length of the honest parties’ mes-
sages before their distribution, i.e., the leakage function is l,..(z1, ..., T,) =
(|z1], .- - |zn])- It follows that the adversary cannot use the leaked informa-
tion in a meaningful way when deciding which parties to corrupt. The func-
tion to compute is identical to the unfair version, i.e., fu.(21,...,2n,a) =
((x1,--y2n)y -y (X1,. .., 2p)). We denote by Fppe the functionality Fegr
when parametrized with the above functions f,,. and [,,..

Unfortunately, the unfair parallel broadcast protocol mypse (see the full ver-
sion [16]) fails to realize (a wrapped version of) the standard parallel broadcast
functionality Fppe. The reason is similar to the argument presented in [31]: in
the first round of the protocol, each party distributes its input, and since we con-
sider a rushing adversary, the adversary learns the messages before the honest
parties do. It follows that the adversary can corrupt a party before the honest
parties receive the message and replace the message to be delivered. This attack
cannot be simulated in the ideal world where the parties interact with Fppc,
since by the time the simulator learns the broadcast message in the ideal world,
the functionality does not allow to change it.

Although protocol 7yppe does not realize Fppe, it can be used in order to
construct a protocol that does. Each party commits to its input value before any
party learns any new information, as follows. Each party, in parallel, first secret
shares its input using a t-out-of-n secret-sharing protocol.? In the second step,
every party, in parallel, broadcast a vector with all the shares he received, by
use of the above unfair parallel broadcast functionality Fypsc, and each share
is reconstructed based on the announced values. The reason this modification

30Tn [31] verifiable secret sharing (VSS) is used; however, as we argue, this is not
necessary.

26



achieves fair broadcast is the following: If a sender P; is not corrupted until
he distributes his shares, then a t-adversary has no way of modifying the re-
constructed output of P;’s input, since he can at most affect ¢ < n/3 shares.
Thus, the only way the adversary can affect any of the broadcast messages is
by corrupting the sender independently of his input, an attack which is easily
simulated. We describe this protocol, denoted mpgc, in Figure 8.

Protocol 7mppe

1. In the first round, upon receiving (input,sid,z;) with z; € V from the envi-
ronment, P; secret shares x; using a t-out-of-n secret sharing scheme, denoted
by (z!,...,z7). Next, P; sends for every party P; its share (sid, ?) (via Fesur).
Denote by :1:3 the value received from P;.

2. In the second round, P; broadcasts the values @; = (1, ..., ;) using the unfair
parallel broadcast functionality, i.e., P; sends (input,sid,®;) to Fupsc. Denote
by y,; = (yl,...,yl) the value received from P;. Now, P; reconstructs all the
input values, i.e., for every j € [n] reconstructs y; from the shares (yjl-, YD),
and outputs (output,sid, (y1,...,yn)) -

Fig. 8: The parallel broadcast protocol, in the (Fpsyr, Fupsc)-hybrid model

We conclude with the following theorem, see the full version [16] for the proof.

Theorem 6. Let ¢ > 0 and t < n/3. There exists an efficiently sampleable
distribution D such that the functionality WSIID_ fox (Frsc) has an expected constant
round complexity, and can be UC-realized in the Fgyr-hybrid model, with perfect
security, in the presence of an adaptive malicious t-adversary, assuming that all

honest parties receive their inputs within ¢ + 1 consecutive rounds.

5.3 Fast and Perfectly Secure SFE

We conclude this section by showing how to construct a perfectly UC-secure SFE
protocol which computes a given circuit in expected O(d) rounds, independently
of the number of parties, in the point-to-point channels model. The protocol
is obtained by taking the protocol from [6],%! denoted mygw. This protocol re-
lies on (parallel) broadcast and (parallel) point-to-point channels, and therefore
it can be described in the (Fpgur, Frsc)-hybrid model. It follows from Theo-
rem 3, that the compiled protocol Compy, (Tsew) UC-realizes the corresponding
wrapped functionality W5¢ (Fsre) (for an appropriate distribution D), in the

sl-flex

full full
(W?f:t-‘;;i(]:mﬂ), WDP”L”C(prc))—hybrid model, resulting in the following.

s sl-flex

Theorem 7. Let f be an n-party function, C' an arithmetic circuit with mul-
tiplicative depth d computing f, and t < n/3. Then there exists an efficiently

31A full simulation proof of the protocol with a black-box straight-line simulation
was recently given by [2] and [19].
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D

sampleable distribution D such that the functionality Wsl_’gex(}"s];k;) has round
complezity O(d) in expectation, and can be UC-realized in the Fsyr-hybrid model,
with perfect security, in the presence of an adaptive malicious t-adversary, as-
suming that all honest parties receive their inputs within c+1 consecutive rounds.
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