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Abstract. We present the first efficient (i.e., polylogarithmic overhead)
method for securely and privately processing large data sets over mul-
tiple parties with parallel, distributed algorithms. More specifically, we
demonstrate load-balanced, statistically secure computation protocols
for computing Parallel RAM (PRAM) programs, handling (1/3−ε) frac-
tion malicious players, while preserving up to polylogarithmic factors the
computation, parallel time, and memory complexities of the PRAM pro-
gram, aside from a one-time execution of a broadcast protocol per party.
Additionally, our protocol has polylog communication locality—that is,
each of the n parties speaks only with polylog(n) other parties.

1 Introduction

Large data sets, such as medical data, genetic data, transaction data, the
web and web access logs, and network traffic data, are now in abundance.
Much of the data is stored or made accessible in a distributed fashion,
having necessitated the development of efficient distributed protocols
that compute over such data. In particular, novel programming models
for processing large data sets with parallel, distributed algorithms, such
as MapReduce (and its implementation Hadoop) are emerging as crucial
tools for leveraging this data in important ways.
But these methods require that the data itself is revealed to the partic-
ipating servers performing the computation—and thus blatantly violate
the privacy of potentially sensitive data. As a consequence, such methods
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cannot be used in many critical applications (e.g., discovery of causes or
treatments of diseases using genetic or medical data).
In contrast, methods such as secure multi-party computation (MPC),
introduced in the seminal works of Yao [Yao86] and Goldreich, Micali
and Wigderson [GMW87], enable securely and privately performing any
computation on individuals private inputs (assuming some fraction of the
parties are honest). However, despite great progress in developing these
techniques, there are no MPC protocols whose efficiency and communi-
cation requirements scale to the modern regime of large-scale distributed,
parallel data processing.
We are concerned with merging these two approaches. In particular,

We seek MPC protocols that efficiently (technically, with
polylogarithmic overhead) enable secure and private processing of large

data sets with parallel, distributed algorithms.

Explicitly, in this large-scale regime, the following properties are paramount:
1. Exploiting Random Access. Computations on large data sets are fre-

quently “lightweight”: accessing a small number of dynamically cho-
sen data items, relying on conditional branching, and/or maintaining
small memory. This means that converting a program first into a cir-
cuit to enable its secure computation, which immediately obliterates
these gains, will not be a feasible option.

2. Exploiting Parallelism. In fact, as mentioned, to effectively solve
large-scale problems, modern programming models heavily leverage
parallelism. The notion of a Parallel RAM (PRAM) better captures
such computing models. In the PRAM model of computation, several
(polynomially many) CPUs run simultaneously, potentially commu-
nicating with one another, while accessing the same shared external
memory. We consider a PRAM model with a variable number of
CPUs but with a fixed activation structure (i.e., what processors are
activated at which time steps is fixed). Note that such a model simul-
taneously captures RAMs (a single CPU) and circuits (the circuit
topology dictates the CPU activation structure).

3. Exploiting Plurality of Users. In the setting of MPC we would like
to leverage not only parallelism within a single party (i.e., if a party
has multiple CPUs that may run in parallel), but also that we have
a large number of parties that can run in parallel. So, if we we have
n parties, each with k processors, we ideally would like to securely
compute PRAMs that use nk CPUs (as opposed to just k CPUs).

Additionally, the following desiderata are often of importance:
3. Load balancing. When the data set contains tens or hundreds of

thousands of users’ data, it is often unreasonable to assume that
any single user can provide memory, computation, or communication
resources on the order of the data of all users. Rather, we would like
to balance the load across nodes.

4. Communication Locality. In many cases, establishing a secure com-
munication channel with a large number of distinct parties may be
costly, and thus we would like to minimize the locality of communi-
cation [BGT13]: that is, the number of total parties that each party
must send and receive message to during the course of the protocol.
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To date, no existing work addresses secure computation of Parallel RAM
programs. Indeed, nearly all results in MPC require a circuit model for
the function being evaluated (including the line of work on scalable
MPC [DI06,DIK+08,DKMS12,ZMS14]), and thus inherit resource re-
quirements that are linear in the circuit size. Even for (sequential) RAM,
the only known protocols either only handle two parties [OS97,GKK+11,LO13,GGH+13],
or in the context of multi-party computation require all parties to store
all inputs [DMN11], rendering the protocol useless in a large-scale setting
(even forgetting about computation load balancing and locality).

1.1 Our Results

We present a statistically secure MPC for (any sequence of) PRAMs
handling (1/3−ε) fraction static corruptions in a synchronous communi-
cation network, with secure point-to-point channels. In addition, our pro-
tocol is strongly load balanced and communication local (i.e., polylog(n)
locality). We state our theorem assuming each party itself is a k-processor
PRAM, for parameter k.

Theorem 1 (Informal – Main Theorem). For any constant ε > 0
and polynomial parallelism parameter k = k(n), there exists an n-party
statistically secure (with error negligible in n) protocol for computing
any adaptively chosen sequence of PRAM programs Πj with fixed CPU
activation structures (and that may have bounded shared state), han-
dling (1/3 − ε) fraction static corruptions with the following complexi-
ties, where each party is a k-processor PRAM (and where |x|, |y| denote
per-party input and output size,4 space(Π), comp(Π), and time(Π) de-
note the worst-case space, computation, and (parallel) runtime of Π, and
CPUs(Π) denotes the number of CPUs of Π):

– Computation per party, per Πj: Õ
(
comp(Πj)/n+ |y|

)
.

– Time steps, per Πj: Õ
(
time(Πj) ·max

{
1, CPUs(Π)

nk

})
.

– Memory per party: Õ
(
|x|+ |y|+ maxNj=1 space(Πj)/n

)
.

– Communication Locality: Õ(1).
given a one-time preprocessing phase with complexity:

– Computation per party: Õ(|x|), plus single broadcast of Õ(1) bits.

– Time steps: Õ
(

max
{

1, |x|
k

})
.

Additionally, our protocol achieves a strong “online” load-balancing guar-
antee: at all times during the protocol, all parties’ communication and
computation loads vary by at most a constant multiplicative factor (up
to a polylog(n) additive term).

Remark 1 (Round complexity). As is the case with all general MPC pro-
tocols in the information-theoretic setting to date, the round complexity
of our protocol corresponds directly with the time complexity (as when
restricted to circuits, parallel complexity corresponds to circuit depth).
That is, for each evaluated PRAM program Πj , the protocol runs in
Õ(time(Πj)) sequential communication rounds to securely evaluate Πj .

4 For simplicity of exposition, we assume all parties have the same input size and
receive the same output.
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Remark 2 (On the achieved parameters). Note that in terms of mem-
ory, each party only stores her input, output, and her “fair” share of
the required space complexity, up to polylogarithmic factors. In terms of
computation (up to polylogarithmic factors), each party does her “fair”
share of the computation, receives her outputs, and in addition is re-
quired to read her entire input at an initial preprocessing stage (even
though the computations may only involve a subset of the input bits;
this additional overhead of “touching” the whole input once is neces-
sary to achieve security).5 Finally, the time complexity corresponds to
the parallel complexity of the PRAM being computed, as long as the
combined number of available processors nk from all parties matches or
exceeds the number of required parallel processes of the program (and
degrades with the corresponding deficit).

Remark 3 (Instantiating the single-use broadcast). The broadcast chan-
nel can be instantiated either by the O(

√
n)-locality broadcast proto-

col of King et al. [KSSV06], or the polylog(n)-average locality protocol
of [BSGH13] at the expense of a cost of a one-time per-party compu-
tational cost of O(

√
n), or average cost of polylog(n), respectively. We

separate the broadcast cost from our protocol complexity measures to
emphasize that any (existing or future) broadcast protocol can be di-
rectly plugged in, yielding associated desirable properties.6

1.2 Construction Overview

Our starting point is an Oblivious PRAM (OPRAM) compiler [BCP14b,GO96],
a tool that compiles any PRAM program into one whose memory access
patterns are independent of the data (i.e., “oblivious”). Such a compiler
(with polylogarithmic overhead) was recently attained by [BCP14b].
Indeed, it is no surprise that such a tool will be useful toward our goal.
It has been demonstrated in the sequential setting that Oblivious (se-
quential) RAM (ORAM) compilers can be used to builds secure 2-party
protocols for RAM programs [OS97,GKK+11,LO13,GGH+13]. Taking
a similar approach, building upon the OPRAM compiler of [BCP14b]
directly yields 2-party protocols for PRAMs.
However, OPRAM on its own does not directly provide a solution for
multi-party computation (when there are many parties). While this ap-
proach gives protocols whose complexities scale well with the RAM (or

5 For general secure computation, and even if we restrict to functionalities that only
access a few parties’ inputs, and only a few bits of their data, essentially all parties
must perform computation at least Ω(|x|). To see this, consider secure computation
of a “multi-party Private Information Retrieval (PIR)” functionality: each party
i > 1 has as input some “big data” xi, and party 1 has as input a party index i
and an index j into their data xi. The functionality returns xi[j] (i.e., the j’th bit
of party i’s data) to party 1 and nothing to everyone else. We claim that each party
i > 1 must access every bit of xi; if not, it learns that that particular bit of its data
was not requested, which it cannot learn in an ideal execution of the functionality.

6 For instance, it remains open to achieve statistically secure broadcast with worst-case
polylog(n) locality.
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PRAM) complexity of the programs, the complexities grow poorly with
the number of parties. Indeed, the only current technique for securely
evaluating a RAM program on multiple parties’ inputs [DMN11] is for
all parties to hold secret shares of all parties’ inputs, and then jointly
execute (using standard MPC for circuits) the trusted CPU instructions
of the ORAM-compiled version of the program. This means each party
must communicate and maintain information of size equivalent to all
parties’ inputs, and everyone must talk to everyone else for every time
step of the RAM program evaluation.

One may attempt to improve the situation by first electing a small
polylog(n)-size representative committee of parties, and then only per-
forming the above steps within this committee. This approach drops the
total communication and computation of the protocol to reasonable lev-
els. However, this approach does not save the subset of elected parties
from carrying the burden of the entire computation. In particular, each
elected party must memory storage equal to the size of all parties’ inputs
combined, making the protocol unusable for “large-scale” computation.

In this paper, we provide a new approach for dealing with this issue.
We show how to use an OPRAM in a way that achieves balancing of
memory, computation, and communication across all parties.

Our MPC construction proceeds in the following steps:

1. From OPRAM to MPC. Given an OPRAM, we begin by consid-
ering MPC in a “benign” adversarial setting, which we refer to as
oblivious multi-party computation, where all parties are assumed to
be honest, and we only require that an external attacker that views
communication and activation (including memory and computation
usages) patterns does not learn anything about the inputs. We show:

(a) OPRAM yields efficient memory-balanced oblivious MPC for PRAM.
(b) Using committee election techniques (à la [KLST11,DKMS12,BGT13]),

any oblivious multi-party computation can be compiled into a
standard secure MPC with only polylog overhead (and a one-
time use of a broadcast channel per party).

2. Load Balancing & Communication Locality. We next show
semi-generic compilers for “nice” (formally defined) oblivious multi-
party protocols, each introducing only polylog(n) overhead:

(a) From any “nice” protocol to one whose computation and com-
munication are load-balanced.

(b) From any “nice” protocol to one that is both load-balanced and
communication local (i.e., polylog(n) locality).

Our final result is obtained by combining the above steps and observ-
ing that Step 1(b) preserves load-balancing and communication locality
(and thus can be applied after Step 2). Let us mention that just Step 1
(together with existing construction of ORAMs) already yields the first
MPC protocol for (sequential) RAM programs in which no party must
store all parties’ inputs. Additionally, just Step 1 (together with the
OPRAM construction of [BCP14b]) yields the first MPC for PRAMs.

We now expand upon each of these steps.
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MPC from OPRAM Recall that our construction proceeds via an
intermediate notion of oblivious security, in which we do not require secu-
rity against corrupted parties, but rather against an external adversary
who sees the activation patterns (i.e., accessed memory addresses and
computation times) and communication patterns (i.e., sender/receiver
ids and message lengths) of parties throughout the protocol.

Oblivious MPC from OPRAM. At a high level, our protocol will emu-
late a distributed OPRAM7 structure, where the CPUs and memory cells
in the OPRAM are each associated with parties. (Recall that we need
only achieve “oblivious” security, and thus can trust individual parties
with these tasks). The “CPU” parties will control the evaluation flow of
the (OPRAM-compiled) program, communicating with the parties em-
ulating the role of the appropriate memory cells for each address to be
accessed in the (OPRAM-compiled) database.
The distributed OPRAM structure will enable us to evenly spread the
memory burden across parties, incurring only polylog(n) overhead in to-
tal memory and computation, and while guaranteeing that the com-
munication patterns between committees (corresponding to data access
patterns) do not reveal information on the underlying secret values.
This framework shares a similar flavor to the protocols of [DKMS12,BGJK12],
which assign committees to each of the gates of a circuit being evaluated,
and to [BGT13], which uses CPU and input committees to direct pro-
gram execution and distributedly store parties’ inputs. The distributed
OPRAM idea improves and conceptually simplifies the input storage
handling of Boyle et al. [BGT13], in which n committees holding the
n parties’ inputs execute a distributed “oblivious input shuffling” pro-
cedure to break the link between which committees are communicating
and which inputs are being accessed in the computation.

Compiling from “Oblivious” Security to Malicious Security. We
next present a general compiler taking an oblivious protocol to one
that is secure against (1/3 − ε)n statically corrupted malicious parties.
(This step can be viewed as a refinement and generalization of ideas
from [KLST11,DKMS12,BGT13].) We ensure the compiler tightly pre-
serves the computation, memory, load-balancing, and communication lo-
cality of the original protocol, up to polylog(n) factors (modulo a one-
time broadcast per party). This enables us to apply the transformation
to any of the oblivious protocols resulting from the intermediate steps in
our progression.
At a high level, the compiler takes the following form: (1) First, the
parties collectively elect a large number of “good” committees, each of
size polylog(n), where “good” means each committee is composed of at
least 2/3 honest parties, and that parties are spread roughly evenly across
committees. (2) Each party will verifiably secret share his input among
the corresponding committee Ci. (3) From this point on, the role of each
party Pi in the original protocol will be emulated by the corresponding

7 We remark that the term “distributed ORAM” was used with a different meaning
in [LO13], in regard to an ORAM that was split across two users.
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committee Ci. That is, each local Pi computation will be executed via a
small-scale MPC among Ci, and each communication from Pi to Pj will
be performed via an MPC among committees Ci and Cj .

The primary challenge in this step is how to elect such committees while
incurring only polylog(n) locality and computation per party. To do so,
we build atop the “almost-everywhere” scalable committee election pro-
tocol of King et al. [KSSV06] to elect a single good committee, and
then show that one may use a polylog(n)-wise independent function fam-
ily {Fs}s∈S to elect the remaining committees with small description
size (in the fashion of [KLST11,BGT13], for the case of combinatorial
samplers and computational pseudorandom functions), with committee
i defined as Ci := Fs(i) for fixed random seed s.

We remark that, aside from the one-time broadcast, this compiler pre-
serves load balancing and polylog(n) locality. Indeed, load balancing is
maintained since the committee setup procedure is computationally inex-
pensive, and each party appears in roughly the same number of “worker”
committees. The locality of the resulting protocol increases by an addi-
tive polylog(n) for the committee setup, and a multiplicative polylog(n)
term since all communications are now performed among polylog(n)-size
committees instead of individual parties.

Load Balancing Distributed Protocols

Load-balancing (Without Locality). We now show how to modify our
protocol such that the total computational complexity and memory bal-
ancing are preserved, while additionally achieving a strong computation
load balancing property—with high probability, at all times throughout
the protocol execution, every party performs close to 1/n fraction of cur-
rent total work, up to an additive polylog(n) amount of work. This will
hold simultaneously for both computation and communication.8

We present and analyze our load-balancing solution in the intermedi-
ate oblivious MPC security setting (recall that one can then apply the
compiler from Step 2(b) above to obtain malicious MPC with analogous
load-balancing). Let us mention that there is a huge literature on “load-
balanced distributed computation” (e.g., [ACMR95,MPS02,MR98,AAK08]):
As far as we can tell, our setting differs from the typical studied scenarios
in that we must load balance an underlying distributed protocol, as op-
posed to a collection of independent “non-communicating jobs”. Indeed,
the main challenge in our setting is to deal with the fact that “jobs”
talk to one another, and this communication must remain efficient also
be made load balanced. Furthermore, we seek a load-balanced solution
with communication locality.

We consider a large class of arbitrary (potentially load-unbalanced and
large-locality) distributed protocols Π, where we view each party in this
underlying protocol as a “job”. Our goal is to load-balance Π by passing

8 Note that while our current protocol is memory balanced, it is currently rather
imbalanced in computation: e.g., the parties emulating OPRAM CPUs are required
to perform computation that is proportional to the whole PRAM computation.
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“jobs” between “workers” (which will be the actual parties in the new
protocols). More precisely, we start off with any protocol Π that satisfies
the following (natural) “nice” properties:

– Each “job” has polylog(n) size state;
– In each round, each “job” performs at most polylog(n) computation

and communication;
– In each round, each “job” communicates (either sending or receiving

a message) to at most one other “job”.

It can be verified that these properties hold for our oblivious MPC for
PRAM protocol.
Our load-balanced version of such a protocol first randomly9 efficiently
assigns “workers” (i.e., parties) to “jobs”. Next, whenever a worker W
has performed “enough” work for a particular job J , it randomly selects
a replacement worker W ′ and passes the job over to it (that is, it passes
over the state of the job J—which is “small” by assumption). The key
obstacle in our setting is that the job J may later communicate with
many other jobs, and all the workers responsible for those jobs need
to be informed of the switch (and in particular, who the new worker
responsible for the job J is). Since the number of jobs is Ω(n), workers
cannot afford to store a complete directory of which worker is currently
responsible for each job.
We overcome this obstacle by first modifying Π to ensure that it has
small locality—this enables each job to only maintain a short list of the
workers currently responsible for the “neighboring” jobs. We achieve this
locality by requiring that parties (i.e., jobs) in the original protocol Π
route their messages along the hypercube. Now, whenever a worker W
for a job J is being replaced by some worker W ′, W informs all J ’s
neighboring jobs (i.e., the workers responsible for them) of this change.
We use the Valiant-Brebner [VB81] routing procedure to implement the
hypercube routing because it ensures a desirable “low-congestion prop-
erty,” which in our setting translates to ensuring that the overhead of
routing is not too high for any individual worker.
The above description has not yet mentioned what it means for a worker
to have done “enough” work for a job J . Each round a job is active (i.e.,
performing some computation), its “cost” increases by 1—we refer to
this as an emulation cost. Additionally, each time a worker W is switched
out from a job J , then J ’s and each of J ’s neighboring jobs’ costs are
increased by 1—we refer to this as a switch cost. Finally, once a job’s
(total) cost has reached a particular threshold τ , its cost is reset to 1
and the worker responsible for the job is switched out. The threshold τ
is set to 2 logM + 1 where M is the number of jobs.
We show: (1) This switching does not introduce too much overhead. We,
in fact, show that the total induced switching cost is bounded above
by the emulation cost. (2) The resulting total work is load balanced
across workers—we show this by first demonstrating that the protocol is
load-balanced in expectation, and then using concentration to argue our
stronger online load-balancing property.

9 In the actual analysis, we show that it also suffices to use polylog(n)-wise independent
randomness to pick this and subsequent assignments.
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Finally, note that although communication between jobs is being routed
through the hypercube, and thus the job communication protocol has
small locality, the final load-balanced protocol, being run by workers,
does not have small locality. This is because workers are assigned the
role of many different jobs over time, and may possibly speak to a new
set of neighbors for each position. (Indeed, over time, each worker will
eventually need to speak to every other worker). We next show how to
modify this protocol to achieve locality, while preserving load-balancing.

Achieving Both Load-Balancing and Locality. In our final step, we
show how to modify the above-mentioned protocol to also achieve local-
ity. We modify the protocol to also let workers route messages through
a low-degree network (on top of the routing in the previous step). This
immediately ensures locality. But, we must be careful to ensure that the
additional message passing does not break load-balancing.

A natural idea is to again simply pass messages between workers along a
low-degree hypercube network via Valiant-Brebner (VB) routing [VB81].
Indeed, the low-congestion property will ensure (as before) that routing
does not incur too large an overhead for each worker.

However, when analyzing the overall load balance (for workers), we see
an inherent distinction between this case and the previous. Previously,
the nodes of the hypercube corresponded to jobs, each emulated by work-
ers who swap in and out over time. When the underlying jobs protocol
required job s to send a message to job t, the resulting message routing
induced a cost along a path of neighboring jobs (that is, the workers
emulating them), independent of which workers are currently emulating
them. This independence, together with the fact that a worker passes his
job after performing “enough” work for it, enabled us to obtain concen-
tration bounds on overall load balancing over the random assignment of
workers to jobs.

Now, the nodes correspond directly to workers. When the underlying
jobs protocol requires a message transferred from job s to job t, routing
along the workers’ graph must traverse a path from the worker currently
emulating job s to the worker currently emulating job t, removing the
crucial independence property from above. Even worse, workers along
the routing path can now incur costs even if they are not assigned to any
job. In this case, it is not even clear that job passing in of itself will be
sufficient to ensure balancing.

To get around these issues, we add an extra step in the VB routing
procedure (itself inspired by [VB81]) to break potential bad correlations.
The idea is as follows: To route from the worker Ws emulating job s to
the worker Wt emulating job t, we first route (as usual) from Ws to a
random worker Wu, and then from Wu to Wt; i.e., travel from Ws to
Wt by “walking into the woods” and back. We may now partition the
cost of routing into these two sub-parts, each associated with a single
active job (s or t). Now, although workers along the worker-routing path
will still incur costs from this routing (even though their jobs may be
completely unrelated), the distribution of these costs on workers depends
only on the identity of the initiating worker (Ws or Wt). We may thus
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generalize the previous analysis to argue that if the expectation of work
is load-balanced, then it still has concentration in this case.
For a modular analysis, we formalize the required properties of the un-
derlying communication network and routing algorithm (to be used for
the s-to-u and u-to-t routing) as a local load-balanced routing network,
and show that the hypercube network together with VB routing satisfies
these conditions.

1.3 Discussion and Future Work

With the explosive growth of data made available in a distributed fash-
ion, and the growth of efficient parallel, distributed algorithms (such as
those enabled by MapReduce) to compute on this data, ensuring privacy
and security in such large-scale parallel settings is of fundamental im-
portance. We have taken the first steps in addressing this problem by
presenting the first protocols for secure multi-party computation, that
with only polylogarithmic overhead, enable evaluating PRAM programs
on a (large) number of parties’ inputs. Our work leaves open several
interesting open problems:
Honest Majority. We have assumed that 2/3 of the players are honest.

In the absence of a broadcast channel,10 it is known that this is
optimal. But if we assume the existence of a broadcast channel, it
may suffice to assume 1/2 fraction honest players.

Asynchrony. Our protocol assumes a synchronous communication net-
work. We leave open the handling of asynchronous communication.

Trading efficiency for security. An interesting avenue to pursue are
various tradeoffs between boosted efficiency and partial sacrifices in
security. For example, in some settings, it is not detrimental to leak
which parties’ inputs were used within the computation; in such
scenarios, one could then hope to remove the one-time Θ(n|x|) in-
put preprocessing cost. Similarly, it may be acceptable to reveal the
input-specific resources (runtime, space) required by the program
on parties inputs; in such cases, we may modify the protocol to take
only input-specific runtime and use input-specific memory.
In this work we focus only on achieving standard “full” security.
However, we remark that our protocol can serve as a solid basis
for achieving such tradeoffs (e.g., a straightforward tweak to our
protocol results in input-specific resource use).

Communication complexity. As with all existing generic multi-party
computation protocols in the information-theoretic setting, the com-
munication complexity of our protocol is equal to its computation
complexity. In contrast, in the computational setting (based on cryp-
tographic assumptions), protocols with communication complexity
below the complexity of the evaluated function have been constructed
by relying on fully homomorphic encryption (FHE) [Gen09] (e.g., [Gen09,AJLA+12,MSS13]).
We leave as an interesting open question whether FHE-style tech-
niques can be applied also to our protocol to improve the communi-
cation complexity, based on computational assumptions.

10 While the statement of our result makes use of a broadcast channel, as we mention,
this channel can also be instantiated with known protocols.
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1.4 Overview of the Paper

Section 2 contains preliminaries. In Section 3 we provide our ultimate
theorem, and the sequence of intermediate notions and theorems which
combine to yield this final result. We refer the reader to the full version
of this work [BCP14a] for a complete descriptions and proofs.

2 Preliminaries

2.1 Multi-party Computation (MPC)

Protocol Syntax. We model parties as (parallel) RAM machines. An
n-party protocol Φ is described as a collection of n (parallel) RAM pro-
grams (Pi)i∈[n], to be executed by the respective parties, containing ad-
ditional special communication instructions Comm(i,msg), indicating for
the executing party to send message msg to party i.
The per-party space, computation, and time complexities of the proto-
col Φ = (Pi)i∈[n] are defined directly with respect to the corresponding
party’s PRAM program Pi, where each Comm is charged as a single
computation time step. (See Section 2.2 for a definition of CPUs(P ),
space(P ), comp(P ), time(P ) for PRAM P ). The analogous total proto-
col complexities are defined as expected: Namely, space(Φ) and comp(Φ)
are the sums, space(Φ) =

∑
i∈[n] space(Pi), comp(Φ) =

∑
i∈[n] comp(Pi),

and time(Φ) is the maximum, time(Φ) = maxi∈[n] time(Pi).

MPC Security. We consider the standard notion of (statistical) MPC
security. We refer the reader to e.g. [BGW88] for more a more complete
description of MPC security within this setting.

2.2 Parallel RAM (PRAM) Programs

A Concurrent Read Concurrent Write (CRCW) m-processor parallel
random-access machine (PRAM) with memory size n consists of num-
bered processors CPU1, . . . , CPUm, each with local memory registers of
size logn, which operate synchronously in parallel and can make access
to shared “external” memory of size n.
A PRAM program Π (given m,n, and some input x stored in shared
memory) provides CPU-specific execution instructions, which can access
the shared data via commands Access(r, v), where r ∈ [n] is an index to
a memory location, and v is a word (of size logn) or ⊥. Each Access(r, v)
instruction is executed as:

1. Read from shared memory cell address r; denote value by vold.
2. Write value v 6= ⊥ to address r (if v = ⊥, then take no action).
3. Return vold.

In the case that two or more processors simultaneously initiate Access(r, vi)
with the same address r, then all requesting processors receive the previ-
ously existing memory value vold, and the memory is rewritten with the
value vi corresponding to the lowest-numbered CPU i for which vi 6= ⊥.
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We more generally support PRAM programs with a dynamic number
of processors (i.e., mi processors required for each time step i of the
computation), as long as this sequence of processor numbers m1,m2, . . .
is fixed, public information. The complexity of our OPRAM solution will
scale with the number of required processors in each round, instead of
the maximum number of required processors.

We consider the following worst-case metrics of a PRAM (over all inputs):

– CPUs(Π): number of parallel processors required by Π.

– space(Π): largest database address accessed by Π.

– time(Π): maximum number of time steps taken by any processor to
evaluate Π (where each Access is charged as a single step).11

– comp(Π): the total sum of all computation steps of active CPUs
evaluating Π (which, for programs with fixed activation schedules
as we consider, is a fixed value).

3 Local, Load-Balanced MPC for PRAM

Ultimately, we construct a protocol that securely realizes the ideal func-
tionality FPRAMs (Figure 1) for evaluating a sequence of PRAM programs
(with bounded state maintained between program) on parties’ fixed in-
puts. For simplicity of exposition, we assume each party has equal input
size and receives the same output. We further assume the total remnant
state from one program execution to the next is bounded in size by the
combined input size of all parties.12

Theorem 2 (Main Theorem). For any constant ε > 0 and polyno-
mial parallelism parameter k = k(n), there exists an n-party statisti-
cally secure (with error negligible in n) protocol realizing the functionality
FPRAMs, handling (1/3− ε) fraction static corruptions with the following
complexities, where each party is a k-processor PRAM (and where |x|, |y|
denote per-party input and output size, space(Π), comp(Π), and time(Π)
denote the worst-case space, computation, and (parallel) runtime of Π,
and CPUs(Π) denotes the number of CPUs of Π):

– Computation per party, per Πj: Õ
(
comp(Πj)/n+ |y|

)
.

– Time steps, per Πj: Õ
(
time(Πj) ·max

{
1, CPUs(Π)

nk

})
.

– Memory per party: Õ
(
|x|+ |y|+ maxNj=1 space(Πj)/n

)
.

– Communication Locality: Õ(1).

given a one-time preprocessing phase with complexity:

– Computation per party: Õ(|x|), plus single broadcast of Õ(1) bits.

– Time steps: Õ
(

max
{

1, |x|
k

})
.

11 We remark that the PRAM time complexity of any function f is bounded above
by its circuit depth complexity (where the PRAM complexity of f is defined as the
minimal value of time(Π) of any PRAM Π which evaluates f).

12 To support larger shared state size spaceRemnant, the memory requirements of the
protocol must grow with an extra additive Õ(spaceRemnant).
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Ideal Functionality FPRAMs:
FPRAMs running with parties P1, . . . , Pn and an adversary proceeds as follows. The
functionality maintains longterm storage of parties’ inputs {xi}i∈[n] (each of equal size
|x|), per-CPU state information statei, and remnant memory dataRemnant of total size
spaceRemnant ∈ O(n · |x|) transferred from computation to computation.

– Initialize dataRemnant ← ∅ and statei ← ∅ for each processor i ∈ [m].
– Input Submission: Upon receiving an input (commit, sid, input, xi) from party Pi,

record the value xi as the input of Pi.
– Computation: Upon receiving a tuple (compute, sid,Π, space, time) consist-

ing of an m-processor PRAM program Π, a space bound space, and
a time bound time, execute Π as (output, state1, . . . , statem, data

Remnant) ←
Π(x1, . . . , xn, state1, . . . , statem, data

Remnant) with the current value of statei for
each CPU i ∈ [m]. Send output to all parties.

Fig. 1: The ideal functionality FPRAMs, corresponding to secure computation of
a sequence of adaptively chosen PRAMs on parties’ inputs.

Additionally, the protocol achieves polylog(n) communication locality,
and a strong “online” load-balancing guarantee:
Online Load Balancing: For every constant δ > 0, with all but negligi-
ble probability in n, the following holds at all times during the protocol:
Let cc and cc(Wj) denote the total communication complexity and com-
munication complexity of party Pj, comp and comp(Pj) denote the total
computation complexity and computation complexity of party Pj, we have

(1− δ)
n

cc− polylog(n) ≤ cc(Pj) ≤
(1 + δ)

n
cc + polylog(n)

(1− δ)
n

comp− polylog(n) ≤ comp(Pj) ≤
(1 + δ)

n
comp + polylog(n).

3.1 Proof of Main Theorem

At a very high level, the proof takes three steps: We first obtain MPC
realizing FPRAMs with a weaker notion of oblivious security. We then show
how to attain communication locality and load balancing, while preserv-
ing oblivious security. (This combines two steps described within the
introduction). Finally, we convert the obliviously secure protocol to one
secure in the malicious setting. We now proceed to describe these steps
in greater technical detail.

Step 1: Oblivious-Secure MPC for PRAM. Intuitively, an adversary
in the oblivious model is not allowed to corrupt any parties, and instead
is restricted to seeing the “externally measurable” properties of the pro-
tocol (e.g., party response times, communication patterns, etc).

Definition 1 (Oblivious secure MPC). Secure realization of a func-
tionality F by a protocol in the oblivious model is defined by the following
real-ideal world scenario:
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Ideal World: Same as standard MPC without corrupted parties. That
is, the adversary learns only public outputs of the functionality F
evaluated on honest-party inputs.

Real World: Instead of corrupting parties, viewing their states, and con-
trolling their actions (as in the standard malicious adversarial set-
ting), the adversary is now limited as an external observer, and is
given access only to the following information:

– Activation Patterns: Complete list of tuples of the form
• (timestep, party-id, compute-time): Specifying all local com-

putation times of parties.
• (timestep, party-id, local-mem-addr): Specifying all memory ac-

cess patterns of parties.
– Communication Patterns: Complete list of tuples of the form
• (timestep, sndr-id, rcvr-id,msg-len): Specifying all sender-receiver

pairs, in addition to the corresponding communicated mes-
sage bit-length.

The output of the real-world experiment consists of the outputs of
the (honest) parties, in addition to an arbitrary PPT function of the
adversary’s view at the conclusion of the protocol.

(Statistical) Security: For every PPT adversary A in the real-world ex-
ecution, there exists a PPT ideal-world adversary S for which for ev-

ery environment Z, we have outputReal(1
k,A,Z)

s∼= outputIdeal(1
k,S,Z).

Toward our result, it will be advantageous to think of computations as
composed of several sub-parts, or “jobs,” that each maintain and com-
pute on small polylogarithmic-size state (Note that this is natural in the
PRAM setting, where each CPU has polylogarithmic-size local memory).
Later, to achieve load balancing, jobs will be assigned to and passed
around between “workers,” so that each worker roughly performs the
same amount of work. (The small state requirement per job will guaran-
tee that “job passing” is not too expensive). Then, to obtain malicious
security, each worker will ultimately be emulated by a committee of par-
ties via small-scale MPCs; because of the polynomial overhead in the
underlying MPC protocol, it will be important that this is only done for
computations of polylog(n) size on polylog(n)-size memory.
We now define the notion of a protocol in the jobs model.

Definition 2 (Jobs Model). Let n be a security parameter. A jobs
protocol consists of a poly(n)-size set Jobs of agents (called jobs), and
a distributed protocol description ΠJ , instructing each job to perform
local computations and to communicate over a synchronized network (via
point-to-point communication), with the following properties:

– Bounded memory: each job’s space complexity is w ∈ polylog(n).
– Bounded per-round computation and communication: the computa-

tion and communication complexity of each job at each round is upper
bounded by w ∈ polylog(n).

A job is active in a round if it performs computation within this round.
A jobs protocol is further said to have injective communication if the
following property is satisfied:

– Injective communication: each round, a set of jobs are activated, and
each sends a single polylog(n)-sized message to a distinct job.
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By convention, we assume the first min jobs of a jobs protocol are input
jobs, the last mout are output jobs, and the remaining jobs are helper
jobs. Each input job Ji holds a single-word input xi ∈ {0, 1}w (for
w ∈ polylog(n)); output and helper jobs have no input. We then have a
canonical correspondence between functionalities in the standard n-party
setting and the equivalent functionalities in the Worker-Jobs Model:

– Functionality F : In the n-party setting. Accepts inputs xi from each
party Pi, evaluates y ← F (x1|| · · · ||xn), outputs the resulting value
y to all parties Pi.

– Functionality FJobs: In the Jobs Model. Accepts (short) inputs xiu
from each Input Job, evaluates y ← F (x1|| · · · ||x`), and distributes
the resulting value y (in short pieces) to the Output Jobs.

We may analogously define oblivious security of a jobs protocol (where
jobs are honest and the adversary sees only “externally measurable”
properties of the protocol, as in Definition 1). Within the jobs model,
we thus wish to securely realize the functionality FJobs

PRAMs, equivalent to
FPRAMs with the above syntactic change. Note that in the regime of obliv-
ious security, a jobs protocol yields a memory-balanced protocol in the
standard n-party model, by simply assigning jobs to the n parties evenly.

Theorem 3. There exists an oblivious-secure protocol in the Jobs Model
realizing the functionality FJobs

PRAMs for securely computing a sequence of N
adaptively chosen PRAM programs Πj, with the following complexities
(where n · |x|, |y| denote the total input and output size, and space(Π),
comp, and time(Π) denote the worst-case space, computation, and (par-
allel) runtime of Π over all inputs):

– Number of jobs: Õ
(
n · |x|+ |y|+ maxj∈[N ] space(Πj)

)
.

– Computation complexity, per Πj: Õ
(
comp(Πj)

)
.

– Time steps, per Πj: Õ (time(Πj)).
– The number of active jobs in each round is O(maxj∈[N ] CPUs(Πj)).

given a one-time preprocessing phase with complexity

– Computation complexity: Õ(n · |x|).
– Time steps: Õ(1).

Further, the protocol has injective communication: in each round, each
activated job sends a single polylog(n)-size message to a distinct job.

Recall within the Jobs Model each job is limited to maintaining state of
size polylog(n); thus the memory requirement of the above protocol is

Õ
(
n · |x|+ |y|+ max

j∈[N ]
space(Πj)

)
,

based on the number of required jobs.

Idea of proof. The result builds upon the existence of an Oblivious PRAM
compiler with polylog(n) time and space overhead that is collision-free
(i.e., where no two CPUs must access the same memory address in
the same timestep), which is guaranteed to exist unconditionally based
on [BCP14b]. In addition to the standard Input and Output jobs, our
protocol will have one Helper job for each of the CPUs and each memory
cell in the database of the OPRAM-compiled program. The CPU jobs
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store the local state and perform the computations of their corresponding
CPU. In each round that the ith CPU’s instructions dictate a memory
access at location addr(i), the CPU job i will communicate with the
Memory job addr(i) to perform the access. (Thus, in each round, at most
2 · CPUs(OPRAM(Π)) jobs are active, where OPRAM(Π) denotes the
OPRAM-compilation of Π). Activation and communication patterns in
the resulting protocol are simulatable directly by the OPRAM security.
The preprocessing phase of the protocol corresponds to inserting all in-
puts into the OPRAM-protected database in parallel (i.e., emulating the
OPRAM-compiled input insertion program that simply inserts each in-
put xi into address i of the database).

Step 2: Locality and Load Balancing. This step attains polylog(n)
communication locality,13 and computation load balancing from any jobs
protocol ΠJ with injective communication. We do so by emulating ΠJ by
a fixed set of parties (which we sometimes refer to as “workers”), where
each worker is assigned several jobs, and will pass jobs to other workers
once he has performed a certain amount of work. This yields a standard
N -party protocol with a special decomposable state structure: i.e., parties’
memory can be decomposed into separate polylog(n)-size memory blocks,
which are only ever computed on independently or in pairs, in steps of
polylog(n) computation per round. This is because parties’ computation
is limited to individual jobs to which it was assigned.14

Definition 3 (Decomposable State). An N-party protocol Π is said
to have decomposable state if for every party P , the local memory mem of
P can be decomposed into polylog(n)-size blocks mem = (mem1,mem2, . . . ,memm)
such that: In each round of Π, the (parallel) local computation performed
by party P is described as a list {(i, j, fi,j)}(i,j)∈I for some I ⊆ [m]× [m],
such that each fi,j has complexity polylog(n). For each (i, j) ∈ I, party
P executes (memi,memj)← fi,j(memi,memj).15 By convention, received
communication messages are stored in local memory.

We achieve the following “fully load-balanced” properties. Note that the
first two properties correspond directly to our final load-balancing goal.
The final property will be used to ensure that no individual worker is
ever assigned drastically more than the expected number of simultaneous
parallel computation tasks; this is important since workers will eventually
be emulated by (technically, committees of) parties, who themselves may
have bounded parallelism capability (i.e., small number of CPUs).

Definition 4 (Fully Load Balanced). An N-party protocol Π is said
to be fully load balanced with respect to security parameter n if the fol-
lowing properties hold:

13 Recall a protocol has (communication) locality `(n) if during the course of the pro-
tocol every party communicates with at most `(n) other parties.

14 Looking ahead, pairwise computation will be used when emulating job-to-job com-
munication, and will be sufficient when the original jobs protocol has injective com-
munication, so that each job communicates with at most one other job per round.

15 With some canonical resolution for write conflicts. (In our constructions, the sets
(i, j) will be disjoint).
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– Memory load balancing: Let space(Π) denote the total space complex-
ity of protocol Π. For every constant δ > 0, with all but negligible
probability in n, every party Pj has space complexity

space(Pj) ≤
(1 + δ)

N
space(Π) + polylog(n).

– Online computation/communication load balancing: For every con-
stant δ > 0, with all but negligible probability in n, the following holds
at all times during the protocol: Let cc and cc(Pj) denote the total
communication complexity and communication complexity of party
Pj, comp and comp(Pj) denote the total computation complexity and
computation complexity of party Pj, we have

(1− δ)
N

cc− polylog(n) ≤ cc(Pj) ≤
(1 + δ)

N
cc + polylog(n)

(1− δ)
N

comp− polylog(n) ≤ comp(Pj) ≤
(1 + δ)

N
comp + polylog(n).

– Per-round per-party efficiency:16 Let A be an upper bound on the
number of active jobs at each round in ΠJ . With all but negligible
probability in n, the per-round per-party computation complexity is
upper bounded by Õ(1 + (A/N)).

Theorem 4. Let ΠJ be an M-job protocol with computation complex-
ity comp and injective communication, realizing functionality FJobs. Then
there exists a fully load-balanced (Definition 4) Õ(n)-party protocol ΠW
with decomposable states (Definition 3) that realizes F with total compu-
tation Õ(comp), space complexity Õ(M), and polylog(n) locality. If ΠJ
satisfies oblivious security, so does ΠW .

Idea of proof. Recall that in our construction of ΠW (in the introduc-
tion), at any point of the protocol execution, each job is assigned to
a random worker17 and is stored in at most 2 workers. This is suffi-
cient to imply memory load balancing by standard concentration and
union bounds. Online computation/communication load balancing fol-
lows by observing that (i) the job-passing pattern is independent of the
worker-job assignment, and (ii) jobs are passed frequently enough before
accumulating large cost. This allows us to think of the execution as par-
titioned into “job chunks” each of which is assigned to a random worker,
thus amenable to concentration bounds. The last load-balanced property
follows again by the fact that each job is independently assigned to a ran-
dom worker and that each job only performs polylog(n) amount of work
per round. To obtain locality, we consider a fixed low-degree communica-
tion network between workers, and pass messages using a load-balanced

16 We note that the last two properties are related but incomparable. The online load
balancing property focuses on accumulated work, whereas the per-round per-party
efficiency concerns upper bounds on per-round work, which is used to bound the
required amount of parallelism to execute the protocol with efficient parallel time.

17 Technically, the initial job-worker assignment is only K-wise independent for K =
log3 n. Nevertheless, this is sufficient for concentration bounds to go through.
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routing algorithm. Load balancing of this modified scheme follows by
similar, but more delicate analysis.
The resulting protocol has decomposable state, since parties’ memory and
computation are completely local to individual jobs, or pairs of jobs in
the case of emulating job-to-job communication (since the starting jobs
protocol has injective communication).

Step 3: From Oblivious to Malicious Security. Finally, we present a
general transformation that produces an n-party MPC protocol securely
realizing a functionality F against (1/3−ε)n static corruptions, given any
Θ̃(n)-party protocol with decomposable states (see Definition 3) realizing
the corresponding jobs-model functionality F jobs with only oblivious se-
curity. This step can be viewed as a refinement and generalization of
ideas from [KLST11,DKMS12,BGT13].

Theorem 5 (From Oblivious Security to Malicious Security).
Suppose there exists an N ∈ Θ(n·polylog(n))-party oblivious protocol with
decomposable state, realizing functionality F jobs in space, computation,
and (parallel) time complexity space, comp, time. Then for any constant
ε > 0 there exists an n-party MPC protocol (with error negligible in n)
securely realizing the corresponding functionality F against (1/3 − ε)n
static corruptions, with the following complexities (where each party is
a PRAM with possibly many processors), given a one-time preprocessing
phase with a single broadcast of Õ(1) bits per party:

– Per-party memory: Õ(space/n).
– Total computation: Õ(comp).
– Time complexity: Õ(time).

In addition, if the original protocol has Õ(1) locality and is fully load-
balanced (i.e., satisfying all properties of Definition 4), then the resulting
protocol additionally possesses the following properties:

– Communication locality Õ(1).
– Online computation load balancing, as in Definition 4(c).
– Time complexity Õ

(
time ·max

{
1, A

nk

})
when each party is limited

to being a k-processor PRAM, where A denotes the maximum per-
round per-party computation complexity of any party in the original
oblivious-secure protocol.18

Idea of Proof. The compiler takes the following form: First, parties collec-
tively elect a large number of “good” committees, each of size polylog(n),
where “good” means each committee is composed of at least 2/3 honest
parties, and that parties are spread roughly evenly across committees.
The one-time broadcast is used to reach full agreement on the first com-
mittee. These committees will then emulate each of the decomposable
sub-computations of the original protocol Π (see Definition 3), via small-
scale MPCs. That is, committees are initialized with inputs by having
the parties in Π ′ split their inputs into polylog(n)-size pieces and ver-
ifiably secret share them to the appropriate committee(s). Each local

18 In particular, for our MPC for PRAMs protocol formed by combining Steps 1 and 2,
the parameter A will correspond to the number of CPUs required in the evaluated
PRAM Π, with polylog overhead.
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computation (and communication) in Π decomposes as a collection of
fi,j , each affecting only two committees (emulating memi and memj).
Since committees are only size polylog(n), and each small-scale MPC
has only polylog(n) memory and computation (because of decomposabil-
ity), the memory, computation, and time complexity overhead is small.
Since parties are spread across committees, the protocol remains load
balanced. Finally, by using a perfectly secure underlying MPC protocol
(such as [BGW88]), the only information revealed corresponds directly
to the “observable” properties (communication patterns, etc.), thus re-
ducing directly to oblivious security (as per Definition 1).
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