
Zeroizing Without Low-Level Zeroes: New
MMAP Attacks and Their Limitations

Jean-Sébastien Coron1, Craig Gentry2, Shai Halevi2, Tancrède Lepoint3,∗,
Hemanta K. Maji4,5,†, Eric Miles4,†, Mariana Raykova6,‡, Amit Sahai4,†, and

Mehdi Tibouchi7

1 University of Luxembourg, jean-sebastien.coron@uni.lu
2 IBM Research, USA

3 CryptoExperts, France, tancrede.lepoint@cryptoexperts.com
4 University of California, Los Angeles and Center for Encrypted Functionalities,

USA, {enmiles,hmaji,sahai}@cs.ucla.edu
5 Purdue University, USA

6 SRI International, USA, mariana@cs.columbia.edu
7 NTT Secure Platform Laboratories, Japan, tibouchi.mehdi@lab.ntt.co.jp

Abstract. We extend the recent zeroizing attacks of Cheon, Han, Lee,
Ryu and Stehlé (Eurocrypt’15) on multilinear maps to settings where
no encodings of zero below the maximal level are available. Some of the
new attacks apply to the CLT13 scheme (resulting in a total break) while
others apply to (a variant of) the GGH13 scheme (resulting in a weak-DL
attack). We also note the limits of these zeroizing attacks.

Keywords: Cryptanalysis, Hardness Assumptions, Multilinear Maps.

1 Introduction

The GGH13 [7] and CLT13 [6] “approximate multilinear maps” candidates suffer
from zeroizing attacks, where encodings of zero at levels below the top (zero-test)
level can be exploited to recover information that should have been hidden by
the encoding scheme. The essence of these attacks is using successful zero tests
to obtain equations over the base ring (Z or Z[X]/F (X)), then solving these

∗ This work has been supported in part by the European Union’s H2020 Programme
under grant agreement number ICT-644209.
† Research supported in part from a DARPA/ONR PROCEED award, a

DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants
1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google
Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation
Research Grant. This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency through the U.S. Office of Naval Research under
Contract N00014-11-1-0389. The views expressed are those of the author and do
not reflect the official policy or position of the Department of Defense, the National
Science Foundation, or the U.S. Government.
‡ This work has been supported in part from NSF Award 1421102.

equations to get the desired information. First presented in the context of the
GGH13 candidate [7], such attacks were recently extended by Cheon et al. [5] also
to the CLT13 candidate, where they were shown to be particularly devastating,
leading to a total break (when they can be mounted).

As explicitly discussed in [5], however, these attacks seem to depend on the
availability of low-level encoding of zeros. This limits the applicability of these at-
tacks, especially since several high-profile applications of multilinear maps (such
as for obfuscation [8]) do not reveal such low-level zero encodings.

In this work we show that it is possible to “zeroize without low-level zeroes”:
that is, we extend the attacks from [5] and apply them against both CLT13
encodings and a matrix variant of GGH13 encodings, even in settings where
no low-level encodings of zero are available to the adversary. We further sys-
tematize the new attacks and show that they can overcome recent proposals to
“immunize” against them [9, 3]. Our extensions to the attacks from [5] include
replacing low-level zero encodings by “orthogonal encodings” (this extension was
observed independently also by Boneh et al. [3]), dealing with cases where more
than one monomial is needed to get a zero, and dealing with modifications of
the CLT13 and GGH13 schemes that use matrix-based encodings with the en-
coded values embedded in the eigenvalues of the matrix. Before describing our
zeroizing attacks, we discuss the impact and limitations of these attacks.

1.1 Impact of Our Attacks

Broken Assumptions and Constructions. The most direct consequence of
our work is that more hardness assumptions and constructions from the liter-
ature are broken. Prior to our work, the attacks of [5] already broke several
assumptions and constructions using CLT13 encodings because they provided
low-level encodings of zero. Our work extends to new assumptions and construc-
tions, even where no low-level encodings of zero are available. For example, our
extensions can be used to break instances of the meta-assumption of Pass et al.
[16] (using either GGH13 or CLT13 encodings), even when used without low-level
encodings of zero. Furthermore, we show that natural attempts to “immunize”
CLT13 or GGH13 encodings by removing low-level encodings of zero [9, 3] fail.
In particular, the assumptions used by Gentry et al. [11, 10] are broken, even
when “immunized” using the technique from [3]. Perhaps more surprisingly, we
also show that simplified variants of certain obfuscation schemes can be broken:

– We show that the GGHRSW branching-program obfuscation procedure from
[8], implemented over the CLT13 scheme [6], can be broken when it is applied
to branching programs with a very specific “decomposable” structure. See
Section 3.3.

– In the full version of this report, we also show that the simplified circuit ob-
fuscation scheme of Zimmerman [17, Appendix A] and Applebaum-Brakerski
[1] can be broken when applied to very simple circuits (e.g., point functions).

1.2 Limitations of Zeroizing attacks

Potent as they are, zeroizing attacks have their limitations. For example, so
far we do not have attacks on any of the NC1 obfuscation candidates in the
literature. Moreover the “dual-input straddling sets” technique that is used in
several obfuscation schemes [4, 2, 17] appears to be effective in thwarting these
attacks. See more details in Section 2.4.

Successful zero tests are necessary. Our work demonstrate that some attacks
are possible even if we only have top-level encoded zeros, but crucially all of these
attacks depend on successful zero tests to get equations over the base ring. Some
constructions or assumptions may not provide these zeros, and in that case it is
plausible that the GGH13 and CLT13 candidates could even provide semantic
security [12] of the encoded values. Even more, as far as we know the standard
generic multilinear-map model could provide a good approximation of GGH13
and CLT13 in settings where top-level encoding of zeros are not available.

The equations must be simple. In zeroizing attacks, each successful zero-test
provides the adversary one equation over the base ring, and the attack relies on
the attacker’s ability to solve the resulting system of equations. The successful
attacks detailed in our paper (as well as those from [7, 5]) arise in situations
where the adversary has substantial freedom in creating top-level encodings of
zero, and can exploit this freedom to obtain “a simple system of equations” over
the base ring that can be solved using linear algebraic techniques.

There are many cases, however, in which the available encodings are con-
structed such that only very particular combinations of them yield a top-level
encoding of zero, and those combinations do not seem to yield efficiently solvable
system of equations. Two such examples, illustrated in Section 2.4, are obfus-
cation schemes that rely on Barrington’s theorem, and schemes that use the
“dual-input straddling sets” technique.

We believe that long-term understanding of the security offered by current
multilinear map candidates will require tackling long-standing questions about
which kinds of systems of nonlinear equations are feasible to solve efficiently,
and which are not.

2 Background and Overview

2.1 A Brief Description of the GGH13 and CLT13 Schemes

We begin with a brief description of the GGH13 and CLT13 schemes, omitting
many details that are irrelevant for the attacks in question. Both these schemes
implement graded encoding schemes where “plaintext elements” are encoded in
a way that hides their value but allows to add and multiply them, and also allows
to test if a degree-k expression in these values is equal to zero (where k is the
“multi-linearity parameter”).

The GGH13 scheme. For GGH13 [7], the plaintext space is a quotient ring
Rg = R/gR where R is the ring of integers in a number field and g ∈ R is
a “small element” in that ring. The space of encodings is Rq = R/qR where
q is a “big integer”. An instance of the scheme relies on two secret elements,
the generator g itself and a uniformly random denominator z ∈ Rq. A plaintext
element (which is a coset a = α + gR) is encoded “at level one” as u = [e/z]q
where e is a “small element” in the coset a (i.e., e = α + gr for some r ∈ R).
More generally, a level-i encoding of the coset a has the form u = [e/zi]q for a
small e ∈ α+ gR.

Addition/subtraction of encodings at the same level is just addition in Rq,
and it results in an encoding of the sum at the same level, so long as the nu-
merators do not wrap around modulo q. Similarly multiplication of elements at
levels i, i′ is a multiplication in Rq, and as long as the numerators do not wrap
around modulo q the result is an encoding of the product at level i+ i′.

The scheme also includes a “zero-test parameter” in order to enable test-
ing for zero at level k. Noting that a level-k encoding of zero is of the form
u = [gr/zk]q, the zero-test parameter is an element of the form pzt = [hzk/g]q
for a “somewhat small element” h ∈ R. This lets us eliminate the zk in the
denominator and the g in the numerator by computing [pzt · u]q = h · r, which
is much smaller than q because both h, r are small. If u is an encoding of a
non-zero α, however, then multiplying by pzt leaves a term of [hα/g]q which
is not small. Testing for zero therefore consists of multiplying by the zero-test
parameter modulo q and checking if the result is much smaller than q.

Matrix-GGH13. An unpublished variant of GGH13 (that was meant to protect
against zeroizing attacks) uses matrices of native GGH13 encodings, where the
encoded value is an eigenvalue of the matrix and the zero-test parameter includes
also the corresponding eigenvector. This is essentially the same as the GGHZ
countermeasure construction from [9, Sec. 7] (which is described in Section 3.2),
except that it uses GGH13 encodings rather than CLT13 encodings.8

The CLT13 Scheme. The CLT13 scheme [6] is similar to above, but it relies
on CRT representation modulo a composite integer x0 =

∏n
j=1 pj , where the pj ’s

are “large primes”, all of about the same size. We let CRT (a1, . . . , at) denote
the unique element a ∈ Zx0

that is congruent to aj modulo pj for all j. Also we
often use the shorthand CRT (aj)j to denote the same.9

The plaintext space in CLT13 consists of vectors a ∈ Zg1 × · · · × Zgn , where
all the gj ’s are much smaller than their corresponding pj ’s. An instance of the
scheme relies on the secrets gj and pj (with x0 public), and on a secret uniformly
random denominator z ∈ Zx0

. Such a vector a = (α1, . . . , αn) is encoded at level

8 Our attack from Section 3.2 applies for the most part to this GGH13 variant too,
except that in this case we only get a weak-DL attack rather than a complete break;
see the full version for details.

9 We do not assume that the aj ’s are smaller than their corresponding pj ’s.

one as [CRT (α1 + g1r1, . . . , αn + gnrn) /z]x0
, where the rj ’s are all small. More

generally a level-i encoding of this vector is of the form [CRT (αj + gjrj)j /z
i]x0

.

Addition/subtraction of encodings at the same level is just addition in Zx0
,

and it results in an encoding of the sum at the same level, so long as the nu-
merators in the different CRT components do not wrap around modulo their
respective pj ’s. Similarly multiplication of elements at levels i, i′ is a multiplica-
tion in Zx0

, and as long as the numerators in the different CRT components do
not wrap around modulo their respective pj ’s, the result is an encoding at level
i+ i′ of the entry- wise product of the two vectors.

For zero-testing, let us denote p∗j = x0/pj =
∏
i 6=j pi, and note the following

easy corollary of the Chinese Remainder Theorem:

Proposition 1. For all a1, . . . , an ∈ Z, CRT
(
p∗jaj

)
j

=
∑n
j=1 p

∗
jaj (mod x0).

Namely when each CRT component j is divisible by p∗j , then the CRT compo-
sition can be computed just by adding all the CRT components modulo x0.

The zero-test parameter in CLT13 is pzt = [zk ·CRT
(
p∗jhjg

−1
j

)
j
]x0

for small

elements hj � pj , where g−1j is computed modulo pj . Multiplying this zero-test

parameter by a level-k encoding of zero, that has the form u = [CRT (gjrj)j /z
k]x0

,
yields

[pzt · u]x0
= CRT

(
p∗jhjrj

)
j

=
∑
j

p∗jhjrj .

Since hjrj � pj for all j, then p∗jhjrj = (x0/pj)hjrj � x0, and also the sum
is much smaller than x0. Testing for zero therefore consists of multiplying by
the zero-test parameter modulo x0 and checking if the result is much smaller
than x0.

Common Properties. The GGH13 and CLT13 schemes share a very similar
structure; here we summarize the common features that are used in the attacks:

– Each encoding is “associated” with the vector of small integers in the numer-
ator. For GGH13 this is a 1-vector consisting of a single algebraic integer,10

and for CLT13 this is a vector of n integers in Z. Below we write informally
u ∼ (a1, . . . , an) to denote the fact that the encoding u is associated with
the vector of ai’s. Roughly speaking, the goal of the attacks is to recover the
vector (aj)j from the encoding u. Recovering this vector (even if not in full)
is usually considered a break of the scheme.

– An encoding of zero is associated with a vector divisible by the gj ’s, namely
u ∼ (gjrj)j for some rj ’s.

– Addition and multiplication of encodings acts entry-wise on the vector of
integers in the numerator. Importantly, the addition and multiplication of
these vectors is done over the integers, with no modular reduction. This is
because a wrap-around in these operations is an error condition, and so the
parameters are always set to ensure that it does not happen.

10 The matrix-GGH13 variant has vectors in the numerator rather than a single alge-
braic integer.

– If u ∼ (gjrj)j is an encoding of zero at the top level, then applying the zero-
test to u returns the integer w =

∑
j rjρj , where the rj ’s are the multipliers

from the numerator vector and the ρj ’s are system parameters independent
of u.
In other words, applying the zero-test to an encoding of zero yields the inner-
product of the associated vector (sans the gj ’s) with a fixed secret vector. (In
GGH13 this is the 1-vector (h), in CLT13 the vector is (p∗jhj)j .) Importantly,
here too the inner product is over the integers, with no modular reduction.

2.2 Overview of Existing Attacks

The GGH13 Zeroizing Attack. The following “zeroizing” attack on the GGH13
scheme was described in [7]. It gets as input a level-t encoding of zero u0 ∼ (gr)
and many other level-(k − t) encodings um ∼ (am). Multiplying u0 by any of
the um’s yields a top-level encoding of zero u0um ∼ (gram), and applying the
zero-test yields the algebraic integer wm = hram. Note that this almost recovers
the numerators am’s; indeed we have them up to the common factor h′ = hr.

If we also knew the ideal Ig = gR that defines the plaintext space, then
being able to recover the numerator up to a constant is enough to break many
hardness assumptions. For example, given an encoded matrix we could compute
its determinant (mod Ig) up to a constant, which would tell us whether or not
the encoded matrix has full rank.

Even when Ig is not explicitly given, Garg et al. described in [7] how it can
be recovered in certain cases using GCD computations. Roughly, we can use
GCD to identify and remove the common factor h′, thereby getting the am’s
themselves, except that these are all algebraic integers so we only have GCD in
terms of their ideals. Recovering the ideal Ia = aR is not always useful, e.g.,
if Ia and Ig are co-prime then knowing Ia does not tell us anything about our
plaintext coset a + Ig. However if some of the ui’s are themselves encoding of
zero, namely ai = gri, then given enough ideals Iai = griR we could again use
GCD calculations to recover the ideal Ig itself, and then use that knowledge to
attack the non-zero encodings among the ui’s. This attack was called in [7] a
“weak discrete-log attack”. Recently, this attack was used by Hu and Jia [14] as
a component in a new attack that breaks the key-exchange protocol from [7].

We note that the GGH13 zeroizing attack does not work against CLT13
encodings, since rather than a simple product we now have an inner product
wm =

∑
j am,jρj , and we cannot use this to compute GCDs. (For the same

reason, this attack does not work against the matrix-GGH13 variant.)

The CHLRS Zeroizing Attack. Cheon, Han, Lee, Ryu and Stehlé recently de-
scribed in [5] a major upgrade of the GGH13 zeroizing attack, which can be used
to completely break CLT13-based schemes in some cases, recovering the factor-
ization of x0 and all secret information. To mount the CHLRS zeroizing attack we
need three sets of encoded inputs, which we denote by A = {Ai : i = 1, . . . , n},
B = {B0, B1}, and C = {Cj : j = 1, . . . , n} (with n the dimension of the numer-
ator vectors). The A’s are all random encoding of zeros, the B’s are the target of

the attack, and the C’s are just helper encodings of random vectors. The levels of
these encodings are such that multiplying Ai ·Bσ ·Cj yields a top-level encoding
of zero for any i, σ, j. Below we denote the numerator vectors associated with
these encodings by

Ai ∼ (g1ri,1, . . . , gnri,n), Bσ ∼ (bσ,1, . . . , bσ,n), and Cj ∼ (cj,1, . . . , cj,n).

Multiplying Ai ·Bσ ·Cj yields a top-level encoding of zero, associated with the
vector Ai ·Bσ ·Cj ∼ (g1ri,1bσ,1cj,1, . . . , gnri,nbσ,ncj,n). Applying the zero-test we
get a four-wise inner product, yielding the integer wσ[i, j] =

∑n
k=1 ρkri,kbσ,kcj,k.

We can write this four-wise inner product in matrix form as

wσ[i, j] = (ri,1 . . . ri,n)×

ρ1bσ,1
. . .

ρnbσ,n

×
 cj,1...
cj,n

 ,
and denote the vector on the left by ai, the matrix in the middle by B′σ, and the
vector on the right by cj . For a fixed σ, let i, j range over 1, . . . , n. This yields
an n× n matrix of integers Wσ = [wσ[i, j]]i,j = A′ ×B′σ ×C ′, where A′ has the
ai’s for rows and C ′ has the cj ’s for columns. Since the ri,k’s, bσ,k’s, cj,k’s and
ρk’s are all random (small) quantities, then with high probability the matrices
are all invertible (over the rationals). Having computed the matrices Wσ, the
attacker now sets

W = W0 ×W−11 = (A′B′0C
′)× (A′B′1, C

′)−1 = A′ × (B′0 ×B′1
−1

)×A′−1.

Observe now that B∗ = B′0×B′1
−1

is a diagonal matrix with b0,j/b1,j on the diag-
onal, and thus the eigenvalues of B∗ are all the ratios b0,j/b1,j . And since W and
B∗ are similar matrices, then also the eigenvalues of W are the b0,j/b1,j ’s. Hence
once it computes W , the attacker can find its eigenvalues (over the rationals)
and obtain all the ratios b0,j/b1,j .

These ratios may be enough by themselves to break some hardness assump-
tions, but for CLT13 it is possible to use them to factor x0, thereby getting
a complete break. Specifically, since each ratio is rational it can be written as
u/v = b0,j/b1,j with u, v co-prime integers. Recalling now that B0, B1 are two
encodings at the same level (say, level t) with numerator vectors (b0,1, . . . , b0,n)
and (b1,1, . . . , b1,n), respectively, we get that

uB1 − vB0 = [CRT (ub1,1 − vb0,1, . . . , ub1,n − vb0,n) /zt]x0 .

This means that the j’th CRT component is ub1,j − vb0,j = 0, and with high
probability the others are not, so we get GCD(x0, uB1 − vB0) = pj .

2.3 Extending the CHLRS Attack

In the current work we describe several extensions to attacks of Cheon et al.
from [5]; below we describe these extensions briefly.

GGH13 vs. CLT13. We can also apply these zeroizing attacks to a matrix
variant of GGH13, not just to CLT13 encodings, resulting in a “weak discrete-
log” attack. This is described in the full version.

Orthogonal encodings. We also note that these attacks do not actually
require low-level encoding of zeros. Indeed all we need is that for every i, σ, j,
the product AiBσCj is a top-level encoding of zero, so we could have the A’s with
zeros in a few CRT components, the B’s with zeros in some other components,
and the C’s with zeros in all the CRT components not covered by the A’s and
B’s. This observation was also made concurrently by Boneh et al. [3].

More than one monomial. The attack also extends to a setting where more
than a single monomial is needed to get a zero. For example, consider the case
where we have not three but six sets of encodings. Similar to before we have
A = {Ai : i = 1, . . . , 2n}, B = {B0, B1}, and C = {Cj : j = 1, . . . , 2n}, but

now we also have Ã = {Ãi : i = 1, . . . , 2n}, B̃ = {B̃0, B̃1}, and C̃ = {C̃j : j =
1, . . . , 2n}. (Note that the indices i, j now range over [1, 2n], not [1, n]). The new
attack requires that AiBσCj + ÃiB̃σC̃j is a top-level encoding of zero for every
i, σ, j. We denote the numerator vectors associated with these encodings by

Ai ∼ (ai,1, . . . , ai,n), Bσ ∼ (bσ,1, . . . , bσ,n), Cj ∼ (cj,1, . . . , cj,n),

Ãi ∼ (ãi,1, . . . , ãi,n), B̃σ ∼ (b̃σ,1, . . . , b̃σ,n), C̃j ∼ (c̃j,1, . . . , c̃j,n).

We can think of the pairs (Ai, Ãi), (Bσ, B̃σ), (Cj , C̃j) as encodings that are
associated with numerator vectors of twice the dimension, and the CHLRS attack
can be applied to these new “double encodings”. The only difference (other than
the larger dimension) is that we can no longer associate the division-by-gi with
any single vector. Instead, applying the zero-test to AiBσCj + ÃiB̃σC̃j yields a
four-wise inner product divided by the gi’s, which we can write in matrix form:

wσ[i, j] = (ai,1 ãi,1 . . . ai,n ãi,n)×



ρ1bσ,1
g1

ρ1b̃σ,1
g1

. . .
ρnbσ,n
gn

ρnb̃σ,n
gn


×


cj,1
c̃j,1

...
cj,n
c̃j,n

 .

Importantly, even though we have division by gi’s, this equation holds over the
rationals, without modular reduction. The attack itself proceeds just as before,
and the g−1i factors conveniently fall off when we compute B′0 × B′1

−1
. This

extension can be used to break the “immunized” CLT13 variant from [3].

Using Cayley-Hamilton. In response to the CHLRS attacks, Garg et al.
described in [9, Sec. 7] a variant of the CLT13 encoding that uses matrices for
encoding, rather than single Zx0

elements (see description in Section 3.2 below).

The attacks above apply also to this variant for the most part, but the re-
sulting matrices B′0, B

′
1 are no longer diagonal. Instead they are block-diagonal

with the block dimension corresponding to the dimension of the encoding ma-
trices, and different blocks corresponding to different CRT components (i.e.

Bσ mod pj). The eigenvalues of B′0 × B′1
−1

in this case need not be rational
numbers anymore, they can be arbitrary complex numbers, and so the final step
in the CHLRS attack cannot be applied.

However the characteristic polynomial of B∗ = B′0×B′1
−1

is still the product
of the characteristic polynomials of the blocks. We can factor the characteristic
polynomial of B∗ to find the block characteristic polynomials, and then apply
these block polynomials to the matrix M = B1×B−10 . Applying a block polyno-
mial to M zeros out the corresponding CRT component (by the Cayley-Hamilton
theorem), but not the others (whp), and we can then compute the GCD of x0
and any matrix element to recover the prime corresponding to the zeroed CRT
component. Note this assumes that the block polynomials are irreducible over
Q (which indeed holds for [9, Sec. 7]), so that they can be efficiently found by
factoring B∗’s characteristic polynomial.

The actual procedure that we use differs slightly, in order to handle an un-
published generalization of [9, Sec. 7] in which the encoding matrices themselves
are constructed to be block-diagonal, say with block dimension d. With this
change B∗ is still block-diagonal, but the block dimension is now larger by a
factor of d, and each polynomial that we want to apply to M is the product of d
factors of B∗’s characteristic polynomial. We do not know of a way to efficiently
partition these factors into the correct sets of size d. Instead, we remove one
irreducible factor from B∗’s characteristic polynomial, and apply the resulting
polynomial to M . This has the effect of zeroing out all CRT components except
the one corresponding to the removed factor, so computing the GCD with x0
recovers the product of all but one of the primes, and dividing x0 by this recov-
ers an individual prime. Cycling over all irreducible factors, we recover all of the
primes.

2.4 Attack Limitations

As sketched in the introduction, zeroizing attacks have their limitations, in that
they require zeros and moreover need the equations that yield these zeros to
be “simple.” Two scenarios that seem outside the scope of these attacks due to
“non-simple” equations are discussed next.

Obfuscation using Barrington’s theorem. Consider the obfuscation schemes in
the literature that obfuscate matrix-based branching programs (BP) resulting
from Barrington’s theorem [8, 4, 2, 16]. These schemes are designed so that the
only way to get a top-level zero encoding is using the prescribed routines for
evaluating the obfuscated circuit on various inputs, so we only need to examine
the type of expressions that arise from such evaluation.

Recall that a matrix-based BP has a sequence of steps, each specified by
two matrices and controlled by an input bit. On a given input, we choose one

of the two matrices in each step (based on the corresponding input bit), then
multiply all of the selected matrices in order to get the result. In the BPs that
are generated by Barrington’s theorem, each input bit controls several steps
that are spaced far apart, and so changing the value of that bit changes the
selection of all these matrices. This makes it hard to apply our attacks in this
setting, since these attacks require a multilinear setting where we can get many
different zeros by changing just a single variable in every monomial. Therefore,
even though we do get equations over the base ring from top-level zeros in this
scheme, these equations appear to be correlated in a highly non-linear manner,
foiling our attempts to glean useful information from them.

We contrast this situation with the attack that we describe in Section 3.3,
that breaks obfuscation of very simple branching programs which are “separable”
in the sense that different subsets of the input bits control different consecutive
intervals of steps, thus giving us the simple system of equations that we need.

Binding variables. The CHLRS attacks and our extensions rely on the ability to
partition the variables into groups (A,B, C above), so that we can independently
choose variables from the different groups and every such choice yields a top-
level zero. Several schemes in the literature use explicit binding variables to
make it hard to partition the encodings into independent sets. For example, the
obfuscation schemes of Barak et al. [2] and Zimmerman [17] use “dual-input
straddling sets” to create a “high connectivity” interlocking set of encodings.

These schemes contain, for each pair i, j of input bits, four encoded variables
Ui,j,0,0, Ui,j,0,1, Ui,j,1,0, and Ui,j,1,1, such that obtaining a top-level encoding of
zero requires multiplying Ui,j,∗,∗’s that are consistent with some n-bit input x
(i.e., it requires computing some expression ·

∏
i,j Ui,j,xi,xj). This structure seems

to foil attempts of separating the variables into independent sets, since changing
any input bit creates a cascading effect. To illustrate the difficulty of applying the
attack in this setting, we describe in the full version a relatively simple source-
group hardness assumption involving such binding variables, which we do not
know how to break even though we are given many low-level CLT13 encodings
of zero.

3 A Unified Attack against CLT13-Based Schemes

Below we present a general attack on CLT13-based schemes that combines all
the ideas from Section 2.3, and show how this attack can be used against:

– The proposed CLT13 modification by Garg et al. [9, Sec. 7] (that was sug-
gested in response to the CHLRS attacks);

– Obfuscations of branching programs with specific structure using the iO
procedure of Garg et al. [8].

Central to our general attack is the notion of a “good attack set,” which
roughly plays the role of the sets A,B, C from Section 2 (together with the zero-
test parameter). To define this notion formally, fix an instance of CLT13 with n

Input: A = {Ai}i, B = {Bσ}σ, C = {Cj}j , s, t

1. Compute (nd)×(nd) matrices W0,W1 as Wσ[i, j] := [s×Ai ×Bσ × Cj × t]x0 .

2. Compute W := W0 ×W−1
1 over Q, and M := B0 ×B−1

1 (mod x0).
3. Compute W ’s characteristic polynomial f := charPoly(W) over Q, and factor

it into monic irreducible factors over Q as f = f1f2 · · · fm.
4. For all k ∈ {1, . . . ,m} define Fk := f/fk =

∏
i6=k fi ∈ Q[X], let dk be the

common denominator of the coefficients of Fk, and set Gk := Fk · dk.
5. Evaluate the Gk’s at the matrix M mod x0, Mk := [Gk(M)]x0 ∀k 6 m.
6. Compute S := {GCD(Mk[i, j], x0) | i, j ∈ [nd]; k ∈ [m]}, and return
{x0/q | q ∈ S}.

Fig. 1. Our general attack on CLT13-based schemes

secret primes p1, . . . , pn and modulus x0 :=
∏
i pi. An attack set (of dimension d)

consists of three sets of matrices A,B, C ⊂ Zd×dx0
, of sizes |A| = |C| = nd and

|B| = 2, and two vectors s ∈ Z1×d
x0

and t ∈ Zd×1x0
. These sets are constructed from

the available public parameters and encodings of a given scheme, in such a way
that for every choice of (Ai, Bσ, Cj) ∈ A× B × C, the value

Wσ[i, j] := s×Ai ×Bσ × Cj × t ∈ Zx0

is a zero-tested top-level encoding of 0. (The CHLRS attack can be thought as a
special case where all the “matrices” are of dimension d = 1, and we have s = 1
and t = pzt.) Given such an attack set, the attack proceeds as in Figure 1, where
we denote by [z]p the reduction of z modulo p into the interval [−p/2, p/2), and
this notation extends entry-wise to vectors and matrices.

3.1 Sufficient conditions for the attack to succeed

Next we state and prove sufficient conditions on the attack set that ensures that
the attack in Figure 1 succeeds. Specifically, we would like to show that each Mk

in step 5 must be zero modulo all the primes except one, and hence any non-zero
entry in it yields a nontrivial factor of x0 (i.e. the product of those primes).

Referring to the intuition from Section 2.3, the matrix W = A × B∗ × A−1
is similar to a block-diagonal matrix B∗ that has one block for each CRT com-
ponent. Specifically, the jth block of B∗ is B∗j = [B0]pj × ([B1]pj)

−1 (inverse
over Q). The characteristic polynomial of W is then the product of the character-
istic polynomials of all the blocks. For simplicity, assume the block polynomials
are the irreducible factors fi from Figure 1. Then each Fk is thus the product of
all block polynomials except the kth, and by the Cayley-Hamilton theorem we
have that Fk(B∗j) = 0 (and therefore also Gk(B∗j) = 0) for all blocks j 6= k. But

Gk(B∗j) = 0 over Q implies that also Gk(B0 × B−11) = 0 (mod pj), so Gk(M)
is zero modulo all primes j 6= k. The only thing left to ensure is that for the
last prime pk we get Gk(M) 6= 0 (mod pk), which is the essence of our sufficient
condition. The actual condition in Definition 1 below is slightly more complex,
to account for the case when the block polynomials are reducible over Q.

Definition 1. Fix an attack set (A,B, C, s, t). Let B0, B1,M,W be the matrices

from Figure 1, and let gj := charPoly
(

[B0]pj × [B1]−1pj

)
over Q. We say that

(A,B, C, s, t) is good if:

1. f := charPoly(W) =
∏
j6n gj;

2. B1 is non-singular modulo x0;
3. The common denominators dk from step 4 are all co-prime with x0;
4. For any j 6 n and any divisor fk of gj of degree > 1 (possibly fk = gj),

denoting Gk = dk · f/fk as in step 4, we have Gk(M) 6= 0 (mod pj).

Theorem 1. For any good attack set (A,B, C, s, t), the algorithm in Figure 1
recovers the secret primes p1, . . . , pn.

To prove Theorem 1 we use the following lemma:

Lemma 1. Let p > 1 and u1, . . . , ut, v1, . . . , vt be integers, s.t. the vi’s are
invertible mod p, and denote wi = [ui · v−1i]p. If g is a multivariate integer
polynomial such that g(u1

v1
, . . . , utvt) = 0 over Q, then g(w1, . . . , wt) = 0 (mod p).

Proof. It is enough to prove it for a linear g, since we can replace any non-linear
term

∏
i∈I(

ui
vi

)ei (for some I ⊂ [t] and ei’s) by new variables u′ =
∏
i∈I u

ei
i ,

v′ =
∏
i∈I v

ei
i , and w′ = [

∏
i∈I w

ei
i]p = [u′ · v′−1]p, and then prove the same

statement on the resulting new polynomial.
Now denote V =

∏
i vi and for each i denote v∗i = V/vi =

∏
j 6=i vj . For a

linear g we can write
∑
i gi ·

ui
vi

= 0 over Q, so also
∑
giuiv

∗
i = V ·

∑
i gi ·

ui
vi

= 0,
and in particular

∑
giuiv

∗
i = 0 (mod p). Finally, since V is invertible modulo p

we get ∑
i

giwi =
∑
i

giuiv
−1
i = V −1 ·

∑
i

giuiv
∗
i = 0 (mod p).

ut

Proof (of Theorem 1). For all i denote B∗i = [B0]pi × [B1]−1pi over Q and B̂i =
[B0]pi × [B1]−1pi over Zpi . Let ti := det([B1]pi) (over Q), and since B1 is non-
singular modulo x0 then in particular ti 6= 0 (mod pi). We can therefore write
B∗i = B̃i/ti for an integer matrix B̃i, and clearly we also have B̂i = B̃i · t−1
(mod pi).

Denote the characteristic polynomial of B∗i over Q by gi := charPoly(B∗i). By
the first condition in Definition 1 we have f := charPoly(W) =

∏
j6n gj . Note,

however, that the gj ’s are not necessarily irreducible, so there isn’t necessarily a
1-1 correspondence between the gj ’s and the irreducible factors fk of f .

Fix an index j 6 n and we show that for some k it holds that Gk(M) 6= 0
(mod pj) but Gk(M) = 0 (mod pi) for all i 6= j. Clearly this gj is divisible by at
least one fk (which has degree > 1), so the last condition of Definition 1 implies
that Gk(M) = dk · Fk(M) 6= 0 (mod pj). It remains to show that for all the
other primes pi, i 6= j, we have Gk(M) = 0 (mod pi).

Clearly Fk is divisible by gi for every i 6= j, so the Cayley-Hamilton theorem
implies that Fk(B∗i) = 0 (over Q) for all i 6= j, and therefore also Gk(B∗i) = 0.

Viewing Gk(B∗i) as a collection of multivariate polynomials over the elements

of B∗i , and using the facts that B∗i = B̃i/ti and B̂i = B̃i · t−1 (mod pi), we can

apply Lemma 1 to conclude that also Gk(B̂i) = 0 (mod pi). And since M = B̂i
(mod pi) then also Gk(M) = 0 (mod pi), as needed.

We have shown that Mk := Gk(M) satisfies Mk 6= 0 (mod pj) but Mk = 0
(mod pi) for all i 6= j, so there exists an entry z = Mk[a, b] such that z 6= 0
(mod pj) but z = 0 (mod pi) for all i 6= j. Thus GCD(z, x0) =

∏
i 6=j pi, and

x0/GCD(z, x0) = pj . ut

Below we construct good attack sets for some schemes in the literature. More
examples can be found in the full version. We will repeatedly use the fact that
for a CLT13 encoding u associated with numerator vector u ∼ (rigi +mi)i, the
randomization vector (ri)i∈[n] is nearly uniform for each encoding. Specifically
we have the following, which is proved in [3, Lemma 5.7].

Lemma 2 ([3]). There exists a prime q = 2Ω(n) which is determined by the
CLT13 system parameters such that, for each encoding, the distribution on (ri mod
q)i∈[n] is negl(n)-close to the uniform distribution on Znq .

3.2 Attacking the Garg-Gentry-Halevi-Zhandry Countermeasure

Garg, Gentry, Halevi, and Zhandry proposed in [9, Sec. 7] a variant of the CLT13
scheme, that was designed to resist the CHLRS attack. This variant uses matrices
of native CLT13 encodings, where the encoded value is an eigenvalue of the
matrix and the zero-test parameter includes also the corresponding eigenvector.
The CHLRS attack from [5] indeed does not apply to this variant, but below
we show that this variant still gives rise to a good attack set, and thus our new
attack from Figure 1 recovers the secret primes.

The GGHZ variant relies on the same parameters as CLT13, namely we
choose ({gi}i, {pi}i,pzt, {zi}) (with x0 :=

∏
i pi and top level corresponding to

denominator z∗ =
∏
zi). Let d := 2κ+ 1, and choose a secret matrix T ∈ Zd×dx0

uniformly. An encoding of a plaintext value c at some level is given by C ∈ Zd×dx0
,

where11

C := T ×


$̂ 0̂ . . . 0̂

0̂ $̂ . . . 0̂
...

...

0̂ 0̂ . . . ĉ


︸ ︷︷ ︸

C∗

×T−1 mod x0.

Each $̂ in C∗ is a “native CLT13 encoding” of an independent random value
at the given level, each 0̂ is an independent native encoding of 0, and ĉ is a native

11 The attack applies also when one uses many matrices T0, T
−1
0 , . . . , Tκ, T

−1
κ (rather

than just T, T−1), so multiplication can only be performed in a specific order, as
described in [9].

encoding of c. For zero-testing, two dimension-d vectors s, t are provided:

s := [$̂ . . . $̂ 0̂ . . . 0̂ $̂]× T−1 mod x0
t := pzt · T× [0̂ . . . 0̂ $̂ . . . $̂ $̂]T mod x0

where 0̂ and $̂ are CLT13 native “level-zero” encodings (i.e, corresponding to
denominator 1). Then a GGHZ-encoding C as above at the top level level can

be zero tested by computing s×C × t = ($̂ · ĉ+ 0̂) · pzt (mod x0) and checking
for smallness.

Attack set. The matrix sets A,B, C consist directly of GGHZ-encodings, since
these are already in matrix form. Specifically, we assume that [1, κ] is partitioned
into three intervals IA = [1, kA], IB = [kA + 1, kB], IC = [kB + 1, κ], such that
we have GGHZ-encodings

– A =
{
Ai = T ×A∗i × T−1 : Ai encoded at level IA

}
i∈[nd]

– B =
{
Bσ = T ×B∗σ × T−1 : Bσ encoded at level IB

}
σ∈{0,1}

– C =
{
Ck = T × C∗k × T−1 : Ck encoded at level IC

}
k∈[nd]

where Ai × Bσ × Ck is a GGHZ-encoding of 0 for all i, k ∈ [nd] and σ ∈ {0, 1}.
The vectors s and t are the zero testing vectors from the GGHZ scheme.

Attack set properties. We prove that (A,B, C, s, t) form a good attack set ac-
cording to Definition 1. We write

Wσ[i, k] = s×Ai ×Bσ × Ck × t
= s× T ×A∗i ×B∗σ × C∗k × T−1 × t = ai ×B∗σ × ck

where ai := s′×A∗i and ck := C∗k×t′ are dimension-d vectors. The above equality
holds over the integers, not only modulo x0, since all the variables in the final
right-hand-side are small compared to x0.

We denote ai` := ai mod p` and ck` := ck mod p` for i ∈ [nd], ` ∈ [n]. Now we

can write Wσ = Ã× B̃σ × C̃, where Ã is an nd× n2d matrix, C̃ is an n2d× nd
matrix, and B̃σ is a n2d× n2d block-diagonal matrix, defined as follows.

Ã =


a1
1 a1

2 · · · a1
n

a2
1 a2

2 · · · a2
n

...
...

...
and1 and2 · · · andn

 C̃ =


(c11)T (c21)T · · · (cnd1)T

(c12)T (c22)T · · · (cnd2)T

...
...

...
(c1n)T (c2n)T · · · (cndn)T



B̃σ =


B∗σ mod p1 0 0

0 B∗σ mod p2 0
. . .

0 0 B∗σ mod pn



Using Lemma 2 and the Schwartz-Zippel lemma, it can be shown that with
high probability over the randomness in the CLT13 encodings, Ã, C̃, and each
B∗σ have full rank nd. Under this condition each Wσ has rank nd and is thus
invertible, so we can write W = W0 ×W−11 = Ã× B̃0 × B̃−11 × Ã−1, where Ã−1

denotes the right inverse of the (non-square, full-rank) matrix Ã. Then we have

charPoly(W) = charPoly
(
B̃0 × B̃−11

)
=

n∏
i=1

charPoly
(
[B∗0]pi × [B∗1]−1pi

)
=

n∏
i=1

charPoly
(
[B0]pi × [B1]−1pi

)
so the first property of Definition 1 holds. The second property of Definition 1
holds with high probability over the choice of randomness in the CLT13 en-
codings. We were not able to prove that the last two properties in Definition 1
hold, but we verified them experimentally by running the attack on several ran-
dom instances and checking that they indeed hold in all of them. For the fourth
property, we can prove that it holds under the following natural conjecture:

Conjecture 1. For each i ∈ [n], with high probability over the randomness in the
CLT13 encodings, charPoly

(
[B∗0]pi × [B∗1]−1pi

)
is irreducible over Q.

We make two remarks about this conjecture. First, we have verified it experi-
mentally. Second, a work of Kuba [15] shows that among the degree-n univariate
integer polynomials whose coefficients are bounded in absolute value by an inte-
ger t, the polynomials that are reducible over Q make up a roughly 1/t fraction.
In particular, a random polynomial with r-bit coefficients is irreducible over Q
with probability roughly 1−2−r. Thus provided that charPoly

(
[B∗0]pi × [B∗1]−1pi

)
is well-distributed among polynomials with an appropriate coefficient bound,
Conjecture 1 should hold. We note that the relationship between a random poly-
nomial and the characteristic polynomial of a random matrix has been explored
by Hansen and Schmutz [13]. However, their results do not seem directly appli-
cable here because they study polynomials over a finite field F, and a uniform
degree-n polynomial is irreducible over F only with probability ≈ 1/n.

Assuming Conjecture 1, the fourth property of Definition 1 reduces to show-

ing that for every prime factor pj of x0,
(∏

i6=j difi

)
(M) 6= 0 (mod pj) where

di, fi, and M are as in Fig. 1. Choose all values in the CLT13 encodings ex-
cept for the random values in the jth slot of the encodings in B0, and call the
unchosen values R. With high probability over this choice, each entry of M is

a non-trivial linear polynomial in R, and
(∏

i 6=j difi

)
is a non-trivial degree-

(n − 1) polynomial in M . Thus each entry of
(∏

i6=j difi

)
(M) is a non-trivial

degree-(n−1) polynomial in R, and is non-zero modulo pi with high probability
by Lemma 2 and the Schwartz-Zippel lemma.

3.3 Attacking GGHRSW Obfuscation for Simple Branching
Programs

We observe that our unified attack can be applied also to the candidate obfusca-
tion construction of Garg et al. [8] when instantiated with the CLT13 multilinear
maps and applied to branching programs with specific “partitionable” structure
that we define below. We stress that applying Barrington’s theorem to a circuits
does not have the required structure, so as far as we know, the iO candidate from
[8] for NC1 circuits remains plausible.

The GGHRSW Obfuscation Candidate for Branching Programs. Re-
call that the obfuscator of Garg et al. [8] consists of encoded, randomized ver-
sions of two BPs; one is the BP that we want to obfuscate and the other is
a “dummy BP” consisting of only identity matrices (and hence computing the
all-one function). Even though neither program computes a zero, they are con-
structed such that their difference on accepting computations yields an encoding
of zero, which can be recognized by zero testing. The core construction from [8]
works with oblivious branching programs. An oblivious branching program of
length L over ` input variables is defined as follows

BP = {(inp(i), Ai,0, Ai,1) : i ∈ [L], inp(i) ∈ [`], Ai,b ∈ {0, 1}w×w},

where the Aiσ’s are invertible matrices and inp(i) is the input bit position ex-
amined in step i. The function computed by this branching program is defined
(using some fixed matrix A0 6= I) as

fBP,A,I =


0 if

∏L
i=1Ai,xinpi = A0

1 if
∏L
i=1Ai,xinpi = I

undef otherwise.

Let Zp be a ring that we use for randomization, and for each input bit j
denote by Ij := {i ∈ [L] : inp(i) = j} the set of steps where the branching
program examine the j’th input bit. The GGHRSW construction, on input an
L-step branching program BP over ` input bits, proceeds as follows:

1. Sample random and independent scalars {αi,0, αi,1, α′i,0, α′i,1 ∈ Zp : i ∈ [L]},
subject to the constraint that for any input bit j ∈ [`], we have

∏
i∈Ij αi,0 =∏

i∈Ij α
′
i,0 and

∏
i∈Ij αi,1 =

∏
i∈Ij α

′
i,1.

2. Let m = 2L+w. For every i ∈ [n], choose two block-diagonal m×m matrices
Di,0, Di,1 where the diagonal entries 1, . . . , 2L are chosen at random ($) and
the bottom-right w × w are the scaled Aj,b’s. Also choose two more m×m
matrices D′i,0, D

′
i,1 where the diagonal entries 1, . . . , 2L are random and the

bottom-right w × w are the scaled identity:

Di,b ∼


$

. . .

$

αi,bAi,b

 , D′i,b ∼


$

. . .

$

α′i,bI

 , b ∈ {0, 1}.

3. Choose vectors s and t, and s′ and t′ of dimension m = 2L+ w as follows:

s ∼ (0 . . . 0 $. . . $ s∗) t ∼ ($. . . $ 0 . . . 0 t∗)T

s′ ∼ (0 . . . 0 $. . . $ s′∗) t′ ∼ ($. . . $ 0 . . . 0 t′∗)T

Here s∗, t∗, s′∗, t′∗ ∈ Zwp are uniform up to 〈s∗, t∗〉 = 〈s′∗, t′∗〉, and 0 . . . 0 and
$. . . $ are length-L vectors of zeros and uniform elements of Zp, respectively.

4. Sample 2(L+1) uniform full-rank matrices R0, . . . , RL, R
′
0, . . . , R

′
L ∈ Zm×mp .

5. The randomized branching program over Zp is the following:

RNDp(BP) ={
s̃ = sR−10 , t̃ = Rnt, s̃′ = s′(R′0)−1, t̃′ = R′nt′{
D̃i,b = Ri−1Di,bR

−1
i

}
i∈[L],b∈{0,1},

{
D̃′i,b = R′i−1D

′
i,b(R

′
i)
−1}

i∈[L],b∈{0,1}

}

6. Finally, encode the randomized program using an (L + 2)-level asymmetric
multilinear map scheme. Here we use the CLT13 scheme, choosing x0 =∏n
i=1 pi, for equal-size primes pi, g = CRT (gi) for small gi � pi’s, random

denominators z0, z1, . . . , zL+1 ∈ Zx0
with z∗ = [

∏
i zi]x0

, and an element h
with mid-size CRT components, used for the zero-testing parameter pzt =
[hz∗g−1]x0 .
Choose random small vectors rs r′s rt r′t, and random small matrices Ui,b
and U ′i,b, and publish the zero-testing parameter pzt and the obfuscation

O(BP) =



ŝ = [z−10 (s̃ + grs)]x0
, t̂ = [z−1L+1(t̃ + grt)]x0

,{
D̂i,b = [z−1i (D̃i,b + gUi,b)]x0

}
i∈[L],b∈{0,1},

ŝ′ = [z−10 (s̃′ + gr′s)]x0 , t̂′ = [z−1L+1(t̃′ + gr′t)]x0 ,{
D̂′i,b = [z−1i (D̃′i,b + gU ′i,b)]x0

}
i∈[L],b∈{0,1}


.

To evaluateO(BP)(x), compute y = s̃
(∏L

i=1 D̃i,xinp(i)

)
t̃−s̃′

(∏L
i=1 D̃

′
i,xinp(i)

)
t̃′,

and output 1 if y encodes 0 (as determined by pzt).

Attack Our attack is applicable to branching programs with the following struc-
ture: there exists a partition of the input bits [`] = X1∪X2∪X3 and the branching
program steps [L] = A ∪ B ∪ C such that A, B and C consist of consecutive
steps in the branching program and inp(i) ∈ X1 ∀i ∈ A, inp(i) ∈ X2 ∀i ∈ B
and inp(i) ∈ X3 ∀i ∈ C. We consider a branching program BP of length L
and input length `, computing the constant-1 function, that can be written as
BP (x) = A(x1) ◦B(x2) ◦ C(x3), where A(x1), B(x2), and C(x3) are branching
programs over positions in the sets A,B, and C depending on inputs x1, x2, and
x3, respectively. We are given the obfuscation:

O(BP) =
(
pzt, ŝ, t̂, ŝ

′, t̂′, {D̂i,b, D̂
′
i,b}i∈[L],b∈{0,1}

)
.

Attack Sets. We construct the setsA, B and C as follows. LetA(x) =
∏
i∈ADi,xinp(i)

,
A′(x) =

∏
i∈AD

′
i,xinp(i)

. We define similarly B(x), B′(x) and C(x), C ′(x). We note

that using O we can compute R0A(x)R−1|A| =
∏
i∈A D̃i,xinp(i)

and R0A
′(x)R−1|A| =∏

i∈A D̃
′
i,xinp(i)

, and so on. Let α1, . . . , αmn ∈ {0, 1}|X1| be any set of distinct

strings, and similarly for β0, β1 ∈ {0, 1}|X2| and γ1, . . . , γmn ∈ {0, 1}|X3|. We set
s = (s̃, s̃′) and t = (t̃,−t̃′)pzt, and define

A =

{
Ãi =

[
R0A(αi)R

−1
|A| 0

0 R0A
′(αi)R

−1
|A|

]}
i∈[(2L+w)n]

B =

{
B̃σ =

[
R|A|B(βσ)R−1|A∪B| 0

0 R|A|B
′(βσ)R−1|A∪B|

]}
σ∈{0,1}

C =

{
C̃k =

[
R|A∪B|C(γk)R−1L 0

0 R|A∪B|C
′(γk)R−1L

]}
k∈[(2L+w)n]

.

Set Properties. We consider the values

W0[i, k] = s×Ãi×B̃0×C̃k×t = (s×Ai×B0×Ck×t−s′×A′i×B′0×C ′k×t′)pzt.

Since W0[i, k] is a zero-tested encoding of zero by the definition of the obfus-
cated branching programs, the above equality holds not only mod x0 but also
over the integers. W1 is constructed analogously.

The rest of the attack proceeds in the same manner as the attack on GGHZ
encodings from Section 3.2. Let ai = (s × Ai, s

′ × A′i) for i ∈ [(2m + w)n],

ck = (Ck × t× pzt,−C ′k × t′ × pzt) for k ∈ [(2m+w)n] and X0 =

[
B0 0
0 B′0

]
. We

set the matrix Â to have i-th row that is concatenations of the vectors ai mod pj
for j ∈ [n], the matrix Ĉ to have i-th column that is concatenation of cTi mod pj
for j ∈ [n], and the matrix B̂0 to be a diagonal matrix with diagonal consisting
of X0 mod pj for j ∈ [n]. Then we have that W0 = Â × B̂0 × Ĉ. We compute

analogously W1 = Â× B̂1× Ĉ. We use these matrices as in the attack on GGHZ
encodings to break the underlying CLT13 encodings.

4 Conclusion

In this work we extended the recent CHLRS zeroizing attacks to many new
settings, and also illustrated some of the limitations of this attack technique.
The underlying message of recent attacks is that for current multilinear-map
candidates, successful zero-tests give the adversary equations over the base ring
(i.e. the integers or the ring of integers in a number field). Understanding the
security of these candidates therefore hinges on a better understanding of which
types of systems of nonlinear equations can be solved efficiently.

References

[1] Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order
graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) Theory of Cryptog-
raphy - TCC’15, Part II. Lecture Notes in Computer Science, vol. 9015, pp.
528–556. Springer (2015), http://eprint.iacr.org/2015/025

[2] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfusca-
tion against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. Lecture Notes in Computer Science, vol. 8441, pp. 221–238.
Springer (2014), http://dx.doi.org/10.1007/978-3-642-55220-5_13

[3] Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against
zeroizing attacks. Cryptology ePrint Archive, Report 2014/930 (2014),
http://eprint.iacr.org/

[4] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits
via generic graded encoding. In: Lindell, Y. (ed.) Theory of Cryptography -
TCC 2014. Lecture Notes in Computer Science, vol. 8349, pp. 1–25. Springer
(2014)

[5] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the mul-
tilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) Advances
in Cryptology - EUROCRYPT 2015, Part I. Lecture Notes in Computer
Science, vol. 9056, pp. 3–12. Springer (2015), http://eprint.iacr.org/
2014/906

[6] Coron, J., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the
integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. Lecture Notes
in Computer Science, vol. 8042, pp. 476–493. Springer (2013), http://dx.
doi.org/10.1007/978-3-642-40041-4_26

[7] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. Lecture
Notes in Computer Science, vol. 7881, pp. 1–17. Springer (2013), http:

//dx.doi.org/10.1007/978-3-642-38348-9_1
[8] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:

Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: FOCS 2013. pp. 40–49. IEEE Computer Society (2013),
http://doi.ieeecomputersociety.org/10.1109/FOCS.2013.13

[9] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional en-
cryption without obfuscation. Cryptology ePrint Archive, Report 2014/666
(2014), http://eprint.iacr.org/

[10] Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfusca-
tion from the multilinear subgroup elimination assumption. IACR Cryptol-
ogy ePrint Archive 2014, 309 (2014), http://eprint.iacr.org/2014/309

[11] Gentry, C., Lewko, A.B., Waters, B.: Witness encryption from instance
independent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. Lecture Notes in Computer Science, vol. 8616, pp. 426–443. Springer
(2014), http://dx.doi.org/10.1007/978-3-662-44371-2_24

[12] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst.
Sci. 28(2), 270–299 (1984), http://dx.doi.org/10.1016/0022-0000(84)
90070-9

http://eprint.iacr.org/2015/025
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://eprint.iacr.org/
http://eprint.iacr.org/2014/906
http://eprint.iacr.org/2014/906
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://doi.ieeecomputersociety.org/10.1109/FOCS.2013.13
http://eprint.iacr.org/
http://eprint.iacr.org/2014/309
http://dx.doi.org/10.1007/978-3-662-44371-2_24
http://dx.doi.org/10.1016/0022-0000(84)90070-9
http://dx.doi.org/10.1016/0022-0000(84)90070-9

[13] Hansen, J.C., Schmutz, E.: How random is the characteristic polynomial of
a random matrix? Math. Proc. Camb. Phi. Soc. 114, 507–515 (1993)

[14] Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive,
Report 2015/301 (2015), http://eprint.iacr.org/

[15] Kuba, G.: On the distribution of reducible polynomials. Math. Slovaca
59(3), 349–356 (2009)

[16] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from
semantically-secure multilinear encodings. In: CRYPTO 2014. pp. 500–517
(2014), http://dx.doi.org/10.1007/978-3-662-44371-2_28

[17] Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fis-
chlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015, Part II. Lec-
ture Notes in Computer Science, vol. 9057, pp. 439–467. Springer (2015),
http://eprint.iacr.org/2014/776

http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-44371-2_28
http://eprint.iacr.org/2014/776

	Zeroizing Without Low-Level Zeroes: New MMAP Attacks and Their Limitations

