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Abstract. Group signatures are a central cryptographic primitive which
allows users to sign messages while hiding their identity within a crowd of
group members. In the standard model (without the random oracle ide-
alization), the most efficient constructions rely on the Groth-Sahai proof
systems (Eurocrypt’08). The structure-preserving signatures of Abe et al.
(Asiacrypt’12) make it possible to design group signatures based on well-
established, constant-size number theoretic assumptions (a.k.a. “simple
assumptions”) like the Symmetric eXternal Diffie-Hellman or Decision
Linear assumptions. While much more efficient than group signatures
built on general assumptions, these constructions incur a significant over-
head w.r.t. constructions secure in the idealized random oracle model.
Indeed, the best known solution based on simple assumptions requires
2.8 kB per signature for currently recommended parameters. Reducing
this size and presenting techniques for shorter signatures are thus natural
questions. In this paper, our first contribution is to significantly reduce
this overhead. Namely, we obtain the first fully anonymous group signa-
tures based on simple assumptions with signatures shorter than 2 kB at
the 128-bit security level. In dynamic (resp. static) groups, our signature
length drops to 1.8 kB (resp. 1 kB). This improvement is enabled by two
technical tools. As a result of independent interest, we first construct a
new structure-preserving signature based on simple assumptions which
shortens the best previous scheme by 25%. Our second tool is a method
for attaining anonymity in the strongest sense using a new CCA2-secure
encryption scheme which is also a Groth-Sahai commitment.
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1 Introduction

As introduced by Chaum and van Heyst [29] in 1991, group signatures allow
members of a group administered by some authority to anonymously sign mes-
sages on behalf of the group. In order to prevent abuses, an opening authority
has the power to uncover a signer’s identity if the need arises.

The usual approach for building a group signature consists in having the



signer encrypt his group membership credential under the public key of the open-
ing authority while appending a non-interactive zero-knowledge (NIZK) proof,
which is associated with the message, claiming that things were done correctly.
Until 2006, efficient instantiations of this primitive were only available under
the random oracle idealization [14], which is limited to only provide heuristic
arguments in terms of security [24]. This state of affairs changed in the last
decade, with the emergence of solutions [20,21,37,38] enabled by breakthrough
results in the design of relatively efficient non-interactive witness indistinguish-
able (NIWI) proofs [39]. While drastically more efficient than solutions based
on general NIZK proofs [12,15], the constructions of [20,21,37,38] still incur a
substantial overhead when compared with their random-oracle-based counter-
parts [10,32,18]. Moreover, their most efficient variants [21,38] tend to rely on
parametrized assumptions – often referred to as “q-type” assumptions – where
the number of input elements is determined by a parameter q which, in turn, de-
pends on the number of users in the system or the number of adversarial queries
(or both). Since the assumption becomes stronger as q increases, a different as-
sumption is needed for every adversary (based on its number of queries) and
every maximal number of users in the group. Not only does it limit the scalabil-
ity of realizations, it also restricts the level of confidence in their security.

In this paper, we consider the problem of devising as short as possible group
signatures based on simple assumptions. By “simple assumption”, we mean a
well-established assumption, like the Decision Diffie-Hellman assumption, which
is simultaneously non-interactive and described using a constant number of ele-
ments, regardless of the number of users in the system or the number of adver-
sarial queries. We remark that even in the random oracle model, this problem
turns out to be highly non-trivial as non-simple assumptions (like the Strong
RSA [10,45] or Strong Diffie-Hellman [18,32]) are frequently relied on. In the
standard model, our main contribution is designing the first group signatures
based on simple assumptions and whose size is less than 2 kB for the currently
recommended 128-bit security level. In static groups, our most efficient scheme
features signatures slightly longer than 1 kB. So far, the best standard-model
group signature based on simple assumptions was obtained from the structure-
preserving signatures (SPS) of Abe et al [1,2] and required 2.875 kB per sig-
nature. Along the way and as a result of independent interest, we also build a
new structure-preserving signature (SPS) with the shortest length among those
based on simple assumptions. Concretely, the best previous SPS based on similar
assumptions [1,2] is shortened by 25%.

Related Work. Group signatures have a long history. Still, efficient and prov-
ably coalition-resistant constructions (in the random oracle model) remained
elusive until the work of Ateniese, Camenisch, Joye and Tsudik [10] in 2000. At
that time, however, there was no proper formalization of the security properties
that can be naturally expected from group signatures. This gap was filled in
2003 by Bellare, Micciancio and Warinschi [12] (BMW) who captured all the re-
quirements of group signatures in three properties. In (a variant of) this model,
Boneh, Boyen and Shacham [18] obtained very short signatures using the ran-
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dom oracle methodology [14].
The BMW model assumes static groups where the set of members is frozen

after the setup phase beyond which no new member can be added. The setting
of dynamic groups was explored later on by Bellare-Shi-Zhang [15] and, inde-
pendently, by Kiayias and Yung [45]. In these models [15,45], short signature
lengths were obtained in [32]. A construction based on interactive assumptions
in the standard model was also put forth by Ateniese et al. [9]. Using stan-
dard assumptions, Boyen and Waters gave a different solution [20] based on the
Groth-Ostrovsky-Sahai NIZK proof system [36]. They subsequently managed to
obtain O(1)-size signatures at the expense of appealing to a q-type assumption
[21] . Their constructions [20,21] were both analyzed in (a relaxation of) the
BMW model [12] where the adversary is not granted access to a signature open-
ing oracle. In dynamic groups [15], Groth [37] obtained constant-size signatures
in the standard model but, due to huge hidden constants, his result was mostly
a proof of concept. By making the most of Groth-Sahai NIWI proofs [39], he
subsequently reduced signatures to 48 group elements [38] with the caveat of
resting on relatively ad hoc q-type assumptions. For the time being, the best
group signatures based on standard assumptions are enabled by the structure-
preserving signatures of Abe, Chase, David, Kohlweiss, Nishimaki, and Ohkubo
[1]. In asymmetric pairings e : G× Ĝ→ GT (where G 6= Ĝ), anonymously sign-

ing messages requires at least 40 elements of G and 26 elements of Ĝ.
In 2010, Abe et al. [8,3] advocated the use of structure-preserving cryptogra-

phy as a general tool for building privacy-preserving protocols in a modular fash-
ion. In short, structure-preserving signatures (SPS) are signature schemes that
smoothly interact with Groth-Sahai proofs [39] as messages, signatures public

keys all live in the source groups (G, Ĝ) of a bilinear map e : G× Ĝ→ GT . SPS
schemes were initially introduced by Groth [37] and further studied in [26,33]. In
the last three years, a large body of work was devoted to the feasibility and ef-
ficiency of structure-preserving signatures [37,26,33,8,3,4,23,28,40,1,2]. In Type

III pairings (i.e., where G 6= Ĝ and no isomorphism is computable from Ĝ to
G or backwards), Abe et al. [4] showed that any SPS scheme must contain at
least 3 group elements per signature. For a natural class of reductions, the se-
curity of optimally short signatures was also shown [5] unprovable under any
non-interactive assumption. These impossibility results were recently found [7]

not to carry over to Type II pairings (i.e., where G 6= Ĝ and an efficiently com-

putable isomorphism ψ : Ĝ→ G is available).
To the best of our knowledge, the minimal length of structure-preserving sig-

natures based on simple assumptions remains an unsettled open question. We
believe it to be of primary importance considering the versatility of structure-
preserving cryptography in the design of privacy-related protocols, including
group signatures [8], group encryption [26] or adaptive oblivious transfer [35].

Our Results. The first contribution of this paper is to describe a new structure-
preserving signature based on the standard Symmetric eXternal Diffie-Hellman
(SXDH) assumption and an asymmetric variant of the Decision Linear assump-
tion with only 10 group elements (more precisely, 9 elements of G and one
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element of Ĝ) per signature. So far, the best instantiation of [1,2] required 7

elements of G and 4 elements of Ĝ. Since the representation of Ĝ elements is at
least twice as long as that of G elements, our scheme thus saves 26% in terms of
signature length. Armed with our new SPS and other tools, we then construct
dynamic group signatures using only 32 elements of G and 14 elements of Ĝ in
each signature, where Abe et al. [1,2] need at least 40 elements of G and 26 ele-

ments of Ĝ. For typical parameters, our signatures are thus 37% shorter with a
total length of only 1.8 kB at the 128-bit security level. In an independent work,
Kiltz, Pan and Wee [48] managed to obtain even shorter structure-preserving
signatures than ours under the SXDH assumption. If their construction is used
in our dynamic group signature, it allows eliminating at least 4 more elements
of G from signatures. In the static model of Bellare, Micciancio and Warinschi
[12], we describe an even more efficient realization where the signature length
decreases to almost 1 kB.

Our Techniques. Our structure-preserving signature can be seen as a non-
trivial optimization of a modular design, suggested by Abe et al [1], which com-
bines a weakly secure SPS scheme and a tagged one-time signature (TOTS).
In a TOTS scheme, each signature contains a fresh tag and, without knowing
the private key, it should be computationally infeasible to generate a signature
on a new message for a previously used tag. The construction of [1] obtains
a full-fledged SPS by combining a TOTS scheme with an SPS system that is
only secure against extended random message attacks (XRMA). As defined in
[1], XRMA security basically captures security against an adversary that only
obtains signatures on random group elements even knowing some auxiliary in-
formation used to sample these elements (typically their discrete logarithms).
While Abe et al. [1] make use of the discrete logs of signed messages in their
proofs of XRMA security, their modular construction does not. Here, by ex-
plicitly using the discrete logarithms in the construction, we obtain significant
efficiency improvements. Using Waters’ dual system techniques [56], we con-
struct an SXDH-based F -unforgeable signature scheme which, according to the
terminology of Belenkiy et al. [11], is a signature scheme that remains verifiable
and unforgeable even if the adversary only outputs an injective function of the
forgery message. Our new SPS is the result of combining our F -unforgeable sig-
nature and the TOTS system of [2]. We stress that our scheme can no longer be
seen as an instantiation of a generic construction. Still, at the natural expense
of sacrificing modularity, it does provide shorter signatures.

In turn, our F -unforgeable signatures are obtained by taking advantage of
the quasi-adaptive NIZK (QA-NIZK) arguments of linear subspace membership
suggested by Jutla and Roy [43] and further studied in [51,44], where the CRS
may depend on the language for which proofs have to be generated. In a nutshell,
our starting point is a signature scheme suggested by Jutla and Roy (inspired
by ideas due to Camenisch et al. [22]) where each signature is a CCA2-secure
encryption of the private key (made verifiable via QA-NIZK proofs) and the
message is included in the label [54]. We rely on the observation that QA-NIZK
proofs for linear subspaces [43] (or their optimized variants [51,44]) make it pos-
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sible to verify signatures even if the message is only available in the exponent.
In order to save the equivalent of 15 elements of the group G and make

the group signature as short as possible, we also design a new CCA2-secure
tag-based encryption (TBE) scheme [52,47] which incorporates a Groth-Sahai
commitment. In fully anonymous group signatures, CCA2-anonymity is usually
acquired by verifiably encrypting the signer’s credential using a CCA2-secure
cryptosystem while providing evidence that the plaintext coincides with a com-
mitted group element. Inspired by a lossy encryption scheme [13] suggested by
Hemenway et al. [41], we depart from this approach and rather use a CCA2-
secure encryption scheme which simultaneously plays the role of a Groth-Sahai
commitment. That is, even when the Groth-Sahai CRS is a perfectly hiding CRS,
we are able to extract committed group elements for any tag but a specific one,
where the encryption scheme behaves like a perfectly hiding commitment and
induces perfectly NIWI proofs. In order to make the validity of TBE ciphertexts
publicly verifiable, we rely on the QA-NIZK proofs of Libert et al. [51] which
are well-suited to the specific subspaces encountered4 in this context. We believe
this encryption scheme to be of interest in its own right since it allows shortening
other group signatures based on Groth-Sahai proofs (e.g., [38]) in a similar way.

Our group signature in the static BMW model [12] does not build on structure-
preserving signatures but rather follows the same design principle as the con-
structions of Boyen and Waters [20,21]. It is obtained by extending our F -
unforgeable signature into a 2-level hierarchical signature [46] (or, equivalently,
an identity-based signature [53]) where first-level messages are implicit in the
exponent. In spirit and from an efficiency standpoint, our static group signature
is thus similar to the second construction [21] of Boyen and Waters, with the
benefit of providing full anonymity while relying on the sole SXDH assumption.

2 Background

2.1 Hardness Assumptions

We use bilinear maps e : G × Ĝ → GT over groups of prime order p where
e(g, ĥ) 6= 1GT

if and only if g 6= 1G and ĥ 6= 1Ĝ. We rely on hardness assumptions
that are non-interactive and described using a constant number of elements.

Definition 1. The Decision Diffie-Hellman (DDH) problem in G, is to dis-
tinguish the distributions (ga, gb, gab) and (ga, gb, gc), with a, b, c R← Zp. The
DDH assumption is the intractability of the problem for any PPT distinguisher.

In the following, we will rely on the Symmetric external Diffie-Hellman (SXDH)

assumption which posits the hardness of DDH in G and Ĝ in asymmetric pair-
ing configurations. We also assume the hardness of the following problem, which
generalizes the Decision Linear problem [18] to asymmetric pairings.

4 Specifically, we have to prove membership of a t×n subspace of rank t described by
a 2t× n matrix and the security proofs of [50,51] still work in this case.
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Definition 2 ([1]). In bilinear groups (G, Ĝ,GT ) of prime order p, the eXter-
nal Decision Linear Problem 2 (XDLIN2) is to distinguish the distribution

D1 = {(g, ga, gb, gac, gbd, ĝ, ĝa, ĝb, ĝac, ĝbd, ĝc+d) ∈ G5 × Ĝ6 | a, b, c, d R← Zp}
D2 = {(g, ga, gb, gac, gbd, ĝ, ĝa, ĝb, ĝac, ĝbd, ĝz) ∈ G5 × Ĝ6 | a, b, c, d, z R← Zp}.

The XDLIN1 assumption is defined analogously and posits the infeasibility of
distinguishing gc+d and gz given (g, ga, gb, gac, gbd, ĝ, ĝa, ĝb, ĝac, ĝbd).

2.2 Linearly Homomorphic Structure-Preserving Signatures

Structure-preserving signatures [8,3] are signature schemes where messages and
public keys all consist of elements of a group over which a bilinear map e :
G× Ĝ→ GT is efficiently computable.

Libert et al. [50] considered structure-preserving signatures with linear ho-
momorphic properties. This section recalls the one-time linearly homomorphic
structure-preserving signature (LHSPS) of [50]. In the description below, we
assume that all algorithms take as input the description of common public pa-
rameters cp consisting of asymmetric bilinear groups (G, Ĝ,GT , p) of prime order
p > 2λ, where λ is the security parameter.

In [50], Libert et al. suggested the following construction which can be proved
secure under the SXDH assumption.

Keygen(cp, n): Given common public parameters cp = (G, Ĝ,GT , p) and the

dimension n ∈ N of the subspace to be signed. Then, choose ĝz, ĝr
R← Ĝ. For

i = 1 to n, pick χi, γi
R← Zp and compute ĝi = ĝz

χi ĝr
γi . The private key is

sk = {(χi, γi)}ni=1 while the public key is pk =
(
ĝz, ĝr, {ĝi}ni=1

)
∈ Ĝn+2.

Sign(sk, (M1, . . . ,Mn)): In order to sign a vector (M1, . . . ,Mn) ∈ Gn using
sk = {(χi, γi)}ni=1, output σ = (z, r) =

(∏n
i=1M

−χi

i ,
∏n
i=1,M

−γi
i

)
.

SignDerive(pk, {(ωi, σ
(i))}`

i=1): given pk as well as ` tuples (ωi, σ
(i)), parse

σ(i) as σ(i) =
(
zi, ri

)
for i = 1 to `. Return σ = (z, r) =

(∏`
i=1 z

ωi
i ,
∏`
i=1 r

ωi
i

)
.

Verify(pk, σ, (M1, . . . ,Mn)): Given a signature σ = (z, r) ∈ G2 and a vector
(M1, . . . ,Mn), return 1 if and only if (M1, . . . ,Mn) 6= (1G, . . . , 1G) and (z, r)
satisfy 1GT

= e(z, ĝz) · e(r, ĝr) ·
∏n
i=1 e(Mi, ĝi).

In [51], (a variant of) this scheme was used to construct constant-size QA-
NIZK arguments [43] showing that a vector v ∈ Gn belongs to a linear subspace
subspace of rank t spanned by a matrix ρ ∈ Gt×n. Under the SXDH assumption,
each argument is comprised of two elements of G, independently of t or n.

3 An F-Unforgeable Signature

As a technical tool, our constructions rely on a signature scheme which we prove
F-unforgeable under the SXDH assumption. As defined by Belenkiy et al. [11], F-
unforgeability refers to the inability of the adversary to output a valid signature
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for a non-trivial message M without outputting the message itself. Instead, the
adversary is only required to output F (M), for an injective but not necessarily
efficiently invertible function F .

The scheme extends ideas used in signature schemes suggested in [22,43],
where each signature is a CCA2-secure encryption —using the message to be
signed as a label— of the private key accompanied with a QA-NIZK proof that
the encrypted value is the private key. In their most efficient variant, Jutla and
Roy observed [43, Section 5] that it suffices to encrypt private keys gω with
a projective hash value (vM · w)r [31] so as to obtain signatures of the form
(σ1, σ3, σ3) = (gω · (vM · w)r, gr, hr), which is reminiscent of selectively secure
Boneh-Boyen signatures [16].

As in [56,34], the security proof proceeds with a sequence of games to grad-
ually reach a game where the signing oracle never uses the private key, in which
case it becomes easier to prove security. In the final game, signatures always en-
crypt a random value while QA-NIZK proofs are simulated. When transitioning
from one hybrid game to the next one, the crucial step is to argue that, even
if the signing oracle produces fewer and fewer signatures using the private key,
the adversary’s forgery will still encrypt the private key. This is achieved via an
information theoretic argument borrowed from hash proof systems [30,31].

In order to obtain an F -unforgeable signature which is verifiable given only
F (M), our key observation is that QA-NIZK proofs make it possible to verify
signatures even if M appears only implicitly in a tuple (gs·M , gs, hs·M , hs) ∈ G4.

Keygen(cp) : Given common public parameters cp = (G, Ĝ,GT , p) consisting of
asymmetric bilinear groups of prime order p > 2λ, do the following.

1. Choose ω, a R← Zp, g, v, w R← G, ĝ R← Ĝ and set h = ga, Ω = hω.
2. Define a matrix M = (Mj,i)j,i given by

M =

 g 1 1 1 1 h
v g 1 h 1 1
w 1 g 1 h 1

 ∈ G3×6. (1)

3. Generate a key pair (skhsps, pkhsps) for the one-time linearly homomor-
phic signature of Section 2.2 in order to sign vectors of dimension n = 6.
Let skhsps = {(χi, γi)}6i=1 be the private key, of which the corresponding
public key is pkhsps =

(
ĝz, ĝr, {ĝi}6i=1

)
.

4. Using skhsps = {χi, γi}6i=1, generate one-time homomorphic signatures
{(zj , rj)}3j=1 on the rows M j = (Mj,1, . . . ,Mj,6) ∈ G6 of M. These are

obtained as (zj , rj) =
(∏6

i=1M
−χi

j,i ,
∏6
i=1M

−γi
j,i

)
, for each j ∈ {1, 2, 3}

and, as part of the common reference string for the QA-NIZK proof
system of [51], they will be included in the public key.

The private key is sk := ω and the public key is defined as

pk =
(

(G, Ĝ,GT ), p, g, h, ĝ, (v, w), Ω = hω, pkhsps, {(zj , rj)}3j=1

)
.
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Sign(sk,M) : given sk = ω and a message M ∈ Zp, choose s R← Zp to compute

σ1 = gω · (vM · w)s, σ2 = gs·M , σ3 = gs

σ4 = hs·M σ5 = hs

Then, generate a QA-NIZK proof that the vector (σ1, σ2, σ3, σ4, σ5, Ω) ∈ G6

is in the row space of M. This QA-NIZK proof (z, r) ∈ G2 is obtained as

z = zω1 · (zM2 · z3)s, r = rω1 · (rM2 · r3)s. (2)

Return the signature σ =
(
σ1, σ2, σ3, σ4, σ5, z, r

)
.

Verify(pk, σ,M) : parse σ as above and return 1 if and only if it holds that

e(z̃, ĝz) · e(r̃, ĝr) = e(σ1, ĝ1)−1 · e(σ3, ĝ3 · ĝ2M )−1 · e(σ5, ĝ5 · ĝ4M )−1 · e(Ω, ĝ6)−1

and (σ2, σ4) = (σM3 , σM5 ).

Note that a signature can be verified given only F (M) = ĝM by testing the
equalities e(σ2, ĝ) = e(σ3, F (M)), e(σ4, ĝ) = e(σ5, F (M)) and

e(z, ĝz) · e(r, ĝr)
= e(σ1, ĝ1)−1 · e(σ2, ĝ2)−1 · e(σ3, ĝ3)−1 · e(σ4, ĝ4)−1 · e(σ5, ĝ5)−1 · e(Ω, ĝ6)−1.

In order to keep the description as simple as possible, the above description uses
the QA-NIZK argument system of [51], which is based on linearly homomorphic
signatures. However, the security proof goes through if we use the more efficient
SXDH-based QA-NIZK argument of Jutla and Roy [44], as explained in the full
version of the paper. The pair (z, r) can thus be replaced by a single G-element.

Under the SXDH assumption, the scheme can be proved to be F-unforgeable
for the injective function F (M) = ĝM . The proof of this result is implied by
the security result of Section 4 where we describe a generalization of the scheme
that will be used to build a group signature in the BMW model.

4 A Two-Level SXDH-based Hierarchical Signature

This section extends our F-unforgeable signature into a 2-level hierarchical sig-
nature with partially hidden messages. In a 2-level hierarchical signature [46]
(a.k.a. identity-based signature), a signature on a message ID (called “identity”)
can be used as a delegated key for signing messages of the form (ID,M) for
any M . In order to construct group signatures, Boyen and Waters [21] used
hierarchical signatures that can be verified even when identities (i.e., first-level
messages) are not explicitly given to the verifier, but only appear implicitly in
the exponent. The syntax and security definition are given in [20,21].

In their most efficient construction [21], Boyen and Waters used a non-
standard q-type assumption. This section gives a very efficient solution based
on the standard SXDH assumption. It is obtained from our signature of Section

8



3 by having a signature (gω · (vID · w)s, gs, hs) on a given identity ID serve as a
private key for this identity modulo the introduction of a delegation component
ts akin to those of the Boneh-Boyen-Goh hierarchical IBE [17]. For the security
proof to go through, we need to make sure that pairs (gs·M , gs), (hs·M , hs) hide
the same message M , which is not immediately verifiable in the SXDH setting.
To enforce this condition, we thus include ĝM in each signature.

Setup(cp) : Given public parameters cp = (G, Ĝ,GT , p), do the following.

1. Choose ω, a R← Zp, g, t, v, w R← G, ĝ R← Ĝ and set h = ga, Ω = hω.
2. Define a matrix M = (Mj,i)j,i given by

M =


g 1 1 1 1 1 1 h
v g 1 h 1 1 1 1
w 1 g 1 h 1 1 1
t 1 1 1 1 g h 1

 ∈ G4×8. (3)

3. Generate a key pair (skhsps, pkhsps) for the one-time linearly homomor-
phic signature of Section 2.2 in order to sign vectors of dimension n = 8.
Let skhsps = {(χi, γi)}8i=1 be the private key, of which the corresponding
public key is pkhsps =

(
ĝz, ĝr, {ĝi}8i=1

)
.

4. Using skhsps = {χi, γi}8i=1, generate one-time homomorphic signatures
{(zj , rj)}4j=1 on the rows M j = (Mj,1, . . . ,Mj,8) ∈ G8 of M. These are

obtained as (zj , rj) =
(∏8

i=1M
−χi

j,i ,
∏8
i=1M

−γi
j,i

)
each for j ∈ {1, . . . , 4}

and, as part of the common reference string for the QA-NIZK proof
system of [51], they will be included in the public key.

The master secret key is msk := ω and the master public key is defined as

mpk =
(

(G, Ĝ,GT ), p, g, h, ĝ, (t, v, w), Ω = hω, pkhsps, {(zj , rj)}4j=1

)
.

Extract(msk, ID) : given msk = ω and ID ∈ Zp, choose s R← Zp to compute

K1 = gω · (vID · w)s, K2 = gs·ID, K3 = gs

K4 = hs·ID K5 = hs K6 = ts

as well as K̂7 = ĝID. Looking ahead, K6 will serve as a delegation component
in the generation of level 2 signatures. Then, generate a QA-NIZK proof that
the vector (K1,K2,K3,K4,K5, 1, 1, Ω) ∈ G8 is in the row space of the first
3 rows of M. This QA-NIZK proof (z, r) ∈ G2 is obtained as

z = zω1 · (zID2 · z3)s, r = rω1 · (rID2 · r3)s. (4)

Then, generate a QA-NIZK proof (zd, rd) that the delegation component K6

is well-formed. This proof consists of (zd, rd) = (zs4, r
s
4). The private key is

KID =
(
K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd

)
. (5)

9



Sign(mpk,KID,M) : to sign M ∈ Zp, parse KID as in (5) and do the following.

1. Choose s′ R← Zp and compute

σ1 = K1 ·KM
6 · (vID · tM · w)s

′
= gω · (vID · tM · w)s̃,

where s̃ = s+ s′, as well as

σ2 = K2 · gs
′·ID = gs̃·ID, σ3 = K3 · gs

′
= gs̃, σ̂6 = K̂7 = ĝID

σ4 = K4 · hs
′·ID = hs̃·ID, σ5 = K5 · hs

′
= hs̃.

2. Using (z, r) and (zd, rd), generate a QA-NIZK proof (z̃, r̃) ∈ G2 that
the vector (σ1, σ2, σ3, σ4, σ5, σ

M
3 , σM5 , Ω) ∈ G8 is in the row space of M.

Namely, compute z̃ = z ·zMd ·(zID2 ·zM4 ·z3)s
′

and r̃ = r ·rMd ·(rID2 ·rM4 ·r3)s
′
.

Return the signature σ =
(
σ1, σ2, σ3, σ4, σ5, z̃, r̃, σ̂6

)
∈ G7 × Ĝ.

Verify(mpk, σ,M) : parse σ as above and return 1 if and only if it holds that

e(z̃, ĝz) · e(r̃, ĝr) = e(σ1, ĝ1)−1 · e(σ2, ĝ2)−1 · e(σ3, ĝ3 · ĝ6M )−1

·e(σ4, ĝ4)−1 · e(σ5, ĝ5 · ĝ7M )−1 · e(Ω, ĝ8)−1

as well as e(σ2, ĝ) = e(σ3, σ̂6) and e(σ4, ĝ) = e(σ5, σ̂6).

As in Section 3, the technique of [44] can be used to shorten the signature by
one element of G as it allows replacing (z̃, r̃) by one element of G.

We prove that, under the sole SXDH assumption, the scheme is secure in
the sense of the natural security definition used by Boyen and Waters [20,21].
In short, this definition requires that the adversary be unable to forge a valid
signature for a pair (ID?,M?) such that no private key query was made for ID?

and no signing query was made for the pair (ID?,M?).

Theorem 1. The above hierarchical signature is secure under chosen-message
attacks if the SXDH assumption holds in (G, Ĝ,GT ). (The proof is available the
full version of the paper).

A simple reduction shows that the signature scheme of Section 3 is F -
unforgeable so long as the above scheme is a secure 2-level hierarchical signature.

Theorem 2. The signature scheme of Section 3 is F -unforgeable under chosen-
message attacks for the function F (M) = ĝM if the SXDH assumption holds in

(G, Ĝ,GT ). (The proof is available in the full version of the paper).

5 A Structure-Preserving Signature from the SXDH and
XDLIN2 Assumptions

Our F-unforgeable signature of Section 3 can be combined with the tagged one-
time signature of Abe et al. [2] (or, more precisely, an adaption of [2] to asym-
metric pairings) so as to obtain a new structure-preserving signature based on
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the SXDH and XDLIN2 assumptions. Like [1], we obtain an SPS scheme based
on simple assumptions with only 11 group elements per signature. However, only
one of them has to be in Ĝ, instead of 4 in [1]. Considering that Ĝ elements are
at least twice as long to represent as those of G, we thus shorten signatures by
the equivalent of 3 elements of G (or 20%).

Our construction can be seen as an optimized instantiation of a general con-
struction [1] that combines a tagged one-time signature and an SPS scheme which
is only secure against extended random-message (XRMA) attacks. A tagged
one-time signature (TOTS) is a signature scheme where each signature contains
a single-use tag: namely, only one signature is generated w.r.t. each tag. The
generic construction of [1] proceeds by certifying the tag of the TOTS scheme
using an XRMA-secure SPS scheme. Specifically, our F-unforgeable signature
assumes the role of the XRMA-secure signature and its shorter message space
allows us to make the most of the optimal tag size of [2]. In [1], the proofs of
XMRA security rely on the property that, when the reduction signs random
groups elements of its choice, it is allowed to know their discrete logarithms.
However, this property is only used in the security proof and not in the scheme
itself. Here, we also use the discrete logarithm of the tag in the SPS construction
itself, which allows our F -unforgeable signature to supersede the XRMA-secure
signature. By exploiting the smaller message space of our F -unforgeable signa-
ture, we can leverage the optimal tag size of [2]. Unlike the SPS of [2], we do not
need to expand the tag from one to three group elements before certifying it.

Keygen(cp, n) : given the length n of messages to be signed and common pa-

rameters cp specifying the description of bilinear groups (G, Ĝ,GT ) of prime
order p > 2λ, do the following.

a. Generate a key pair (skfsig, pkfsig) ← Setup(cp) for the F-unforgeable
signature of Section 3. Namely,

1. Choose ω, a R← Zp, g R← G, ĝ R← Ĝ and set h = ga, Ω = hω. Then,

choose v, w R← G.
2. Define a matrix M = (Mj,i)j,i given by

M =

 g 1 1 1 1 h
v g 1 h 1 1
w 1 g 1 h 1

 ∈ G3×6. (6)

3. Generate a key pair (skhsps, pkhsps) for the linearly homomorphic
signature of Section 2.2 in order to sign vectors of dimension n =
6. Let skhsps = {(χ0,i, γ0,i)}6i=1 be the private key, of which the
corresponding public key is pkhsps =

(
ĝz, ĝr, {ĝi}6i=1

)
.

4. Using skhsps = {χ0,i, γ0,i}6i=1, generate one-time homomorphic sig-
natures {(zj , rj)}3j=1 on the rows M j = (Mj,1, . . . ,Mj,6) ∈ G6 of

M. These are obtained as (zj , rj) =
(∏6

i=1M
−χ0,i

j,i ,
∏6
i=1M

−γ0,i
j,i

)
,

for j ∈ {1, 2, 3} and, as part of the common reference string for the
QA-NIZK proofs of [51], they will be included in the public key.
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b. Generate a key pair (pkpots, skpots) for the partial one-time SPS of Abe

et al. [1]. Namely, choose wz, wr, µz, µu, wt
R← Zp and set

Ĝz = ĝwz , Ĝr = ĝwr , Ĝt = ĝwt , Ĥz = ĝµz , Ĥu = ĝµu

Gz = gwz , Gr = gwr , Gt = gwt , Hz = gµz , Hu = gµu

Then, for i = 1 to n, choose χi, γi, δi
R← Zp and compute Ĝi = Ĝz

χi ·Ĝr
γi

and Ĥi = Ĝz
χi · Ĝr

δi
. Define skpots := {(χi, γi, δi)}ni=1 and

pkpots :=
(
Gz, Gr, Gt, Hz, Hu, Ĝz, Ĝr, Ĝt, Ĥz, Ĥu, {Ĝi, Ĥi}ni=1

)
.

The private key is SK = (ω,wr, µu, skpots) and the public key consists of

PK =
(
g, h, ĝ, (v, w), Ω = hω, pkpots, pkhsps, {(zj , rj)}3j=1

)
.

Sign(SK,M) : given SK = (ω,wr, µu, skpots) and M = (M1, . . . ,Mn) ∈ Gn,

1. Choose s, τ R← Zp to compute

σ1 = gω · (vτ · w)s, σ2 = gs·τ , σ3 = gs,

σ4 = hs·τ σ5 = hs, σ̃6 = ĝτ .

Then, generate a QA-NIZK proof that the vector (σ1, σ2, σ3, σ4, σ5, Ω)
is in the row space of M. This proof (z, r) ∈ G2 is computed as

z = zω1 · (zτ2 · z3)s, r = rω1 · (rτ2 · r3)s. (7)

2. Choose ζ R← Zp and compute Z = gζ ·
∏n
i=1M

−χi

i as well as

R = (Gτt ·Gz
−ζ)1/wr ·

n∏
i=1

M−γii , U = (H−ζz )1/µu ·
n∏
i=1

M−δii

Return σ =
(
σ1, σ2, σ3, σ4, σ5, σ̂6, z, r, Z,R, U

)
∈ G5 × Ĝ×G5.

Verify(PK, σ,M) : given M = (M1, . . . ,Mn) ∈ Gn, parse σ as above. Return
1 if and only if e(σ2, ĝ) = e(σ3, σ̂6) and e(σ4, ĝ) = e(σ5, σ̂6) as well as

e(z, ĝz) · e(r, ĝr) =

5∏
i=1

e(σi, ĝi)
−1 · e(Ω, ĝ6)−1

e(Gt, σ̂6) = e(Z, Ĝz) · e(R, Ĝr) ·
n∏
i=1

e(Mi, Ĝi) (8)

1GT
= e(Z, Ĥz) · e(U, Ĥu) ·

n∏
i=1

e(Mi, Ĥi).
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Each signature requires 10 elements of G and one element of Ĝ. Using the op-
timized F -unforgeable signature based on the Jutla-Roy QA-NIZK proof [44],

we can also save one more element of G and obtain signatures in G9 × Ĝ, which
shortens the signatures of Abe et al. [1] by 26%. In the full version of the paper,
we give more detailed comparisons among all SPS based on non-interactive as-
sumptions.

In the application to group signatures, it is desirable to minimize the number
of signature components that need to appear in committed form. To this end,
signatures must be randomizable in such a way that (σ3, σ5) can appear in the
clear modulo a re-randomization of s ∈ Zp. To enable this randomization, it is
necessary to augment signatures (similarly to [6]) with a randomization token
(gτ , hτ , vτ , zτ2 , r

τ
2 ). We will prove that the scheme remains unforgeable even when

the signing oracle also outputs these randomization tokens at each invocation.5

We call this notion extended existential unforgeability (or EUF-CMA∗ for short).
When the re-randomization tokens are used, proving the knowledge of a sig-

nature on a committed message M ∈ Gn requires 2n + 24 elements of G and
12 elements of Ĝ. In comparison, the best previous solution of Abe et al. costs
2n+ 26 elements of G and 18 elements of Ĝ.

Theorem 3. The scheme provides EUF-CMA∗ security if the SXDH and XDLIN2

assumptions hold in (G, Ĝ,GT ). (The proof is given in the full version of the pa-
per).

In short, the proof of Theorem 3 considers two kinds of forgeries. In Type I
forgeries, the adversary’s forgery contains an element σ̂6

? that did not appear in
any signature obtained by the forger during the game. In contrast, Type II forg-
eries are those for which σ̂6

? is recycled from a response of the signing oracle.
It is easy to see that a Type I forger allows breaking the security of the F -
unforgeable signature. As for Type II forgeries, they are shown to contradict the
XDLIN2 assumption via a careful adaptation of the proof given by Abe et al. for
their TOTS scheme [2]. While the latter was originally presented in symmetric
pairings, it goes through in Type 3 pairings modulo natural changes that consist
in making sure that most handled elements of Ĝ have a counterpart in G. One
difficulty is that, at each query, the reduction must properly simulate the ran-
domization tokens (vτ , gτ , hτ , zτ2 , r

τ
2 ) as well as an instance of the F -unforgeable

signature without knowing the discrete logarithm logĝ(σ̂6) = ĝτ or that of its
shadow logg(σ6) = gτ in G. Fortunately, this issue can be addressed by letting
the reduction know logg(v) and logg(w).

In an independent work [48], Kiltz, Pan and Wee obtained even shorter sig-

natures, which live in G6 × Ĝ under the SXDH assumption. On the other hand,
their security reduction is looser than ours as the gap between the adversary’s
advantage and the reduction’s probability to break the underlying assumption
is quadratic (instead of linear in our case) in the number of signing queries.

5 Note, however, that the adversary is not required to produce any randomization
token as part of its forgery.
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6 A Publicly Verifiable Tag-Based Encryption Scheme

As a tool for constructing a CCA2-anonymous group signature, we describe a new
tag-based encryption scheme [52,47] which is inspired by the lossy encryption
scheme [13] of [41]. In our group signature, we will exploit the fact that the
DDH-based lossy encryption scheme of Bellare et al. [13] can also be seen as a
Groth-Sahai commitment.

Keygen(cp): Given public parameters cp = (G, Ĝ,GT , p) specifying asymmetric
bilinear groups of prime order p > 2λ, conduct the following steps.

1. Choose g, h R← Ĝ. Choose x, α, β R← Zp and set X1 = gx, X2 = hx,
S = gα, T = gβ , W = hα and V = hβ .

2. Generate a key pair (pk′hsig, sk
′
hsig) for the homomorphic signature of

Section 2.2 in order to sign vectors in G3. Let pk′hsig =
(
Ĝz, Ĝr, {Ĝi}3i=1

)
be the public key and let sk′hsig = {(ϕi, ϑi)}3i=1 be the private key.

3. Use sk′hsig to generate linearly homomorphic signatures {(Zi, Ri)}4i=1 on
the rows of the matrix

L =


g 1 T
h 1 V
1 g S
1 h W

 ∈ G4×3

which form a subspace of rank 2. The key pair consists of sk = (x, α, β)

and pk :=
(
g, h,X1, X2, S,W, T, V, pk

′
hsig, {(Zi, Ri)}4i=1

)
.

Encrypt(pk,M, τ): To encrypt M ∈ G under the tag τ , choose θ1, θ2
R← Zp and

compute the ciphertext C = (C0, C1, C2, Z,R) as

C =
(
M ·Xθ1

1 ·X
θ2
2 , g

θ1 · hθ2 , (Sτ · T )θ1 · (W τ · V )θ2 ,

(Zτ3 · Z1)θ1 · (Zτ4 · Z2)θ2 , (Rτ3 ·R1)θ1 · (Rτ4 ·R2)θ2
)
.

Here, (Z,R) serves as a proof that the vector (C1, C
τ
1 , C2) is in the row space

of L and satisfies

e(Z, Ĝz) · e(R, Ĝr) = e(C1, Ĝ1
τ
· Ĝ2)−1 · e(C2, Ĝ2)−1 (9)

Decrypt(sk,C, τ): Parse C as above. Return ⊥ if (Z,R) does not satisfy (9).
Otherwise, return M = C0/C

x
1 .

We observe that (C0, C1) form a Groth-Sahai commitment based on the DDH
assumption in G. If logg(X1) = logh(X2), the commitment is extractable. Oth-
erwise, it is perfectly hiding. We will use this CCA2-secure scheme as a commit-
ment that is extractable on all tags, except one τ? where it behaves as a perfectly
hiding commitment. The above system achieves this while only expanding the
original Groth-Sahai commitment (C0, C1) by 3 elements of G.
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This scheme will save our group signatures from having to contain (beyond
(C0, C1)) an additional CCA2-secure encryption and a NIZK proof that the
plaintext coincides with the content of a Groth-Sahai commitment. The above
technique allows saving the equivalent of 16 elements of G. We thus believe this
cryptosystem to be of interest in its own right since it can be used in a similar
way to shorten other group signatures (e.g., [38]) based on Groth-Sahai proofs.

In the full paper, the scheme is proved secure in the sense of [47].

Theorem 4. The above scheme is selective-tag weakly IND-CCA2-secure if the
SXDH assumption holds. (The proof is given in the full paper).

7 Short Group Signatures in the BMW Model

The TBE scheme of Section 6 allows us to achieve anonymity in the CCA2 sense
by encrypting an encoding of the group member’s identifier. In order to minimize
the signature length, we let the TBE ciphertext live in G instead of Ĝ. To open
signatures in constant time, however, the opening algorithm uses the extraction
trapdoor of a Groth-Sahai commitment in Ĝ2 rather than the private key sktbe of
the TBE system. The latter key is only used in the proof of anonymity where the
reduction uses a somewhat inefficient opening algorithm of complexity O(N).

Keygen(λ,N): given a security parameter λ ∈ N and the number of users N ,

choose asymmetric bilinear groups cp = (G, Ĝ,GT , p) of order p > 2λ.

1. Generate a key pair (msk,mpk) for the two-level hierarchical signature
of Section 4. Let

mpk :=
(

(G, Ĝ,GT ), p, g, h, ĝ, (t, v, w), Ω = hω, pkhsps, {(zj , rj)}4j=1

)
be the master public key and msk := ω ∈ Zp be the master secret key.

2. Generate a key pair (sktbe, pktbe) for the tag-based encryption scheme of

Section 6. Let pktbe =
(
g, h,X1, X2, S,W, T, V, pk

′
hsig, {(Zi, Ri)}4i=1

)
be

the public key and sktbe = (x, α, β) be the underlying private key. For
simplicity, the element g can be recycled from mpk.

3. Choose a vector û1 = (û11, û12) R← Ĝ2 and set û2 = û1
ξ, where ξ R← Zp.

Also, define the vectors u1 = (g,X1) and u2 = (h,X2). These vec-
tors will form Groth-Sahai CRSes (u1,u2) and (û1, û2) in the perfectly
binding setting. Although sktbe serves as an extraction trapdoor for com-
mitments generated on the CRS (u1,u2), the group manager will more
efficiently use ζ = logû11

(û12) to open signatures.
4. Choose a chameleon hash function CMH = (CMKg,CMhash,CMswitch)

with a key pair (hk, tk) and randomness space Rhash.
5. For each group member i, choose an identifier IDi

R← Zp and use msk to

compute KIDi
= (K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd), where

K1 = gω · (vIDi · w)s·, K2 = gs·IDi , K3 = gs

K4 = hs·IDi K5 = hs K6 = ts

z = zω1 · (z
IDi
2 · z3)s r = rω1 · (r

IDi
2 · r3)s K̂7 = ĝIDi
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and (zd, rd) = (zs4, r
s
4). For each i ∈ {1, . . . , N}, the i-th group member’s

private key is gsk[i] = (IDi,KIDi
).

The group manager’s secret key is gsk :=
(
msk, ζ = logû11

(û12)
)

while the
group public key consists of

gpk :=
(

(G, Ĝ,GT ), mpk, pktbe, (u1,u2), (û1, û2), CMH, hk
)
.

Sign(gpk, gsk[i],M): In order to sign a message M ∈ Zp using the i-th group
member’s private key gsk[i] = (IDi,KIDi

), conduct the following steps.

1. Using KIDi
= (K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd), derive a second-

level hierarchical signature. Namely, choose s′ R← Zp and compute

σ1 = K1 ·KM
6 · (vIDi · tM · w)s

′
σ2 = K2 · gs

′·IDi = gs̃·IDi

= gω · (vIDi · tM · w)s̃ σ3 = K3 · gs
′

= gs̃

σ4 = K4 · hs
′·IDi = hs̃·IDi σ5 = K5 · hs

′
= hs̃,

and σ̂6 = K̂7, where s̃ = s+ s′, as well as

z̃ = z · zMd · (z
IDi
2 · zM4 · z3)s

′
r̃ = r · rMd · (r

IDi
2 · rM4 · r3)s

′

= zω1 · (z
IDi
2 · zM4 · z3)s̃ = rω1 · (r

IDi
2 · rM4 · r3)s̃.

2. Choose θ1, . . . , θ12
R← Zp and compute Groth-Sahai commitments

Cσ1
= (1, σ1) · u1

θ1 · u2
θ2 , Cσ2

= (1, σ2) · u1
θ3 · u2

θ4 ,

Cσ4
= (1, σ4) · u1

θ5 · u2
θ6 , C σ̂6

= (1, σ̂6) · û1
θ7 · û2

θ8 .

C z̃ = (1, z̃) · u1
θ9 · u2

θ10 , C r̃ = (1, r̃) · u1
θ11 · u2

θ12

Note that Cσ2
can be written as (C1, C0) = (gθ3 · hθ4 , σ2 ·Xθ3

1 ·X
θ4
2 ).

3. Generate Groth-Sahai NIWI proofs π1 ∈ Ĝ2, π2 ∈ G2 × Ĝ2 and π3 ∈
G2 × Ĝ2 that committed variables (z̃, r̃, σ1, σ2, σ4, σ̂6) satisfy

e( z̃ , ĝz) · e( r̃ , ĝr) = e( σ1 , ĝ1)−1 · e( σ2 , ĝ2)−1 · e(σ3, ĝ3 · ĝ6M )−1 (10)

·e( σ4 , ĝ4)−1 · e(σ5, ĝ5 · ĝ7M )−1 · e(Ω, ĝ8)−1

and

e( σ2 , ĝ) = e(σ3, σ̂6 ), e( σ4 , ĝ) = e(σ5, σ̂6 ). (11)

4. Choose rhash
R← Rhash and compute a chameleon hash value

τ = CMhash(hk, (Cσ1
,Cσ2

, σ3,Cσ4
, σ5,C σ̂6

,C z̃,C r̃,π1,π2,π3), rhash).

Then, using τ and (θ3, θ4) ∈ Z2
p, compute C2 = (Sτ · T )θ3 · (W τ · V )θ4 .

Using pk′hsig, compute (Z,R) =
(
(Zτ3 · Z1)θ3 · (Zτ4 · Z2)θ4 , (Rτ3 · R1)θ3 ·

(Rτ4 · R2)θ4
)

as a QA-NIZK argument that (C1, C
τ
1 , C2) is in the row
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space of L. This allows turning Cσ2
= (C1, C0) into a TBE ciphertext

C̃σ2
= (C0, C1, C2, Z,R) as

C̃σ2
=
(
σ2 ·Xθ3

1 ·X
θ4
2 , g

θ3 · hθ4 , (Sτ · T )θ3 · (W τ · V )θ4 ,

(Zτ3 · Z1)θ3 · (Zτ4 · Z2)θ4 , (Rτ3 ·R1)θ3 · (Rτ4 ·R2)θ4
)
∈ G5

for the tag τ . Note that C̃σ2 contains the original commitment Cσ2 .

Return σ =
(
Cσ1

, C̃σ2
, σ3,Cσ4

, σ5,C σ̂6
,C z̃,C r̃,π1,π2,π3, rhash

)
.

Verify(gpk,M, σ): Parse σ as above. Return 1 if and only if: (i) The proofs
π1,π2,π3 verify; (ii) C̃σ2 is a valid TBE ciphertext (i.e., (9) holds) for the
tag τ = CMhash(hk, (Cσ1 ,Cσ2 , σ3,Cσ4 , σ5,C σ̂6 ,C z̃,C r̃,π1,π2,π3), rhash).

Open(gpk, gmsk,M, σ): To open σ using gmsk =
(
msk, ζ

)
, parse σ as above and

return ⊥ if it is not a valid signature w.r.t. gpk and M . Otherwise, use
ζ = logû11

(û12) to decrypt the Elgamal ciphertext C σ̂6
∈ Ĝ2. Then, check

if the resulting plaintext is ĝID for some group member’s identifier ID. If so,
output ID. Otherwise, return ⊥.

The signature consists of 19 elements of G, 8 elements of Ĝ and one element
of Zp. If each element of G (resp. Ĝ) has a 256-bit (resp. 512-bit) representation,
the entire signature fits within 9216 bits (or 1.125 kB). By using the technique of
Jutla and Roy [44] to shorten the hierarchical signature, it is possible to shorten
the latter by one group element (as explained in Section 4), which saves two
elements of G in the group signature without modifying the underlying assump-
tion. In this case, the signature length reduces to 8704 bits (or 1.062 kB). Using
the technique of Boyen, Mei and Waters [19], it is also possible to eliminate
the randomness rhash and replace the chameleon hash function by an ordinary
collision-resistant hash function, as explained in the full version of the paper. By
doing so, at the expense of a group public key made of Θ(λ) elements of Ĝ, we
can further compress signatures down to 8448 bits (or 1.031 kB).

To give a concrete comparison with earlier constructions, an implementa-
tion of the Boyen-Waters group signature [21] in asymmetric prime order groups

requires 8 elements of G and 8 elements of Ĝ for a total of 6400 bits per signa-
ture. However, besides the SXDH assumption, the resulting scheme relies on the
non-standard q-Hidden Strong Diffie-Hellman assumption [21] and only provides
anonymity in the CPA sense.

Theorem 5. The scheme provides full traceability under the SXDH assumption.

The proof of Theorem 5 relies on the unforgeability of the two-level hierarchical
signature of Section 4. By preparing extractable Groth-Sahai CRSes (u1,u2)
and (û1, û2), the reduction can always turn a full traceability adversary (see
[12] for a definition) into a forger for the hierarchical signature. The proof is
straightforward and the details are omitted.

Theorem 6. The scheme provides full anonymity assuming that: (i) The SXDH

assumption holds in (G, Ĝ,GT ); (ii) CMhash is a collision-resistant chameleon
hash function. (The proof is given in the full version of the paper).
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In the full version of the paper, we extend the above system to obtain dy-
namic group signatures based on the SXDH and XDLIN2 assumption. The sig-
nature length is only 1.8 kB, which gives us the shortest dynamic group signa-
tures based on constant-size assumptions to date. The construction builds on
our structure-preserving signature and the encryption scheme of Section 6 in a
modular manner. Detailed efficiency comparisons are given in the full paper.
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