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Abstract. The multiple ideal query (MIQ) model [Goyal, Jain, and
Ostrovsky, Crypto’10] offers a relaxed notion of security for concur-
rent secure computation, where the simulator is allowed to query the
ideal functionality multiple times per session (as opposed to just once
in the standard definition). The model provides a quantitative measure
for the degradation in security under concurrent self-composition, where
the degradation is measured by the number of ideal queries. However, to
date, all known MIQ-secure protocols guarantee only an overall average
bound on the number of queries per session throughout the execution,
thus allowing the adversary to potentially fully compromise some sessions
of its choice. Furthermore, [Goyal and Jain, Eurocrypt’13] rule out proto-
cols where the simulator makes only an adversary-independent constant
number of ideal queries per session.
We show the first MIQ-secure protocol with worst-case per-session guar-
antee. Specifically, we show a protocol for any functionality that matches
the [GJ13] bound: The simulator makes only a constant number of ideal
queries in every session. The constant depends on the adversary but is
independent of the security parameter.
As an immediate corollary of our main result, we obtain the first pass-
word authenticated key exchange (PAKE) protocol for the fully concur-
rent, multiple password setting in the standard model with no set-up
assumptions.

1 Introduction

General feasibility results for secure computation were established nearly three
decades ago in the seminal works of [33,14]. However, these results only promise
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security for a protocol if it is executed in isolation, “unplugged” from any network
activity. In particular, these results are not suitable for the Internet setting
where multiple protocol executions may occur concurrently under the control of
a common adversary.

A brief history of concurrent security. Towards that end, an ambitious ef-
fort to understand and design concurrently secure protocols kicked into gear with
early works such as [15,10], and later the study of the concurrent zero knowledge
setting [11,32,7,23,30]. For other functionalities and in more general settings,
however, far-reaching impossibility results were established [6,8,24,3,18,1,13].
These results refer to the “plain model” where the participating parties have
no trusted set-up, and hold even if the parties have access to pairwise authenti-
cated communication and a broadcast channel.

Two main lines of research have emerged in order to circumvent these impos-
sibility results. The first concerns with the use of trusted setup assumptions such
as a common random string, strong public key infrastructure or tamper-proof
hardware tokens (see, e.g. [5,2,22]).

The second line of research is dedicated to the study of weaker security defi-
nitions that allow for positive results in the plain model, without additional trust
assumptions. The most notable examples of this include security w.r.t. super-
polynomial time simulation [28,31,4,9,12] and input-indistinguishable computa-
tion [26,12]. One main drawback in this line of research is that it is not always
clear by “how much” is the definition of security relaxed, or in other words “how
much security” is being lost due to concurrent attacks.

The multiple ideal query model and its applications. The multiple ideal
query model (or, the MIQ model in short) of Goyal, Jain and Ostrovsky [21]
takes a different approach to the problem of quantifying the security loss. In
this model, the simulator is allowed to query the ideal functionality multiple
times per session (as opposed to just once in the standard definition). On the
technical side, allowing the simulator multiple queries indeed facilitates proofs
of security in a concurrent setting. On the conceptual side, this model allows for
a natural quantification of the “security loss” incurred by concurrent attack: the
more ideal queries, the weaker the security guarantee. Furthermore, the effect of
multiple ideal queries strongly depends on the task at hand, thus allowing for
more fine-tuned notions of security for a given problem or setting.

One functionality where this approach proved very effective is that of password-
based key exchange (namely the two-party function that outputs a secret random
value to both parties if the inputs provided by the two parties are equal). When
the number of queries made by the simulator per session is a constant, the secu-
rity guarantees of the MIQ model actually imply fully concurrent password-based
authenticated key exchange (see [16,17,21]). This fact was exploited by Goyal
et. al [21] to get the first concurrent PAKE in the plain model — albeit with
the significant restriction that the same password is to be used as input in every
session. This restriction results from a weakness in their modeling and analysis
- a weakness that we overcome in this work.
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The central question: how many queries? So, how to best bound the num-
ber of ideal queries made by the simulator? Intuitively, if we allow a large number
of queries, then the security guarantee may quickly degrade and become mean-
ingless; in particular, if enough queries are allowed, then the adversary may be
able to completely learn the inputs of the honest parties. On the other hand, if
the number of allowed queries is very small (say only 1 + ε per session) then the
security guarantee is very close to that of the standard definition.

To exemplify this further, consider 1-out-of-m OT. Here, as long as λ, the
simulator’s query complexity, is smaller than m, MIQ provides meaningful se-
curity which degrades gracefully with λ. More generally, the remaining security
for any session i in concurrently secure computation of function f is proportional
to the “level of unlearnability” of f(·, xi) after q queries, where xi is the secret
input of the honest party in session i. Password-based key exchange is an ex-
treme case of an unlearnable function. Ideally, we would like to bring λ as close
as possible to 1.

Prior work: Average case vs. worst case guarantees. The best positive
result in the MIQ model is due to Goyal, Gupta, and Jain [19] (improving upon
[21]). They provide a construction where the number of ideal queries in a ses-

sion are (1 + log6 n
n ), where n is the security parameter. However, this is only

an average-case guarantee over the sessions that provides very weak security. In
particular, it does not preclude the ideal adversary from making an arbitrarily
large number of queries in some chosen sessions (while keeping the number of
queries low in the other sessions). In cases of interest, such as the PAKE func-
tionality or the above oblivious polynomial evaluation functionality, this means
that the security in some sessions may be completely compromised !

Furthermore, Goyal and Jain [20] recently proved an unconditional lower
bound on the number of ideal queries per session. Specifically, they show that
there exists a two-party functionality that cannot be securely realized in the
MIQ model with any (adversary independent) constant number of ideal queries
per session. A natural and important question is thus what is the best worst-case
bound we can give on the number of ideal queries asked per session?

1.1 Our Results

In this work, we fully settle the question of worst-case number of per session
ideal queries in the context of general function evaluation. Our main result is
stated below.

Theorem 1.1 (Main result (informally stated)). Under standard crypto-
graphic assumptions, for every PPT functionality f , there exists a protocol in the
MIQ model where the simulator makes only a constant number of ideal queries
in every session. The aforementioned constant is dependent upon the adversary,
and, in particular on the number of sessions (rather than being universal).

If the number of concurrent sessions being executed by the adversary is nc, then
the constant in the above theorem will be derived from c.
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We stress that due to the worst-case guarantee of our result, we are able to
achieve, for the first time in the study of the MIQ model, meaningful security for
all sessions, which is much closer to standard security for secure computation.
Interestingly, our protocol is the same as the [19] protocol. Still, we provide a
significantly better analysis of its security. We stress that prior to this work, no
approach for obtaining a worst-case bound on the ideal query complexity was
known.

Our upper bound tightly matches the lower bound of Goyal and Jain [20]
which rule out protocols where the simulator makes a constant number of ideal
queries per session for any universal constant. Taken together, this fully resolves
the central problem in the study of the MIQ problem: a (adversary dependent)
constant number of ideal queries per session is both necessary and sufficient for
simulation. Thus, our work can be viewed as the final step in understanding the
simulator query complexity of the MIQ model.

Fully concurrent PAKE without setup. Say that a password-based key
exchange protocol is fully concurrent if it remains secure in a setting where
unboundedly many executions of the protocol run concurrently, on potentially
different passwords. An immediately corollary of our main result is the resolution
of the long standing open problem of designing a fully concurrent PAKE protocol
in the standard model and with no setup assumptions.

1.2 Technical Overview

Simulator Query Complexity and Precise Simulation. The question of
simulator query complexity in the MIQ model is intimately connected to the
notion of precise simulation introduced by Micali and Pass [25]. Recall that
traditional simulator strategies allow for the simulator’s running time to be an
arbitrary polynomial factor of the (worst-case) running time of the real adver-
sary. The notion of precise simulation concerns with the study of how low this
polynomial can be. This idea is, in fact, much more general and can also be used
in the context of resources other than running time, such as memory, etc. Thus,
in the most general sense, the goal of precise simulation is to develop simulation
strategies whose resource utilization is “close” to the resource utilization of the
real adversary.

As observed in [21], the study of simulator query complexity in the MIQ
model can also be cast as a precise simulation problem by viewing the trusted
party queries as the resource of the simulator. Therefore, advances in precise
simulation strategies go hand in hand with improvements in the simulator query
complexity in the MIQ model. Indeed, prior works in the MIQ model [21,19]
have relied upon sophisticated precise simulation strategies in order to obtain
their positive results. We note, however, that till date, all precise simulation
strategies only focus on minimizing the total cost of the simulator across all the
sessions. Indeed, this is why these works only yield an average-case bound on
the simulator query complexity.
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In this work, we are interested in minimizing the worst-case simulator query
complexity per session. In other words, we are interested in simulation strategies
that guarantee local precision for every session.

Our approach in a nutshell. Towards that end, our starting observation is
that the problem of bounding the simulator query complexity per session can
be reduced to bounding the number of times the output message of a session
appears in the entire simulation transcript.4 In other words, we need a precise
(concurrent) simulation strategy where the output message of every session ap-
pears only a constant number of times across the entire simulation transcript.5

For this purpose, we revisit existing precise simulation strategies. Concretely, we
show that a slight variant of the “sparse” rewinding strategy of Goyal, Gupta and
Jain [19] (that we henceforth refer to as the GGJ simulation strategy) satisfies
our desired property. We prove this by a novel, purely combinatorial analysis.
Our final secure computation protocol remains essentially identical to those in
the prior works in the MIQ model.

We now give an overview of the steps involved in our proof. Say that we
wish to analyze the number of queries in session i. Consider the specific point
in the protocol execution of session i where, the simulator actually makes a
query to the ideal functionality: call this point pi (for example, this may be the
5th message of the protocol execution in session i). This means that whenever
the simulator reaches the point pi (in the overall concurrent execution), it will
have to call the trusted functionality for session i to compute the next outgoing
message. Thus, now the problem reduces to simply counting how many times the
point pi occurs in the entire rewinding schedule. Observe that in each thread of
execution, point pi only occurs once. However, there could be multiple threads of
execution resulting because of rewinding. Therefore, pi may also occur multiple
times in the rewinding schedule.

While a direct (full) analysis of the GGJ rewinding strategy [19] turns out
to be complex, we are able to break it down into three different steps. Each step
builds upon the previous one, with the final step yielding us the desired bound
on the simulator query complexity. Below, we provide an informal overview of
each of the three steps and refer the reader to the later sections for details.

Step 1. Lazy-KP with static scheduling: We first consider the warm-up
case when scheduling of messages by the adversary is static. This means that
the ordering of the messages of different sessions is decided by the adversary
ahead of time and is fixed (and does not change upon rewinding by the simula-
tor). Further, instead of directly analyzing the GGJ simulator [19], here we will
analyze the query complexity of the (simpler) “lazy-KP” simulator [29,30,23] for
the case where the simulator uses a splitting factor of n for rewinding. That is,

4 More concretely, we wish to bound the first message in the protocol where the
simulator is forced to query the trusted party in order to obtain the function output.

5 Note that the output message of a session may appear more than once in the simu-
lation transcript if the simulator employs rewinding.
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during simulation, each thread is divided into n equal parts, and, each resulting
part is rewound individually (resulting in different threads of execution).

In this case, we are able to prove that the simulator makes at most O(1)
queries to the ideal functionality in any given session. This is done by relying
on the following fact. Say that the point pi does not occur in a given thread.
Then, since the adversary only employs static scheduling, this would mean that
the point pi also cannot occur in any threads resulting from rewinding this
thread. Thus, the proof reduces to a counting argument on the number of threads
resulting from rewinding the part of the main thread containing pi. If d is the
depth of recursion for our recursive rewinding schedule, then we are able to show
that there are at most O(2d) threads containing point pi. However, the depth d
will be a constant for lazy-KP simulation with splitting factor n.

Step 2. Lazy-KP with dynamic scheduling: Now we analyze a general
adversary that may dynamically change the ordering of the messages across
different sessions upon being rewound. Hence, different threads of execution may
have different ordering of the messages. We shall continue to analyze the lazy-KP
simulation strategy with splitting factor n.

In this case, we prove that the simulator makes at most O(log(n)) queries to
the ideal functionality in any given session. The key difficulty in this case is that
even if a given thread does not contain the point pi, the threads resulting from
its rewinding may still have pi. Hence, it seems hard to rule out the possibility
that pi may show up in a large number of threads throughout the simulation.

To overcome this problem, we rely on the following fact: once the point pi
is seen in the main thread of execution, it cannot occur in any thread arising
out of the main thread after that point. We also observe that before this point
is seen in the main thread, there seems hope to rule out its occurrence in a
“large” number of look ahead threads. This relies on the symmetry of the main
and the look-ahead threads, and, on the fact that this point has roughly equal
probability of occurring first in the main thread vs occurring first in any given
look ahead thread. This step of the proof is more involved than the first step
and we refer the reader to Section 4 for details.

Step 3. Sparsifying the lazy-KP simulation: In the final step, we analyze
the sparse rewinding strategy of [19]. Very roughly speaking, the sparse rewinding
strategy of [19] aims to rewind the adversary in “as few places as possible” while
still solving all the sessions. More specifically, there is a cost associated with
creating each look ahead, and, the goal of the rewinding strategy is to solve all
sessions while minimizing the cost.

The sparse rewinding strategy of [19] builds upon the lazy-KP simulator with
splitting factor n. Very roughly, [19] pick a subset of the total threads resulting
out of the lazy-KP simulation, and choose to execute only the threads in the
subset (while ignoring the remaining threads by aborting them at their start). In

more detail, at each level of recursion, [19] randomly chooses polylog(n)
n fraction

of the total threads and execute them while ignoring the rest. Interestingly,
Goyal et. al [19] show that, if one uses protocols with somewhat higher round
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complexity, all the session will still be solved even though most of the look-ahead
threads are never executed.

The key idea of our final step is to leverage this sparsification in order the
reduce the number of queries from O(log(n)) from the previous step to O(1).
Recall from above that if we were to use the full lazy-KP simulation, the point
pi would have occurred at O(log(n)) places in the entire simulation. However,
now, in the GGJ rewinding strategy, it will occur only O(1) times because most
of the threads will never be executed. More details are given in section 5.

2 Our Model

Let n denote the security parameter. We consider malicious, static adversaries
that choose whom to corrupt before the start of any protocol. We work in the
static input setting, i.e., we assume that the inputs of the honest parties in all
sessions are fixed at the beginning. We do not require fairness.

Ideal model. In the ideal world experiment, there is a trusted party for com-
puting the desired two-party functionality f . Let there be two parties P1 and P2

that are involved in multiple, say m = m(n), evaluations of f . Let S denote the
adversary. The ideal world execution (parametrized by λ) proceeds as follows.

I. Inputs: P1 and P2 obtain a vector of m inputs, denoted ~x and ~y respectively.
The adversary is given auxiliary input z, and chooses a party to corrupt.
Without loss of generality, we assume that the adversary corrupts P2. The
adversary receives the input vector ~y of the corrupted party.

II. Session initiation: The adversary initiates a new session by sending a
start-session message to the trusted party. The trusted party then sends
(start-session, i) to P1, where i is the index of the session.

III. Honest parties send inputs to trusted party: Upon receiving the mes-
sage (start-session, i) from the trusted party, P1 sends (i, xi) to the trusted
party, where xi denotes its input for session i.

IV. Adversary sends input to trusted party and receives output: At any
point, the adversary may send a message (i, `, y′i,`) to the trusted party for
any y′i,` of its choice. It receives back (i, `, f(xi, y

′
i,`)) where xi is the input

value that P1 previously sent to the trusted party for session i. For any i,
the trusted party accepts at most λ tuples indexed by i from the adversary.

V. Adversary instructs trusted party to answer honest party: When the
adversary sends a message of the type (output, i, `) to the trusted party, the
trusted party sends (i, f(xi, y

′
i,`)) to P1, where xi and y′i,` denote the respec-

tive inputs sent by P1 and adversary for session i.
VI. Outputs: The honest party P1 always outputs the values f(xi, y

′
i,`) that

it obtained from the trusted party. The adversary may output an arbitrary
efficient function of its auxiliary input z, input vector ~y and the outputs
obtained from the trusted party.

The ideal execution of a function F with security parameter n, input vectors ~x, ~y
and auxiliary input z to S, denoted IdealF,S(n, ~x, ~y, z), is defined as the output
pair of the honest party and S from the above ideal execution.
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Definition 2.1 (λ-Ideal Query Simulator). Let S be a non-uniform proba-
bilistic (expected) ppt machine representing the ideal-model adversary. We say
that S is a λ-ideal query simulator if it makes at most λ output queries per
session in the above ideal experiment.

Real model. Let Π be a two-party protocol for computing F . Let A denote a
non-uniform probabilistic polynomial-time adversary that controls either P1 or
P2. The parties run concurrent executions of the protocol Π, where the honest
party follows the instructions of Π in each execution i using input xi. The
scheduling of all messages is controlled by the adversary. At the conclusion of
the protocol, an honest party computes its output as prescribed by the protocol.
Without loss of generality, we assume the adversary outputs exactly its entire
view of the execution of the protocol.

The real concurrent execution of Π with security parameter n, input vectors
~x, ~y and auxiliary input z to A, denoted RealΠ,A(n, ~x, ~y, z), is defined as the
output pair of the honest party and A, resulting from the above real-world
process.

Definition 2.2 (λ-Secure Concurrent Computation in the MIQ Model).
A protocol Π is said to λ-securely realize a functionality F under concurrent self
composition in the MIQ model if for every real model non-uniform ppt adver-
sary A, there exists a non-uniform (expected) ppt λ-ideal query simulator S
such that for all polynomials m = m(n), every pair of input vectors ~x ∈ Xm,
~y ∈ Y m, every z ∈ {0, 1}∗,

{IdealF,S(n, ~x, ~y, z)}n∈N
c≡ {RealΠ,A(n, ~x, ~y, z)}n∈N

3 Framework for Concurrent Extraction

The Setting. Consider the following two-party computation protocol Π =
(P1, P2):

– Stage 1: First, P1 and P2 interact in the commit phase of an execution of an
extractable commitment scheme 〈C,R〉 (described below) where P2 acts as
the committer, committing to a random string, and, P1 acts as the receiver.

– Stage 2: At the end of the commitment protocol, P1 sends a special message
msg to P2.

Now, consider the scenario where P1 and P2 are interacting in multiple con-
current executions of Π. Suppose that P2 is corrupted. Our goal is to design a
simulator algorithm S that satisfies the following two properties:

– Extraction in all sessions: S must successfully extract the value commit-
ted by adversarial P ∗2 in each execution of Π.

– Minimize the query parameter: Let λ denote the upper bound on the
number of times the special message msgs of any session s appears in the
entire simulation transcript. We refer to λ as the query parameter. Then, the
goal of S is to minimize the query parameter.
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In the next subsection, we describe the extractable commitment scheme 〈C,R〉
from [30]. Later, in Sections 4 and 5, we analyze the “lazy-KP” rewinding strat-
egy [29,30,23] and the “sparse” rewinding strategy of Goyal, Gupta and Jain
(GGJ) [19].

3.1 Extractable Commitment Protocol 〈C,R〉

Let com(·) denote the commitment function of a non-interactive perfectly bind-
ing string commitment scheme. Let ` = ω(log n). Let N = N(n) which will be
determined later depending on the extraction strategy. The commitment scheme
〈C,R〉 between the committer C and the receiver R is described as follows.

Commit Phase: This consists of two stages, namely, the Init stage and the
Challenge-Response stage, described below:

Init: To commit to a n-bit string σ, C chooses (` ·N) independent random pairs

of n-bit strings {α0
i,j , α

1
i,j}

`,N
i,j=1 such that α0

i,j ⊕ α1
i,j = σ for all i ∈ [`], j ∈ [N ].

C commits to all these strings using com, with fresh randomness each time. Let
B ← com(σ), and A0

i,j ← com(α0
i,j), A

1
i,j ← com(α1

i,j) for every i ∈ [`], j ∈ [N ].

Challenge-Response: For every j ∈ [N ], do the following:

– Challenge : R sends a random `-bit challenge string vj = v1,j , . . . , v`,j .
– Response : ∀i ∈ [`], if vi,j = 0, C opens A0

i,j , else it opens A1
i,j by sending

the decommitment information.

Open Phase: C opens all the commitments by sending the decommitment
information for each one of them. R verifies the consistency of the revealed
values. This completes the description of 〈C,R〉.
Notation. We introduce some terminology that will be used in the remainder
of this paper. We refer to the committed value σ as the preamble secret. A sloti
of the commitment scheme consists of the i’th Challenge message from R and
the corresponding Response message from C. Thus, in the above protocol, there
are N slots.

4 Lazy-KP Extraction Strategy

In this section, we discuss the “lazy-KP” rewinding strategy[29,30,23] with a
“splitting factor” of n. We note that the idea of using a large splitting factor
was first used in [27].

For this strategy, we will first prove that λ = O(1) for static adversarial
schedules. Next, we will prove that for dynamic schedules, λ = O(log n). In both
of these results, the constants in O depend on number of sessions started by the
concurrent adversary.

Lazy-KP Simulator. The rewinding strategy of the lazy-KP simulator is spec-
ified by the Lazy-KP-Simulate procedure. Very roughly, the simulator divides
the current thread (given as input) into n equal parts and then rewinds each
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part individually and recursively. The input to the Lazy-KP-Simulate proce-
dure consists of a triplet (`, hist, T ). The parameter ` denotes the adversary’s
messages to be explored, the string hist is a transcript of the current thread of
execution, and T is a table containing the contents of all the adversary’s mes-
sages explored so far (to extract the preamble secrets and for sending the Stage
2 special message in protocol Π in any session).

The simulation is performed by invoking the procedure Lazy-KP-Simulate
with appropriate parameters. Let m = poly(n) denote the number of concurrent
sessions in the adversarial schedule. Then, the Lazy-KP-Simulate procedure
is invoked with input (m (N + 1) , ∅, ∅), where m(N + 1) is the total number
of adversary’s messages in a schedule of m sessions. The Lazy-KP-Simulate
procedure is described in Figure 1. Note that here (similar to [27]) we divide
each thread into n parts. In other words, we consider a splitting factor of n. For

Lazy-KP-Simulate(`, hist, T ):

Bottom level (` = 1):

– Run P1’s algorithm to choose the next message α1 and feed P ∗2 with (hist, α1).
Let α2 be the answer of P ∗2 .

– Output ((α1, α2), α2).

Recursive step (` > 1):

1. Initialize h̃ist = ∅, T̃ = ∅.
2. For every i ∈ [n]:

(a) Compute (h̃isti,1, T̃i,1)← Lazy-KP-Simulate
(
`/n,

(
hist, h̃ist

)
,
(
T , T̃

))
.

(b) Compute (h̃isti,2, T̃i,2)← Lazy-KP-Simulate
(
`/n,

(
hist, h̃ist

)
,
(
T , T̃

))
.

(c) Update h̃ist = (h̃ist, h̃isti,1) and T̃ = (T̃ , T̃i,1, T̃i,2).

3. Output (h̃ist, T̃ ).

Fig. 1. Lazy-KP Simulator with splitting factor n. Even though the messages in
{h̃isti,2} do not appear in the output, some of them do appear in T̃ .

every session s consisting of an execution of Π, the goal of the simulator is to find
two instances of any slot i ∈ [N ] of the commitment protocol 〈C,R〉 where the
simulator’s challenges are different and adversary responds with a valid response
to each challenge. Note that in this case, the simulator can extract the preamble
secret of 〈C,R〉 from the two responses of the adversary. On the other hand, if
the simulation reaches Stage 2 in Π at any time, without having extracted the
preamble secret from the adversary, then it gives up the simulation and outputs
⊥. In this case, we say the simulator gets stuck.



Concurrent Secure Computation with Optimal Query Complexity 11

It follows from [29] that the lazy-KP simulator (as described above) gets
stuck with only negligible probability.

4.1 Terminology for Concurrent Simulation

We introduce some terminology and definitions regarding concurrent simulation
that will be used in the rest of the paper.

Execution Thread. Consider any adversary that starts m = poly(n) number of
concurrent sessions of Π. In order to extract the preamble secret in every session,
the simulator creates multiple execution threads, where a thread of execution is a
simulation of (part of) the protocol messages in the m sessions. We differentiate
between the following:

Main Thread vs Look-ahead Thread : The main thread is a simulation of a com-
plete execution of the m sessions, and this is the execution thread that is output
by the simulator. In addition, from any execution thread, the simulator may cre-
ate other threads by rewinding the adversary to a previous state and continuing
the execution from that state. Such a thread is called a look-ahead thread. Note
that a look-ahead thread can be created from another look-ahead thread.

Complete vs Partial Thread : We say that an execution thread T is a complete
thread if it shares a prefix with the main thread: it starts where the main thread
starts, and, continues until it is terminated by the simulator. Other threads that
start from intermediary points of the simulation are called partial threads. Note
that by definition, the main thread is a complete thread. In general, a complete
thread may consist of various partial threads. Various complete threads may
overlap with each other. For simplicity of exposition, unless necessary, we will
not distinguish between complete and partial threads in the sequel.

Simulation Transcript. The simulation transcript is the set of all the mes-
sages between the simulator and the adversary during the simulation of all the
concurrent sessions. In particular, this includes the messages that appear on the
main thread as well as all the look-ahead threads.

Simulation Index. Consider m = poly(n) concurrent executions of Π. Let
M = m(2N+2), where 2N+2 is the round complexity of Π. Then, a simulation
index i denotes the point where the i’th message (out of a maximum of M
messages) is sent on any complete execution thread in the simulation transcript.

Note that a simulation index i may appear multiple times over various threads
in the simulation transcript. However, a simulation index i can appear at most
once on any given thread (complete or partial). In particular, every simulation
index i ∈ [M ] appears on the main thread (unless the main thread is aborted
prematurely). Further, if a look-ahead thread T was created from a thread at
simulation index i, then only simulation indices j > i can appear on T .

Static vs Dynamic Scheduling. Consider the concurrent execution of m =
poly(n) instances of Π. Recall that the adversary controls the scheduling of the
protocol messages across the m sessions. We say that a concurrent schedule is
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static if the scheduling of the protocol messages is decided by the adversary ahead
of time and does not change upon rewindings. Thus, in a static schedule, protocol
messages appear in the same order on every complete thread. In particular, for
every i ∈ [M ], every instance of a simulation index i in the simulation transcript
corresponds to the same message index j ∈ [2N+2] of the same session s (out of
the m sessions). However note that the actual content of the j’th message may
differ on every execution thread.

We say that a concurrent schedule is dynamic if at any point during the
execution, the adversary may decide which message to schedule next based on the
protocol messages received so far. Therefore, in a dynamic schedule, the ordering
of messages may be different on different execution threads in the simulation. In
particular, each instance of a simulation index i may correspond to a different
message ji of a different session si.

Recursion Levels. We define recursion levels of simulation and count the num-
ber of threads at each recursion level for the lazy-KP simulator. We say that the
main thread is at recursion level 0. Note that the Lazy-KP-Simulate divides
the main thread of execution into n parts and executes each part twice. This
results in 2n execution threads, n of which are part of the main thread, while
the remaining n are look-ahead threads. All of these 2n threads are said to be at
recursion level 1. Now, each of these threads at recursion level 1 is divided into n
parts and each part is executed twice. This creates 2n threads at recursion level
2. Since there are 2n threads at recursion level 1, in total, we have (2n)2 threads
at recursion level 2. (Again, out of these (2n)2 threads, 2n2 threads actually lie
on the 2n threads at level 1.) This process is continued recursively. At recursion
level `, there are (2n)` threads. Since there are m(2N + 2) messages across the
m sessions, the depth of recursion is a constant c′, where c′ = c + log(2N + 2)
when m = nc. Then, at recursion level c′, there are (2n)c

′
threads.

Sibling Threads. Consider Figure 2 where a thread T at some recursion level `
is divided into n = 4 parts, which leads to the creation of 8 threads at recursion
level ` + 1. Each pair of threads (Ti, T

′
i ) that are started from the same point

are referred to as sibling threads.

Fig. 2. One recursion step for splitting factor 4. Every Ti and T ′i are sibling threads.
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4.2 Analysis of λ for Static Schedules

We start by analyzing the lazy-KP extraction strategy for static schedules. Let
λlazy-KP denote the query parameter for the lazy-KP simulator.

Theorem 4.1. For any constant c and any concurrent execution of m = nc

instances of Π where the scheduling of messages is static, λlazy-KP = 2c
′
, where

c′ = c+ log(2N + 2).

In order to prove Theorem 4.1, we use the following lemma that follows by a
simple counting argument (the proof is deferred to the full version).

Lemma 4.2. For any constant c and any concurrent execution of m = nc

instances of Π, the simulation transcript generated by the lazy-KP simulator
is such that every simulation index i ∈ [M ] appears 2c

′
times, where c′ =

c+ log(2N + 2).

Consider any session s. From the definition of static scheduling, we have that for
every j ∈ [2N+2], if the j’th message of session s appears at simulation index i on
any thread, then every instance of simulation index i in the simulation transcript
corresponds to the j’th message of session s. Now, from Lemma 4.2, since each
simulation index appears 2c

′
times in the simulation transcript, we have that the

special message of every session s appears 2c
′

times in the simulation. Thus, we
have that λlazy-KP = 2c

′
for static schedules.

4.3 Analysis of λ for Dynamic Schedules

Theorem 4.3. For any polynomial m = poly(n), for any concurrent execution
of m instances of Π (with possibly dynamic scheduling of messages), λlazy-KP =
O(log n) except with negligible probability.

Proof of Theorem 4.3. Fix any session s out of the m = nc sessions. Note that
the special message msgs of session s appears exactly once on the main thread.
Let imain denote the simulation index where msgs appears on the main thread.
Now, we will count:

1. The number of times msgs appears in the simulation transcript before imain.
Let δ1 denote this number.

2. The number of times msgs appears in the simulation transcript at imain or
after imain. Let δ2 denote this number.

Thus, the total number of times msgs appears in the simulation transcript is
δ1 + δ2. It suffices to prove that δ1 + δ2 = O(log n).

Let i1, . . . , ik be the distinct simulation indices where msgs appears in the
simulation transcript. Let i1, . . . , ik be ordered, i.e., for every ` ∈ [k−1], i` < i`+1.
Let k1 ≤ k be such that ik1 < imain and ik1+1 ≥ imain.

Lemma 4.4. For any ` ∈ [k], the probability that msgs does not appear on the
main thread at simulation index i` is at most (1− 1

c′ ).
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Proof. Consider the simulation index i1. From Lemma 4.2, we have that i1 ap-
pears on 2c

′
threads in the simulation transcript. Let T [i1] = T1, . . . , T2c′ denote

these threads. Now, let q be such that the special message msgs appears at sim-
ulation index i1 on q of these 2c

′
threads. Let T ∗[i1] = T ∗1 , . . . , T

∗
q denote these

q threads. Let Tmain denote the main thread. Then, we have that:

Pr [Tmain ∈ T ∗ [i1]] =
q

2c′
(1)

To see this, recall that the Lazy-KP-Simulate procedure uses uniformly random
coins on each execution thread, and follows the same strategy. Thus, the view
of the adversary is indistinguishable on each thread. In particular, if p is the
probability that a message α appears on a thread T and m′ appears on its
sibling thread T ′ with, then with probability p− negl(n), m′ appears on T and
m appears on T ′. (This is the “symmetry” property for threads in the lazy-KP
simulation.) Therefore, Equation 1 follows.

From Equation 1, we have that:

Pr [Tmain /∈ T ∗ [i1]] = 1− q

2c′

Note that the above probability is maximum when q = 1. Hence, we have that:

Pr[msgs does not occur on main thread at i1] ≤ 1− 1

2c′
. (2)

Now, consider simulation index i2. Again, from Lemma 4.2, we have that i2
appears on 2c

′
threads. Let T [i2] denote the set of these threads. Now, note that

msgs cannot appear on the look-ahead threads T ∈ T ∗[i1]∩T [i2]. Thus, following
Equation 2, we have that:

Pr[msgs does not occur on main thread at i2] ≤ 1− 1

2c′′
.

where c′′ ≤ c′. Continuing the same argument, we have that for every ` ∈ [k−1],

Pr[msgs is not on main thread at i`+1] ≤ Pr[msgs is not on main thread at i`]

Thus, for every i`, we have that the probability that msgs does not occur on
main thread at i` is at most 1− 1

c′ .

Computing δ1. Now, note that (1 − 1
c′ )

t = negl(n) for t = ω(log n). Therefore,
we have that k1 = O(log n). Now, since each of the simulation indices i1, . . . , ik1
appears 2c

′
times in the simulation transcript, we have that:

δ1 ≤ 2c
′
O(log n) (3)

Computing δ2. We now compute the value of γ2. Towards this, let us suppose that
for every simulation index i ∈ [`], the Lazy-KP-Simulate procedure runs all
threads starting from simulation index i in parallel. That is, Lazy-KP-Simulate
performs one step of execution on each of these threads. It then performs the
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next execution step on each of these threads, and so on. Note that this is without
loss of generality since the Lazy-KP-Simulate procedure runs all such threads
independently.

Now, we first observe that msgs cannot appear on a look-ahead thread that
starts at a simulation index i > imain. Thus, to compute δ2, we only need to
consider the look-ahead threads that started at simulation indices i < imain and
did not finish before reaching imain. Let Tgood denote the set of such threads.

By using Lemma 4.2, we can claim that |Tgood| ≤ 2c
′
. Then, assuming the

worst case where msgs appears on each thread T ∈ Tgood, we have that δ2 ≤ 2c
′

5 GGJ Extraction Strategy

In this section, we discuss the GGJ extraction strategy [19] and analyze the query
complexity parameter for the same. Unlike [19] that used a splitting factor of 2,
we will work with n as the splitting factor. For this strategy, we will prove that for
every concurrent schedule of polynomial number of sessions, the query parameter
λ = O(1). Here, the constant in O depends on the number of concurrent sessions.

Overview. Roughly speaking, the GGJ rewinding strategy can be viewed as
a “stripped down” version of the lazy-KP simulation strategy. In particular,
unlike lazy-KP that executes every thread at every recursion level, here we only
execute a small fraction of them. The actual threads that are to be executed are
chosen uniformly at random, at every level. It is shown in GGJ that by slightly
increasing the round complexity – (roughly) N = n2 from N = n, executing
a polylogn

N fraction of threads at every level is sufficient to extract the preamble
secret in every session.

We describe the GGJ rewinding strategy in two main steps:

1. We first describe an algorithm Sparsify that essentially selects which threads
to execute in the lazy-KP recursion tree (Section 5.1).

2. Next, we describe the actual GGJ simulation procedure GGJ-Simulate
that is essentially the same as the Lazy-KP-Simulate strategy, except that
it only executes the threads selected by Sparsify (Section 5.2).

5.1 The Sparsification Procedure

We first describe the lazy-KP simulation tree and give a coloring scheme for the
same. Next, we describe the Sparsify algorithm that takes the lazy-KP simulation
tree as input and outputs a “trimmed” version of it that will correspond to the
GGJ simulation tree.

Lazy-KP Simulation Tree. Let m = nc be the total number of concurrent
sessions of Π started by an adversary A. Then, the Lazy-KP-Simulate strategy
for A can be described by a 2n-ary tree Treelazy-KP of constant depth c′ where
c′ = c + log(2N + 2). The nodes in Treelazy-KP are colored white or black as per
the following strategy:
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– The root node is colored white.

– Consider the 2n child nodes of any parent node. The odd numbered nodes
are colored white and the even numbered nodes are colored black.

Let us explain our coloring strategy. The root node (which is colored white)
corresponds to the main thread of execution. Each black colored node Node cor-
responds to a look-ahead thread that was forked from the thread corresponding
to node Parent(Node). A white colored node Node (except the root node) cor-
responds to a thread T ′ that is a part of the thread T corresponding to node
Parent(Node).

Figure 3 denotes the lazy-KP simulation tree for splitting factor n = 2 with
white boxes representing white nodes and grey boxes representing black nodes.

Fig. 3. The lazy-KP simulation tree for splitting factor 2.

Node Labeling. To facilitate the description of the GGJ simulation strategy, we
first describe a simple tree node labeling strategy for Treelazy-KP. The root node
is labeled 1. The i’th child (out of 2n children) of the root node is labeled (1, i).
More generally, consider a node Node at level ` ∈ [c′]. Let path be its label. Then
the i’th child of Node is labeled (path, i).

Below, whenever necessary, we shall refer to the nodes by their associated
labels.

The Sparsify Procedure. Let p be such that 1
p = polylog(n)

N . The Sparsify function
transforms the lazy-KP simulation tree Treelazy-KP into a “sparse” tree Treesp in
the following manner.

Let the root node correspond to level 0 and the leaf nodes correspond to
level c′. The Sparsify procedure starts at level 0 and traverses down Treelazy-KP,
stopping at level c′. It performs the following steps at every level ` ∈ [c′]:
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1. Choose 1
p fraction of the total black nodes at level `, uniformly at random.

Let B` denote the set of these nodes.
2. Delete from Treelazy-KP, every black node Node at level ` that is not present

in set B`. Further, delete the entire subtree of Node from Treelazy-KP.

The resultant tree is denoted as Treesp. Looking ahead, we will describe the GGJ
rewinding strategy as essentially a modification of Lazy-KP-Simulate in that
it only executes the threads corresponding to the nodes in Treesp.

5.2 The GGJ-Simulate Procedure

The rewinding strategy of the GGJ simulator is specified by the GGJ-Simulate
procedure. The input to the GGJ-Simulate procedure is a tuple (path, `, hist, T ).
The parameter path denotes the label of the node in Treesp that is to be explored,
` denotes the number of adversary’s messages to be explored (on the thread cor-
responding to the node labeled with path), the string hist is a transcript of the
current thread of execution, T is a table containing the contents of all the adver-
sary’s messages explored so far (to extract the preamble secrets and for sending
the Stage 2 special message in Π in any session).

The simulation is performed by invoking the procedure GGJ-Simulate with
appropriate parameters. Let m = poly(n) denote the number of concurrent ses-
sions in the adversarial schedule. Then, the GGJ-Simulate procedure is invoked
with input (1,m (N + 1) , ∅, ∅), where m(N + 1) is the total number of adver-
sary’s messages in a schedule of m sessions. The GGJ-Simulate procedure is
described in Figure 4. Note that unlike [19], where each thread is recursively
divided into two parts, here we divide each thread into n parts. In other words,
we consider a splitting factor of n. For every session s consisting of an execution
of Π, the goal of the simulator is to find two instances of any slot i ∈ [N ] of
the commitment protocol 〈C,R〉 where the simulator’s challenges are different
and adversary responds with a valid response to each challenge. Note that in
this case, the simulator can extract the preamble secret of 〈C,R〉 from the two
responses of the adversary. On the other hand, if the simulation reaches Stage
2 in Π at any time, without having extracted the preamble secret from the ad-
versary, then it gives up the simulation and outputs ⊥. In this case, we say the
simulator gets stuck.

It is implicit in [19] that the GGJ simulator (as described above) gets stuck
with only negligible probability when N = O(n2). We now analyze the query
parameter λGGJ for the GGJ simulation strategy. A formal proof is deferred to
the full version.

Theorem 5.1. For every constant c, every m = nc number of concurrent exe-
cutions of Π, the query parameter λGGJ = O(1), where the constant depends on
c.

Proof (Sketch). Fix any session s. We will show that the special message msgs
can appear at most O(1) times at each recursion level RL`. Then, since there are
only a constant number of recursion levels, it will follow that λGGJ = O(1).
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GGJ-Simulate(path, `, hist, T ):

Bottom level (` = 1):

– Run P1’s algorithm to choose the next message α1 and feed P ∗2 with (hist, α1).
Let α2 be the answer of P ∗2 .

– Output ((α1, α2), α2).

Recursive step (` > 1):

1. Initialize h̃ist = ∅, T̃ = ∅.
2. For every i ∈ [n]:

– If node (path, 2i− 1) /∈ Treesp, set h̃isti,1 = ∅, T̃i,1 = ∅.
Else, compute:

(h̃isti,1, T̃i,1)← GGJ-Simulate
(

(path, 2i− 1) , `/n,
(
hist, h̃ist

)
,
(
T , T̃

))
.

– If node (path, 2i) /∈ Treesp, set h̃isti,2 = ∅, T̃i,2 = ∅.
Else, compute:

(h̃isti,2, T̃i,2)← GGJ-Simulate
(

(path, 2i) , `/n,
(
hist, h̃ist

)
,
(
T , T̃

))
.

– Update h̃ist = (h̃ist, h̃isti,1) and T̃ = (T̃ , T̃i,1, T̃i,2).

3. Output (h̃ist, T̃ ).

Fig. 4. GGJ Simulator with splitting factor n. Even though the messages in {h̃isti,2}
do not appear in the output, some of them do appear in T̃ .

Towards that end, lets fix a recursion level `. First recall from Theorem 4.3
that for the lazy-KP simulation strategy, λlazy-KP = O(log n). In particular, this
implies that at every recursion level ` in the lazy-KP simulation, msgs for a
session s appears on at most O(log n) threads. Using the tree terminology as
introduced earlier, we have that msgs appears on (the threads corresponding to)
at most O(log n) black nodes at level ` in Treelazy-KP. Now, recall that at every

level `, the Sparsify procedure selects only 1
p = polylogn

N fraction of black nodes,
uniformly at random, and deletes the rest of the black nodes. Using Chernoff
bound, we can then show that the probability that Sparsify selects ω(1) black
nodes containing msgs is negligible.

6 From Concurrent Extraction to Concurrent Secure
Computation

Theorem 6.1. Assuming 1-out-of-2 oblivious transfer, for any efficiently com-
putable functionality f there exists a protocol Π that O(1)-securely realizes f in
the MIQ model.
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We construct such a protocol by following the exact recipe of [21,19]. We note
that the works of [21,19] show how to compile a semi-honest secure computation
protocol Πsh for any functionality f into a new protocol Π that securely realizes
f in the MIQ model. The core ingredient of their compiler is a concurrently
extractable commitment 〈C,R〉: if there exists a concurrent simulator for 〈C,R〉
with query parameter λ, then the resultant (compiled) protocol Π λ-securely
realizes f .

In order to prove Theorem 6.1, we construct such a protocol Π by simply
plugging in our O(n2)-round extractable commitment scheme in the construction
of [21,19]. Then, it follows from Theorem 5.1 that protocol Π O(1)-securely
realizes f in the MIQ model, where the constant in O depends on c, where nc is
the number of sessions opened by the concurrent adversary.

Fully concurrent PAKE in the plain model. Consider the PAKE function-
ality: it takes a password as input from each party, and, if they match, outputs a
randomly generated key to both of them. The above protocol, when executed for
the PAKE functionality gives a PAKE construction in the MIQ model where the
simulator makes a constant number of queries per session in the ideal world. We
then plug in Lemma 7 in [21] which shows that a PAKE construction in the MIQ
model for a constant number of queries implies a concurrent PAKE as per the
definition of Goldreich and Lindell [16] (with the modification that the constant
in big O is adversary dependent). Put together, this gives us a construction of
concurrent password-authenticated key exchange in the plain model.
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