
Constant-Round MPC with Fairness and
Guarantee of Output Delivery

S. Dov Gordon?, Feng-Hao Liu??, and Elaine Shi? ? ?

Abstract. We study the round complexity of multiparty computation
with fairness and guaranteed output delivery, assuming existence of an
honest majority. We demonstrate a new lower bound and a matching
upper bound. Our lower bound rules out any two-round fair protocols
in the standalone model, even when the parties are given access to a
common reference string (CRS). The lower bound follows by a reduction
to the impossibility result of virtual black box obfuscation of arbitrary
circuits.

Then we demonstrate a three-round protocol with guarantee of output
delivery, which in general is harder than achieving fairness (since the
latter allows the adversary to force a fair abort). We develop a new
construction of a threshold fully homomorphic encryption scheme, with a
new property that we call “flexible” ciphertexts. Roughly, our threshold
encryption scheme allows parties to adapt flexible ciphertexts to the
public keys of the non-aborting parties, which provides a way of handling
aborts without adding any communication.

1 Introduction

Secure multi-party computation (MPC) allows mutually distrusting parties to
securely compute a function on their inputs with several desired properties, in-
cluding: correctness (honest parties should not receive a wrong output), and
privacy (corrupted parties cannot learn anything beyond the prescribed out-
put). In addition to these two basic properties, one might further require fair-
ness (corrupted parties receive their output only if all honest parties receive
output), or the stronger guarantee of output delivery (corrupted parties
cannot prevent honest parties from receiving their output). Alternatively, a re-
laxed security notion is often used, called security with abort – it is possible
that the attacker can prevent the honest parties from receiving output. All of
these requirements can be formalized in an Ideal/Real paradigm [5, 13], which
provides a nice way to analyze security.
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In this work, we explore the round complexity required for achieving these
various properties. For the setting of security with abort, we already understand
the round complexity fairly well – Asharov et al. [1] constructed a 3-round proto-
col (in the common reference string model) under the learning with error (LWE)
assumption; Garg et al. [10] constructed a 2-round protocol for general compu-
tation (in the CRS model) using indistinguishable obfuscation; it is well-known
that one-round protocols are in general not possible.

However, for protocols with fairness and guarantee of output delivery, our
understanding of round complexity is still incomplete. Regarding feasibility, ev-
erything is well understood: if there is no honest majority, Cleve proved [6] that
fair MPC for general computation is not possible. In the setting of an hon-
est majority, we know that we can always achieve fairness [4], and, assuming a
broadcast channel, we can always guarantee output delivery [7]. However, the op-
timal round complexity for this setting (of an honest majority) is still unknown1.
Asharov et al. [1] show that their basic protocol can be extended to achieve secu-
rity with guarantee of output delivery (and thus fairness) in 5 rounds, assuming
there exists an honest majority. By slightly modifying the multi-key FHE pro-
tocol of Lopez-Alt, Tromer, and Vaikuntanathan [18], we can obtain a 5-round
protocol with guarantee of output delivery, assuming there exists an honest ma-
jority. This is the best known round complexity for achieving fairness for any
t < N/2. For the lower-bounds, Gennaro et al. [11] showed that there are func-
tionalities that cannot be computed (fairly) by 2-round protocols, even in the
CRS model. Recently, Garg et al. [10] claimed that their 2-round protocol (in the
CRS model) also achieves fairness, but the claim contradicts the lower-bound
of [11], as well as the (stronger) lower bound we present here.

1.1 Our Results

Our main two results are matching upper and lower bounds for three-round
multiparty computation with guaranteed output delivery with security against
a malicious minority of parties. More specifically:

– We show that 2-round, fair MPC for general functions is impossible, even if
there is an honest majority. We strengthen the impossibility result of Gen-
naro et al. [11], demonstrating impossibility even when a fail-stop adversary
corrupts only a single party. Both our result and the result of Gennaro et
al. extend to the CRS model. (Section 3.)

– There exists a 3-round MPC with guaranteed output delivery for general
functions in the CRS model, secure against a minority of semi-honest fail-
stop adversaries. The security relies on the learning with errors (LWE) as-
sumption. (Section 4.)

1 For more restricted corruption settings, we do know how to construct 2-round pro-
tocols. See related work for more discussions.



– If parties have access to an authenticated broadcast channel2, then the above
3-round protocol can be upgraded to one that is secure against malicious
adversaries, without any additional rounds. (Section 5.)

– Additionally, we show that security of the two-round protocol by Garg et
al. [10] can be based on witness encryptions for general NP statements, which
is weaker than indistinguishable obfuscation for general circuits3 as presented
in their work. Together with an idea in Section 1.2, we can construct a three-
round fair protocol (but not guarantee of output delivery) based on witness
encryptions for general NP statements. Due to space limit, we present the
results in the full version of this paper [14].

In summary, 2-round general fair MPC is not possible, and 3-round general
MPC with guarantee of output delivery can be constructed under a falsifiable as-
sumption. Guarantee of output delivery implies fairness (by definition), and thus
3-round fair MPC can also be constructed under the same falsifiable assumption.

All of our positive results are UC-secure [5]. Our protocols, along with those
appearing in the prior work of Garg et al. [10] and Asharov et al. [1], require a
CRS.

1.2 Overview of our Techniques

Impossibility of Fairness in Two Rounds. We show that a two round, fair,
polynomial-time protocol for general functions yields a construction of virtual
black box (VBB) secure program obfuscation for P/Poly, in contradiction of the
well-known impossibility result of Barak et al. [2].

Consider a symmetric 3-ary functionality f(x1, x2, x3) that interpret x1 as a
circuit C, ignores x3 and outputs C(x2). Suppose there exists a two-round fair
protocol π that computes f with fairness, then we make the following observa-
tions. We assume the three parties are Alice, Bob, and Charlie.

– If the adversary (only) corrupts Alice and instructs her to abort in the second
round, then after Bob and Charlie send their messages in the second round,
the adversary can learn the output C(x2).

– By the property of fairness, Bob and Charlie must be able to learn the output
C(x2), since the adversary in the above case has learned the output.

– It follows that Alice’s second message is redundant. Whether she sends her
second message or not, the other parties can compute the outcome.

Using the above observations, we can construct a program obfuscator for
general circuits: we view Alice’s first message as the obfuscation of C. To evaluate
C(x), we just simulate Bob and Charlie with Bob’s input x. Since Alice’s first

2 An authenticated broadcast channel enables a party to send a message to all other
parties, ensuring that each party knows both the identity of the sender and that all
other parties have received the same message.

3 Indistinguishable obfuscation for general circuits is a stronger assumption. We know
that indistinguishable obfuscation for general circuits implies witness encryption for
general NP statements, but the other way is unclear.



message is independent of the other parties’ inputs, we can rewind Bob and
Charlie and compute C(x) repeatedly on arbitrary values of x.

We note that Garg et al. state (without proof) that their two-round protocol
achieves fairness [10], and one can see why this mistake might have been made.
Their protocol works by collapsing some protocol with greater round complexity
into a two-round protocol through the use of obfuscation, and they state that
if the underlying protocol is fair, then the resulting two round protocol will
also be fair. Speaking very roughly, in their construction, each party sends a
commitment to their input and their randomness in round one, and in round two,
they each send obfuscations of the next message functions from the underlying
fair protocol. They then each finish the protocol locally, using the obfuscated
programs to generate the correct protocol messages. At first glance, it would
seem that this preserves fairness, because if a party aborts in round two, the
other parties can simply generate next-messages as though he aborted, and, by
the fairness of the underlying protocol, fairness should be preserved. In fact, this
misses the following subtlety. If a party aborts in round two, he still receives all of
the obfuscated programs, and can still compute the output of the function: this
is equivalent to aborting in the very last round of the underlying fair protocol.
On the other hand, because he never sent his obfuscated next-message programs,
the other parties will be forced to treat him as though he aborted in round one
of the underlying protocol, perhaps replacing his input with some default value.
In particular, then, it could be that the malicious party learns f(x1, . . . , xN )
while the other parties learn f(⊥, x2, . . . , xN ).

Fairness in Three Rounds. The construction of Garg et al. can be modified
slightly to get a three-round fair protocol, as we now outline. However, we note
that there is no clear way to guarantee output delivery without increasing the
round complexity; our main technical result is a new protocol for achieving
guaranteed output delivery in three rounds.

To achieve fairness in three rounds, we can start with the protocol of Garg
et al., but instead of sending obfuscations of the next message functions that
compute the underlying secure computation, the parties will send obfuscations
that compute an N/2-out-of-N secret sharing of the output. They then add
one additional round to reconstruct the output. Now, if the adversary aborts
in round two, even though he learns all of the next message functions, he still
cannot recover the output (since there is an honest majority). If he aborts in
round three, the honest parties already have enough shares to reconstruct the
output on their own.

In general, we can compile any fair protocol into one that guarantees output
delivery, assuming a broadcast channel [7], but we cannot necessarily preserve
the round complexity. In the particular protocol just described, note that the
obfuscated programs sent in round two have commitments to the parties’ inputs
embedded inside of them. If a party aborts in round two, the other parties
would need to replace their obfuscations, embedding a commitment to some
default input value in place of the aborting party’s true input. But this will
incur additional communication rounds.



Guarantee of Output Delivery. Before we describe our protocol, we first
give an overview the approach by Asharov et al. [1]. Asharov et al. proposed a
new primitive called Threshold Fully Homomorphic Encryption (TFHE), which
is essentially a distributed version of fully homomorphic encryption (FHE). For
their TFHE, there is a joint public key pk∗ whose secret key is shared among all
parties, i.e. sk∗ = sk1 + sk2 + · · ·+ skN . (There is also an evaluation key, but we
omit it for simplicity of exposition). The keys (pk∗, sk∗) constitute an FHE key
pair, so the encryption and evaluation algorithms can remain the same as those
used in the original FHE scheme. To decrypt, parties need to run a threshold
decryption protocol, since the secret key is shared among all parties.

Using the TFHE scheme, their basic three round protocol has the following
structure: (1) in the first round parties establish a joint public key pk∗; (2) in the
second round parties output an encryption of their inputs, i.e. Encpk∗(xi); (3)
in the third round, parties perform the homomorphic operations (for computing
f) to obtain an evaluated ciphertext C∗, and then run the threshold decryption
protocol to decrypt C∗. Asharov et al. [1] presented a simple idea to make the
basic protocol fair (and to guarantee output delivery) in the first round, the
parties also secret share their inputs and all random coins. If any party aborts in
the second or third round, the honest majority would reconstruct his states and
resume the protocol. (Note that if a party aborts in the first round, he is simply
ignored). This approach will add two additional rounds for the worst case.

We note that their construction uses an N -out-of-N sharing of the secret
key sk∗, so they require all parties in order to decrypt. This means, if any party
aborts, the other parties need to reconstruct his view to resume. Thus, these
two additional rounds seem inherent if we follow this approach. To get a 3-round
protocol, we need a new approach. In particular we propose and construct a new
variant of TFHE with more fine-grained features. Using it as a building block,
we are able to get around the barriers mentioned above. We highlight our new
ideas below.

Instead of establishing a “fixed” joint public key, our new TFHE uses pk[N ] =
{pki}i∈[N ] as the public keys, where pki is contributed by party Pi. Then with
{pk1, . . . , pkN}, Pi can encrypt the input xi and produce a flexible ciphertext Ci.
We introduce a new algorithm TransCT(C;S) that transforms a flexible cipher-
text C into C ′, where C ′ is with respect to the public keys pkS = {pkj : j ∈ S}.
Intuitively, a flexible ciphertext is one that is not yet committed to a set of public
keys, and a transformed one commits to some pkS and can be homomorphically
evaluated. Finally, our threshold decryption protocol works when there is an
honest majority of parties (as opposed to the previous one which requires all
parties).

Using the new TFHE, our protocol has the following structure: (1) in the
first round, parties generate {pk1, . . . , pkN}; (2) in the second round, each party
output a flexible ciphertext Ci = Enc(xi); (3) let S be the parties that did not
abort in the second round. Now each party transforms the ciphertexts to C ′i
with respect to pkS and performs the homomorphic evaluation for computing f .
Then they perform the threshold decryption to obtain the output.



Intuitively, if a party aborts in the first round, then he is simply ignored. If
he aborts in the second round, he is also ignored: since the other parties output
flexible ciphertexts, these can be transformed to a public key representing the set
of non-aborting parties. Those remaining parties can then proceed to perform
the homomorphic computation. Finally, if a party aborts at the end, then it is
too late – our threshold decryption algorithm only requires an honest majority
of parties. We describe our three round protocol in Section 4.3.

Constructing TFHE. Our construction of TFHE is a distributed variant of
the FHE scheme by Gentry, Sahai, and Waters [12]. We inherit from their
scheme that our TFHE does not need the evaluation keys that Asharov et
al. required, which allows for a cleaner presentation. We outline some of the
technical aspects of our construction here, after we recall the GSW construc-
tion. The public key in their construction is a matrix B and a vector b =
Bs + e of the LWE form; the secret key is the LWE secret s. To encrypt
a bit m, the algorithm generates a random 0-1 matrix R, and outputs C =
Flatten

(
m · ID + BitDecomp

(
R · b || R ·B

))
, where ID is the identity matrix.

(We will define BitDecomp and BitDecomp−1 in Section 2, but, essentially, these
functions act as their names suggest, decomposing a field element into a binary
representation, and building a field element from a binary string.) To decrypt,
the algorithm takes row β (where roughly 2β > some noise bound) and parses
the row into (Cβ,1, Cβ,2) ∈ Z`q × Zn·`q . (The parameters `, n, q will be set in the
scheme. Here for exposition, we can omit them.) Then it outputs⌊

BitDecomp−1(Cβ,1)− 〈BitDecomp−1(Cβ,2), s〉
2β

⌉
.

The homomorphic evaluation of the GSW scheme is surprisingly simple and
beautiful! For addition it is C + C ′ and for multiplication C · C ′.

As we discussed, our TFHE does not immediately determine a public key with
respect to all parties, as done by Asharov et al. [1]. Instead, we set the public
parameter (CRS) to be B, and let each party Pi output pki = bi = Bsi+ei. Note
that each (B, bi) is a GSW public key. The next challenge is how to generate
flexible ciphertexts. A first natural idea would be: for Pi to generate a flexible
ciphertext on some message m, Pi encrypts m under all GSW-type public keys
{(B, bi)}[N ] to get C = (C1, . . . , CN ). To transform C with respect to a set S, we
simply output {Ci}i∈S . However, this is not secure since it allows every party,
independently, to decrypt Pi’s ciphertext. A next idea would be Pi encrypts m
under the key (B, bi) corresponding to his public key, and encrypts 0 for other
keys {(B, bj)}j 6=i. The transform algorithm works the same. Intuitively, semantic
security holds since Pi does not encrypt m under other people’s keys. However,
it is not clear how to jointly evaluate two ciphertexts from two parties, since the
essential messages are encrypted under two different GSW public keys.

Our new idea to solve such challenge modifies Cj ’s for j 6= i: instead of gen-
erating Enc(0)’s under {(B, bi)}[N ]\{i}, Pi outputs some hints for the transfor-
mation algorithm, but such hints will not hurt security. More specifically, we have
the following design: Pi generates Ci = Flatten

(
m · ID + BitDecomp

(
R · bi || R ·B

))



and Cj = BitDecomp
(
R · bj || 0

)
, for j 6= i, where the same R is used for all

{Cj}j∈[N ]. Since each Cj only decreases the entropy of R by |R ·bj |, we can still
use a leftover-hash-lemma style approach to argue that m is hidden.

Then given a set S (including i), we can compute CS =
∑
j∈S Cj . By un-

folding the equation, we can see:

CS =

m · ID + BitDecomp
(
R ·

(∑
j∈S

bj
)
|| R ·B

) ,

which is of the form Enc(m) under the GSW public key (B,
∑
j∈S bj)! This

means any flexible ciphertext, after being transformed, results in an encryption
under the GSW public key. Therefore, ciphertexts from different parties can be
jointly computed after transformed to ones with respect to the same set S.

Our threshold decryption protocol needs to work for any set S of participants
such that |S| > [N/2]. So the parties should distribute the secret si’s to all the
other parties using a threshold secret sharing scheme. The challenging part is to
design a one-round protocol. We use the fact that the decryption algorithm of the
GSW scheme is essentially computing inner product (of a publicly known vector
and the secret key), and Shamir’s secret sharing scheme is highly compatible
with inner product computation. In particular, each party Pi shares si into
(pi(1),pi(2), . . . ,pi(N)) and sends pi(j) to Pj , where p is a vector of polynomials
for Shamir’s shares. To compute w = 〈u,

∑
j∈S sj〉 for some publicly known

vector u (think of it as part of a ciphertext), each party can output wi =
〈u,
∑
j∈S pj(i)〉. Then it is not hard to see that these wi’s form shares of w,

so after receiving a majority of shares each party can run the reconstruction
without interaction!

Finally, we need to handle an additional technicality to deal with noise of
evaluated ciphertexts, as pointed out by Asharov et al. [1]. Intuitively, an eval-
uated ciphertext Enc(f(x)) might contain noise that is related to the original
input x, so we need to add additional smudging noise to eliminate any such link.
In the decryption protocol of the work [1], each party adds independent small
noise to the output. However, this method will not work for our case because in
our reconstruction procedure, these noise values are multiplied by the Lagrange
coefficient, which can be too large. To solve this issue, we let each party Pi secret
share some small noise ηi into (ri(1), . . . , ri(N)) and send the shares to the other
parties (where ri is a random polynomial for the shares). Then each party Pi
adds

∑
j∈S rj(i) to their output. By the linearity of the Shamir’s sharing scheme,

this is equivalent to adding
∑
j∈S ηj to the original reconstructed output value.

In Section 4.2 we go through this construction in detail. The new TFHE may be
of independent interests.

1.3 Related Work

There is a long line of work studying the round complexity of secure computation,
both in the semi-honest and malicious models, the two-party and multi-party



settings, the honest majority and honest minority settings, and even in a variety
of other models. We will not aim to survey all of this work, but mention what
we know to be the best round complexity in the most relevant settings.

Constant round protocols have been known since Yao’s original two-round
construction for the two-party, semi-honest setting [21], and Beaver et al.’s con-
stant round protocol for the setting of a malicious minority [3]. In the two-party,
malicious setting, Katz and Ostrovsky give a five-round protocol and demon-
strate that this is tight [16]. There are several works demonstrating constant
round protocols in the multiparty, malicious majority setting ([17, 19] Of course,
with a malicious majority (including the two-party case), fairness is unachiev-
able, so these results are in the security-with-abort model, and are not directly
relevant to our own work.

In the multiparty setting with a malicious minority, the best known round
complexity is achieved by the two-round protocol of Garg et al. [10], but, as we
outlined above, their result does not ensure fairness. For t < N/5 corruptions,
Damg̊ard and Ishai give a three-round protocol with a guarantee of output de-
livery [8], though they require private point-to-point channels, and establishing
these would add at least one additional round. For t < N/2, the exact round
complexity of their protocol is a bit hard to discern, but it is greater than four
(and we believe more); in this domain, the five-round protocol of Asharov et
al. [1], which also guarantees output delivery, is the best known. For t = 1 cor-
ruption, Ishai et al. [15] showed that N ≥ 5 parties are sufficient to securely
compute general functionalities with guarantee of output delivery. The work [15]
also showed 2-round protocols (guarantee of output delivery) for general func-
tionalities in the server-client model, with a more restricted corruption pattern
(e.g. one corrupted client and coalitions of t < N/3 servers). In the semi-honest,
two-party setting, Yao’s original construction already achieves two-rounds.

Very recently and independent of this paper, Mukherjee and Wichs [] con-
structed 2-round protocols (in the CRS model) that achieve security with abort
against any number of corruptions. In the setting of an honest majority, their
protocol can be easily modified to achieve guarantee of output delivery in 3
rounds, assuming private communication channels, and in 4 rounds without pri-
vate communication channels.

Gennaro et al. [11] provide a lower bound on the round complexity of fair
protocols whenever 1 < t < N/2. Our lower-bound strengthens theirs, ruling out
even a fail-stop adversary that corrupts a single party.

2 Preliminaries

In this section, we present basic vector operations. Due to space limit, we describe
the security definitions for MPC and the LWE assumptions in the full version
of this paper [14].



2.1 Elementary Vector Operations

We define a number of vector/matrix operations that we describe below. Let a, b
be vectors of dimension k. Let ` = blog qc+ 1 for some modulus q. Note that the
operations we describe are also defined over matrices, operating row by row on
the matrix, and that all arithmetic is over Zq.

BitDecomp(a) = the k ·` dimensional vector (a1,0, . . . , a1,`−1, . . . , ak,0, . . . ak,`−1)
where ai,j is the jth bit in the binary representation of ai, with bits ordered
from least significant to most significant.

BitDecomp−1(a′) For a′ = (a1,0, . . . , a1,`−1, . . . , ak,0, . . . ak,`−1), let

BitDecomp−1(a′) =
(∑`−1

j=0 2ja1,j , . . . ,
∑`−1
j=0 2jak,j

)
, but defined even when

a′ isn’t binary.
Flatten(a′) = BitDecomp

(
BitDecomp−1(a′)

)
Powersof2(b) = (b1, 2b1, 4b1, . . . , 2

`−1b1, . . . , bk, . . . 2
`−1bk).

3 Impossibility Result

In this section, we are going to show that it is impossible to construct a two-round
secure protocol for general multi-party computation with fairness, even with an
honest majority of players. Our impossibility results holds in the standalone
model, even with non-rushing fail-stop adversaries with access to a CRS. Our
result strengthens that of Gennaro, as it holds even for adversaries corrupting
only a single party, while their result cannot rule out the case where t = 1.

We assume that the players have both point-to-point channels and a public
broadcast channel, but they do not have private point-to-point channels – an
eavesdropper can listen to all channels.4 We note that our three round proto-
col from Section 4 can be collapsed into a three round protocol if we give the
users access to a PKI of the appropriate form, so the assumption of non-private
channels in our lower-bound is natural.5 A more formal proof follows.

Theorem 1. Let C be a family of circuits, and let Π be a polynomial-time, 2-
round, 3-party secure protocol for computing U(C, x, 0) = C(x) for any C ∈
C, with fairness in the standalone model. Then there exists a virtual black-box
obfusctor for general circuits6.

Proof. We describe a VBB obfuscator O for all circuits in C. Before doing that,
we define some notation and our next message functions. We let M denote the
set of valid messages in the secure computation. We let ⊥ ∈M denote a special

4 Our lower bound holds even when the eavesdropper only listens to some channels.
5 Although we allow the eavesdropping adversary to corrupt two private channels at

once, we do not allow it to corrupt the parties themselves, so we do still maintain
an honest majority. However, there is still room to consider a weaker model where
the eavesdropper can only listen to a single channel.

6 We describe the definition of VBB obfuscation in the full version of this paper [14].



abort symbol, and we let ∅ denote the empty transcript (before any messages
have been sent). A partial incoming transcript, is either ∅ (if no messages have
been sent yet), or of the form (M,M), where each message is received from one
of the two other parties in the first round of the protocol. A partial outgoing
transcript is of the same form, but represents the two messages sent by a single
party in the first round, each going to one of the other parties. A full incoming
transcript is of the form ((M,M), (M,M)), where the first pair of messages are
those received in the first round, and the second pair are those received in the
second round. We define the following set of circuits.

πi,j(x, τ, r) : for parties i, j ∈ {1, 2, 3}, on input value x, partial incoming tran-
script τ and randomness r, the circuit outputs i’s next message to j.
πout(x, τ, r2) : the circuit computes P2’s output in the secure computation, given
input x, full incoming transcript τ and randomness r2.

The VBB obfuscation of circuit C is as follows. O(C) chooses randomness r1
and computes α2 = π12(C, ∅, r1), α3 = π13(C, ∅, r1). Note that they are the first-
round messages from P1 to P2 and P3. Then the obfuscator outputs the following
circuit Γα2,α3(x; r2, r3), which, on input x and randomness r2, r3 , performs the
following computations:

– γ(1) = π32(0, ∅, r3); β = π23(x, ∅, r2). (The relevant first round messages. )

– γ(2) = π32(0, (α3, β), r3). (The relevant second round message.)

– Output πout(x,
(
(α2, γ

(1)), (⊥, γ(2))
)
, r2). (P2’s output, given his full incom-

ing transcript.)

Basically, the circuit simulates P2,P3’s messages when P1 sends out α2, α3

and then aborts in the second round.

Fig. 1. A depiction of the messages used in the circuit Γα2,α3 . α messages are sent by
party P1, β messages by P2, and γ messages by P3. A subscript i indicates that the
recipient is Pi, and a superscript indicates a round number. Since we do not need all
protocol messages, we drop subscripts and superscripts where we can.



We claim that for any C ∈ C, Γα2,α3
is a secure VBB obfuscation of C. Effi-

ciency of Γα2,α3
follows from the fact that the secure computation is polynomial-

time. Correctness follows from the fairness of the underlying secure computation
protocol – we note that by the correctness of the protocol, P1 can learn the out-
put after he sees all the incoming messages, regardless of whether or not he
aborts in the second round. Thus by fairness of the protocol, P2 should also
receives the output, regardless of whether or not P1 aborts in the second round.
Thus, given the transcript (x,

(
(α2, γ

(1)), (⊥, γ(2))
)
, P2 can compute the output.

To prove the VBB property, recall that we need to prove that for any adver-
sary AO, for any circuit C, there exists a simulator SO and a negligible function
ε such that

|Pr[AO(Γα2,α3
) = 1]− Pr[SCO(1|C|) = 1]| < ε(|C|)

By the security of the underlying secure computation, we know there exists an
ideal-world simulator, which we will denote by SE, that simulates the view of an
eavesdropper who listens to the channels between P1 and P2, and between P1 and

P3. We will denote by S(1)E the result of running SE and restricting the output
to the partial outgoing transcript, i.e. the first round messages sent from P1.

Then, SO gets (α̃2, α̃3) ← S(1)E , and constructs the circuit Γα̃2,α̃3
, as described

above; we note that neither C nor r1 are needed, once α̃2 and α̃3 are computed.
Finally, SO outputs AO(Γα̃2,α̃3).

Suppose that this does not meet the above security requirement. It follows
that there exists a distinguisher D that distinguishes between a real world exe-
cution of the protocol and the ideal simulation of SE. This follows immediately,
because the only difference between the true obfuscation and the simulated ob-
fuscation is the way in which α2 and α3 are generated. Therefore, on input
transcript τ , D simply takes the messages α2, α3 that constitute the first round
messages sent from P1 to P2 and P3 respectively, and he completes the construc-
tion of Γα2,α3

himself. D then runs AO on the resulting circuit and determines
from the output whether τ was simulated.

Remark. The lower bound proof can be extended to rule out protocols in the
CRS model, using the same idea. The obfuscated circuit will now embed crs as a
common reference string, and in the security proof, the simulator will simulate

the string, i.e. (c̃rs, α̃2, α̃3)← S(1)E .

Two Round Feasibility with a PKI. Note that the proof breaks down if
the parties have access to private channels, including in the scenario where they
have access to a PKI. This is because we need both first-round messages sent
from P1 in order to simulate round two of the protocol. In particular, without
access to α3, we could not correctly simulate γ(2) (as sent from P3 to P2 in round
two), and therefore we could guarantee the correct output of the obfuscation. The
only way to gain access to both α2 and α3 is either by eavesdropping on multiple
channels, or by corrupting two parties, but this latter approach would violate
our assumption of an honest majority. Indeed, as we mentioned previously, and



as we will see later, our construction in Section 4 can be collapsed to two rounds
if we have access to a PKI, with public keys of a particular form. It is still an
open question whether a two-round protocol with guaranteed output delivery is
possible, given access only to private channels.

4 Towards Fairness and Guarantee of Output Delivery

The previous section shows that two-round fair protocols are in general im-
possible. As discussed in the introduction, we can construct a three-round fair
protocol by adding one more round to the protocol by Garg et al. [10]; yet it
is unclear how to construct three-round protocols with guarantee of output de-
livery. In this section, we present our main contribution – we construct a new
threshold FHE scheme, which extends the notion of threshold FHE by Asharov
et al. [1] with enriched features. We elaborate on these below.

4.1 New Threshold Fully Homomorphic Encryption Scheme

As discussed in the introduction, our TFHE introduces a new idea of flexible
and transformed ciphertexts that play an important role in our 3-round MPC
construction. Here we first present the syntax: a threshold fully homomorphic
encryption scheme (TFHE) is basically a homomorphic encryption scheme, with
the difference that the key generation and decryption are N -party protocols in-
stead of algorithms. We will consider protocols defined in terms of some common
parameter pp.

– TFHE.Gen(pp) (Key Generation Protocol.) Initially each party holds
some parameter pp. At the conclusion of the protocol, each party Pi for
i ∈ [N ] publishes a public key pki, and keeps a private key ski.

– TFHE.DecS(C;v) (Threshold Decryption Protocol.) Let S be a set in
[N ], and v = {vi : i ∈ S} be some secret values, each held by one party.
The protocol is run among parties {Pi : i ∈ S}. Initially each party holds a
secret input v[i], a secret key ski, and receives a ciphertext C as the public
input. At the end, the parties in the set can compute the decrypted message
m. Intuitively, the secret input v is used for smudging the noise.
Note: in the setting with honest majority, we assume that |S| ≥ [N/2]+1. For
simplicity, we assume the input ciphertext C has already been transformed
to one that corresponds to the set of public keys pkS = {pki : i ∈ S}. See
the syntax below for further exposition.

– TFHE.Enci(pp, pk1, . . . , pkN ;m) (Encryption Algorithm.) Let parties {Pi}i∈[N ]

participate in the protocol, and {pki}i∈[N ] be the set of their public keys. The
encryption algorithm is non-interactive and run by party Pi. The algorithm
takes inputs the public parameter, the public keys {pki}i∈[N ], a message m,
and computes a ciphertext C.
We implicitly require that the ciphertexts here are flexible in the sense that
they do not commit to a particular public key/secret key yet; in particular,
we can use the algorithm below to transform a flexible ciphertext into one
that corresponds to a set of public keys.



– TFHE.TransCT(C;S) (Ciphertext Transform Algorithm.) The algorithm
takes inputs a flexible ciphertext C (from the above encryption algorithm),
and a set S ⊆ [N ] and outputs a transformed ciphertext CS . The ciphertext
can be thought as one under the set of joint keys: pkS = {pki : i ∈ S}.

– TFHE.Eval(f, C1, . . . , Ct;S) (Evaluation Algorithm.) The evaluation al-
gorithm is non-interactive. A party Pi (can be any party) receives inputs
a function f : {0, 1}t → {0, 1}, flexible ciphertexts C1, . . . , Ct, and a set
S ⊆ [N ]. He computes an evaluated ciphertext C ′S with respect to the set S,
which can be thought as an evaluated ciphertext under the joint public key
pkS defined as above.

We summarize the main differences between our TFHE and that of the prior
work [1].

1. Our key generation does not output a joint public key. Instead each party
will only output their own public key pki. Then parties can run the Eval
algorithm to homomorphically compute on the ciphertexts under pkS for
some set S decided later. As pointed out in the introduction, this is an
important feature.

2. The construction of the prior work requires all parties to participate in the
decryption protocol (in the non-interactive case). Here we allow a subset
of parties to run the protocol; moreover, we allow a “threshold” type of
decryption where a majority of parties can decrypt the ciphertext.

These new features play an important role: intuitively, when a party generates
a ciphertext, he does not know who else might abort. The flexibility of ciphertexts
handles this problem – the parties can generate ciphertexts first, and later on
decide a set of public key (namely pkS = {pki : i ∈ S}), so that the flexible
ciphertexts can be transformed with respect to pkS . Then the parties can perform
homomorphic computation with respect to pkS and run the threshold decryption
algorithm.

Similar to the work [1], we do not define the security of TFHE on its own.
The reason is similar: requiring that the above protocols securely realize some
ideal key-generation and decryption functionalities is unnecessarily restrictive.
Instead, we will show that our TFHE scheme is secure directly in the context of
our implementation of general MPC in Section 4.3.

4.2 Construction of Our New TFHE

Following the intuition in the introduction, we describe our construction.

Common Parameter. All parties receive the common parameter pp of the
form: let N be the number of parties, L = poly(κ) be the maximum depth of
the circuits supported by the TFHE evaluation algorithm. Then we choose a
modulus q of poly(L,N) bits, lattice dimension parameter n = n(L,N), and
error distribution χ = χ(κ, L,N) appropriately for LWE security against 2κ

known attacks. Also, choose parameter m = m(κ, L) = O((n + N) log q). Let



the distribution χ be Bχ-bounded (i.e. with overwhelming probability, a sample
from χ has the absolute value less than Bχ). Let ` = [log q] + 1, D = (n+ 1) · `,
and Bsmug ∈ Z be an integer bound, satisfying the following relations:

(D + 1)L ·N ·Bχ
Bsmug

= negl(κ), Bsmug < q/8.

Then pp = (n, q, χ,m,Bχ, Bsmug,B) where B is sampled uniformly from Zm×nq .

TFHE.Gen(pp): This is a two-round protocol among N parties.

– (Round 1): Each party Pi samples a random vector si ∈ Znq , and computes
bi = B · si + ei where ei ← χm. Then Pi broadcasts pki = bi, and keep si
secretly.

– (Round 2): Each party Pi secret shares si using the Shamir Secret Sharing
Scheme with threshold [N/2] + 1. Let pi denote the random polynomial
vector (of degree [N/2] + 1) generated by Pi where pi(0) = si (This is how
the Shamir Secret Sharing works). Pi sends pi(j) to Pj for j ∈ [N ]. At the
end, Pi sets ski = (p1(i),p2(i), . . . ,pN (i)).
Note that although we do not assume secure point-to-point channels, send-
ing private message in the second round is achievable – everyone can send a
public key in the first round, and later on every party encrypts the outgo-
ing messages. For simplicity, we just assume there are secure point-to-point
channels available in the second round.

TFHE.DecS(C;v): Let v be a vector of |S| numbers (error terms), where v[i]
(the element indexed by i) is held by party Pi for i ∈ S; let C be a ciphertext.
For S ⊆ [N ] such that |S| ≥ N/2, this is a one-round protocol among parties
{Pi : i ∈ S}. For simplicity, we assume that C is a transformed ciphertext that
corresponds to pkS .

– Each party Pi parses C as a matrix in ZD×Dq . Then he picks the β-th

row, Cβ , where β = blog2(q/2)c. Note that 2β ∈ (q/4, q/2]. Then parse
Cβ = (Cβ,1, Cβ,2) where Cβ,1 ∈ Z`q, Cβ,2 ∈ Zn·`q . Then he computes zi =∑
j∈S pj(i) and broadcasts wi = 〈BitDecomp−1(Cβ,2), zi〉+ v[i].

– At the end, each party picks an arbitrary subset T ⊆ S such that |T | =
[N/2]+1. Then they compute w =

∑
k∈T µk(0)wk, where µk is the Lagrange

polynomial. Finally they output
⌊
BitDecomp−1(Cβ,1)−w

2β

⌉
.

TFHE.Enci(pp, pk1, . . . , pkN ;m): This is the i-th party’s encryption algorithm.
Let m ∈ {0, 1} be the input message.

– The algorithm parses pp as a matrix B ∈ Zm×nq , pkj = bj ∈ Zmq for

j ∈ [N ]. Then it samples a random matrix R ∈ {0, 1}D×m, and com-
putes Wj = BitDecomp

(
R · bj || 0D×n

)
for j 6= i. It computes Wi =

Flatten
(
m · ID + BitDecomp

(
R · bi || R ·B

))
, where ID is the identity ma-

trix of dimension D ×D. It outputs C = (W1, . . . ,WN ).



TFHE.TransCT(C;S):

– The algorithm parses C as a N matrices (W1, . . . ,WN ). It outputs
CS =

∑
j∈S Wj .

TFHE.Eval(f, C1, . . . , Ct;S):

– For simplicity, we assume that all the ciphertexts C1, . . . , Ct’s are trans-
formed to ones that correspond to pkS (otherwise we can apply the above
TFHE.TransCT first). We then observe that actually a transformed cipher-
text is of the same form of the GSW scheme [12] where the public key is
(
∑
k∈S bk || B). Thus, we can run exactly the same evaluation as the GSW

scheme! More specifically, we represent f as a circuit (with all NAND gates).
Then we can homomorphically computeNAND(C,C ′) by outputting Flatten(ID−
C · C ′). See the work [12] for detailed explanation.

With out setting of parameters, we can argue that flexible ciphertexts do not
leak the underlying messages to the other parties (and so do the transformed
ciphertexts, since they can be obtained deterministically from flexible cipher-
texts). This can be shown formally using the lemma below in a strait-forward
way as done by the work [12]. See their work [12] for further exposition7.

Lemma 1 (Implicit in [20]). Let n,m, χ, q be parameters such that the LWEn,q,χ
holds, and N be some polynomial. Then for m = O((n+N) log q), for any vec-
tors b1, b2, . . . , bN−1 ∈ Zmq , then the distribution described as above (B, b,R ·
(B||b),R·(b1|| . . . ||bN−1)) is computationally indistinguishable from (B,u,U,R·
(b1|| . . . ||bN−1)), where B is uniform over Zm×nq , u is uniform over Zmq , U is

uniform over ZD×(n+1)
q , and R is uniform over {0, 1}D×m, D = (n + 1) · `,

` = [log q] + 1.

4.3 Three-round MPC with Guarantee of Output Delivery

Now we are ready to present our new three-round MPC for general functions
using the new TFHE we have developed in the previous section. We first present
a simpler case that considers MPC for polynomial-time deterministic boolean
function f (where all parties receive the same bit). Moreover, the security holds
against static semi-malicious fail-stop attackers8 corrupting less than half of the
parties. In Section 5, we discuss how to handle general cases using standard
techniques.

7 Our setting of parameters is slightly different from that of the work [12], so our
parameters in the lemma are slightly different. The analysis is essentially identical.

8 Basically, a semi-malicious attacker is one whose behavior follows the protocol with
some input and randomness he must know. Protocols that achieve such security
can be upgraded to malicious security without adding a coin flipping round (c.f.
Section 5). See the full version of this paper [14] for further details about the notion
and its advantage.



Remark 1. Our protocol only needs a public broadcast channel9. For simplicity
of presentation, we make the following two assumptions. First, there are secure
point-to-point channels available. Second, when a party distributes shares to the
other parties, he must either send messages to all parties or send messages to no
one. These assumptions are not necessary, and we sketch how to achieve them in
our protocol using the broadcast channel. We observe that our protocol will only
use the secure channels to distribute shares in the second round. So in the first
round everyone can publish a public key, and then in the second round, everyone
broadcasts encryptions of the shares (under different parties’ public keys). This
can implement the secure channels, and ensure that parties will either abort (not
broadcast at all) or distribute messages to all the other parties.

Our Construction. Let f : {0, 1}(`in)
N

→ {0, 1} be a function computed by a
depth L circuit, where `in is the input length of each party.

Input: Each party Pi holds some input xi ∈ {0, 1}`in . The parties share the
public parameter pp as described in the TFHE scheme. (pp can be viewed as the
common reference string. The generation of pp depends on L, since we need the
TFHE to support circuits up to depth L).

The Protocol:

– Round 1: The parties execute the first round of the TFHE.Gen(pp). If anyone
aborts in this round, then he is simply ignored. Let S1 ⊆ [N ] be the set of
non-aborting parties at this round. At the end of this round, each party
holds all {pki}i∈S1 .

– Round 2: The parties execute the following procedures at the same time:

• The (currently non-aborting) parties execute the second round of the
TFHE.Gen(pp).

• For i ∈ S1, Pi broadcasts an encryption of his input using the algorithm
TFHE.Enci(xi) (encrypt it bit-by-bit). Note that these are a flexible ci-
phertexts.

• Each Pi samples a uniformly random error term from ηi ← [−Bsmug, Bsmug],
and compute random Shamir secret shares (with the same threshold
[T/2] + 1). Denote the polynomial as ri (note that ri(0) = ηi). Then
each Pi sends ri(j) to party Pj for j 6= i.

Let Ci = (Ci,1, Ci,2, . . . , Ci,`in) be the broadcasted ciphertexts from Pi, and
(ri(1), . . . , ri(N)) be the shares from Pi to the other parties.
If anyone aborts at this round, either not sending the second round of
TFHE.Gen(pp), the ciphertexts, or the shares of error terms, then he (and
his input) are again ignored. Let S2 ⊆ S1 be the set of non-aborting parties.

– Round 3: Now each non-aborting party in S2 first transforms the cipher-
texts he received to ones that correspond to pkS2

. Let {Cj,k}j∈S2,k∈[`in] be the

9 In the semi-malicious setting, this can be easily implemented by reliable public point-
to-point channels, where an eavesdropper can listen to the all channels but cannot
modify the messages



broadcasted ciphertexts. For i ∈ S2, Pi first computes CS2

j,k = TFHE.TransCT(Cj,k;S2)
for j ∈ S2, k ∈ [`in].
Let fS2 be the residual function where the inputs of [N ] \ S2 are replaced
with the default values. Pi homomorphically computes the residual function,
i.e. C∗ = TFHE.Eval(fS2 , {CS2

j,k}j∈S2,k∈[`in]).
Then each Pi computes vi =

∑
k∈S2

rk(i). Finally, they run the threshold
decryption TFHE.DecS2({C∗;vS2}), where vS2 denotes the vector of the fol-
lowing set {vj : j ∈ S2}.
Recall that the protocol TFHE.Dec handles situations when parties abort.
In this round, parties broadcast some messages, and a majority of them is
sufficient to recover the output.

Theorem 2. Let f be any deterministic functionality with N inputs and one
output. Let pp be parameters sampled according to the choice as the TFHE above,
and the corresponding LWE assumption holds. Then the above protocol π UC-
realizes the ideal functionality Ff with guarantee of output delivery, in the pres-
ence of any static (semi-malicious) fail-stop adversary who corrupts less than
[N/2] parties.

As explained in the introduction, the transformed ciphertexts {CS2

j,k}j∈S2,k∈[`in]
are GSW ciphertexts under the public key (B,

∑
i∈S2

bi). Therefore, by applying
the evaluation algorithm, C∗ is a ciphertext of the output y. Each party in our
threshold decryption protocol, as explained, outputs a share of y by computing
some inner product with the shares (and substraction). Thus, the correctness
holds.

To prove security, we need to construct a simulator S that generates the
views of the honest parties. We sketch the construction: the simulator simulates
the public parameter faithfully, and generates the messages in each round as
follows. Let I be the set of corrupted set.

– (First round). S simulates the public keys of honest parties’ by random
vectors ui for i /∈ I.

– (Second round). S simulates the encrypted ciphertexts by TFHE.Enc(0),
and simulates the error terms and shares of secret keys by sending random
values (or vectors).

– (Third round). S then reads the witness tapes of the adversary to get secret
keys and inputs from the corrupted parties. He sets the aborting parties’
inputs to be the default value, and then queries the ideal functionality to
receive the output y. From the output y and the secret keys of the corrupted
parties, S then figures out consistent outputs of the honest parties.

Intuitively, the LWE assumption guarantees that the simulation in round 1 is
indistinguishable, and Lemma 1 guarantees that TFHE.Enc(0) is indistinguish-
able form the encryptions in the real world. The last step is the most challenging,
and we will further explain the ideas in the appendix.

In the full version of this paper [14], we present the detailed analyses of
correctness and security with further exposition.



5 Variants and Generalizations

In this section, we discuss variants of our basic protocol in the following as-
pects: (1) how to handle functionalities with longer inputs, (2) how to handle
randomized functionalities, (3) how to compile a protocol that is secure against
semi-malicious adversaries into one that is secure against malicious adversaries,
and (4) how to reduce one round by using a PKI setup. These issues can be han-
dled using standard techniques as presented in the work of Asharov et al. [1].
We highlight the ideas and refer curious readers to their work for further details.

Functions with longer outputs. Let f : {0, 1}(`in)
N

→ {0, 1}`out be an N -ary

functionality. We consider `out boolean functionalities
{
fi : {0, 1}(`in)

N

→ {0, 1}
}
i∈[`out]

where each fi outputs the i-th bit of f . Let πi be the protocol computing fi as
we described in Section 4. To compute f , we simply run π1, . . . , π`out in parallel,
and we treat an abort in any one of the execution as an abort in all executions.
To argue that the resulting protocol is secure against an arbitrary semi-malicious
adversary, we also require the adversary to include proofs, in the form of wit-
nesses written to their witness tape, of input-consistency across the parallel
executions. This is to enforce that the adversary is using the same inputs for all
the subprotocols. Below we will describe a compiler that upgrades the protocol
to one against malicious adversaries.

Randomized functionalities. Our basic MPC protocol only considers deter-
ministic functionalities where all the parties receive the same output. It can
be generalized to handle with randomized functionalities and individual out-
puts via a standard transformation. Basically in this transformation, instead
of computing some randomized function f(x1, . . . , xN ; r), the parties compute
the deterministic function f ′ ((x1, r1), . . . , (xN , rN )) = f

(
x1, . . . , xN ;⊕i∈[N ]ri

)
.

This transformation does not add additional rounds.

Semi-malicious security to malicious security. Our basic MPC protocol is
only secure in the semi-malicious setting. Asharov et al. [1] presents a simple
and general round-preserving compiler from semi-malicious to fully malicious
security using UC NIZKs [9] in the CRS model. In particular, in each round,
the attacker must prove (in zero-knowledge) that it is following the protocol
consistently with some setting of the random coins. In particular, we present
the theorem of Asharov et al. [1]:

Theorem 3 ([1]). There is a generic round-preserving compiler such the fol-
lowing holds. Let F be an N -ary functionality and π be an N -party protocol.
Suppose π t-securely computes F against semi-malicious fail-stop adversaries
with guarantee of output delivery (or fairness), then the compiled protocol π′

t-securely computes F against malicious adversaries with guarantee of output
delivery (or fairness, respectively) in the CRS, FZK, and authenticated broadcast-
hybrid model. Moreover, π′ has the same round complexity as π.

Together with Theorem 2, we are able to achieve the following corollary:



Corollary 1. Assume that the LWE assumption holds and UC-NIZK exists.
Then there exists a three-round MPC in the CRS and authenticated broadcast
hybrid model, with a guarantee of output delivery, and providing security against
a malicious adversary that corrupts less than half of the parties.

Two rounds with PKI. We recall that in the first round of our protocol, each
party just publishes some public key bi = B · si + ei, which is independent of
the input. If there is an additional setup public-key infrastructure (PKI), then
we can move the first round to the PKI. Thus the entire MPC execution would
consist only of the remaining two rounds. The resulting PKI is very simple and
does not require a trusted party for setup; we just need a trusted party to choose
a CRS, and then each party can choose its own public key individually (possibly
maliciously). Moreover, the PKI can be reused for many MPC executions of
arbitrary functions f with arbitrary inputs.

The security analysis is exactly the same as that of our original three-round
protocol in the CRS model, just by noting that the first round there consists
of broadcast message, which does not depend on the inputs of the parties (and
hence we can think of it as a public key). In the malicious case, the parties need
to provide a zero-knowledge proof of knowing some randomness of their public
keys registered in the PKI. This is similar to our original protocol (without
PKI) where the parties need to provide a zero-knowledge proof of knowing some
randomness of their first round messages.
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