
An Improved BKW Algorithm for LWE
with Applications to Cryptography and Lattices

Paul Kirchner1 and Pierre-Alain Fouque2

1 École normale supérieure
2 Université de Rennes 1 and Institut universitaire de France

{paul.kirchner,pierre-alain.fouque}@ens.fr

Abstract. In this paper, we study the Learning With Errors problem
and its binary variant, where secrets and errors are binary or taken in
a small interval. We introduce a new variant of the Blum, Kalai and
Wasserman algorithm, relying on a quantization step that generalizes
and fine-tunes modulus switching. In general this new technique yields
a significant gain in the constant in front of the exponent in the over-
all complexity. We illustrate this by solving within half a day a LWE
instance with dimension n = 128, modulus q = n2, Gaussian noise
α = 1/(

√
n/π log2 n) and binary secret, using 228 samples, while the

previous best result based on BKW claims a time complexity of 274 with
260 samples for the same parameters.
We then introduce variants of BDD, GapSVP and UniqueSVP, where the
target point is required to lie in the fundamental parallelepiped, and
show how the previous algorithm is able to solve these variants in subex-
ponential time. Moreover, we also show how the previous algorithm can
be used to solve the BinaryLWE problem with n samples in subexpo-
nential time 2(ln 2/2+o(1))n/ log log n. This analysis does not require any
heuristic assumption, contrary to other algebraic approaches; instead, it
uses a variant of an idea by Lyubashevsky to generate many samples
from a small number of samples. This makes it possible to asymptoti-
cally and heuristically break the NTRU cryptosystem in subexponential
time (without contradicting its security assumption). We are also able
to solve subset sum problems in subexponential time for density o(1),
which is of independent interest: for such density, the previous best al-
gorithm requires exponential time. As a direct application, we can solve
in subexponential time the parameters of a cryptosystem based on this
problem proposed at TCC 2010.

1 Introduction

The Learning With Errors (LWE) problem has been an important problem in
cryptography since its introduction by Regev in [?]. Many cryptosystems have
been proven secure assuming the hardness of this problem, including Fully Ho-
momorphic Encryption schemes [?,?]. The decision version of the problem can be
described as follows: given m samples of the form (a, b) ∈ (Zq)n×Zq, where a are
uniformy distributed in (Zq)n, distinguish whether b is uniformly chosen in Zq or



is equal to ⟨a, s⟩ + e for a fixed secret s ∈ (Zq)n and e a noise value in Zq chosen
according to some probability distribution. Typically, the noise is sampled from
some distribution concentrated on small numbers, such as a discrete Gaussian
distribution with standard deviation αq for α = o(1). In the search version of
the problem, the goal is to recover s given the promise that the sample instances
come from the latter distribution. Initially, Regev showed that if αq ≥ 2

√
n,

solving LWE on average is at least as hard as approximating lattice problems
in the worst case to within Õ(n/α) factors with a quantum algorithm. Peikert
shows a classical reduction when the modulus is large q ≥ 2n in [?]. Finally,
in [?], Brakerski et al. prove that solving LWE instances with polynomial-size
modulus in polynomial time implies an efficient solution to GapSVP.

There are basically three approaches to solving LWE: the first relies on lattice
reduction techniques such as the LLL [?] algorithm and further improvements [?]
as exposed in [?,?]; the second uses combinatorial techniques [?,?]; and the third
uses algebraic techniques [?]. According to Regev in [?], the best known algorithm
to solve LWE is the algorithm by Blum, Kalai and Wasserman in [?], originally
proposed to solve the Learning Parities with Noise (LPN) problem, which can be
viewed as a special case of LWE where q = 2. The time and memory requirements
of this algorithm are both exponential for LWE and subexponential for LPN in
2O(n/ log n). During the first stage of the algorithm, the dimension of a is reduced,
at the cost of a (controlled) decrease of the bias of b. During the second stage,
the algorithm distinguishes between LWE and uniform by evaluating the bias.

Since the introduction of LWE, some variants of the problem have been pro-
posed in order to build more efficient cryptosystems. Some of the most interesting
variants are Ring-LWE by Lyubashevsky, Peikert and Regev in [?], which aims to
reduce the space of the public key using cyclic samples; and the cryptosystem by
Döttling and Müller-Quade [?], which uses short secret and error. In 2013, Mic-
ciancio and Peikert [?] as well as Brakerski et al. [?] proposed a binary version
of the LWE problem and obtained a hardness result.

Related Work. Albrecht et al. have presented an analysis of the BKW algo-
rithm as applied to LWE in [?,?]. It has been recently revisited by Duc et al., who
use a multi-dimensional FFT in the second stage of the algorithm [?]. However,
the main bottleneck is the first BKW step and since the proposed algorithms do
not improve this stage, the overall asymptotic complexity is unchanged.

In the case of the BinaryLWE variant, where the error and secret are binary
(or sufficiently small), Micciancio and Peikert show that solving this problem
using m = n(1 + Ω(1/ log(n))) samples is at least as hard as approximating lat-
tice problems in the worst case in dimension Θ(n/ log(n)) with approximation
factor Õ(

√
nq). We show in the full version that existing lattice reduction tech-

niques require exponential time. Arora and Ge describe a 2Õ(αq)2 -time algorithm
when q > n to solve the LWE problem [?]. This leads to a subexponential time
algorithm when the error magnitude αq is less than

√
n. The idea is to trans-

form this system into a noise-free polynomial system and then use root finding
algorithms for multivariate polynomials to solve it, using either relinearization
in [?] or Gröbner basis in [?]. In this last work, Albrecht et al. present an algo-



rithm whose time complexity is 2
(ω+o(1))n log log log n

8 log log n when the number of samples
m = (1 + o(1))n log log n is super-linear, where ω < 2.3728 is the linear algebra
constant, under some assumption on the regularity of the polynomial system of
equations; and when m = O(n), the complexity becomes exponential.

Contribution. Our first contribution is to present in a unified framework the
BKW algorithm and all its previous improvements in the binary case [?,?,?,?]
and in the general case [?]. We introduce a new quantization step, which gener-
alizes modulus switching [?]. This yields a significant decrease in the constant of
the exponential of the complexity for LWE. Moreover our proof does not require
Gaussian noise, and does not rely on unproven independence assumptions. Our
algorithm is also able to tackle problems with larger noise.

We then introduce generalizations of the BDD, GapSVP and UniqueSVP prob-
lems, and prove a reduction from these variants to LWE. When particular param-
eters are set, these variants impose that the lattice point of interest (the point of
the lattice that the problem essentially asks to locate: for instance, in the case of
BDD, the point of the lattice closest to the target point) lie in the fundamental
parallelepiped; or more generally, we ask that the coordinates of this point rela-
tive to the basis defined by the input matrix A has small infinity norm, bounded
by some value B. For small B, our main algorithm yields a subexponential-time
algorithm for these variants of BDD, GapSVP and UniqueSVP.

Through a reduction to our variant of BDD, we are then able to solve the
subset-sum problem in subexponential time when the density is o(1), and in
time 2(ln 2/2+o(1))n/ log log n if the density is O(1/ log n). This is of independent
interest, as existing techniques for density o(1), based on lattice reduction, re-
quire exponential time. As a consequence, the cryptosystems of Lyubashevsky,
Palacio and Segev at TCC 2010 [?] can be solved in subexponential time.

As another application of our main algorithm, we show that BinaryLWE with
reasonable noise can be solved in time 2(ln 2/2+o(1))n/ log log n instead of 2Ω(n); and
the same complexity holds for secret of size up to 2logo(1) n. As a consequence,
we can heuristically recover the secret polynomials f , g of the NTRU problem
in subexponential time 2(ln 2/2+o(1))n/ log log n (without contradicting its security
assumption). The heuristic assumption comes from the fact that NTRU samples
are not random, since they are rotations of each other: the heuristic assumption
is that this does not significantly hinder BKW-type algorithms. Note that there
is a large value hidden in the o(1) term, so that our algorithm does not yield
practical attacks for recommended NTRU parameters.

Our results are extended to the case where the secret is small with respect
to the L2 norm in the full version [?].

2 Preliminaries

We identify any element of Z/qZ to the smallest of its equivalence class, the
positive one in case of tie. Any vector x ∈

(
Z/qZ

)n has an Euclidean norm

||x|| =
√∑n−1

i=0 x2
i and ||x||∞ = maxi|xi|. A matrix B can be Gram-Schmidt



orthogonalized in B̃, and its norm ||B|| is the maximum of the norm of its
columns. We denote by (x|y) the vector obtained as the concatenation of vectors
x, y. Let I be the identity matrix and we denote by ln the neperian logarithm and
log the binary logarithm. A lattice is the set of all integer linear combinations
Λ(b1, . . . , bn) =

∑
i bi ·xi (where xi ∈ Z) of a set of linearly independent vectors

b1, . . . , bn called the basis of the lattice. If B = [b1, . . . , bn] is the matrix basis,
lattice vectors can be written as Bx for x ∈ Zn. Its dual Λ∗ is the set of x ∈ Rn

such that ⟨x, Λ⟩ ⊂ Zn. We have Λ∗∗ = Λ. We borrow Bleichenbacher’s definition
of bias [?].

Definition 1. The bias of a probability distribution ϕ over Z/qZ is

Ex∼ϕ[exp(2iπx/q)].

This definition extends the usual definition of the bias of a coin in Z/2Z: it
preserves the fact that any distribution with bias b can be distinguished from
uniform with constant probability using Ω(1/b2) samples, as a consequence of
Hoeffding’s inequality; moreover the bias of the sum of two independent variable
is still the product of their biases. We also have the following simple lemma:

Lemma 1. The bias of the Gaussian distribution of mean 0 and standard devi-
ation qα is exp(−2π2α2).

Proof. The bias is the value of the Fourier transform at −1/q.

We introduce a non standard definition for the LWE problem. However as a
consequence of Lemma 1, this new definition naturally extends the usual Gaus-
sian case (as well as its standard extensions such as the bounded noise variant
[?, Definition 2.14]), and it will prove easier to work with.

Definition 2. Let n ≥ 0 and q ≥ 2 be integers. Given parameters α and ϵ, the
LWE distribution is, for s ∈ (Z/qZ)n, a distribution on pairs (a, b) ∈ (Z/qZ)n ×
(R/qZ) such that a is sampled uniformly, and for all a,

|E[exp(2iπ(⟨a, s⟩ − b)/q)|a] exp(α′2) − 1| ≤ ϵ

for some universal α′ ≤ α.
For convenience, we define β =

√
n/2/α. In the remainder, α is called the

noise parameter3, and ϵ the distortion parameter. Also, we say that a LWE dis-
tribution has a noise distribution ϕ if b is distributed as ⟨a, s⟩ + ϕ.

Definition 3. The Decision-LWE problem is to distinguish a LWE distribution
from the uniform distribution over (a, b). The Search-LWE problem is, given sam-
ples from a LWE distribution, to find s.

Definition 4. The real λi is the radius of the smallest ball, centered in 0, such
that it contains i vectors of the lattice Λ which are linearly independent.
3 Remark that it differs by a constant factor from other authors’ definition of α.



We define ρs(x) = exp(−π||x||2/s2) and ρs(S) =
∑

x∈S ρs(x) (and similarly
for other functions). The discrete Gaussian distribution DE,s over a set E and of
parameter s is such that the probability of DE,s(x) of drawing x ∈ E is equal to
ρs(x)/ρs(E). To simplify notation, we will denote by DE the distribution DE,1.

Definition 5. The smoothing parameter ηϵ of the lattice Λ is the smallest s
such that ρ1/s(Λ∗) = 1 + ϵ.

Now, we will generalize the BDD, UniqueSVP and GapSVP problems by using
another parameter B that bounds the target lattice vector. For B = 2n, we
recover the usual definitions if the input matrix is reduced.

Definition 6. The BDD||.||∞
B,β (resp. BDD||.||

B,β) problem is, given a basis A of the
lattice Λ, and a point x such that ||As − x|| ≤ λ1/β < λ1/2 and ||s||∞ ≤ B
(resp. ||s|| ≤ B), to find s.

Definition 7. The UniqueSVP||.||∞
B,β (resp. UniqueSVP||.||

B,β) problem is, given a
basis A of the lattice Λ, such that λ2/λ1 ≥ β and there exists a vector s such
that ||As|| = λ1 with ||s||∞ ≤ B (resp. ||s|| ≤ B), to find s.

Definition 8. The GapSVP||.||∞
B,β (resp. GapSVP||.||

B,β) problem is, given a basis A
of the lattice Λ to distinguish between λ1(Λ) ≥ β and if there exists s ̸= 0 such
that ||s||∞ ≤ B (resp. ||s|| ≤ B) and ||As|| ≤ 1.

Definition 9. Given two probability distributions P and Q on a finite set S,
the Kullback-Leibler (or KL) divergence between P and Q is

DKL(P ||Q) =
∑
x∈S

ln
(

P (x)
Q(x)

)
P (x) with ln(x/0) = +∞ if x > 0.

The following two lemmata are proven in [?] :

Lemma 2. Let P and Q be two distributions over S, such that for all x, |P (x)−
Q(x)| ≤ δ(x)P (x) with δ(x) ≤ 1/4. Then :

DKL(P ||Q) ≤ 2
∑
x∈S

δ(x)2P (x).

Lemma 3. Let A be an algorithm which takes as input m samples of S and
outputs a bit. Let x (resp. y) be the probability that it returns 1 when the input
is sampled from P (resp. Q). Then :

|x − y| ≤
√

mDKL(P ||Q)/2.

Finally, we say that an algorithm has a negligible probability of failure if its
probability of failure is 2−Ω(n). 4

4 Some authors use another definition.



2.1 Secret-Error Switching
At a small cost in samples, it is possible to reduce any LWE instance to an
instance where the secret follows the same distribution as the error [?,?].
Theorem 1. Given an oracle that solves LWE with m samples in time t with the
secret coming from the rounded error distribution, it is possible to solve LWE with
m+O(n log log q) samples with the same error distribution (and any distribution
on the secret) in time t + O(mn2 + (n log log q)3), with negligible probability of
failure.

Furthermore, if q is prime, we lose n + k samples with probability of failure
bounded by q−1−k.
Proof. First, select an invertible matrix A from the vectorial part of O(n log log q)
samples in time O((n log log q)3) [?, Claim 2.13].

Let b be the corresponding rounded noisy dot products. Let s be the LWE
secret and e such that As + e = b. Then the subsequent m samples are trans-
formed in the following way. For each new sample (a′, b′) with b′ = ⟨a′, s⟩ + e′,
we give the sample (−tA−1a′, b′ − ⟨tA−1a′, b⟩) to our LWE oracle.

Clearly, the vectorial part of the new samples remains uniform and since

b′ − ⟨tA−1a′, b⟩ = ⟨−tA−1a′, b − As⟩ + b′ − ⟨a′, s⟩ = ⟨−tA−1a′, e⟩ + e′

the new errors follow the same distribution as the original, and the new secret is
e. Hence the oracle outputs e in time t, and we can recover s as s = A−1(b−e).

If q is prime, the probability that the n + k first samples are in some hyper-
plane is bounded by qn−1q−n−k = q−1−k.

2.2 Low dimension algorithms
Our main algorithm will return samples from a LWE distribution, while the bias
decreases. We describe two fast algorithms when the dimension is small enough.
Theorem 2. If n = 0 and m = k/b2, with b smaller than the real part of the
bias, the Decision-LWE problem can be solved with advantage 1 − 2−Ω(k) in time
O(m).

Proof. The algorithm Distinguish computes x = 1
m

∑m−1
i=0 cos(2iπbi/q) and

returns the boolean x ≥ b/2. If we have a uniform distribution then the average
of x is 0, else it is larger than b/2. The Hoeffding inequality shows that the
probability of |x − E[x]| ≥ b/2 is 2−k/8, which gives the result.

Lemma 4. For all s ̸= 0, if a is sampled uniformly, E[exp(2iπ⟨a, s⟩/q)] = 0.
Proof. Multiplication by s0 in Zq is a gcd(s0, q)-to-one map because it is a
group morphism, therefore a0s0 is uniform over gcd(s0, q)Zq. Thus, by using
k = gcd(q, s0, . . . , sn−1) < q, ⟨a, s⟩ is distributed uniformly over kZq so

E[exp(2iπ⟨a, s⟩/q)] = q

k

q/k−1∑
j=0

exp(2iπjk/q) = 0.



Algorithm 1 FindSecret
function FindSecret(L)

for all (a, b) ∈ L do
f [a]← f [a] + exp(2iπb/q)

end for
t← FastFourierTransform(f)
return arg maxs∈(Z/qZ)n ℜ(t[s])

end function

Theorem 3. The algorithm FindSecret, when given m > (8n log q + k)/b2

samples from a LWE problem with bias whose real part is superior to b returns
the correct secret in time O(m + n log2(q)qn) except with probability 2−Ω(k).

Proof. The fast Fourier transform needs O(nqn) operations on numbers of bit
size O(log(q)). The Hoeffding inequality shows that the difference between t[s′]
and E[exp(2iπ(b − ⟨a, s′⟩)/q)] is at most b/2 except with probability at most
2 exp(−mb2/2). Consequently, it holds for all s′ except with probability at most
2qn exp(−mb2/2) = 2−Ω(k) using the union bound. Then t[s] ≥ b − b/2 = b/2
and for all s′ ̸= s, t[s′] < b/2 so the algorithm returns s.

3 Main algorithm

In this section, we present our main algorithm, prove its asymptotical complexity,
and present practical results in dimension n = 128.

3.1 Rationale

A natural idea in order to distinguish between an instance of LWE (or LPN) and
a uniform distribution is to select some k samples that add up to zero, yielding
a new sample of the form (0, e). It is then enough to distinguish between e and a
uniform variable. However, if δ is the bias of the error in the original samples, the
new error e has bias δk, hence roughly δ−2k samples are necessary to distinguish
it from uniform. Thus it is crucial that k be as small a possible.

The idea of the algorithm by Blum, Kalai and Wasserman BKW is to perform
“blockwise” Gaussian elimination. The n coordinates are divided into k blocks
of length b = n/k. Then, samples that are equal on the first b coordinates are
substracted together to produce new samples that are zero on the first block.
This process is iterated over each consecutive block. Eventually samples of the
form (0, e) are obtained.

Each of these samples ultimately results from the addition of 2k starting
samples, so k should be at most O(log(n)) for the algorithm to make sense. On
the other hand Ω(qb) data are clearly required at each step in order to generate
enough collisions on b consecutive coordinates of a block. This naturally results
in a complexity roughly 2(1+o(1))n/ log(n) in the original algorithm for LPN. This
algorithm was later adapted to LWE in [?], and then improved in [?].



The idea of the latter improvement is to use so-called “lazy modulus switch-
ing”. Instead of finding two vectors that are equal on a given block in order
to generate a new vector that is zero on the block, one uses vectors that are
merely close to each other. This may be seen as performing addition modulo p
instead of q for some p < q, by rounding every value x ∈ Zq to the value nearest
xp/q in Zp. Thus at each step of the algorithm, instead of generating vectors
that are zero on each block, small vectors are produced. This introduces a new
“rounding” error term, but essentially reduces the complexity from roughly qb

to pb. Balancing the new error term with this decrease in complexity results in
a significant improvement.

However it may be observed that this rounding error is much more costly
for the first few blocks than the last ones. Indeed samples produced after, say,
one iteration step are bound to be added together 2a−1 times to yield the final
samples, resulting in a corresponding blowup of the rounding error. By contrast,
later terms will undergo less additions. Thus it makes sense to allow for progres-
sively coarser approximations (i.e. decreasing the modulus) at each step. On the
other hand, to maintain comparable data requirements to find collisions on each
block, the decrease in modulus is compensated by progressively longer blocks.

What we propose here is a more general view of the BKW algorithm that
allows for this improvement, while giving a clear view of the different complexity
costs incurred by various choice of parameters. Balancing these terms is the key
to finding an optimal complexity. We forego the “modulus switching” point of
view entirely, while retaining its core ideas. The resulting algorithm generalizes
several variants of BKW, and will be later applied in a variety of settings.

3.2 Quantization

The goal of quantization is to associate to each point of Rk a center from a small
set, such that the expectancy of the distance between a point and its center is
small. We will then be able to produce small vectors by substracting vectors
associated to the same center.

Modulus switching amounts to a simple quantizer which rounds every coor-
dinate to the nearest multiple of some constant. Our proven algorithm uses a
similar quantizer, except the constant depends on the index of the coordinate.

It is possible to decrease the average distance from a point to its center by
a constant factor for large moduli [?], but doing so would complicate our proof
without improving the leading term of the complexity. When the modulus is
small, it might be worthwhile to use error-correcting codes as in [?].

3.3 Main Algorithm

Let us denote by L0 the set of starting samples, and Li the sample list after
i reduction steps. The numbers d0 = 0 ≤ d1 ≤ · · · ≤ dk = n partition the n
coordinates of sample vectors into k buckets. Let D = (D0, . . . , Dk−1) be the
vector of quantization coefficients associated to each bucket.



Algorithm 2 Main resolution
1: function Reduce(Lin,Di,di,di+1)
2: Lout ← ∅
3: t[]← ∅
4: for all (a, b) ∈ Lin do
5: r = ⌊

(adi
,...,adi+1−1)

D
⌉

6: if t[r] = ∅ then
7: t[r]← (a, b)
8: else
9: Lout ← Lout :: {(a, b)− t[r]}

10: t[r]← ∅
11: end if
12: end for
13: return Lout

14: end function
15: function Solve(L0,D,(di))
16: for 0 ≤ i < k do
17: Li+1 ← Reduce(Li, Di, di, di+1)
18: end for
19: return Distinguish({b|(a, b) ∈ Lk})
20: end function

In order to allow for a uniform presentation of the BKW algorithm, applicable
to different settings, we do not assume a specific distribution on the secret.
Instead, we assume there exists some known B = (B0, . . . , Bn−1) such that∑

i(si/Bi)2 ≤ n. Note that this is in particular true if |si| ≤ Bi. We shall
see how to adapt this to the standard Gaussian case later on. Without loss of
generality, B is non increasing.

There are a phases in our reduction : in the i-th phase, the coordinates from
di to di+1 are reduced. We define m = |L0|.

Lemma 5. Solve terminates in time O(mn log q).

Proof. The Reduce algorithm clearly runs in time O(|L|n log q). Moreover,
|Li+1| ≤ |Li|/2 so that the total running time of Solve is O(n log q

∑k
i=0 m/2i) =

O(mn log q).

Lemma 6. Write L′
i for the samples of Li where the first di coordinates of each

sample vector have been truncated. Assume |sj |Di < 0.23q for all di ≤ j <
di+1. If L′

i is sampled according to the LWE distribution of secret s and noise
parameters α and ϵ ≤ 1, then L′

i+1 is sampled according to the LWE distribution
of the truncated secret with parameters:

α′2 = 2α2 + 4π2
di+1−1∑

j=di

(sjDi/q)2 and ϵ′ = 3ϵ.

On the other hand, if Di = 1, then α′2 = 2α2.



Proof. The independence of the outputted samples and the uniformity of their
vectorial part are clear. Let (a, b) be a sample obtained by substracting two
samples from Li. For a′ the vectorial part of a sample, define ϵ(a′) such that
E[exp(2iπ(⟨a′, s⟩ − b′)/q)|a′] = (1 + ϵ(a′)) exp(−α2). By definition of LWE,
|ϵ(a′)| ≤ ϵ, and by independence:

E[exp(2iπ(⟨a, s⟩ − b)/q)|a] = exp(−2α2)Ea′−a′′=a[(1 + ϵ(a′))(1 + ϵ(a′′))],

with |Ea′−a′′=a[(1 + ϵ(a′))(1 + ϵ(a′′))] − 1| ≤ 3ϵ.
Thus we computed the noise corresponding to adding two samples of Li. To get
the noise for a sample from Li+1, it remains to truncate coordinates from di to
di+1. A straightforward induction on the coordinates shows that this noise is :

exp(−2α2)Ea′−a′′=a[(1 + ϵ(a′))(1 + ϵ(a′′))]
di+1−1∏

j=di

E[exp(2iπajsj/q)].

Indeed, if we denote by a(j) the vector a where the first j coordinates are trun-
cated and αj the noise parameter of a(j), we have:

|E[exp(2iπ(⟨a(j+1), s(j+1)⟩ − b)/q)|a(j+1)] − exp(−α2
n)E[exp(2iπajsj/q)]|

= |E[exp(−2iπajsj/q)(exp(2iπ(⟨a(j), s(j)⟩ − b)/q) − exp(−α2
j ))]|

≤ ϵ′ exp(−α2
j )E[exp(2iπajsj/q)].

It remains to compute E[exp(2iπajsj/q)] for di ≤ j < di+1. Let D = Di.
The distribution of aj is even, so E[exp(2iπajsj)] is real. Furthermore, since
|aj | ≤ D,

E[exp(2iπajsj/q)] ≥ cos(2πsjD/q).

Assuming |sj |D < 0.23q, simple function analysis shows that

E[exp(2iπajsj/q)] ≥ exp(−4π2s2
jD2/q2).

On the other hand, if Di = 1 then aj = 0 and E[exp(2iπajsj/q)] = 1.

Finding optimal parameters for BKW amounts to balancing various costs:
the baseline number of samples required so that the final list Lk is non-empty,
and the additional factor due to the need to distinguish the final error bias. This
final bias itself comes both from the blowup of the original error bias by the
BKW additions, and the “rounding errors” due to quantization. Balancing these
costs essentially means solving a system.

For this purpose, it is convenient to set the overall target complexity as
2n(x+o(1)) for some x to be determined. The following auxiliary lemma essentially
gives optimal values for the parameters of Solve assuming a suitable value of
x. The actual value of x will be decided later on.



Lemma 7. Pick some value x (dependent on LWE parameters). Choose:

k ≤
⌊

log
(

nx

6α2

)⌋
m = n2k2nx

Di ≤
q
√

x/6
πBdi

2(a−i+1)/2 di+1 = min
(

di +
⌊

nx

log(1 + q/Di)

⌋
, n

)
.

Assume dk = n and ϵ ≤ 1/(β2x)log 3, and for all i and di ≤ j < di+1, |sj |Di <
0.23q. Solve runs in time O(mn) with negligible failure probability.

Proof. Remark that for all i,

|Li+1| ≥ (|Li| − (1 + q/Di)di+1−di)/2 ≥ (|Li| − 2nx)/2.

Using induction, we then have |Li| ≥ (|L0| + 2nx)/2i − 2nx so that |Lk| ≥ n2nx.
By induction and using the previous lemma, the input of Distinguish is

sampled from a LWE distribution with noise parameter:

α′2 = 2kα2 + 4π2
k−1∑
i=0

2k−i−1
di+1−1∑

j=di

(sjDi/q)2.

By choice of k the first term is smaller than nx/6. As for the second term, since
B is non increasing and by choice of Di, it is smaller than:

4π2
k−1∑
i=0

2k−i−1 x/6
π22k−i+1

di+1−1∑
j=di

( sj

Bj

)2
≤ (x/6)

n−1∑
j=0

( sj

Bj

)2
≤ nx/6.

Thus the real part of the bias is superior to exp(−nx/3)(1 − 3aϵ) ≥ 2−nx/2, and
hence by Theorem 2.2, Distinguish fails with negligible probability.

Theorem 4. Assume that for all i, |si| ≤ B, B ≥ 2, max(β, log(q)) = 2o(n/ log n),
β = ω(1), and ϵ ≤ 1/β4. Then Solve takes time 2(n/2+o(n))/ ln(1+log β/ log B).

Proof. We apply Lemma 7, choosing

k = ⌊log(β2/(12 ln(1 + log β)))⌋ = (2 − o(1)) log β ∈ ω(1)

and we set Di = q/(Bk2(k−i)/2). It now remains to show that this choice of
parameters satisfies the conditions of the lemma.

First, observe that BDi/q ≤ 1/k = o(1) so the condition |sj |Di < 0.23q is
fulfilled. Then, dk ≥ n, which amounts to:

k−1∑
i=0

x

(k − i)/2 + log O(kB) ≥ 2x ln(1 + k/2/ log O(kB)) ≥ 1 + k/n = 1 + o(1)

If we have log k = ω(log log B) (so in particular k = ω(log B)), we get ln(1 +
k/2/ log O(kB)) = (1 + o(1)) ln(k) = (1 + o(1)) ln(1 + log β/ log B).



Else, log k = O(log log B) = o(log B) (since necessarily B = ω(1) in this
case), so we get ln(1 + k/2/ log O(kB)) = (1 + o(1)) ln(1 + log β/ log B).

Thus our choice of x fits both cases and we have 1/x ≤ 2 ln(1+log β). Second,
we have 1/k = o(

√
x) so Di, ϵ and k are also sufficiently small and the lemma

applies. Finally, note that the algorithm has complexity 2Ω(n/ log n), so a factor
n2k log(q) is negligible.

This theorem can be improved when the use of the given parameters yields
D < 1, since D = 1 already gives a lossless quantization.

Theorem 5. Assume that for all i, |si| ≤ B = nb+o(1). Let β = nc and
q = nd with d ≥ b and c + b ≥ d. Assume ϵ ≤ 1/β4. Then Solve takes time
2n/(2(c−d+b)/d+2 ln(d/b)−o(1)).

Proof. Once again we aim to apply Lemma 7, and choose k as above:

k = log(β2/(12 ln(1 + log β))) = (2c − o(1)) log n

If i < ⌈2(c − d + b) log n⌉, we take Di = 1, else we choose q/Di = Θ(B2(a−i)/2).
Satisfying da ≥ n − 1 amounts to:

2x(c − d + b) log n/ log q +
a−1∑

i=⌈2(c−d+b) log n⌉

x

(a − i)/2 + log O(B)

≥ 2x(c − d + b)/d + 2x ln((a − 2(c − d + b) log n + 2 log B)/2/ log O(B))
≥ 1 + a/n = 1 + o(1)

So that we can choose 1/x = 2(c − d + b)/d + 2 ln(d/b) − o(1).

Corollary 1. Given a LWE problem with q = nd, Gaussian errors with β = nc,
c > 1/2 and ϵ ≤ n−4c, we can find a solution in 2n/(1/d+2 ln(d/(1/2+d−c))−o(1))

time.

Proof. Apply Theorem 1 : with probability 2/3, the secret is now bounded by
B = O(q

√
n/β

√
log n). The previous theorem gives the complexity of an al-

gorithm discovering the secret, using b = 1/2 − c + d, and which works with
probability 2/3 − 2−Ω(n). Repeating n times with different samples, the correct
secret will be outputted at least n/2+1 times, except with negligible probability.
By returning the most frequent secret, the probability of failure is negligible.

In particular, if c ≤ d, it is possible to quantumly approximate lattice problems
within factor O(nc+1/2) [?]. Setting c = d, the complexity is 2n/(1/c+2 ln(2c)−o(1)),
so that the constant slowly converges to 0 when c goes to infinity.

A simple BKW using the bias would have a complexity of 2d/cn+o(n), the
analysis of [?] or [?] only conjectures 2dn/(c−1/2)+o(n) for c > 1/2. In [?], the
authors incorrectly claim a complexity of 2cn+o(n) when c = d, because the
blowup in the error is not explicitely computed.

Finally, if we want to solve the LWE problem for different secrets but with
the same vectorial part of the samples, it is possible to be much faster if we work
with a bigger final bias, since the Reduce part needs to be called only once.



3.4 Experimentation

We have implemented our algorithm, in order to test its efficiency in practice, as
well as that of the practical improvements in the appendix of the full version [?].
We have chosen dimension n = 128, modulus q = n2, binary secret, and Gaussian
errors with noise parameter α = 1/(

√
n/π log2 n). The previous best result for

these parameters, using a BKW algorithm with lazy modulus switching, claims
a time complexity of 274 with 260 samples [?].

Using our improved algorithm, we were able to recover the secret using m =
228 samples within 13 hours on a single PC equipped with a 16-core Intel Xeon.
The computation time proved to be devoted mostly to the computation of 9·1013

norms, computed in fixed point over 16 bits in SIMD.
In appendix of the full version [?], we compare the different techniques to

solve the LWE problem when the number of samples is large or small. We were
able to solve the same problem using BKZ with block size 40 followed by an
enumeration in two minutes.

4 Applications to Lattice Problems

We first show that BDD||.||∞
B,β is easier than LWEB,β for some large enough mod-

ulus and then that UniqueSVP||.||∞
B,β and GapSVP||.||∞

B,β are easier than BDD||.||∞
B,β .

In appendix of the full version [?], we prove the same result for BDD||.||
B,β .

4.1 Variant of Bounding Distance Decoding

The main result of this subsection is close to the classic reduction of [?]. However,
our definition of LWE allows to simplify the proof, and gain a constant factor
in the decoding radius. The use of the KL divergence instead of the statistical
distance also allows to gain a constant factor, when we need an exponential
number of samples, or when λ∗

n is really small.
The core of the reduction lies in Lemma 8, assuming access to a Gaussian

sampling oracle. This hypothesis will be taken care of in Lemma 9.

Lemma 8. Let A be a basis of the lattice Λ of full rank n. Assume we are
given access to an oracle outputting a vector sampled under the law DΛ∗,σ and
σ ≥ qηϵ(Λ∗), and to an oracle solving the LWE problem in dimension n, modulus
q ≥ 2, noise parameter α, and distortion parameter ξ which fails with negligible
probability and use m vectors if the secret s verifies |si| ≤ Bi.

Then, if we are given a point x such that there exists s with v = As − x,
||v|| ≤

√
1/παq/σ, |si| ≤ Bi and ρσ/q(Λ \ {0} + v) ≤ ξ exp(−α2)/2, we are able

to find s in at most mn calls to the Gaussian sampling oracle, n calls to the
LWE solving oracle, with a probability of failure n

√
mϵ + 2−Ω(n) and complexity

O(mn3 + nc) for some c.



In the previous lemma, we required access to a DΛ∗,σ oracle. However, for
large enough σ, this hypothesis comes for free, as shown by the following lemma,
which we borrow from [?].

Lemma 9. If we have a basis A of the lattice Λ, then for σ ≥ O(
√

log n||Ã||),
it is possible to sample in polynomial time from DΛ,σ.

We will also need the following lemma, due to Banaszczyk [?]. For complete-
ness, a proof is provided in the appendix of the full version [?].
Lemma 10. For a lattice Λ, c ∈ Rn, and t ≥ 1,
ρ
(
(Λ + c) \ B

(
0, t

√
n

2π

))
ρ(Λ) ≤ exp

(
− n(t2 − 2 ln t − 1)/2

)
≤ exp

(
− n(t − 1)2/2

)
.

Theorem 6. Assume we have a LWE solving oracle of modulus q ≥ 2n, param-
eters β and ξ which needs m samples.

If we have a basis A of the lattice Λ, and a point x such that As−x = v with
||v|| ≤ (1−1/n)λ1/β/t < λ1/2 and 4 exp(−n(t−1/β−1)2/2) ≤ ξ exp(−n/2/β2),
then with n2 calls to the LWE solving oracle with secret s, we can find s with
probability of failure 2

√
m exp(−n(t2 − 2 ln t − 1)/2) for any t ≥ 1 + 1/β.

Proof. Using Lemma 10, we can prove that σ = t
√

n/2/π/λ1 ≤ ηϵ(Λ∗) for
ϵ = 2 exp(−n(t2 − 2 ln t − 1)/2) and

ρ1/σ

(
Λ \ {0} + v

)
≤ 2 exp

(
− n(t(1 − 1/β/t) − 1)2/2

)
.

Using LLL, we can find a basis B of Λ so that ||B̃∗|| ≤ 2n/2/λ1, and therefore,
it is possible to sample in polynomial time from DΛ,qσ since q ≥ 2n for sufficiently
large n.

The LLL algorithm also gives a non zero lattice vector of norm ℓ ≤ 2nλ1. For
i from 0 to n2, we let λ = ℓ(1 − 1/n)i, we use the algorithm of Lemma 8 with
standard deviation tq

√
n/2/π/λ, which uses only one call to the LWE solving

oracle, and return the closest lattice vector of x in all calls.
Since ℓ(1 − 1/n)n2 ≤ 2n exp(−n)λ1 ≤ λ1, with 0 ≤ i ≤ n2 be the smallest

integer such that λ = ℓ(1 − 1/n)i ≤ λ1, we have λ ≥ (1 − 1/n)λ1. Then the
lemma applies since

||v|| ≤ (1 − 1/n)λ1/β/t ≤
√

1/π
√

n/2/βq/(tq
√

n/2/π/λ) = λ/t/β.

Finally, the distance bound makes As the unique closest lattice point of x.

Using self-reduction, it is possible to remove the 1 − 1/n factor [?].

Corollary 2. It is possible to solve BDD||.||∞
B,β in time 2(n/2+o(n))/ ln(1+log β/ log B)

if β = ω(1), β = 2o(n/ log n) and log B = O(log β).
Proof. Apply the previous theorem and Theorem 4 with some sufficiently large
constant for t, and remark that dividing β by some constant does not change
the complexity.

Note that since we can solve LWE for many secrets in essentially the same
time than for one, we have the same property for BDD.



4.2 UniqueSVP and GapSVP

In this section, we show how GapSVP||.||∞
B,β and UniqueSVP||.||∞

B,β can be reduced
to BDD||.||∞

B,β , and hence to LWE. Proofs are provided in the appendix of the full
version [?].

Theorem 7. Given a BDD||.||∞
B,β oracle, it is possible to solve UniqueSVP||.||∞

B,β in
polynomial time of n and β.

Theorem 8. We can solve any GapSVP||.||∞

o(B
√

log log log β/ log log β),β
instances in

time 2(n/2+o(n))/ ln(1+log β/ log B) for β = 2o(n/ log n), β = ω(1), B ≥ 2.

Corollary 3. It is possible to solve any GapSVP||.||∞

2
√

log n,nc
with c > 0 in time

2(n+o(n))/ ln ln n.

Proof. Use Theorem 8 with B = 2
√

log n log log n and β = nc.

Theorem 9. If it is possible to solve BDD||.||∞
B,β in polynomial time, then it is

possible to solve in randomized polynomial time GapSVP||.||∞

B/
√

n,β
√

n/ log n
.

5 Other applications

5.1 Low density subset-sum problem

Definition 10. We are given a vector a ∈ Zn whose coordinates are sampled
independently and uniformly in [0; M), and ⟨a, s⟩ where the coordinates of s are
sampled independently and uniformly in {0, 1}. The goal is to find s. The density
is defined as d = n

log M .

Note that this problem is trivially equivalent to the modular subset-sum
problem, where we are given ⟨a, s⟩ mod M by trying all possible ⌊⟨a, s⟩/M⌋ .

In [?,?], Lagarias et al. reduce the subset sum problem to UniqueSVP, even
though this problem was not defined at that time. We will show a reduction
to BDD||.||∞

1,Ω(21/d), which is essentially the same. First, we need two geometric
lemmata.

Lemma 11. Let Bn(r), the number of points of Zn of norm smaller than r, and
Vn the volume of the unit ball. Then,

Bn(r) ≤ Vn

(
r +

√
n

2

)n

.

Proof. For each x ∈ Zn, let Ex be a cube of length 1 centered on x. Let E be
the union of all the Ex which have a non empty intersection with the ball of
center 0 and radius r. Therefore vol(E) ≥ Bn(r) and since E is included in the
ball of center 0 and radius r +

√
n

2 , the claim is proven.



Lemma 12. For n ≥ 4 we have

Vn = πn/2

(n/2)! ≤ (
√

πe/n)n.

Theorem 10. Using one call to a BDD||.||∞
1,c21/d oracle with any c <

√
2/π/e and

d = o(1), and polynomial time, it is possible to solve a subset-sum problem of
density d, with negligible probability of failure.

Proof. With the matrix :

A =
(

I
Ca

)
for some C > c21/d

√
n/2 and b = (1/2, . . . , 1/2, C⟨a, s⟩), return BDD(A, b). It

is clear that ||As − b|| =
√

n/2. Now, let x such that ||Ax|| = λ1. If ⟨a, x⟩ ≠ 0,
then λ1 = ||Ax|| ≥ C therefore β ≥ c21/d. Else, ⟨a, x⟩ = 0. Without loss of
generality, x0 ̸= 0, we let y = −(

∑
i>0 aixi)/x0 and the probability over a that

⟨a, x⟩ = 0 is :

Pr[⟨a, x⟩ = 0] = Pr[a0 = y] =
M−1∑
z=0

Pr[y = z] Pr[a0 = z] ≤ 1
M

.

Therefore, the probability of failure is at most, for sufficiently large n,

Bn(β
√

n/2)/M ≤(
√

πe/n)n(c21/d
√

n/2 +
√

n/2)n/2n/d

=
(√

πe/2(c + 2−1/d)
)n = 2−Ω(n).

Corollary 4. For any d = o(1) and d = ω(log n/n), we can solve the subset-sum
problem of density d with negligible probability of failure in time 2(n/2+o(n))/ ln(1/d).

The cryptosystem of Lyubashevsky et al. [?] uses 21/d > 10n log2 n and is
therefore broken in time 2(ln 2/2+o(1))n/ log log n. Current lattice reduction algo-
rithms are slower than this one when d = ω(1/(log n log log n)).

5.2 Sample Expander and application to LWE with binary errors

Definition 11. Let q be a prime number. The problem Small-DecisionLWE is
to distinguish (A, b) with A sampled uniformly with n columns and m rows,
b = As + e such that ||s||2 + ||e||2 ≤ nk2 and ||s||∞ ≤ B from (A, b) sampled
uniformly. Also, the distribution (s, e) is efficiently samplable.

The problem Small-SearchLWE is to find s given (A, b) with A sampled uni-
formly and b = As + e with the same conditions on s and e.

These problems are generalizations of BinaryLWE where s and e have coordi-
nates sampled uniformly in {0, 1}. In this case, remark that each sample is a root
of a known quadratic polynomial in the coordinates of s. Therefore, it is easy
to solve this problem when m ≥ n2. For m = O(n), a Gröbner basis algorithm



applied on this system will (heuristically) have a complexity of 2Ω(n) [?]. For
m = O(n/ log n) and q = nO(1), it has been shown to be harder than a lattice
problem in dimension Θ(n/ log n) [?].

In appendix of the full version [?], we prove the following theorem5, with the
coordinates of x and y distributed according to a samplable D :

Theorem 11. Assume there is an efficient distinguisher which uses k samples
for Decision-LWE (respectively a solver for Search-LWE) with error distribution
⟨s, y⟩ + ⟨e, x⟩ of advantage (resp. success probability) ϵ.

Then, either there is an efficient distinguisher for Decision-LWE with samples
and secret taken uniformly, and error distribution D in dimension m−1 and with
n+m samples of advantage ξ

4qk −q−n−q−m; or there is an efficient distinguisher
of advantage ϵ−ξ for Small-Decision-LWE (resp. solver of success probability ϵ−ξ
for Small-Search-LWE).

Lemma 13. Let D = DZ,σ for σ ≥ 1. Then, the advantage of a distinguisher
for Decision-LWE of dimension m with m + n samples of noise distribution D is
at most

√
qn/σn+m. Furthermore, the bias of ⟨(s|e), (x|y)⟩, for fixed s and e, is

at least exp(−π(||s||2 + ||e||2)σ2/q2).

Proof. We have Dm+n(a) ≤ D(0)m+n = 1/ρσ(Z)m+n and ρσ(Z) = σρ1/σ(Z) ≥ σ
using a Poisson summation. The first property is then a direct application of the
leftover hash lemma, since q is prime.

The bias of λD can be computed using a Poisson summation as :∑
a∈Z

ρσ(a) cos(2πλa/q) = ρ1/σ(Z + λ/q) ≥ exp(−πλ2σ2/q2).

Therefore, the second property follows from the independency of the coordinates
of x and y.

Corollary 5. Let q, n and m such that m log q/(n + m) = o(n/ log n), then
(m − 3) log q/(n + m) − log k = ω(log B) and m = ω(1). Then, we can solve the
Small-Decision-LWE problem in time

2(n/2+o(n))/ ln((m log q/(n+m)−log k)/ log B)

with negligible probability of failure.

Proof. We use the previous lemma with σ = 2q(n+2)/(n+m−1), so that we have
β = Ω(q(m−3)/(n+m)/k). The algorithm from Theorem 4 needs 2o(n) samples, so
the advantage of the potential distinguisher for Decision-LWE is 2−(1/4+o(1))n/q
for ξ = 2−n/4 ; while the previous lemma proves it is less than 2−n/2/q.

5 The authors of [?] gave a short justification of a similar claim which is far from
proven.



The NTRU cryptosystem [?] is based on the hardness of finding two polynomi-
als f and g whose coefficients are bounded by 1 given h = f/g mod (Xn −1, q).
Since hg = 0 with an error bounded by 1, we can apply previous algorithms
in this section to heuristically recover f and g in time 2(n/2+o(n))/ ln ln q. This is
the first subexponential time algorithm for this problem since it was introduced
back in 1998.

Corollary 6. Assume we have a Search-LWE problem with n log q + Ω(n/ log q)
samples and Gaussian noise with α = n−c and q = nd. Then, we can solve it in
time 2n/(2 ln(d/(d−c))−o(1)) for any failure probability in 2−no(1) .

Proof. First, apply a secret-error switching (Theorem 1). Apply the previous
corollary with B = nd−c+o(1) which is a correct bound for the secret, except with
probability 2−no(1) . Lemma 10 shows that k2 ≤ log qσ2, except with probability
2−Ω(n), so that β = nc+o(1). We can then use σ = Θ(1) and apply Theorem 4.

Note that this corollary can in fact be applied to a very large class of dis-
tributions, and in particular to the learning with rounding problem, while the
distortion parameter is too large for a direct application of Theorem 4.

Also, if the reduction gives a fast (subexponential) algorithm, one may use
σ = 2

√
n and assume that there is no quantum algorithm solving the corre-

sponding lattice problem in dimension m.
Even more heuristically, one can choose σ to be the lowest such that if the

reduction does not work, we have an algorithm faster than the best known algo-
rithm for the same problem.
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