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Abstract. Many efficient data structures use randomness, allowing them
to improve upon deterministic ones. Usually, their efficiency and/or cor-
rectness are analyzed using probabilistic tools under the assumption that
the inputs and queries are independent of the internal randomness of the
data structure. In this work, we consider data structures in a more ro-
bust model, which we call the adversarial model. Roughly speaking, this
model allows an adversary to choose inputs and queries adaptively ac-
cording to previous responses. Specifically, we consider a data structure
known as “Bloom filter” and prove a tight connection between Bloom
filters in this model and cryptography.

A Bloom filter represents a set S of elements approximately, by using
fewer bits than a precise representation. The price for succinctness is
allowing some errors: for any x ∈ S it should always answer ‘Yes’, and
for any x /∈ S it should answer ‘Yes’ only with small probability.

In the adversarial model, we consider both efficient adversaries (that run
in polynomial time) and computationally unbounded adversaries that
are only bounded in the amount of queries they can make. For compu-
tationally bounded adversaries, we show that non-trivial (memory-wise)
Bloom filters exist if and only if one-way functions exist. For unbounded
adversaries we show that there exists a Bloom filter for sets of size n and
error ε, that is secure against t queries and uses only O(n log 1

ε
+t) bits of

memory. In comparison, n log 1
ε

is the best possible under a non-adaptive
adversary.

1 Introduction

Data structures are one of the most basic objects in Computer Science. They
provide means to organize a large amount of data such that it can be queried
efficiently. In general, constructing efficient data structures is key to designing
efficient algorithms. Many efficient data structures use randomness, a resource
that allows them to bypass lower bounds on deterministic ones. In these cases,
their efficiency and/or correctness are analyzed in expectation or with high prob-
ability.
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To analyze randomized data structures one must first define the underlying
model of the analysis. Usually, the model assumes that the inputs and queries
are independent of the internal randomness of the data structure. That is, the
analysis is of the form: For any sequence of inputs, with high probability (or
expectation) over its internal randomness, the data structure will yield a correct
answer. This model is reasonable in a situation where the adversary picking
the inputs gets no information about the randomness of the data structure (in
particular, the adversary does not get the responses on previous inputs).

In this work, we consider data structures in a more robust model, which we
call the adversarial model. Roughly speaking, this model allows an adversary to
choose inputs and queries adaptively according to previous responses. That is,
the analysis is of the form: With high probability over the internal randomness
of the data structure, for any adversary adaptively choosing a sequence of in-
puts, the output of the data structure will be correct. Specifically, we consider
a data structure known as “Bloom filter” and prove a tight connection between
Bloom filters in this model and cryptography: We show that Bloom filters in an
adversarial model exist if and only if one-way functions exist.

Bloom Filters in Adversarial Environments. The approximate set membership
problem deals with succinct representations of a set S of elements from a large
universe U , where the price for succinctness is allowing some errors. A data
structure solving this problem is required to answer queries in the following
manner: for any x ∈ S it should always answer ‘Yes’, and for any x /∈ S it should
answer ‘Yes’ only with small probability. The latter are called false positive
errors.

The study of the approximate set membership problem began with Bloom’s
1970 paper [4], introducing the so called “Bloom filter”, which provided a sim-
ple and elegant solution to the problem. (The term “Bloom filter” may refer to
Bloom’s original construction, but we use it to denote any construction solving
the problem.) The two major advantages of Bloom filters are: (i) they use signif-
icantly less memory (as opposed to storing S precisely) and (ii) they have very
fast query time (even constant query time). Over the years, Bloom filters have
been found to be extremely useful and practical in various areas. Some main
examples are distributed systems [32], networking [10], databases [19], spam fil-
tering [30], web caching [13], streaming algorithms [21, 9] and security [17, 31].
For a survey about Bloom filters and their applications see [6] and a more recent
one [28].

Following Bloom’s original construction many generalizations and variants
have been proposed and extensively analyzed, proving better memory consump-
tion and running time, see e.g. [8, 27, 24, 1]. However, as discussed, all known
constructions of Bloom filters work under the assumption that the input query
x is fixed, and then the probability of an error occurs over the randomness of the
construction. Consider the case where the query results are made public. What
happens if an adversary chooses the next query according to the responses of
previous ones? Does the bound on the error probability still hold? The tradi-



tional analysis of Bloom filters is no longer sufficient, and stronger techniques
are required.

Let us demonstrate this need with a concrete scenario. Consider a system
where a Bloom filter representing a white list of email addresses is used to filter
spam mail. When an email message is received, the sender’s address is checked
against the Bloom filter, and if the result is negative it is marked as spam.
Addresses not on the white list have only a small probability of being a false
positive and thus not marked as spam. In this case, the results of the queries
are public, as an attacker might check whether his emails are marked as spam1.
The attacker (after a sequence of queries) might be able to find a bulk of email
addresses that are not marked as spam although they are not in the white list,
and thus, bypass the security of the system and flood users with spam mail.

Alternatively, Bloom filters are often used for holding the contents of a cache.
For instance, a web proxy holds on a (slow) disk, a cache of locally available
webpages. To improve performance, it maintains in (fast) memory a Bloom filter
representing all addresses in the cache. When a user queries for a webpage, the
proxy first checks the Bloom filter to see if the page is available in the cache,
and only then does it search for the webpage on the disk. A false positive is
translated to a cache miss, that is, an unnecessary (slow) disk lookup. In the
standard analysis, one would set the error to be small such that cache misses
happen very rarely (e.g., one in a thousand requests). However, by timing the
results of the proxy, an adversary might learn the responses of the Bloom filter,
enabling her to cause a cache miss for almost every query and, eventually, causing
a Denial of Service (DoS) attack.

Under the adversarial model, we construct Bloom filters that are resilient to
the above attacks. We consider both efficient adversaries (that run in polynomial
time) and computationally unbounded adversaries that are only bounded in the
amount of queries they can make. We define a Bloom filter that maintains its
error probability in this setting and say it is adversarial resilient (or just resilient
for shorthand).

The security of an adversarial resilient Bloom filter is defined as a game
with an adversary. The adversary is allowed to make a sequence of t adaptive
queries to the Bloom filter and get their responses. Note that the adversary
has only oracle access to the Bloom filter and cannot see its internal memory
representation. Finally, the adversary must output an element x∗ (that was not
queried before) which she believes is a false positive. We say that a Bloom filter
is (n, t, ε)-adversarial resilient if when initialized over sets of size n then after t
queries the probability of x∗ being a false positive is at most ε. If a Bloom filter
is resilient for any polynomially many queries we say it is strongly resilient.

A simple construction of a strongly resilient Bloom filter (even against com-
putationally unbounded adversaries) can be achieved by storing S precisely.
Then, there are no false positives at all and no adversary can find one. The
drawback of this solution is that it requires a large amount of memory, whereas

1 For example, the attacker can spam his personal email account and see if the mes-
sages are being filtered.



Bloom filters aim to reduce the memory usage. We are interested in Bloom filters
that use a small amount of memory but remain nevertheless, resilient.

1.1 Our Results

We introduce the notion of adversarial-resilient Bloom filter and show several
possibility results (constructions of resilient Bloom filters) and impossibility re-
sults (attacks against any Bloom filter) in this context.

Our first result is that adversarial-resilient Bloom filters against computa-
tionally bounded adversaries that are non-trivial (i.e., they require less space
than the amount of space it takes to store the elements explicitly) must use
one-way functions. That is, we show that if one-way functions do not exist then
any Bloom filter can be ‘attacked’ with high probability.

Theorem 1 (Informal). Let B be a non-trivial Bloom filter. If B is strongly
resilient against computationally bounded adversaries then one-way functions
exist.

Actually, we show a trade-off between the amount of memory used by the Bloom
filter and the number of queries performed by the adversary. Carter et al. [7]
proved a lower bound on the amount of memory required by a Bloom filter. To
construct a Bloom filter for sets of size n and error rate ε one must use (roughly)
n log 1

ε bits of memory (and this is tight). Given a Bloom filter that uses m bits
of memory we get a lower bound for its error rate ε and thus a lower bound for
the (expected) number of false positives. As m is smaller the number of false
positives is larger and we prove that adversary can perform fewer queries.

In the other direction, we show that using one-way functions one can con-
struct a strongly resilient Bloom filter. Actually, we show that you can transform
any Bloom filter to be strongly resilient with almost exactly the same memory
requirements and at a cost of a single evaluation of a pseudorandom permutation
(which can be constructed using one-way functions). Specifically, we show:

Theorem 2. Let B be an (n, ε)-Bloom filter using m bits of memory. If pseu-
dorandom permutations exist, then for large enough security parameter λ there
exists an (n, ε+ neg(λ))-strongly resilient Bloom filter that uses m′ = m+λ bits
of memory.

Bloom filters consist of two algorithms: an initialization algorithm that gets
a set and outputs a compressed representation of the set, and a membership
query algorithm that gets a representation and an input. Usually, Bloom filters
have a randomized initialization algorithm but a deterministic query algorithm
that does not change the representation. We say that such Bloom filters have a
“steady representation”. We consider also Bloom filters with “unsteady represen-
tation” where the query algorithm is randomized and can change the underlying
representation on each query. A randomized query algorithm may be more so-
phisticated and, for example, incorporate differentially private [12] algorithms



in order to protect the internal memory from leaking. Differentially private al-
gorithms are designed to protect a private database against adversarial and also
adaptive queries from a data analyst. One might hope that such techniques can
eliminate the need of one-way functions in order to construct resilient Bloom
filters. However, we extend our results and show that they hold even for Bloom
filter with unsteady representations, which proves that this approach cannot gain
additional security.

In the context of unbounded adversaries, we show a positive result. For a set
of size n and an error probability of ε most constructions use about O(n log 1

ε )
bits of memory. We construct a resilient Bloom filter that does not use one-way
functions, is resilient against t queries, uses O(n log 1

ε + t) bits of memory, and
has query time O(log 1

ε ).

Theorem 3. For any n, t ∈ N, and ε > 0 there exists an (n, t, ε)-resilient Bloom
filter (against unbounded adversaries) that uses O(n log 1

ε + t) bits of memory.

1.2 Related Work

One of the first works to consider an adaptive adversary that chooses queries
based on the response of the data structure is by Lipton and Naughton [16],
where adversaries that can measure the time of specific operations in a dictionary
were addressed. They showed how such adversaries can be used to attack hash
tables. Hash tables have some method for dealing with collisions. An adversary
that can measure the time of an insert query, can determine whether there was
a collision and might figure out the precise hash function used. She can then
choose the next elements to insert accordingly, increasing the probability of a
collision and hurting the overall performance.

Mironov et al. [18] considered the model of sketching in an adversarial en-
vironment. The model consists of several honest parties that are interested in
computing a joint function in the presence of an adversary. The adversary chooses
the inputs of the honest parties based on the common randomness shared among
them. These inputs are provided to the parties in an on-line manner, and each
party incrementally updates a compressed sketch of its input. The parties are
not allowed to communicate, they do not share any secret information, and any
public information they share is known to the adversary in advance. Then, the
parties engage in a protocol in order to evaluate the function on their current
inputs using only the compressed sketches. Mironov et al. construct explicit and
efficient (optimal) protocols for two fundamental problems: testing equality of
two data sets, and approximating the size of their symmetric difference.

In a more recent work, Hardt and Woodruff [14] considered linear sketch
algorithms in a similar setting. They consider an adversary that can adaptively
choose the inputs according to previous evaluations of the sketch. They ask
whether linear sketches can be robust to adaptively chosen inputs. Their results
are negative: They show that no linear sketch approximates the Euclidean norm
of its input to within an arbitrary multiplicative approximation factor on a
polynomial number of adaptively chosen inputs.



One may consider adversarial resilient Bloom filters in the framework of com-
putational learning theory. The task of the adversary is to learn the private mem-
ory of the Bloom filter in the sense that it is able to predict on which elements
the Bloom filter outputs a false positive. The connection between learning and
cryptographic assumptions has been explored before (already in his 1984 paper
introducing the PAC model Valiant’s observed that the nascent pseudorandom
random functions imply hardness of learning [29]). In particular Blum et al. [5]
showed how to construct several cryptographic primitives (pseudorandom bit
generators, one-way functions and private-key cryptosystems) based on certain
assumptions on the difficulty of learning. The necessity of one-way functions for
several cryptographic primitives has been shown in [15].

2 Model and Problem Definitions

Our model considers a universe U of elements, and a subset S ⊂ U . We denote
the size of U by u, and the size of S by n. For the security parameter we use λ
(sometimes we omit the explicit use of the security parameter and assume it is
polynomial in n). We consider mostly the static problem, where the set is fixed
throughout the lifetime of the data structure. We note that the lower bounds
imply the same bounds for the dynamic case and the cryptographic upper bound
(Theorem 4) can be adapted to the dynamic case.

A Bloom filter is a data structure that is composed of a setup algorithm and
a query algorithm B = (B1,B2). The setup algorithm B1 is randomized, gets
as input a set S, and outputs a compressed representation of it B1(S) = M .
To denote the representation M on a set S with random string r we write
B1(S; r) = MS

r and its size in bits is denoted as |MS
r |.

The query algorithm answers membership queries to S given the compressed
representation M . Usually in the literature, the query algorithm is deterministic
and cannot change the representation. In this case we say B has a steady repre-
sentation. However, we also consider Bloom filters where their query algorithm
is randomized and can change the representation M after each query. In this
case we say that B has an unsteady representation. We define both variants.

Definition 1 (Steady-representation Bloom filter). Let B = (B1,B2) be
a pair of polynomial-time algorithms where B1 is a randomized algorithm that
gets as input a set S and outputs a representation, and B2 is a deterministic
algorithm that gets as input a representation and a query element x ∈ U . We
say that B is an (n, ε)-Bloom filter (with a steady representation) if for any set
S ⊂ U of size n it holds that:

1. Completeness: For any x ∈ S: Pr[B2(B1(S), x) = 1] = 1

2. Soundness: For any x /∈ S: Pr[B2(B1(S), x) = 1] ≤ ε,

where the probabilities are over the setup algorithm B1.



False Positive and Error Rate. Given a representation M of S, if x /∈ S and
B2(M,x) = 1 we say that x is a false positive. Moreover, we say that ε is the
error rate of B.

Definition 1 considers only a single fixed input x and the probability is taken
over the randomness of B. We want to give a stronger soundness requirement
that considers a sequence of inputs x1, x2, . . . , xt that is not fixed but chosen
by an adversary, where the adversary gets the responses of previous queries and
can adaptively choose the next query accordingly. If the adversary’s probability
of finding a false positive x∗ that was not queried before is bounded by ε, then
we say that B is an (n, t, ε)-resilient Bloom filter (this notion is defined in the
challenge ChallengeA,t which is described below). Note that in this case, the setup

phase of the Bloom filter and the adversary get the security parameter 1λ as an
additional input (however, we usually omit it when clear from context). For a
steady representation Bloom filter we define:

Definition 2 (Adversarial-resilient Bloom filter with a steady repre-
sentation). Let B = (B1,B2) be an (n, ε)-Bloom filter with a steady represen-
tation (see Definition 1). We say that B is an (n, t, ε)-adversarial resilient Bloom
filter (with a steady representation) if for any set S of size n, for all sufficiently
large λ ∈ N and for any probabilistic polynomial-time adversary A we have that
the advantage of A in the following challenge is at most ε:

1. Adversarial Resilient: Pr[ChallengeA,t(λ) = 1] ≤ ε,

where the probabilities are taken over the internal randomness of B1 and A and
where the random variable ChallengeA,t(λ) is the outcome of the following game:

ChallengeA,t(λ):

1. M ← B1(S, 1λ).
2. x∗ ← AB2(M,·)(1λ, S) where A performs at most t queries x1, . . . , xt to the

query oracle B2(M, ·).
3. If x∗ /∈ S ∪ {x1, . . . , xt} and B2(M,x∗) = 1 output 1, otherwise output 0.

Unsteady representations. When the Bloom filter has an unsteady representa-
tion, then the algorithm B2 is randomized and moreover can change the repre-
sentation M . That is, B2 is a query algorithm that outputs the response to the
query as well as a new representation. Thus, the user or the adversary do not in-
teract directly with the B2(M, ·) but with an interface Q(·) (initialized with M)
to a process that on query x updates its representation M and outputs only the
response to the query (i.e. it cannot issue successive queries to the same memory
representation but to one that keeps changing). Formally, Q(·) initialized with
M on input x acts as follows:

The interface Q(x) (initialized with M):

1. (M ′, y)← B2(M,x).



2. M ←M ′.
3. Output y.

We define an analogue of the original Bloom filter for unsteady representations
and then define an adversarial resilient one.

Definition 3 (Bloom filter with an unsteady representation). Let S ⊂ U
be a set of size n. Let B = (B1,B2) be a pair of probabilistic polynomial-time
algorithms such that B1 gets as input the set S and outputs a representation M0,
and B2 gets as input a representation and query x and outputs a new represen-
tation and a response to the query. Let Q(·) be the process initialized with M0.
We say that B is an (n, ε)-Bloom filter (with an unsteady representation) if for
any such set S the following two conditions hold:

1. Completeness: After any sequence of queries x1, x2, . . . performed to Q(·) we
have that for any x ∈ S: Pr[Q(x) = 1] = 1.

2. Soundness: After any sequence of queries x1, x2, . . . performed to Q(·) we
have that for any x /∈ S: Pr[Q(x) = 1] ≤ ε,

where the probabilities are taken over the internal randomness of B1 and B2.

Definition 4 (Adversarial-resilient Bloom filter with an unsteady rep-
resentation). Let B = (B1,B2) be an (n, ε)-Bloom filter with an unsteady
representation (see Definition 3). We say that B is an (n, t, ε)-adversarial re-
silient Bloom filter (with an unsteady representation) if for any set S ⊂ U of
size n, for all sufficiently large λ ∈ N and for any probabilistic polynomial-time
adversary A it holds that:

1. Adversarial Resilient: Pr[ChallengeA,t(λ) = 1] ≤ ε,

where the probabilities are taken over the internal randomness of B1,B2 and A
and where the random variable ChallengeA,t(λ) is the outcome of the following
process:

ChallengeA,t(λ):

1. M0 ← B1(S, 1λ).
2. Initialize Q(·) with M0.
3. x∗ ← AQ(·)(1λ, S) where A performs at most t (adaptive) queries x1, . . . , xt

to the interface Q(·).
4. If x∗ /∈ S ∪ {x1, . . . , xt} and Q(x∗) = 1 output 1, otherwise output 0.

If B is not (n, t, ε)-resilient then we say there exists an adversary A that can
(n, t, ε)-attack B.

If B is resilient for any polynomial number of queries we say it is strongly resilient.

Definition 5 (Strongly resilient). We say that B is an (n, ε)-strongly re-
silient Bloom filter, if for large enough security parameter λ and any polynomial
t = t(λ) we have that B is an (n, t, ε)-adversarial resilient Bloom filter.



Remark 1. Notice that in Definitions 2 and 4 the adversary gets the set S as
an additional input. This strengthens the definition of the resilient Bloom filter
such that even given the set S it is hard to find false positives. An alternative
definition might be to not give the adversary the set and also not require that
x∗ /∈ S. However, our results of Theorem 1 hold even if the adversary does not
get the set. That is, the algorithm that predicts a false positive makes no use
of the set S, either then checking that x∗ /∈ S. Moreover, the construction in
Theorem 2 holds in both cases, even against adversaries that do get the set.

An important parameter is the memory use of a Bloom filter B. We say
B uses m = m(n, λ, ε) bits of memory if for any set S of size n the largest
representation is of size at most m. The desired properties of Bloom filters is to
have m as small as possible and to answer membership queries as fast as possible.
Let B be a (n, ε)-Bloom filter that uses m bits of memory. Carter et al. [7] proved
a lower bound on the memory use of any Bloom filter showing that m ≥ n log 1

ε
(or written equivalently as ε ≥ 2−

m
n ). This leads us to defining the minimal error

of B.

Definition 6 (Minimal error). Let B be an (n, ε)-Bloom filter that uses m
bits of memory. We say that ε0 = 2−

m
n is the minimal error of B.

Note that using Carter’s lower bound we get that for any (n, ε)-Bloom filter
its minimal error ε0 always satisfies ε0 ≤ ε. Also, a trivial Bloom filter can
always store the set S precisely using m = log

(
u
n

)
≈ n log

(
u
n

)
bits. Using the

m ≥ n log 1
ε lower bound we get that a Bloom filter is trivial if ε > n

u . Moreover,
if u is super-polynomial in n, and ε is negligible in n then any polynomial-time
adversary has only negligible chance in finding any false positive, and again we
say that the Bloom filter is trivial.

Definition 7 (Non-trivial Bloom filter). Let B be an (n, ε)-Bloom filter
that uses m bits of memory and let ε0 be the minimal error of B (see Definition
6). We say that B is non-trivial if there exists a constant c ≥ 1 such that
ε0 > max

{
n
u ,

1
nc

}
.

3 Our Techniques

3.1 One-Way Functions and Adversarial Resilient Bloom Filters

We present the main ideas and techniques of the equivalence of adversarial re-
silient Bloom filters and one-way functions (i.e., the proof of Theorems 1 and 2).
The simpler direction is showing that the existence of one-way functions implies
the existence of adversarial resilient Bloom filters. Actually, we show that any
Bloom filter can be efficiently transformed to be adversarial resilient with essen-
tially the same amount of memory. The idea is simple and works in general for
other data structures as well: apply a pseudo-random permutation of the input
and then send it to the original Bloom filter. The point is that an adversary



has almost no advantage in choosing the inputs adaptively, as they are all ran-
domized by the permutation, while the correctness properties remain under the
permutation.

The other direction is more challenging. We show that if one-way functions
do not exist then any non-trivial Bloom filter can be ‘attacked’ by an efficient
adversary. That is, the adversary performs a sequence of queries and then outputs
an element x∗ (that was not queried before) which is a false positive with high
probability. We give two proofs: One for the case where the Bloom filter has a
steady representation and one for an unsteady representation.

The main idea is that although we are given only oracle access to the Bloom
filter, we are able to construct an (approximate) simulation of it. We use tech-
niques from machine learning to (efficiently) ‘learn’ the internal memory of the
Bloom filter, and construct the simulation. The learning task for steady and un-
steady Bloom filters is quite different and each yield a simulation with different
guarantees. Then we show how to exploit each simulation to find false positives
without querying the real Bloom filter.

In the steady case, we state the learning process as a ‘PAC learning’ [29]
problem. We use what’s known as ‘Occam’s Razor’ which states that any hy-
pothesis consistent on a large enough random training set will have a small error.
Finally, we show that since we assume that one-way functions do not exist then
we are able to find a consistent hypothesis in polynomial-time. Since the error
is small, the set of false positive elements defined by the real Bloom filter is
approximately the same set of false positive elements defined by the simulator.

Handling Bloom filters with an unsteady representation is more challenging.
Recall that such Bloom filters are allowed to randomly change their internal
representation after each query. In this case, we are trying to learn a distribution
that might change after each sample. We describe two examples of Bloom filters
with unsteady representations which seem to capture the main difficulties of the
unsteady case.

The first example considers any ordinary Bloom filter with error rate ε/2,
where we modify the query algorithm to first answer ‘Yes’ with probability ε/2
and otherwise continue with its original behavior. The resulting Bloom filter has
an error rate of ε. However, its behaviour is tricky: When observing its responses,
elements can alternate between being false positive and negatives, which makes
the learning task much harder.

The second example consists of two ordinary Bloom filters with error rate
ε, both initialized with the set S. At the beginning only the first Bloom filter
is used, and after a number of queries (which may be chosen randomly) only
the second one is used. Thus, when switching to the second Bloom filter the
set of false positives changes completely. Notice that while first Bloom filter
was used exclusively, no information was leaked about the second. This example
proves that any algorithm trying to ‘learn’ the memory of the Bloom filter cannot
perform a fixed number of samples (as does our learning algorithm for the steady
representation case).



To handle these examples we apply the framework of adaptively changing
distributions (ACDs) presented by Naor and Rothblum [20], which models the
task of learning distributions that can adaptively change after each sample was
studied. Their main result is that if one-way functions do not exist then there
exists an efficient learning algorithm that can approximate the next activation
of the ACD, that is, produce a distribution that is statistically close to the
distribution of the next activation of the ACD. We show how to facilitate (a
slightly modified version of) this algorithm to learn the unsteady Bloom filter
and construct a simulation. One of the main difficulties is that since we get only
a statistical distance guarantee, then a false positive for the simulation need
not be a false positive for the real Bloom filter. Nevertheless, we show how to
estimate whether an element is a false positive in the real Bloom filter.

3.2 Computationally Unbounded Adversaries

In Theorem 3 we construct a Bloom Filter that is resilient against any unbounded
adversary for a given number (t) of queries. One immediate solution would be to
imitate the construction of the computationally bounded case while replacing the
pseudo-random permutation with a k = (t+n)-wise independent hash function.
Then, any set of t queries along with the n elements of the set would behave as
truly random under the hash function. The problem with this approach is that
the representation of the hash function is too large: It is O(k log |U |) which is
more than the number of bits needed for a precise representation of the set S.
Turning to almost k-wise independence does not help either. First, the memory
will still be too large (it can be reduced to O(n log n log 1

ε+t log n log 1
ε ) bits) and

second, almost k-wise guarantees works only for sets chosen in advance, where
the point of a resilient Bloom filter is to handle adaptively chosen sets.

Carter et al. [7] presented a general transformation from any exact dictionary
to a Bloom filter. The idea was simple: storing x in the Bloom filter translates to
storing g(x) in a dictionary for some (universal) hash function g : U → V , where
|V | = n

ε . The choice of the hash function and underlying dictionary are important
as they determine the performance and memory size of the Bloom filter. Notice
that, at this point replacing g with a k = (t+n)-wise independent hash function
(or an almost k-independent hash function) yields the same problems discussed
above. Nevertheless, this is our starting point where the final construction is
quite different. Specifically, we combine two main ingredients: Cuckoo hashing
and a highly independent hash function tailored for this construction.

For the underlying dictionary in the transformation we use the Cuckoo hash-
ing construction [26, 25]. Using cuckoo hashing as the underlying dictionary was
already shown to yield good constructions for Bloom filters by Pagh et al. [24]
and Arbitman et al. [1]. Among the many advantages of Cuckoo hashing (e.g.,
succinct memory representation, constant lookup time) is the simplicity of its
structure. It consists of two tables T1 and T2 and two hash functions h1 and
h2 and each element x in the Cuckoo dictionary resides in either T1[h1(x)] or
T2[h2(x)]. However, we use this structure a bit differently. Instead of storing
g(x) in the dictionary directly (as the reduction of Carter et al. suggests) which



would resolve to storing g(x) at either T1[h1(g(x))] or T2[h2(g(x))] we store g(x)
at either T1[h1(x)] or T2[h2(x)]. That is, we use the full description of x to decide
where x is stored but eventually store only a hash of x (namely, g(x)). Since each
element is compared only with two cells, this lets us improve the analysis of the
reduction which reduce the size of V to O

(
1
ε

)
(instead of n

ε ).

To initialize the hash function g, instead of using a universal hash function we
use a very high independence function (which in turn is also constructed based
on cuckoo hashing) based on the work of Pagh and Pagh [23] and Dietzfelbinger
and Woelfel [11]. They show how to construct a family G of hash functions such
that on any given set of k inputs it behaves like a truly random function with
high probability. Furthermore, a function in G can be evaluated in constant time
(in the RAM model), and its description can be stored using roughly O(k log |V |)
bits (where V is the range of the function).

Note that the guarantee of the function acting random holds only for sets S of
size k that are chosen in advance. In our case the set is not chosen in advance but
rather chosen adaptively and adversarially. However, Berman et al. [3] showed
that the same construction of Pagh and Pagh actually holds even when the set
of queries is chosen adaptively.

At this point, one solution would be to use the family of functions G setting
k = t + n, with the analysis of Berman et al. as the hash function g and the
structure of the Cuckoo hashing dictionary. To get an error of ε, we set |V | =
O
(
log 1

ε

)
and get an adversarial resilient Bloom filter that is resilient for t queries

and uses O
(
n log 1

ε + t log 1
ε

)
bits of memory. However, our goal is to get a

memory size of O
(
n log 1

ε + t
)
.

To reduce the memory of the Bloom filter even further, we use the family G
a bit differently. Let ` = O

(
log 1

ε

)
, and set k = O (t/`). We define the function

g to be a concatenation of ` independent instances gi of functions from G, each
outputting a single bit (V = {0, 1}). Using the analysis of Berman et al. we get
that each of them behaves like a truly random function for any sequence of k
adaptively chosen elements. Consider an adversary performing t queries. To see
how this composition of hash functions helps reduce the independence needed,
consider the comparisons performed in a query between g(x) and some value y
being performed bit by bit. Only if the first pair of bits are equal we continue to
compare the next pair. The next query continues from the last pair compared,
in a cyclic order. For any set of k elements, the probability of the two bits to
be equal is 1/2. Thus, with high probability, only a constant number of bits
will be compared during a single query. That is, in each query only a constant
number of functions gi will be involved and “pay” in their independence, where
the rest remain untouched. Altogether, we get that although there are t queries
performed, we have ` different functions and each function gi is involved in at
most O(t/`) = k queries (with high probability). Thus, the view of each function
remains random on these elements. This results in an adversarial resilient Bloom
filter that is resilient for t queries and uses only O(n log 1

ε+k log 1
ε ) = O(n log 1

ε+
t) bits of memory.



4 Preliminaries

We start with some general notation. We denote by [n] the set of numbers
{1, 2, . . . , n}. We denote by neg : N→ R a function such that for every positive
integer c there exists an integer Nc such that for all n > Nc, neg(n) < 1/nc.
Finally, throughout this paper we denote by log the base 2 logarithm.

Definition 8 (One-Way Functions). A function f is said to be one-way if:

1. There exists a polynomial-time algorithm A such that A(x) = f(x) for every
x ∈ {0, 1}∗.

2. For every probabilistic polynomial-time algorithm A′ and large enough n,

Pr[A′(1n, f(x)) ∈ f−1(f(x))] < neg(n),

where the probability is taken uniformly over x ∈ {0, 1}n and the internal
randomness of A′.

Definition 9 (Universal Hash Family). A family of functions H = {h : U →
[m]} is called universal if for any x1 6= x2: Prh∈H[h(x1) = h(x2)] ≤ 1

m .

5 Adversarial Resilient Bloom Filters and One-Way
Functions

In this section we show that adversarial resilient Bloom filters are (existentially)
equivalent to one-way functions (see Definition 8). We begin by showing that if
one-way functions do not exist, then any Bloom filter can be ‘attacked’ by an
efficient algorithm in a strong sense:

Theorem 4. Let B = (B1,B2) be any non-trivial Bloom filter of n elements
that uses m bits of memory and let ε0 be the minimal error of B. If one-way
function do not exist, then for any constant ε < 1, B is not (n, t, ε)-adversarial
resilient for t = O

(
m/ε20

)
.

We give two different proofs; The first is self contained (e.g. we do not even
have to use the Impagliazzo-Luby [15] technique of finding a random inverse),
but, deals only with Bloom filters with steady representations. The second han-
dles Bloom filters with unsteady representations, and uses the framework of
adaptively changing distributions of [20].

5.1 A Proof for Bloom Filters with Steady Representations

Overview: We prove Theorem 4 for the case of steady representation (see Defi-
nition 1). Actually, for the steady case the theorem holds even for t = O(m/ε0).

Assume that there are no one-way functions. We want to construct an adver-
sary that can attack the Bloom filter. We define a function f to be a function that
gets a set S, random bits r, and elements x1, . . . , xt, computes M = B1(S; r)



and outputs these elements along with their evaluation on B2(M, ·) (i.e. for each
element xi the value B2(M,xi)). Since f is not one-way, there is an efficient
algorithm that can invert it with high probability2. That is, the algorithm is
given a random set of elements labeled whether they are (false) positives or not
and it outputs a set S′ and bits r′. For M ′ = B1(S′; r′) the function B2(M ′, ·) is
consistent with B2(M, ·) for all the elements x1, . . . , xt. For a large enough set of
queries we show that B2(M ′, ·) is actually a good approximation of B2(M, ·) as a
boolean function. We use B2(M ′, ·) to find an input x∗ such that B2(M ′, x∗) = 1
and show that B2(M,x∗) = 1 as well with high probability. This contradicts B
being adversarial-resilient and proves that f is a (weak) one-way function. See
the full paper for more details [22].

5.2 Handling Unsteady Bloom Filters

We describe the proof of the general statement of Theorem 4, i.e., handle Bloom
filters with an unsteady-representation as well. A Bloom filter with an unsteady
representation (see Definition 3) has a randomized query algorithm and may
change the underlying representation after each query. We want to show that if
one-way functions do not exist then we can construct an adversary, Attack, that
‘attacks’ this Bloom filter. The proof of this case is more involved and we show
a simpler version that has an additional assumption (for the full proof see [22]).

Hard-core positives. Let B = (B1,B2) be an (n, ε)-Bloom filter with an unsteady
representation that uses m bits of memory (see Definition 3). Let M and M ′ be
two representations of a set S generated by B1. In the previous proof in Sec-
tion 5.1, given a representation M we considered B2(M, ·) as a boolean function.
We defined the function µ(M) to measure the number of positives in B2(M, ·)
and we defined the error between two representations err(M,M ′) to measure
the fraction of inputs that the two boolean functions agree on. These definitions
make sense only when B2 is deterministic and does not change the represen-
tation. However, in the case of Bloom filters with unsteady representations we
need to modify the definitions to have new meanings.

Given a representation M consider the query interface Q(·) initialized with
M . For an element x, the probability of x being a false positive is Pr[Q(x) =
1] = Pr[B2(M,x) = 1]. Recall that after querying Q(·), the interface updates
its representation and the probability of x being a false positive might change
(it could be higher or lower). We say that x is a ‘hard-core positive’ if after
any arbitrary sequence of queries we have that Pr[Q(x) = 1] = 1. That is, the
query interface will always response with a ‘Yes’ on x even after any sequence
of queries. Then, we define µ(M) to be the set of hard-core positive elements
in U . Note that over the time, the size of µ(M) might grow, but it can never
become smaller. The following claim proves that for almost all sets S the number
of hard-core positives is large (see [22] for the proof).

2 The algorithm can invert the function for infinitely many input sizes. Thus, the
adversary we construct will succeed in its attack on the same (infinitely many)
input sizes.



Claim. For any Bloom filter with minimal error ε0 it holds that:

Pr
S

[
∃r : µ

(
MS
r

)
≤ ε0

8

]
≤ 2−n

where the probability is taken a random set S of size n from the universe U .

The distribution DM . As we can not talk about the function B2(M, ·) (as in
the steady case) we use terms of distributions. For any representation M de-
fine the distribution DM : Sample k elements at random x1, . . . , xk (k will be
determined later), and output (x1, . . . , xk, Q(x1), . . . , Q(xk)). Note that the un-
derlying representation M changes after each query. Formally, the algorithm for
DM is:

1. Sample x1, . . . , xk ∈ U uniformly at random.
2. For i = 1, . . . , k: compute yi = Q(xi).
3. Output (x1, . . . , xk, y1, . . . , yk).

Let M0 be a representation of a random set S generated by B1, and let ε0 be
the minimal error of B. Assume that one-way functions do not exists. Our goal
is to construct an algorithm Attack that will ‘attack’ B, that is, it is given access
to Q(·) initialized with M0 (M0 is secret and not known to Attack) it must find
an non-set element x∗ such that Pr[Q(x) = 1] ≥ 2/3.

Consider the distribution DM0
, and notice that given access to Q(·) we can

perform a single sample from DM0
. Let M1 be the random variable of the result-

ing representation after the sample. Then, we can sample from the distribution
DM1 , and then DM2 and so on. We describe a simplified version of the proof
where we assume that M0 is known to the adversary. This version seems to
captures the main ideas.

Attacking when M0 is known. Suppose that after activating DM0 for r rounds we
are given the initial state M0 (of course, in the actual execution M0 is secret and
later we show how to overcome this assumption). Let p1, . . . , pr be the outputs
of the rounds (that is, pi = (x1, . . . , xk, y1, . . . , yk)). For a specific output pi we
say that xj was labeled ‘1’ if yj = 1.

Denote by DM0(p0, . . . , pr) the distribution over the (r + 1)th activation of
DM0 conditioned on the first r activations resulting in the states p0, . . . , pr.
Computational issues aside, the distribution DM0

(p0, . . . , pr) can be sampled by
enumerating all random strings such that when applied to DM0

yield the output
p0, . . . , pr, sampling one of them, and outputting the representations generated
by the random string chosen. Moreover, define DM0

(p0, . . . , pr;x1, . . . , xk) to be
the distribution DM0(p0, . . . , pr) conditioned on that the elements chosen in the
sample are x1, . . . , xk. We also define D(p0, . . . , pr) to be the same distribution
as DM0

(p0, . . . , pr) only where the representation M0 is also chosen at random
(according to B1(S)).

We define an (inefficient) adversary Attack (see Figure 1) that (given M0)
can attack the Bloom filter, that is, find an element x∗ that was not queried
before and is a false positive with high probability.

Set k = 160/ε0 and ` = 100k. Then we get the following claims.



The Algorithm Attack

Given: The representation M0.

Input : 1λ.

1. Sample x1, . . . , xk ∈ U at random.
2. For i ∈ [`] sample DM0(p0, . . . , pr;x1, . . . , xk) to get yi1, . . . , yik.
3. If there exists an index j ∈ [k] such that for all i ∈ [`] it holds that yij = 1:

(a) Set x∗ = xj .
(b) Query Q(x1), . . . , Q(xj−1).

4. Otherwise set x∗ to be an arbitrary element in U .
5. Output x∗.

Fig. 1. The description of the algorithm Attack.

Claim. There is a common xj : With probability 99/100 there exist a 1 ≤ j ≤ k
such that for all i ∈ [`] it holds that yij = 1, where the probability is over the
random choice of S and x1, . . . , xk.

Proof. Let Mr be the resulting representation of the rth activation of DM0(p0
, . . . , pr;x1, . . . , xk). We have seen that with probability 1−2−n over the choice of
S for any M0 we have that the set of hard-core positives satisfy |µ(M0)| ≥ ε0/16.
By the definition of the hard-core positives, the set µ(M0) may only grow after
each query. Thus, for each sample from DM0

(p0, . . . , pr;x1, . . . , xk) we have that
µ(M0) ⊆ µ(Mr). If xj ∈ µ(M0) then xj ∈ µ(Mr) and thus yij = 1 for all i ∈ [`].
The probability that all elements x1, . . . , xk are sampled outside the set µ(M0)
is at most (1 − ε0/16)k ≤ e−10 (over the random choices of the elements). All
together we get that probability of choosing a ‘good’ S and a ‘good’ sequence
x1, . . . , xt is at least 1− 2−n + e−10 ≥ 99/100.

Claim. Let Mr be the underlying representation of the interface Q(·) at the time
right after sampling p0, . . . , pr. Then, with probability at least 98/100 the algo-
rithm Attack outputs an element x∗ such that Q(x∗) = 1, where the probability
is taken over the randomness of Attack, the sampling of p0, . . . , pr, and B.

Proof. Consider the distribution DM0
(p0, . . . , pr;x1, . . . , xk) to work as follows:

First a representation M is sampled conditioned on starting from M0 and out-
putting the states p0, . . . , pr and then we compute yj = B2(M,xj). Let M ′1, . . . ,
M ′` be the representations chosen during the run of Attack. Note that Mr is
chosen from the same distribution that M ′1, . . . ,M

′
` are sampled from. Thus, we

can think of Mr of being picked after the choice of x1, . . . , xk. That is, we sample
M ′1, . . . ,M

′
`+1, and choose one of them at random to be Mr, and the rest are

relabeled as M ′1, . . . ,M
′
`. Now, for any xj , the probability that for all i, M ′i will

answer ‘1’ on xj but Mr will answer ‘0’ on xj is at most 1/`. Thus, the prob-
ability that there exist any such xj is at most k

` = k
100k = 1/100. Altogether,



the probability that A find such an xj that is always labeled ‘1’ and that Mr

answers ‘1’ on it, is at least 99/100− 1/100 = 98/100.

We are left to show how to construct the algorithm Attack so that it will
run in polynomial-time and perform the same tasks without knowing M0. One
difficulty (which was discussed in Section 3), is that the number of samples
r must be chosen as a function of the samples and cannot be fixed in advance.
Algorithms for such tasks were studied in the framework Naor and Rothblum [20]
on adaptively changing distributions. The full proof is given at [22].

5.3 A Construction Using Pseudorandom Permutations

We have seen that Bloom filters that are adversarial resilient require using one-
way functions. To complete the equivalence, we show that pseudorandom per-
mutations and functions can be used to construct adversarial resilient Bloom
filters. Actually, we show that any Bloom filter can be efficiently transformed to
be adversarial resilient with essentially the same amount of memory. The idea is
simple and can work in general for other data structures as well: On any input
x we compute a pseudo-random permutation of x and send it to the original
Bloom filter. The full proof is given at [22].

Theorem 5. Let B be an (n, ε)-Bloom filter using m bits of memory. If pseu-
dorandom permutations exist, then for any security parameter λ there exists an
(n, ε+ neg(λ))-strongly resilient Bloom filter with memory m′ = m+ λ.

6 Computationally Unbounded Adversary

In this section, we extend the discussion of adversarial resilient Bloom filters
to ones against computationally unbounded adversaries. First, notice that the
attack of Theorem 4 holds in this case as well, since an unbounded adversary
can invert any function (with probability 1). Formally, we get the following:

Corollary 1. Let B = (B1,B2) be any non-trivial Bloom filter of n elements
that uses m bits of memory and let ε0 be the minimal error of B. Then for
any constant ε < 1, B is not (n, t, ε)-adversarial resilient against unbounded

adversaries for t = O
(
m
ε20

)
.

As we saw, any (n, ε)-Bloom filter must use at least n log 1
ε bits of memory.

We show how to construct Bloom Filters that are resilient against unbounded
adversaries for t of queries while using only O

(
n log 1

ε + t
)

bits of memory (for
a discussion on the optimality of the number of queries t see the full paper [22]).

Theorem 6. For any n, t ∈ N, and ε > 0 there exists an (n, t, ε)-resilient Bloom
filter (against unbounded adversaries) that uses O(n log 1

ε + t) bits of memory.

Our construction uses two main ingredients: Cuckoo hashing and a very high
independence hash family G. We begin by describing these ingredients.



The Hash Function Family G. Pagh and Pagh [23] and Dietzfelbinger and
Woelfel [11] (see also Aumuller et al. [2]) showed how to construct a family
G of hash functions g : U → V so that on any set of k inputs it behaves like
a truly random function with high probability (1 − 1/poly(k)). Furthermore, g
can be evaluated in constant time (in the RAM model), and its description can
be stored using (1 +α)k log |V |+O(k) bits (where here α is an arbitrarily small
constant).

Note that the guarantee of g acting as a random function holds for any set S
that is chosen in advance. In our case the set is not chosen in advance but chosen
adaptively and adversarially. However, Berman et al. [3] showed that the same
line of constructions, starting with Pagh and Pagh, actually holds even when
the set of queries is chosen adaptively. That is, for any distinguisher that can
adaptively choose k inputs, the advantage of distinguishing a function g ∈R G
from a truly random function is polynomially small3.

Set ` = 4 log 1
ε . Our function g will be composed of the concatenation of ` one

bit functions g1, g2, . . . g` where each gi is selected independently from a family
G where V = {0, 1} and k = 2t/ log 1

ε . For a random gi ∈R G:

– There is a constant c (which we can choose) so that for any adaptive dis-
tinguisher that issues a sequence of k adaptive queries gi the advantage of
distinguishing between gi and an exact k-wise independent function U → V
is bounded by 1

kc .
– gi can be represented using (1 + α)k` = O(t) bits.
– gi can be evaluated in constant time.

Thus, the representation of g requires O(t) bits. The evaluation of g at a
given point x takes O(`) = O

(
log 1

ε

)
time.

Cuckoo Hashing. Cuckoo hashing is a data structure for dictionaries introduced
by Pagh and Rodler [26]. It consists of two tables T1 and T2, each containing
r cells where r is slightly larger than n (that is, r = (1 + α)n for some small
constant α) and two hash functions h1, h2 : U → [r]. The elements are stored
in the two tables so that an element x resides at either T1[h1(x)] or T2[h2(x)].
Thus, the lookup procedure consists of one memory accesses to each table plus
computing the hash functions. (This description ignores insertions.)

We assume that n > log u (we can actually let n go as low as O(log log u)
using almost pair-wise independent hashing). Our construction of an adversarial
resilient Bloom filter is:

Setup. The input is a set S of size n. Sample a function g by sampling ` functions
gi ∈R G and initialize a Cuckoo hashing dictionary D of size n (with α = 0.1)
as described above. That is, D has two tables T1 and T2 each of size 1.1n, two
hash functions h1 and h2, and each element x will reside at either T1[h1(x)] or
T2[h2(x)]. Insert the elements of S into D. Then, go over the two tables T1 and

3 Any exactly k-wise independent function is also good against k adaptive queries, but
this is not necessarily the case for almost k-wise



T2 and at each cell replace each x with g(x). That is, now for each x ∈ S we have
that g(x) resides at either T1[h1(x)] or T2[h2(x)]. Put ⊥ in the empty locations.
The final memory of the Bloom Filter is the memory of D and the representation
of g. The dictionary D consists of O(n) cells, each of size |g(x)| = O(log 1

ε ) bits
and therefore D and g together can be represented by O(n log 1

ε + t) bits.

Lookup. On input x we answer whether ‘Yes’ if either T1[h1(x)] = g(x) or
T2[h2(x)] = g(x). The full proof of this construction is given at [22].
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