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Abstract. Several improvements of fast correlation attacks have been
proposed during the past two decades, with a regrettable lack of a better
generalization and adaptation to the concrete involved primitives, espe-
cially to those modern stream ciphers based on word-based LFSRs. In
this paper, we develop some necessary cryptanalytic tools to bridge this
gap. First, a formal framework for fast correlation attacks over extension
fields is constructed, under which the theoretical predictions of the com-
putational complexities for both the offline and online/decoding phase
can be reliably derived. Our decoding algorithm makes use of Fast Walsh
Transform (FWT) to get a better performance. Second, an efficient algo-
rithm to compute the large-unit distribution of a broad class of functions
is proposed, which allows to find better linear approximations than the
bitwise ones with low complexity in symmetric-key primitives. Last, we
apply our methods to SNOW 2.0, an ISO/IEC 18033-4 standard stream
cipher, which results in the significantly reduced complexities all below
2164.15. This attack is more than 249 times better than the best published
result at Asiacrypt 2008. Our results have been verified by experiments
on a small-scale version of SNOW 2.0.
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nite state machine (FSM), Linear feedback shift register (LFSR)

1 Introduction

The design and analysis of any cipher in history have to match well with the com-
puting technologies in a specified period. Fast correlation attacks, introduced by
Meier and Staffelbach in 1989 [19], are commonly regarded as classical methods
in the cryptanalysis of LFSR-based stream ciphers, which were usually imple-
mented in hardware at that time. In general, fast correlation attacks have been
constantly and steadily evolving [4, 5, 11], resulting in more and more powerful
decoding methods dedicated to very large linear codes in the presence of a highly
noisy channel.

On the other side, with the development of computing facilities, many word-
oriented stream ciphers have been proposed, e.g., SNOW 2.0, SNOW 3G [6, 8]
and Sosemanuk [2], aiming to combine the merits from the thoroughly studied



LFSR theory with a fast implementation in software. Due to the complex form
of the reduced LFSR recursion from the extension field to GF(2) (many taps and
a large number of state variables), the previous bitwise fast correlation attacks
do not work so well as expected in these cases. This motivates us to study the
security of these word-oriented primitives against a new form of fast correlation
attacks that works on some larger data unit.

Our Contributions. First, a formal framework for fast correlation attacks over
extension fields is constructed, under which the theoretical predictions of the
computational complexities for both the offline and online/decoding phase can be
reliably derived. This gives an answer to the open problem of Meier in [18] at FSE
2011. We adapt the k-tree algorithm [24] to generate the desirable parity check
equations in the pre-computation phase and propose a fast decoding algorithm
for the online phase. Second, an efficient algorithm to compute the large-unit
distributions of the generalized pseudo-linear functions modulo 2n (GPLFM),
which includes all the previously studied relevant topics [17] in an unified frame-
work, is proposed. This technique, serving as a basis to the first one, generalizes
the algorithm in [22] and has the value in its own right. It can compute the noise
distributions of the linear approximations of the GPLFM (including the addition
modulo 2n) in a larger alphabet of m-bit (m > 1) size when m is divisible by n
with a low complexity, e.g., for n = 32, the 2, 4, 8, 16-bit linear approximations
can be found efficiently with a slice size depending on the structure of the prim-
itive. Last, we apply our methods to SNOW 2.0, an ISO/IEC 18033-4 standard
and a benchmark stream cipher in the European eSTREAM project. We build
the byte-wise linear approximation of the FSM by further generalizing the G-
PLFM to include the S-boxes and restore the initial state of the LFSR (thus the
key) with a fast correlation attack over GF(28). The time/memory/data/pre-
computation complexities of this attack are all below 2186.95. Then we further
improve our attack by changing the linear mask from GF(2) to GF(28), which
results in the significantly reduced time/memory/data/pre-computation com-
plexities all below 2164.15. This attack is more than 249 times better than the
best published result at Asiacrypt 20081. Table 1 presents a comparison of our
attack on SNOW 2.0 with the best previous ones. Our results have been verified

Table 1. Comparison of the attacks on SNOW 2.0

type data time

[22] Distinguishing attack 2174 2174

[13] Key recovery attack 2198.77 2212.38

this paper Key recovery attack 2163.59 2164.15

on a small-scale version of SNOW 2.0 with 16-bit word size in experiments.

1 Note that in the Asiacrypt 2008 paper [13], the complexity is written as 2204.38 in
the abstract, while from the formula in Section 6, this complexity is 2212.38.



Outline. We present some preliminaries relevant to our work in Section 2. In
Section 3, the framework of fast correlation attacks over extension fields is estab-
lished with detailed theoretical justifications. The new algorithm to accurately
and efficiently compute the large-unit distribution of the GPLFM is provided in
Section 4. The application of our approaches to SNOW 2.0 is given in Section 5.
The improved attack using finite field linear masks is described in Section 6 with
the experimental results. Finally, some conclusions are made and future work is
pointed out in Section 7.

2 Preliminaries

In this section, some notations and basic definitions are presented. Denote the
set of real numbers by R. The binary field is denoted by GF(2) and the m-
dimensional extension field of GF(2) is denoted by GF(2m). The modular ad-
dition is � and the usual xor operation is ⊕. The inner product of two n-
dimensional vectors a and b over GF(2m) is defined as ⟨a, b⟩ = ⟨(a0, · · · , an−1),

(b0, · · · , bn−1)⟩ :=
⊕n−1

i=0 aibi. As usual, a function f : GF(2n) → GF(2) is called
a Boolean function and a function g = (g1, · · · , gm) : GF(2n) → GF(2m) with
each gi (1 ≤ i ≤ m) being a Boolean function is called a m-dimensional vectorial
Boolean function.

Definition 1 Let X be a binary random variable, the correlation between X
and zero is defined as c(X) = Pr{X = 0} − Pr{X = 1}. The correlation of a
Boolean function f : GF(2n) → GF (2) to zero is defined as c(f) = Pr{f(X) =
0} − Pr{f(X) = 1}, where X ∈ GF(2n) is an uniformly distributed random
variable.

Given a vectorial Boolean function g : GF(2n) → GF(2m), define the distribution
pg of g(X) with X uniformly distributed as pg(a) = #{X|g(X) = a}/2n for all
a ∈ GF(2m).

Definition 2 As in [1], the Squared Euclidean Imbalance (SEI) of pg is ∆(pg) =
2m

∑
a∈GF (2m)(pg(a) −

1
2m )2, which measures the distance between the target

distribution and the uniform distribution.

SEI2 is used to evaluate the efficiency of large-unit linear approximations in
this paper. Here by large-unit, we refer to the linear approximation whose basic
data unit is non-binary. The next definition introduces a powerful tool to com-
pute the correlation of a nonlinear function and to reduce the complexity of the
substitution step of a fast correlation attack [5].

Definition 3 Given a function f : GF(2n) → R, for ω ∈ GF(2n), the Walsh

Transform of f at point ω is defined as f̂(ω) =
∑

x∈GF (2n) f(x)(−1)⟨ω,x⟩.

2 SEI is also referred to as capacity of the distribution in [9].



The Walsh Transform of f can be computed efficiently with an algorithm called
Fast Walsh Transform (FWT) [25] in n2n time and 2n memory. The preparation
of f takes 2n time, thus the total time complexity is 2n + n2n, which is a large
improvement compared to 22n. The following fact [21] is used in our analysis.

Lemma 4 We consider a vectorial Boolean function g : GF(2n) → GF(2m)
with the probability distribution vector pg. Then ∆(pg) =

∑
a∈GF (2m) c

2(⟨a, g⟩),
where c(⟨a, g⟩) is the correlation of the Boolean function ⟨a, g⟩.

Lemma 4 indicates that we can derive the SEI of distribution pg with the cor-
relations c(⟨a, g⟩) for a ∈ GF(2m). Therefore, computing the SEI of the large
data unit distribution can be reduced to the problem of looking for bitwise linear
approximations with non-negligible correlations.

3 Fast Correlation Attacks over Extension Fields

In this section, we will describe a formal framework for fast correlation attacks
over GF(2n), which is the first comprehensive answer to the open problem how
to amount fast correlation attack over the extension fileds proposed in [3] and
[18]. Let us first define the notations used hereafter.

– N is the number of available output words.
– l is the word-length of the LFSR over GF(2n).
– l′ is the number of target words in decoding phase.
– G is the l ×N generator matrix of a [N, l] linear code C1 over GF(2n).
– ui ∈ GF(2n) is the i-th output word of the LFSR.
– zi ∈ GF(2n) is the i-th output word of the keystream generator.
– ei ∈ GF(2n) is the i-th noisy variable of a Discrete Memoryless Channel

(DMC).

3.1 Model for Fast Correlation Attacks over Extension Fields

The fast correlation attack over extension fields is also modelled as a decoding
problem, i.e., the keystream segment z = (z1, z2, · · · , zN ) can be seen as the
transmission result of the LFSR sequence u = (u1, u2, · · · , uN ) through a DMC
with the noisy variables e = (e1, e2, · · · , eN ), as shown in Fig.1. From this model,

LFSR  
i
u

i
z

i
e

DMC

Fig. 1. Model for fast correlation attacks over GF(2n)

we can represent the received symbols zi as zi = ui⊕ei, where the noise variable



ei is non-uniformly distributed for i = 1, · · · , N . The capacity of the DMC is
CDMC = log(2n) +

∑
e∈GF (2n) Pr{ei = e} · log(Pr{ei = e}), where the maximum

capacity is reached when Pr{ei = e} = 1/2n for all e ∈ GF(2n). Then the above
decoding problem is converted into decoding a [N, l] linear code C1 over GF(2n),
where N is the code length and l is the symbol-length of information, with the
code rate R = log(2n) · l/N . Using Taylor series at order two, we achieve the
following theorem, which theoretically connects the capacity of the DMC with
the SEI of the noise distribution.

Theorem 5 Let CDMC be the capacity of a DMC over GF(2n) and the noise
variable ei ∈ GF(2n), whose distribution is denoted by pei = (Pr{ei = 0},
· · · , P r{ei = 2n − 1}). Then the theoretical relation between the capacity CDMC

and the SEI of pei , i.e., ∆(pei), is CDMC ≈ ∆(pei
)

2 ln(2) .

This theorem provides a tool for bridging the theory based on Shannon theory
and that based on the SEI measure. Theorem 5 is the basis of our framework,
enabling us to derive a lower bound on the keystream length required for a
successful attack. Actually, a [N, l] linear code over GF(2n) can be successfully
decoded only if its code rate does not exceed the capacity of the transmission
channel, pioneered in [23].

Theorem 5 and Shannon Theorem are combined together in our framework
to give a theoretical analysis of the new fast correlation attacks over extension
fields. Under this theoretical framework, we can assure that the fast correlation
attack succeeds with a high probability, i.e., 0.5 < Psucc ≤ 1, if R < CDMC.

3.2 General Description of Fast Correlation Attacks over Extension
Fields

Our new algorithm is extracted from the previous work in [10, 12] by addressing
some important unsolved problems therein. First, the pre-computation algorithm
in [10, 12] uses the straight forward method to find all the possible collisions over
extension fields, whose complexity is too high to be applied in cryptanalysis.
Second, in Fig.1, only a DMC with the following properties is considered, i.e.,
the distribution of the noise variable ei satisfies Pr{ei = 0} = 1/2n + δ and
Pr{ei = e} = 1/2n − δ/(2n − 1), ∀e ∈ GF(2n), e ̸= 0, which is not the general
case. Usually in the practice of correlation attacks, the distribution of noisy
variable does not necessarily satisfy this condition. Third, the straightforward
method is used to identify the correct key in the online phase, i.e., by evaluating
parity-checks one by one for each possible codeword, which is inappropriate for
cryptanalytic purposes. Last, a comprehensive theoretical justification is missing,
which will assure the decoding reliability when simulations are infeasible.

Preprocessing. As in [4, 10, 12], we convert the original code C1 directly derived
from the primitive to a new code C2, which is expected to be easier to decode
by some fast decoding algorithm later devised. Precisely, let the length of the
LFSR be l-word. Then we have u = (u1, u2, · · · , ul) · G, where (u1, u2, · · · , ul)
is the initial state of the LFSR. Let (·, · · · , ·)T be the transpose of a vector,



we rewrite the matrix G in column vectors as G = (g1,g2, · · · ,gN ), where
gi = (g1i , g

2
i , · · · , gli)T (1 ≤ i ≤ N) is the i-th column vector. In order to reduce

the decoding complexity, we build a new code C2 with a smaller number of
information symbols û = (u1, u2, · · · , ul′) for a certain l′ < l as follows. We first
look for some k-tuple column vectors (gi1 ,gi2 , · · · ,gik) satisfying gi1 ⊕ gi2 ⊕
· · · ⊕ gik = (c1, c2, · · · , cl′ , 0, · · · , 0)T . For each k-tuple, we have

k⊕
j=1

uij = (u1, u2, · · · , ul)

k⊕
j=1

gij = c1u1 ⊕ c2u2 ⊕ · · · ⊕ cl′ul′ . (1)

This equation is called the parity check for u1, · · · , ul′ . Since zi = ui ⊕ ei, we
rewrite it as

⊕k
j=1 zij = c1u1⊕ c2u2⊕· · ·⊕ cl′ul′ ⊕

⊕k
j=1 eij . Collect a desirable

number of such k-tuples and denote the number of such derived equations by

mk. Denote the indices of t-th such tuple of columns by {i(t)1 , i
(t)
2 , · · · , i(t)k }. Let

Ut =
⊕k

j=1 ui
(t)
j

, 1 ≤ t ≤ mk. Thus we have constructed an [mk, l
′]-code C2, i.e.,

U = (U1, U2, · · · , Umk
).

Processing. Denote the received sequence by Z = (Z1, Z2, · · · , Zmk
), where

Zt =
⊕k

j=1 zi(t)j
. We first use the keystream words z1, z2, · · · , zN to compute Z.

Then decode the code C2 using the algorithm in the following subsection and
output (u1, u2, · · · , ul′). Using the DMC model and assuming that all the eis
are independent random values over GF(2n), it is easy to see that the distri-

bution of the folded noisy variable Et =
⊕k

j=1 ei(t)j

can be computed by the

convolution property via FWT. The new noise sequence can be represented as
E = (E1, E2, · · · , Emk

).

3.3 Preprocessing Stage: Generating the Parity Checks

Now we present an algorithm to compute the desirable k-tuple parity check-
s with a relatively low complexity, while the straight forward method in [12]
needs a complexity of O(Nk). First look at the case of k = 2. Eq.(1) indi-

cates that (gl
′+1
i1

, gl
′+2
i1

, · · · , gli1)
T ⊕ (gl

′+1
i2

, gl
′+2
i2

, · · · , gli2)
T = (0, · · · , 0)T . Thus

the construction of parity checks is equivalent to the searching of n(l − l′)-bit

collision, i.e., just split (gl
′+1
i , gl

′+2
i , · · · , gli) for i = 1, · · · , N into two lists L1

and L2, and look for x1 ∈ L1, x2 ∈ L2 such that x1⊕x2 = 0. Hence, by searching
for collisions through these two lists, 2-tuple parity checks in our attack can be
constructed.

Note that the crucial difference between GF(2n) and GF(2) requires that
the length of the partial collision positions cannot be arbitrary and should be a
multiple of n. In general, we can split the truncated matrix columns of G into
k lists and search for xi ∈ Li for 1 ≤ i ≤ k such that

⊕k
i=1 xi = 0 holds for

1 ≤ i ≤ k. This problem can be transformed into the well known k-sum problem.
Problem 1. (The k-sum problem) Given k lists L1, · · · , Lk, each of length α
and containing elements drawn uniformly and independently at random from
{0, 1}n(l−l′), find x1 ∈ L1, · · · , xk ∈ Lk such that x1 ⊕ x2 ⊕ · · · ⊕ xk = 0.



Fortunately, this problem can be efficiently solved by the k-tree algorithm in
[24]. It is shown that the k-tree algorithm requires O(k2n(l−l′)/(1+log k)) time
and space and uses lists of size O(2n(l−l′)/(1+log k)). The k-tree algorithm can
also find many solutions to the k-sum problem. It can find β1+log k solutions to
the k-sum problem with β times as much work as finding a single solution, as
long as β ≤ 2n(l−l′)/(log k(1+log k)). Thus the total time/space complexities are
O(βk2n(l−l′)/(1+log k)) and the size of each list is O(β2n(l−l′)/(1+log k)).

Now we show how to generate the mk k-tuple parity checks. Precisely, we

denote the truncated partial vector of gi by xi = (gl
′+1
i , · · · , gli) for i = 1, · · · , N .

Then disjoin (x1,x2, · · · ,xN ) into k lists L1, · · · , Lk, each of length α = N/k.
We want to find x1 ∈ L1, · · · ,xk ∈ Lk satisfying x1 ⊕ x2 ⊕ · · · ⊕ xk = 0. This is
exactly the same case as the k-sum problem, so we can adopt the k-tree algorithm
in [24] to find the required number of desirable parity checks.

3.4 Processing Stage: Decoding the Code C2

It is well-known that decoding a random linear code over an extension field is a
NP-hard problem. Here we present a fast decoding algorithm, which can be seen
as a solution to this problem.

As shown in [5, 14], FWT can be used to accelerate the decoding process for
the linear codes over GF(2). Here we derive a method based on Lemma 4 to
exploit FWT for decoding linear codes over GF(2n).

Let us denote the guessed value of the partial initial state û = (u1, · · · , ul′) by
û′ = (u′

1, · · · , u′
l′). After pre-computation, we construct a distinguisher I(û′) =

c
(t)
1 (u1 ⊕ u′

1)⊕ · · · ⊕ c
(t)
l′ (ul′ ⊕ u′

l′)⊕ Et = Zt ⊕ c
(t)
1 u′

1 ⊕ · · · ⊕ c
(t)
l′ u′

l′ , to find the
correct partial state û. If the guessed value û′ is correct, I is expected to be
biased; otherwise it approximates an uniform distribution.

Next, let us give a description on how to compute the SEI of I(û′), which is
the crucial part of our algorithm. We need to substitute the zis into the parity
check equations and evaluate the SEI of I for each possible û′. Combining Lemma
4 in Section 2.2 with FWT, we have the following method. Precisely, the SEI
of I(û′) can be computed by the correlations c(⟨γ, I⟩), where ⟨γ, I⟩ is a boolean
function and γ ∈ GF(2)n. We can divide the vectorial boolean function I into
n linearly independent boolean functions I1, · · · , In and each boolean function
can be expressed as Ii = ⟨wi, û

′⟩ ⊕ ⟨vi, Zt⟩, where wi ∈ GF(2)nl
′
, vi ∈ GF(2)n

are two binary coefficient vectors. Let Q = span{I1, · · · , In} such that Q is a set
of approximations generated by these n approximations Ii. Now the advantage
is that FWT can be used to compute the correlation of each approximation Ii
for i = 1, · · · , n, as described in [14].

Preciously, assume that we have mk n-bit parity checks over GF(2n) with the
same distribution. Then for each Ii there are mk bitwise parity checks denoted

by I
(t)
i for 1 ≤ t ≤ mk. In order to evaluate these mk bitwise parity checks

I
(t)
i = ⟨w(t)

i , û′⟩ ⊕ ⟨v(t)i , Zt⟩ for each û′, we introduce an integer-valued function,

h(û′) =
∑

1≤t≤mk:û′=w
(t)
i

(−1)⟨v
(t)
i ,Zt⟩,



for all û′ ∈ GF(2nl
′
). We compute the Walsh transform of h and then we can get

an 2nl
′
-dimensional array storing the correlation c(Ii) indexed by û′. The total

time complexity for computing c(I1), · · · , c(In) isO(n(mk+l′n2l
′n)) and memory

complexity is O(n2l
′n). In addition, the correlations of the other 2n−n−1 linear

approximations can be computed by the Piling-up Lemma [16]. Thus, we have
got all the correlations for different guessed values of û. Again from Lemma
4, we can easily compute ∆(I(û′)) for each possible û′. Then, we can use a
distinguisher described in [1] to recover the correct initial state. In total, the
time complexity of decoding C2 in such a way is O(n(mk + l′n2l

′n) + 2n2l
′n).

Now we give the theoretical justifications of our algorithm. Assume the noisy
distribution of Et over GF(2n) is pEt = (Pr{Et = 0}, · · · ,Pr{Et = 2n − 1}) and
the code length of C2 is mk. According to the k-tree algorithm, using k lists, each
of which has size of α = β2n(l−l′)/(1+log k), we can find β1+log k parity checks.

Since the number of parity checks pre-computed is mk, thus we have mk =
β1+log k. Further, for the decoding to succeed, the code rate R = l′ · log(2n)/mk

of C2 must satisfy R < CDMC. Then by Theorem 5, the value of mk can be
calculated as mk ≈ (2l′n ln 2)/∆(pEi). The following theorem gives the required
length N of the observed keystream segment for successfully decoding code C1.

Theorem 6 Given a [N, l] linear code C1 over GF(2n). After applying the pre-
computation of our algorithm, we get a new [mk, l

′] linear code C2, which is
transmitted through a 2n-ary DMC with the noise distribution pEi

. The required
length N of the observed keystream segment for the algorithm to succeed is N ≈
k2

n(l−l′)
θ (2l′n ln 2)

1
θ∆(pEi)

− 1
θ , where θ = 1 + log k.

4 Large-unit Linear Approximation and Its Distribution

In this section, an efficient algorithm to accurately compute the large-unit distri-
bution of the GPLFM is proposed. This is desired when the decoding algorithm
is available.

4.1 Large-unit Linear Approximations

Most of the previous work only study how to use the bitwise linear approxi-
mations to constitute a vector, here we directly focus on the non-binary linear
approximations whose basic data unit is over GF(2m) (m > 1) and such non-
binary unit linear approximations are called the large-unit linear approximations
throughout this paper3. Let H(X1, X2, · · · , Xd) be a non-linear function, where
the output and the input Xis are all random variables over GF(2n). Our task is
to accurately compute the m-bit large-unit distribution of some linear approx-
imation of H. In practice, the choice of m cannot be arbitrary and is usually
determined by the structure of the primitive and the underlying building blocks,
e.g., the LFSR structure and the S-box size. When m is fixed, the output of H

3 As we can see, when m = 1 it is just the bitwise approximation of F , while when
m = n it becomes the n-bit linear approximation, discussed in [7, 17].



and each input Xi(1 ≤ i ≤ d) can all be regarded as some n
m -dimensional vectors

over GF(2m). In this setting, the definition of a binary linear mask is as follows.

Definition 7 Let X ∈ GF(2n) and Ω = (ω n
m
, · · · , ω2, ω1) be a n

m -dimensional
binary vector, then X can be transformed to a n

m -dimensional vector X =
(x n

m
, · · · , x2, x1) over GF(2m) with xi ∈ GF(2m) for 1 ≤ i ≤ n

m . The inner prod-
uct between these two vectors is defined as Ω ·X = ω n

m
x n

m
⊕· · ·⊕ω1x1 ∈ GF(2m),

where Ω is called the n
m -dimensional binary linear mask of X over GF(2m).

4.2 The Generalized Pseudo-Linear Function Modulo 2n

Now we first generalize the pseudo-linear function modulo 2n (PLFM) in [17] to
GPLFM by introducing the binary mask with the inner product in Definition 7.
Note that in [17], the distribution of some class of functions called PLFM over
GF(2n) is computed, here we consider similar problems of GPLFM in a smaller
field GF(2m) with m < n.

Assume the large-unit is of m-bit size. Let X = {X1, X2, · · · , Xd} be a set of
d uniformly distributed n-bit random variables with Xi ∈ GF(2n) for 1 ≤ i ≤ d,
C = {C1, · · · , Cg} be a set of n-bit constants and M be a set of n

m -dimensional
binary masks of X and C. Now each element in X and C can be regarded as
a n

m -dimensional vector over GF(2m). We denote some symbol or expression
on X and C by Ti. The following two definitions introduce the GPLFM, which
generalizes the definition of PLFM in [17].

Definition 8 Given three sets X , C and M, we have:

1. A is an arithmetic term4, if it has only the operation of arithmetic �, e.g.,
A = T1 � T2 � · · · .

2. B is a Boolean term, if it only involves Boolean operations such as OR, AND,
XOR, and others, e.g., B = (T1 ⊕ T2) & T3.

3. S is a simple term, if it is a symbol either from X or C.
4. Ω ·X for X ∈ {A,B,S} is the inner product result of the term X with the

binary mask Ω ∈ M.

Definition 9 F (X1, X2, · · · , Xd) is called a generalized pseudo-linear function
modulo 2n (GPLFM) on X , if it can recursively be expressed in Ω ·X for X ∈
{A,B,S} combined by the Boolean operations.

It can be easily seen that the PLFM studied in [17] forms a subset of the GPLFM,
which only satisfies the conditions 1 ∼ 3 in Definition 8. In our large-unit linear
approximation of SNOW 2.0 in Section 5 and 6, we actually further generalize
the GPLFM functions by considering parallel boolean functions, i.e., the S-boxes
and multiplication over finite fields are included in our framework.

4 An arithmetic subtraction � can be substituted by � using X � Y = X � (Ȳ ) � 1
mod 2n, where ·̄ is the complement operation.



4.3 Algorithm for Computing the Distribution of a GPLFM

Assume the basic large-unit is of m-bit size. Let F (X1, · · · , Xd) be a GPLFM
with X , C and Ω ∈ M, where Xi ∈ GF(2n) (1 ≤ i ≤ d) and the binary masks
are n

m -dimensional vectors. We want to calculate the distribution of F in an
efficient way for some large n. Note that if n ≥ 32 and d ≥ 2, the distribution
pF is impossible to implement in practice with the straight forward method,
which needs 2nd operations. Further, the algorithm in [17] cannot be applied to
this problem due to the inner product operation inherent in the GPLFM over a
smaller field GF(2m). Here we propose Algorithm 1 to fulfill this task.

Our basic idea is as follows. Since each coordinate of the binary mask can
only take the value of 0 or 1, it actually selects which parts of the data arguments
will take effect in the approximation. According to the binary mask Ω, we can
split each variable Xi ∈ GF(2n) for i = 1, · · · , d into n

m blocks and each block

has m bits, i.e., Xi = (X
n
m
i , · · · , X2

i , X
1
i ), where Xj

i ∈ GF(2m) for 1 ≤ j ≤ n
m .

Since each block of the input variable is mutually independent, the function
F can be split into n

m sub-functions Fi (1 ≤ i ≤ n
m ), which can be evaluated

over a smaller space GF(2m). Each sub-function Fi can be seen as a PLFM over
GF(2m), whose distribution can be efficiently calculated by the algorithm in [17].

Algorithm 1 Computing the m-dimensional distribution of a GPLFM over GF(2n)

Parameters:

M1 and M2: two consecutive connection matrices of size 2m × |Crmax|;
Processing:

1: Split the function F into n
m

sub-functions Fi according to the binary masks.

2: M1 ← ComputePLFM(F1(0, 0, X
1
1 , · · · ,X1

d),M1, 1), shown in Appendix A

3: for i = 2, · · · , n
m

do

4: Initialize M2 with zeros.

5: for Cri−1 = (0, 0, · · · , 0) to (d+1 , d
+
2 , · · · , d+s ) do

6: for Bi−1 = 0 to 2m − 1 do

7: M2 ← ComputePLFM(Fi(Bi−1, Cri−1,X
i
1, · · · , Xi

d),M2,M1[Bi−1][|Cri−1|]);
8: end for

9: end for

10: M1 ←M2/(2
m · |Crmax|);

11: end for

Output: pF (i) = M1[i][0] +M1[i][1] + · · ·+M1[i][|Crmax| − 1]

On the other hand, the sub-function Fis are connected with each other by the
one direction information propagation from the least significant function F1 to
the most significant F n

m
, caused by the carry bit introduced by � and the output

of Fi, shown in Fig.2. Therefore, we can use a connection matrix to characterize
this propagation process.

Now, we compute the distribution pF by calculating the Fis one-by-one from
1 to n

m , as depicted in Fig.2. Here Bi−1 ∈ GF(2m) is the output of sub-function
Fi−1 and Cri−1 is the carry vector of Fi−1 that will be propagated to Fi, generat-
ed by the arithmetic terms in Fi−1. If there are s arithmetic terms Aj (1 ≤ j ≤ s)



in F (thus in each Fi), then we have Cri = (cr1i , · · · , crsi ), where each crji is the
corresponding local carry value of the Aj (1 ≤ j ≤ s) when the inputs are
truncated to the ith block. Note that though each block is m-bit size, the mod-
ular addition is still calculated bit-by-bit, thus the maximum local carry value
is d+j , where d+j is the number of modular additions in Aj (1 ≤ j ≤ s). Em-
phatically, Cri contains all the carry information of Fj for j < i, since the
carry information is propagated from F1 to Fi. It is proved in [17] that for

Fig. 2. The basic idea of our algorithm

any arithmetic term Aj , the maximum local carry value is d+j (the addition-
s of carry value are not included). Similarly, denote the cardinality of Cri by
|Cri| = ((cr1i · (d+2 + 1) + cr2i )(d

+
3 + 1) + cr3i ) · . . . , which is a one-to-one index

mapping function from (cr1i , · · · , crsi ) to [0, . . . , |Crmax| − 1], where |Crmax| =∏s
j=1(d

+
j +1) is the maximal possible cardinality of the carry vector Cri. We use

a 2m×|Crmax| matrix Mi to store the information of the Fjs (j ≤ i), where the
matrix element Mi[Bi][|Cri|] for 0 ≤ Bi ≤ 2m − 1 and 0 ≤ |Cri| ≤ |Crmax| − 1
represents the total number of the inputs (Xi

1, X
i
2, · · · , Xi

d) of Fi that result in
the Fi output Bi and the carry vector Cri. Thus, the evaluation of Fi is convert-
ed into the computation of the matrix Mi. Mi stores all the output and carry
information of Fi. Here we call it the connection matrix.

Now we need to evaluate the function Fi based on the connection matrix
Mi−1, to obtain the next matrix Mi. It depends on the carry vector Cri−1 and
the output value Bi−1 of Fi−1. For m > 1, since the sub-function Fi can be
seen as a PLFM over GF(2m), which is recursively expressed in A,B,S, we
can use a sub-algorithm called ComputePLFM (Appendix A) to compute the
matrix Mi (M2 in Algorithm 1) for all the possible values of Bi−1 and Cri−1.
Hereafter, when applying the Algorithm 1 we always assume that m > 1. The
initial values are Cr0 = (0, 0, · · · , 0) and B0 = 0, i.e., the initial matrix M0 is set
to be zero matrix. Our algorithm to compute the full m-dimensional distribution
pF = (pF (0), pF (1), · · · , pF (2m−1)) of a GPLFM F over GF(2n) is shown in the
Algorithm 1 diagram. Note that in Algorithm 1, only two connection matrices
M1 and M2 are used to store the propagation information alternatively. The
complexity analysis of Algorithm 1 is as follows. First look at the complexity of
Algorithm 2 in Appendix A. Step 1 in Algorithm 2 needs a time complexity of



O(m · |Crmax| · 2d) from [17]. Step 2 to step 8 needs a complexity of O(2m ·m ·
|Crmax|). Thus the complexity of Algorithm 2 is O(m · |Crmax| · (2d+2m)) and
the total time complexity of our algorithm is O(n · 2m · |Crmax|2 · (2d + 2m)).

5 A Key Recovery Attack on SNOW 2.0

In this section, we demonstrate a state recovery attack against SNOW 2.0. The
description of SNOW 2.0 is detailed in [6]. Our new attack is based on the byte-
wise linear approximation and utilizes the fast correlation attack over GF(28) to
recover the correct initial state with much lower complexities.

5.1 The Byte-wise Linear Approximation of SNOW 2.0

In SNOW 2.0, denote the AES S-box and the Mixcolumn matrix in the S trans-
form of FSM by SR and M respectively. Since SR is a 8-bit S-box, we let n = 32
and m = 8. As SNOW 2.0 has two 32-bit memory registers R1 and R2 in the
FSM, it is necessary to consider at least two consecutive steps of the FSM to e-
liminate these two registers in the approximation. Here we denote the two binary
masks by Γ,Λ ∈ GF(2)4 respectively, thus the 32-bit word can be divided into
4 bytes and be regarded as a 4-dimensional vector over GF(28). For example,

Fig. 3. The linear approximation of the FSM in SNOW 2.0

let the binary mask Γ = (1, 0, 1, 0) and X = (x4, x3, x2, x1) be a 32-bit word of
SNOW 2.0 in byte-wise form, thus Γ ·X = x4⊕x2. Applying Γ and Λ to zt and
zt+1 respectively, we have

Γ · zt = Γ · st ⊕ Γ · (R1t � st+15)⊕ Γ ·R2t,

Λ · zt+1 = Λ · st+1 ⊕ Λ · (st+16 �R2t � st+5)⊕ Λ · S(R1t).

Let yt = Sbox(R1t) = (SR(R14t ), SR(R13t ), SR(R12t ), SR(R11t )) be the output of
S-box. Since the Mixcolumn matrix M is a linear transformation over GF(28),
we have Λ ·S(R1t) = Λ · (Myt) = Λ′ ·yt. We can rewrite the above two equations



as

Γ · zt = Γ · st ⊕ Γ · (Sbox−1(yt)� st+15)⊕ Γ ·R2t,

Λ · zt+1 = Λ · st+1 ⊕ Λ · (st+16 �R2t � st+5)⊕ Λ′ · yt.

Now we have a new byte-wise linear approximation of SNOW 2.0, depicted in
Fig.3. Note that in Fig.3, the S transform of the FSM is dissected to have an
efficient approximation. Here we use two linear approximations

Γ · (Sbox−1(yt)� st+15) = Γ · st+15 ⊕ Λ′ · yt ⊕N1(t), (2)

Λ · (st+16 � st+5 �R2t) = Λ · st+16 ⊕ Λ · st+5 ⊕ Λ ·R2t ⊕N2(t). (3)

The linear approximation (3) is a GPLFM, thus we can adopt Algorithm 1 to
compute the distribution of N2(t). For the linear approximation (2), it is not
a GPLFM in Definition 8 and 9, thus we cannot use Algorithm 1 directly. But
note that the four SRs do not affect the independency among the bytes of yt,
thus we can revise Algorithm 1 to compute the distribution of N1(t) as shown
in Algorithm 3.

Algorithm 3 Computing the Distribution in Eq.(2) over GF(28)

Parameters:

Γ = (Γ4, Γ3, Γ2, Γ1), st = (s4t , s
3
t , s

2
t , s

1
t ),yt = (y4

t , y
3
t , y

2
t , y

1
t ), Λ

′ = (Λ′
4, Λ

′
3, Λ

′
2, Λ

′
1);

Processing:

1: Compute Γ1(S
−1
R (y1

t ) + s1t+15)⊕ Γ1s
1
t+15 ⊕ Λ′

1y
1
t and store in M1

2: for i = 2, · · · , 4 do

3: Initialize M2 with zeros.

4: for yi
t = 0, · · · , 255 and sit+15 = 0, · · · , 255 do

5: for Cri−1 = 0, 1 do

6: for Bi−1 = 0, · · · , 255 do

7: Bi ← Bi−1 ⊕ Γi(S
−1
R (yi

t) + sit+15)⊕ Γis
i
t+15 ⊕ Λ′

iy
i
t;

8: Cri ← (SR(y
i
t) + sit+15 + Cri−1)/2

8;

9: M2[Bi][|Cri|]←M2[Bi][|Cri|] +M1[Bi−1][|Cri−1|];
10: M1 ←M2/(2

8 × 2);

11: Output: The distribution pi = M1[i][0] +M2[i][1] for each 0 ≤ i ≤ 255.

The time complexity of computing the distribution of N1(t) has dropped from
264 to 226.58, which is a large improvement compared to the straightforward
method. We have searched over all the different binary masks over GF(2)4 and
found that when Γ = Λ, these two linear approximations will have larger SEIs.
Thus the sum of Γ · (zt ⊕ zt+1) can be expressed as

Γ · (zt ⊕ zt+1) = Γ · st ⊕ Γ · st+1 ⊕ Γ · st+5 ⊕ Γ · st+15 ⊕ Γ · st+16 ⊕N(t), (4)

where N(t) = N1(t)⊕N2(t) is the folded noise variable introduced by the above
two linear approximations, whose distribution can be computed by the convo-
lution of the above two noise distributions. We have searched all the possible
Γ and Λ and found that the strongest linear approximation of the FSM is as



follows. When Γ = Λ = (1, 0, 1, 0), the distribution of N(t) has the value of SEI
as ∆(N(t)) = 2−43.23. Observe that given a noise distribution Pr{N(t)}, the
SEI can be precisely computed by Definition 2. Now, we have constructed the
byte-wise linear approximation, i.e., Eq.(4), of SNOW 2.0. Next, we will use this
linear approximation to recover the initial state of SNOW 2.0.

5.2 Fast Correlation Attack on SNOW 2.0

Now we apply the fast correlation attack over GF(28) to SNOW 2.0 to recover the
initial state of the LFSR. Let the LFSR state be (st+15, · · · , st) ∈ GF(232)16, here
the LFSR is interpreted as a 64-byte LFSR over GF(28), i.e.,(s4t+15, s

3
t+15, s

2
t+15,

s1t+15, · · · , s4t , s3t , s2t , s1t ) ∈ GF(28)64. With the feedback polynomial we can ex-
press the linear approximation (4) in the initial state form as Γ · (zt ⊕ zt+1) =
Ψt · (s4t+15, s

3
t+15, s

2
t+15, s

1
t+15, · · · , s4t , s3t , s2t , s1t ) ⊕ N(t), where Ψt ∈ GF(28)64 is

the derived recursion of the LFSR.
For the decoding algorithm, we apply the precomputation algorithm in Sec-

tion 3 to generate the parity checks with the parameters l = 64, l′ = 17, k = 4,
which are the best parameters we have found in terms of the total complexities.
The distribution of the folded noise variables N(ti1)⊕N(ti2)⊕N(ti3)⊕N(ti4)
can be computed by the applications of the convolutional operation twice. The
SEI of this new distribution is found to be 2−177.3. Using 4 lists in the k-tree
algorithm, we get about mk = β1+log k = 2184.86 parity check equations. By The-
orem 6, the data complexity is N = 2188.95 and the time/memory complexities
of preprocessing stage are βk2n(l−l′)/(1+log k) = 2188.95. Second, we perform the
online decoding algorithm on the new code C2 of the code length 2188.95. With a
computational complexity of n(mk + l′n2l

′n) + 2n2l
′n = 2187.86, we can recover

the 17 · 8 = 136 bits of the initial state of LFSR, the other bits can be recovered
with a much lower complexity.

Therefore, the final time/memory/data/pre-computation complexities are all
upper bounded by 2186.95, which is more than 225 times better than the best
previous result at Asiacrypt 2008 [13]. This obviously confirms the superiority
of our new techniques.

6 An Improved Key Recovery Attack on SNOW 2.0

Recall in Section 4, we use the n
m -dimensional binary linear masks. Here we

generalize this definition by making each component ωi ∈ GF(2m) rather than
GF(2), i.e., changing the 0/1 coefficients to finite field coefficients, i.e., expressing
X by X = (x n

m
, · · · , x1) ∈ GF(2m)

n
m with xi ∈ GF(2m) and denote the inner

product by Ω ·X = ω n
m
x n

m
⊕· · ·⊕ω1x1 ∈ GF(2m), where ωixi is the multiplica-

tion over GF(2m). Ω is called the linear mask over GF(2m) of X. Now these new
nonlinear functions are not GPLFM in Definition 8 and 9, for we have changed
the linear mask from GF(2) to GF(2m). Thus we cannot apply the Algorithm 1
to compute the distributions of these new functions directly. Instead, we further
revise Algorithm 1 to efficiently compute the distributions of such functions in
the following analysis of SNOW 2.0.



6.1 Linear Approximations of SNOW 2.0 over GF(28)

The process of finding the linear approximations of SNOW 2.0 is nearly the same
as in Section 5.In order to find the best linear masks over GF(28), let us take a
closer look at the details of the S permutation in FSM. Let Λ′ = (Λ′

4, Λ
′
3, Λ

′
2, Λ

′
1)

denote the linear mask over GF(28) of the 4 byte outputs of the Sbox, where the
multiplication is computed in GF(28) defined by the AES Mixcolumn. Then, we
can express Λ · S(ω) as

(Λ1, Λ2, Λ3, Λ4)


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2


︸ ︷︷ ︸


SR(ω1)

SR(ω2)

SR(ω3)

SR(ω4)

 = (Λ′
1, Λ

′
2, Λ

′
3, Λ

′
4)


SR(ω1)

SR(ω2)

SR(ω3)

SR(ω4)

 ,

where Λi, Λ
′
i ∈ GF(28) for 1 ≤ i ≤ 4. We adopt the field GF(28) as that defined

by the AES Mixcolumn and assume that the linear masks over GF(28) are also
defined in this field. Here we still use the two linear approximations over GF(28),
i.e., Eq.(2) and Eq.(3), but the linear masks Γ,Λ are 4-dimensional vectors over
GF(28). The algorithm to compute the distribution of Eq.(2) is similar as before,
except that Γ = (Γ4, Γ3, Γ2, Γ1) ∈ GF(28)4 rather than GF(2)4, shown in Algo-
rithm 3. The distribution ofN2(t) with the linear mask Λ ∈ GF(28)4 can be com-
puted by Algorithm 4 in Appendix B. The time complexity is 3·(28)3 ·28 ≈ 233.58,
while the straightforward method needs a complexity of 296.

Now we describe how to find the linear masks Λ, Γ that satisfy Eq.(2) and
Eq.(3) with large SEIs. Our strategy is to limit the Hamming weights of the
linear masks Λ and Λ′ over GF(28). Denote the Hamming weight of a vector
by wt(·), thus wt(Λ′) determines the number of active S-boxes in the S-box
ensemble S. In the experiments, we found that the SEI of N2(t) is dependent on
wt(Λ). The lower value of wt(Λ), the larger ∆(N2(t)). We have searched all the
linear masks Λ,Λ′ with wt(Λ) ≤ 3 and wt(Λ′) ≤ 3 and found 255 different linear
masks having the same largest value of ∆(N(t)). For example, when Γ = Λ =
(0x00, 0x01, 0x00, 0x03), we get the best linear approximation with the noise
distribution N(t) having a SEI of ∆(N(t)) = 2−29.23.

Please see Appendix C for unifying the two fields before decoding. Then we
launch the fast correlation attack over GF(28) with the parameters n = 32, l =
64, l′ = 19, k = 4. The data complexity is N ≈ 2163.59, while the time/memory
complexities of the pre-computation is 2163.59. After pre-computation, we can
acquire about mk = 2124.79 parity checks. For the online decoding algorithm,
the time complexity is 2162.52 with the above parameter configuration. Note
that here all the complexities are below 2164.15 ≈ 2162.52 + 2163.59, which are
considerably reduced compared to the binary mask case. The reason is that the
linear masks with the finite field coefficients greatly extend the searching space
and can well exploit the algebraic structure of the two finite fields (one defined
in a tower manner in the LFSR and the other in the Mixcolumn) inherent in
SNOW 2.0.



6.2 Experimental Results

We have verified each step of our new techniques in simulations to support
the theoretical analysis. We have used the GNU Multiple Precision Arithmetic
Library in Linux system to verify the exact distribution of each linear approxi-
mation that has been found, thus the SEI of our large-unit linear approximation
is precisely evaluated without any precision error. Then we have run extensive
experiments on a small-scale version of SNOW 2.0, called s-SNOW 2.0 described
in Appendix D, that have verified our approach.

We have computed the 4-bit linear approximation of the s-SNOW 2.0 with Al-
gorithm 1 in theory and verified it in practice. Then we executed the experiments
on the decoding algorithm in Section 3.4. We randomly fixed the values of 60 bits
of the initial state of the LFSR and tried to recover the remaining 20-bit by our
method. The chosen parameters are l′ = 20,mk = 215.39. We first use s-SNOW
2.0 to generate 217 keystream bits zt for a randomly generated 80-bit initial state.
Then we store zt and st in two arrays for t = 1, · · · , 217. Thus we can construct
217 parity checks I(t) = Γ ·(zt⊕zt+1)⊕Γ ·st⊕Γ ·st+1⊕Γ ·st+3⊕Γ ·st+4⊕Γ ·st,
for t = 0, · · · , 217−1. Second, for each parity check It, we use the LFSR feedback
polynomial to express each st for t > 4 as a linear combination of the LFSR initial
state variables. Now we get 217 parity checks only containing (s0, s1, s2, s3, s4)
after fixing 60-bit in the state. Third, we divide the 4-bit linear approximation

I(t) into four bitwise linear approximations, i.e., I
(t)
1 = ⟨(0, 0, 0, 1), It⟩, I(t)2 =

⟨(0, 0, 1, 0), I(t)⟩, I(t)3 = ⟨(0, 1, 0, 0), I(t)⟩, I(t)4 = ⟨(1, 0, 0, 0), I(t)⟩. For each pos-

sible 20-bit initial state, we use FWT to compute the correlations c(I
(t)
i ) for

i = 1, · · · , 4. Fourth, we apply Lemma 4 to compute the SEI of pI for each pos-
sible initial state. Then we use the SEI to distinguish the correct initial state.
We ran the experiments for randomly generated values 100 times with different
fixed values at different positions in the LFSR state, and we found that the cor-
rect key always ranks in the top 10 in the candidates list. These 10 candidates
have ∆(pI) around 2−10.6, which verified the theoretical analysis.

Therefore, the experimental results have provided a solid support to our
decoding algorithm and we can get reliable predictions from our theoretical
analysis when the simulation is infeasible to perform. Further, our decoding
method is essentially the LLR method in linear cryptanalysis, whose validity
can be guaranteed by the theory of linear cryptanalysis.

7 Conclusions

In this paper, we have developed two new cryptanalytic tools to bridge the gap
between the widely used primitives employing word-based LFSRs and the cur-
rent mainstream bitwise fast correlation attacks. The first one, a formal frame-
work for fast correlation attacks over extension fields with a thorough theoretical
analysis, is the first comprehensive answer to the corresponding open problem
in the field of correlation attacks. The second technique, serving as a basis to the
first one, allows to efficiently compute the bias distributions of large-unit linear



approximations of the flexibly derived GPLFM, which includes all the previous-
ly studied topics in the open literature in an unified framework. The size of the
data unit is usually chosen according to the structure of the underlying primi-
tive and the building blocks, which greatly extends the freedom of the adversary
in the cryptanalysis of many symmetric-key primitives. As an application, we
adapted these two techniques to SNOW 2.0, an ISO/IEC 18033-4 standard and
a benchmark stream cipher in the European eSTREAM project, and achieved
the best key recovery attacks known so far. The new methods are generic and
are applicable to other symmetric-key primitives as well, e.g., SNOW 3G, Sose-
manuk, Dragon, and some CAESAR candidates. It is our future work to study
the large-unit linear approximations of these primitives and launch various at-
tacks accordingly.
Acknowledgments. This work is supported by the National Grand Fundamen-
tal Research 973 Program of China (Grant No. 2013CB338002), and the pro-
grams of the National Natural Science Foundation of China (Grant No. 60833008,
60603018, 61173134, 91118006, 61272476). The third author was supported in
part by the Research Council KU Leuven: a senior postdoctoral scholarship S-
F/14/010 linked to the GOA TENSE (GOA/11/007).

References

1. Thomas Baignères, Pascal Junod, and Serge Vaudenay. How far can we go beyond
linear cryptanalysis? In Pil Lee, editor, Advances in Cryptology–ASIACRYPT
2004, volume 3329 of Lecture Notes in Computer Science, pages 113–128. Springer
Berlin / Heidelberg, 2004.
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A Diagrams of the Invoked Algorithm 2

Algorithm 2 ComputePLFM(Fi,M,Di−1)

Parameters: Di−1: a probability of Fi−1 that results in Bi−1, Cri−1

Temporary Variable: Bi, Cri: the output and carry vector of Fi

v = (v0, · · · , v|Crmax|−1): a |Crmax|-dimensional vector

Processing:

1: Submit Fi to the precomputed algorithm in [17] and get 2m matrices M(Bi)t|t;

2: for Bi = 0 to 2m − 1 do

3: v = (
∏0

t=m−1 M(Bi)t|t)× (1, 0, · · · , 0)T ;
4: for j = 0 to |Crmax| − 1 do

5: M [Bi][j] = M [Bi][j] + (vj/2
md)Di−1;

Return: M

In the diagram of Algorithm 2, (Bi)t is the t-th bit of Bi and the matrices in
[17] have the similar meaning with our connection matrix, which store the carry
information for each bit.

B Computing the Distribution in Eq.(3) over GF(28)

Algorithm 4 Computing the distribution of N2(t)

Parameters:

Λ = (Λ4, Λ3, Λ2, Λ1) ∈ GF(28)4, st = (s4t , s
3
t , s

2
t , s

1
t ),R2t = (R24t , R23t , R22t , R21t );

Processing:

1: Compute Λ1(s
1
t+16 � s1t+5 �R21t )⊕ Λ1s

1
t+16 ⊕ Λ1s

1
t+5 ⊕ Λ1R21t and store in M1

2: for i = 2, · · · , 4 do

3: Initialize M2 with zeros.

4: for sit+16 = 0, · · · , 255 and sit+5 = 0, · · · , 255 and R2it = 0, · · · , 255 do

5: for Cri−1 = 0, 1, 2 do

6: for Bi−1 = 0, · · · , 255 do

7: Bi ← Bi−1 ⊕ Λi(s
i
t+16 + sit+5 +R2it)⊕ Λis

i
t+16 ⊕ Λis

i
t+5 ⊕ ΛiR2it;

8: Cri ← (sit+16 + sit+5 +R2it + Cri−1)/2
8;

9: M2[Bi][|Cri|]←M2[Bi][|Cri|] +M1[Bi−1][|Cri−1|];
10: M1 ←M2/(2

8 × 3);

15: Output: pi = M1[i][0] +M2[i][1] +M2[i][2] for each 0 ≤ i ≤ 255.



C Unifying the Two Fields

Note that in Eq.(4), the mask Γ = (0x00, 0x01, 0x00, 0x03) is defined over the
Mixcolumn field GF(28), which is different from the corresponding field of the
LFSR. We need to first unify the two fields for an efficient decoding, otherwise
there will be the folded noise introduced by whether xoring the two field con-
stants or not. Here we adopt the following routine to solve this problem. To
facilitate the decoding phase, we first find an equivalent representation of the
LFSR part theoretically so that it is defined over the new GF(232) field, which
is derived as follows.

We first substitute the low-level GF(28) field of the LFSR defined by x8 +
x7+x5+x3+1 (field constant 0xa9) with the GF(28) field defined in Mixcolumn
by x8+x4+x3+x+1 (field constant 0x1b), and then randomly select a primitive
polynomial of degree 4 over this new field to construct the new GF(232) field. Let
{si}∞i=0 be the sequence generated by the LFSR defined over the original GF(232)
field in SNOW 2.0, our observation is that the sequence itself is just a string of
bits and is independent of the definition of the underlying field, thus once one
segment of sufficient length of the sequence is produced from a LFSR over the
field associated with one definition, we can use the classical Berlekamp-Massey
algorithm [15] over the field with another definition to reconstruct the LFSR
feedback polynomial over the latter field and as a by product, the equivalent state
conversion relation between the two field definitions can be obtained. Note that
the LFSR sequence {si}∞i=0 in SNOW 2.0 is primitive, thus the new generated
LFSR over the new GF(232) field is also of length 16. Compared with the other
parts of our attack, the complexity of computing the equivalent representation
of the LFSR part defined in the new field is negligible. The overall complexity of
our attack is dominated by the complexity of the decoding phase given below.

D A Small Scale Version of SNOW 2.0

The LFSR consists of 5 units and each unit is a 16-bit word in GF(216). The
feedback polynomial is π(x) = αx5 +α−1x3 + x2 +1 ∈ GF(216)[x], where α is a
root of x4 + β10x3 + β6x2 + x + β11, and β is a root of x4 + x + 1 ∈ GF(2)[x].
The FSM has two 16-bit registers R1 and R2 updated by R1t+1 = (st+3 �R2t)
mod 216 and R2t+1 = S(R1t). The function S is composed of four parallel Nibble
S-boxes followed by the following MixColumn.

S(si) =

(
1 4

4 1

)(
SR(s

1
i ) SR(s

3
i )

SR(s
2
i ) SR(s

4
i )

)
,

where SR is the Nibble S-box in Small AES [20]. The output of FSM is Ft =
(st+4 �R1t)⊕R2t. The generated keystream is zt = Ft ⊕ st.


