
Relational Hash: Probabilistic Hash for Verifying
Relations, Secure against Forgery and More

Avradip Mandal and Arnab Roy

Fujitsu Laboratories of America
Sunnyvale, CA, USA

{amandal,aroy}@us.fujitsu.com

Abstract. Traditional cryptographic hash functions allow one to easily
check whether the original plaintexts are equal or not, given a pair of
hash values. Probabilistic hash functions extend this concept where given
a probabilistic hash of a value and the value itself, one can efficiently
check whether the hash corresponds to the given value. However, given
distinct probabilistic hashes of the same value it is not possible to check
whether they correspond to the same value. In this work we introduce a
new cryptographic primitive called Relational Hash using which, given a
pair of (relational) hash values, one can determine whether the original
plaintexts were related or not. We formalize various natural security no-
tions for the Relational Hash primitive - one-wayness, twin one-wayness,
unforgeability and oracle simulatibility.
We develop a Relational Hash scheme for discovering linear relations
among bit-vectors (elements of Fn2 ) and Fp-vectors. Using the linear Re-
lational Hash schemes we develop Relational Hashes for detecting prox-
imity in terms of hamming distance. The proximity Relational Hashing
schemes can be adapted to a privacy preserving biometric identification
scheme, as well as a privacy preserving biometric authentication scheme
secure against passive adversaries.

Keywords: Probabilistic Hash Functions, Functional Encryption, Biometric
Authentication.

1 Introduction

Traditional cryptographic hash functions, like MD-5 and SHA-3, enable checking
for equality while hiding the plaintexts. Since these are deterministic functions,
this just involves checking if the hashes are identical. The notion of probabilistic
hash functions was developed in [Can97,CMR98]. In this setting, the computa-
tion of hashes is randomized and thus no two independently generated hashes of
the same plaintext look same. However, given the plaintext and a hash, it can be
checked efficiently if the hash corresponds to the plaintext. Probabilistic hashes
can provably enable strong privacy guarantees in standard model, like oracle
simulatability, which deterministic hash functions cannot provide. Oracle simu-
latability captures the notion that a hash reveals nothing about the value except



enabling equality checking. This typically has come at the price of efficiency. In
addition, the property of compression, which is desirable for deterministic hash
functions, is no longer at the forefront.

However, probabilistic hashes suffer from the drawback that for verification
of equality the plaintext has to be provided in the clear, which deterministic
hashes do not require. Probabilistic hashes do not allow checking whether the
plaintexts are equal, given two distinct hash values. This drawback can preclude
use of probabilistic hashes in certain scenarios where it is desirable to hide the
plaintext from the verifier as well. For example, consider a scenario where pass-
word equality is to be checked by a server. If the server uses deterministic hashes,
then only the hash of the password could be transmitted to the server. However,
with probabilistic hashes, the actual password has to be sent to the server for
verification1. Therefore question arises whether we can build probabilistic hashes
which allow verification given two distinct hashes of the plaintexts.

So suppose we had a probabilistic hash function ph which allows efficient
checking of equality of plaintexts x1 and x2, given ph(x1, r1) and ph(x2, r2),
where the ri’s are randomnesses used for hashing. Now we run into a different
problem. The existence of such a functionality implies that a secrecy property
called 2-value perfect one-wayness (2-POW) [CMR98] would no longer hold. This
property states that the distribution of two probabilistic hashes of the same value
is computationally indistinguishable from the distribution of probabilistic hashes
of two independent values. The property trivially breaks down if we have an
efficient mechanism for checking if two hashes correspond to the same plaintext.
In addition to being a strong security notion, this property also implies oracle
simulatability [CMR98]. So now the question is:

How do we develop probabilistic hashes which enable equality checking
just given hashes but at the same time preserve 2-value perfect one-
wayness?

Our Contributions. We propose a cryptographic primitive called Relational Hash
which attempts to model the question above. One of the key ideas is to have dis-
tinct, but related, hashing systems for the individual co-ordinates, i.e., have two

probabilistic hash functions ph1 and ph2 and enable checking of x1
?
= x2, given

ph1(x1, r1) and ph2(x2, r2). Having two hashing systems leaves open the possi-
bility that they can individually be 2-POW. Extending equality, we define Rela-
tional Hash with respect to a relation R, such that given two hashes ph1(x1, r1)
and ph2(x2, r2), we can efficiently determine whether R(x1, x2) holds. It may
also be desirable to compute ternary relations R′ on x1, x2 and a third plain-
text parameter z, so that given ph1(x1, r1), ph2(x2, r2) and z, we can efficiently
determine whether R′(x1, x2, z) holds. For any Relational Hash primitive, we
formalize a few natural and desirable security properties, namely one-wayness,
unforgeability, twin one-wayness and oracle simulatability. The notion of oracle

1 We need additional protocol steps to ensure security against replay attacks and so
on. However, for now, we focus on the core property of the hashes themselves.



simulatability was introduced in [Can97,CMR98] for the equality relation. Here
we extend this concept for arbitrary relations.

For the equality relation, there is a simple construction which extends Can-
etti’s scheme in [Can97]. While the [Can97] probabilistic hash on a plaintext
m and randomness r is (gr,grm), one can consider bilinear groups G1 and G2

with a pairing e : G1 × G2 → GT and define ph1(x1, r1) := (gr1 ,gr1x1) and
ph2(x2, r2) := (hr2 ,hr2x2) with g ∈ G1 and h ∈ G2. Plaintext equality of two

hashes (c1, c2) and (d1, d2) of different types can be done as: e(c1, d2)
?
= e(c2, d1).

We do not develop this construction formally in the body of the paper, addi-
tionally relegating some proof sketches to the full version [MR14]2.

For hamming proximity relations among vectors, especially low characteristic
ones, the constructions turn out to be far more sophisticated and form the main
thrust of our paper. Towards that end, we first develop a construction for a
linear Relational Hash scheme. In our scheme, for any x, y, z ∈ Fn2 , given just the

hashes of x and y and the plaintext z, it is possible to verify whether x+ y
?
= z.

A linear Relational Hash scheme is also trivially an equality Relational Hash
scheme, by taking z to be all 0’s. We also extend our construction to verify
linear relations over Fnp . We show that our linear Relational Hash constructions
satisfy all four security notions: one-wayness, unforgeability, twin one-wayness
and oracle simulatability. Next we show that using a linear Relational Hash
and error correcting codes it is possible to build Relational Hashing schemes
which can verify proximity relations and enjoy one-wayness, unforgeability and
a stronger version of twin one-wayness. It remains open to build a proximity
Relational Hash scheme which is oracle simulation secure.

Application. A motivating application of the proximity relation hash primitive is
a privacy preserving biometric identification scheme. Consider a scenario where
there is a database of fingerprints of known criminals. The database should
not reveal the actual fingerprints, even internally. An investigative officer might
want to check, whether a candidate fingerprint digest matches with the database.
Using a Relational Hash scheme for proximity relation, one can build a biomet-
ric identification scheme which guarantees complete template privacy (to the
server, as well as to the investigating officer). While storing the fingerprints in
the database, hashes of type 1 are used. On the other hand, the officer gets ac-
cess to type 2 hash of the fingerprint template. The Relational Hash scheme will
guarantee that, with access to a relational secret key the server can only ver-
ify whether the original templates are close to each other or not. To construct
authentication schemes, rather than identification schemes, additional protocol
layers are needed to address replay attacks and so on. Merely providing a type
2 hash of the challenge biometric template does not suffice as that can easily be
replayed. We leave open the construction of such protocols building on the Rela-
tional Hash primitive. However, we show that for the case of a passive adversary
attempting to recover the biometric template, a Relational Hash can be seen as
a biometric authentication mechanism (Section 4).

2 We thank Mehdi Tibouchi for observing this example.



Relation to Fuzzy Extractor/ Secure Sketch based schemes. Existing biometric
authentication schemes, e.g. fuzzy vault [JS02], fuzzy commitment [JW99] and
secure sketch [DRS04,DS05] based schemes guarantee template privacy only dur-
ing the registration phase. Boyen solved this issue in [Boy04], by constructing
a “Zero Storage remote biometric authentication scheme”, which provides com-
plete template privacy. Boyen’s construction only assumes that the biometric
template comes from a high entropy distribution. Compared to that, we only
achieve a passive adversary secure biometric authentication scheme assuming
uniform distribution of biometric templates. On the positive side, our biomet-
ric authentication scheme is much simpler, in particular during authentication
the client generates the authentication token on its own, without requiring any
intervention from the server. Moreover, for our primary application - the non-
interactive biometric identification mechanism, the advantage becomes more ap-
parent. It is not readily clear whether one can build such identification mecha-
nism based on fuzzy extractors/ secure sketches.

Relation to Multi-Input Functional Encryption (MIFE). Goldwasser et al pro-
posed the concept of MIFE in [GGG+14], which is a functional encryption
which enables the computation of f(x1, x2, · · · , xn) given the encryptions of
x1, x2, · · · , xn. The paper [GGG+14] is a merge of two independent and concur-
rent works [GGJS13,GKL+13]. While a Relational Hash scheme for a relation R
can be considered an MIFE for evaluating the relation R, there are several im-
portant differences between the MIFE work of [GGG+14] and Relational Hash.
We only consider the fully public key model where encryption keys for all the
co-ordinates are given to the adversary.

We first remark that an indistinguishability based functional encryption se-
curity definition (FE-IND) for the equality relation is a rather trivial notion. The
FE-IND notion asks the adversary to query two sets of n-tuples, and the chal-
lenger randomly selects which set to encrypt. We observe that even a standard
CPA secure public-key encryption scheme satisfies this notion, where the func-
tional key is simply the secret key for decryption. The FE-IND security notion
is satisfied for equality because the restriction on the adversary’s queries forces
it to choose equal sets of messages to the challenger. So in the end the adversary
has information theoretically no clue about which of the messages was chosen for
encryption by the challenger. In a Relational Hash scheme, even when given the
relational key, the encryption of the plaintexts is required to be at least one-way
secure. No such guarantee is provided by the standard CPA scheme, since giving
the full decryption key fully exposes the plaintext to the functional key recipient.

Thus we have to resort to the simulation based security notion (FE-SIM)
for any meaningful assurance of security. The only possibility result in the fully
public key setting is given by [GKL+13], who give a construction of FE-SIM
secure encryption scheme for a class of functionalities they call “learnable” func-
tions. They also prove that if an FE-SIM secure scheme exists for a class of
functionalities, then this class must be learnable. Briefly, a 2-ary function f(., .)
is learnable if, given a description of f and oracle access to f(x, .), one can out-
put the description of a function that is indistinguishable from fx(.), which is



the restriction of f on fixing the first input to x. This has to hold true with high
probability even if the distinguisher is given x. One can immediately see that
equality is not a learnable function. When x comes from high min-entropy distri-
bution, it is not possible to learn the value of x efficiently by querying f(x, .) on
various inputs. A distinguisher can immediately thwart any such ‘learnt’ function
by simply testing it on x.

Thus these work(s) effectively show that there is no FE-SIM secure functional
encryption scheme for the function testing equality. How does our construction
get around this impossibility? The reason is that the security properties that we
consider: one-wayness and unforgeability do not imply FE-SIM. The property
closest to FE-SIM is oracle simulatability, but it differs from FE-SIM in that
the adversary does not choose the messages to be encrypted, rather they are
sampled from a distribution and only their encryption is given to the adversary.

Relation to Property Preserving (Tagged) Encryption (PPE). PPE [PR12] is a
special case of MIFE in the symmetric key setting. PPE offers IND based secu-
rity guarantees, where attacker queries are constrained such that the preserved
property values cannot be trivially used for distinguishing purposes. Moreover,
PPE involves a secret key, whereas for Relational Hashes all the keys are pub-
lic. For our public key case, the trivial construction which makes the functional
key the same as the decryption key, is IND secure and does not provide any
meaningful security guarantee. On the other hand, for the symmetric key PPE
schemes, chosen message security is non-trivial.

Relation to Perceptual Image Hashing (PIH). PIH [KVM04] is a related tech-
nique which aims to construct hash of images invariant under geometric transfor-
mations which preserve perceptual similarity. There are several differences, most
importantly: (1) the primary objective of PIH is the detection of similar inputs,
however privacy of the inputs may not be preserved, (2) generating hashes re-
quires a secret key, and (3) while for PIH the hashes are required to be equal
for similar images, we require that the hashes are randomized and a verification
algorithm is given which uses a key to perform the relation check.

Organization of the paper. In Section 2, we formally define the notion of Re-
lational Hash and its desired security properties. In Section 3, we construct a
Relational Hash for linearity over Fn2 , with extension to Fnp . In Section 4, we show
how to construct a proximity (in terms of hamming distance) Relational Hash
using a linear Relational Hash and a linear error correcting code. In Section
5, we describe relations among notions of security for constructing Relational
Hashes for various relations. Standard hardness assumptions are summarized in
Appendix A. We defer the proof of unproven theorems in this paper to the full
version [MR14].

Notations. We denote a sequence xj , · · · , xk as 〈xi〉ki=j . We treat Fnp as an Fp
vector space and write x ∈ Fnp also as 〈xi〉ni=1. Group elements are written in
bold font: g, f. The security parameter is denoted as λ.



2 Relational Hash

The concept of Relational Hash is an extension of regular probabilistic hash
functions. In this work, we only consider 3-tuple relations. Suppose R ⊆ X ×
Y × Z be a 3-tuple relation, that we are interested in. We abuse the notation a
bit, and often use the equivalent functional notation R : X × Y × Z → {0, 1}.
The Relational Hash for the relation R, will specify two hash algorithms Hash1

and Hash2 which will output the hash values Hash1(x) and Hash2(y) for any
x ∈ X and y ∈ Y . Any Relational Hash must also specify a verification algorithm
Verify, which will take Hash1(x), Hash2(y) and any z ∈ Z as input and output
R(x, y, z). Formally, we define the notion of Relational Hash as follows.

Definition 1 (Relational Hash). Let {Rλ}λ∈N be a relation ensemble defined
over set ensembles {Xλ}λ∈N, {Yλ}λ∈N and {Zλ}λ∈N such that Rλ ⊆ Xλ×Yλ×Zλ.
A Relational Hash for {Rλ}λ∈N consists of four efficient algorithms:

– A randomized key generation algorithm: KeyGen(1λ) outputs key pk from
key space Kλ.

– The hash algorithm of first type (possibly randomized): Hash1 : Kλ×Xλ →
RangeXλ, here RangeXλ denotes the range of Hash1 for security param-
eter λ.

– The hash algorithm of second type (possibly randomized): Hash2 : Kλ ×
Yλ → RangeYλ, here RangeYλ denotes the range of Hash2 for security
parameter λ.

– The deterministic verification algorithm:
Verify : Kλ ×RangeXλ ×RangeYλ × Zλ → {0, 1}.
Treating the third parameter z differently from the first two might strike as

odd. Our reason behind the choice of this asymmetric definition is to convey the
intention that we are not trying to hide z and that the verifier or attacker can
choose the value of z to test relations.

In the rest of the paper we will drop the subscript λ for simplicity and it will
be implicitly assumed in the algorithm descriptions. Often, we will also denote
the 1 output of Verify as Accept, and the 0 output as Reject. The definition
of Relational Hashing consists of two requirements: Correctness and Security (or
Secrecy).

Correctness: Informally speaking, the correctness condition is, if an honest party
evaluates Verify(Hash1(pk, x),Hash2(pk, y), z) for some key pk which is the
output of KeyGen and any (x, y, z) ∈ X × Y × Z, the output can differ from
R(x, y, z) only with negligible probability (the probability is calculated over the
internal randomness of KeyGen, Hash1 and Hash2). Formally,

Definition 2 (Relational Hash - Correctness). A Relational Hash scheme
(KeyGen,Hash1,Hash2,Verify) for a relation R ⊆ X × Y × Z satisfies cor-
rectness if the following holds for all (x, y, z) ⊆ X × Y × Z:

Pr

 pk ← KeyGen(1λ)
hx← Hash1(pk, x)
hy ← Hash2(pk, y)

: Verify(pk, hx, hy, z) ≡ R(x, y, z)

 ≈ 1



Security: The notion of security for a Relational Hash will depend on the context
where the Relational Hash is going to be used and also on the a priori infor-
mation available to the adversary. Recall that for a regular hash function one
of the weakest form of security is one-wayness. We will consider Probabilistic
Polynomial Time (PPT) adversaries for our security definitions.

Definition 3 (Security of Relational Hash - One-way). Let X and Y be
(independent) probability distributions over X and Y . We define a Relational
Hash scheme (KeyGen,Hash1,Hash2,Verify) to be one-way secure for the
probability distributions X and Y, if the following hold:

– pk ← KeyGen(1λ), x← X , y ← Y, hx← Hash1(pk, x), hy ← Hash2(pk, y)
– For any PPT adversary A1, there exists a negligible function negl(), such

that Pr[A1(pk, hx) = x] < negl(λ).
– For any PPT adversary A2, there exists a negligible function negl(), such

that Pr[A2(pk, hy) = y] < negl(λ).

Here the probabilities are calculated over the internal randomness of KeyGen,
Hash1 and Hash2, internal randomness of the adversarial algorithms A1 and
A2 as well as the probability distributions X and Y.

The above definition captures the security notion in case the adversary has
access to either type 1 or type 2 hash values. We observe that if the distributions
X and Y remain independent, Relational Hash still remains one-way secure, even
if the adversary has access to both type of hash values. However for correlated x
and y, sampled from a joint probability distribution Ψ over X ×Y , the previous
security notion does not provide sufficient security guarantee when the attacker
has access to both types of hash values. For these kind of distributions we define
a stronger security notion called twin one-wayness as follows.

Definition 4 (Security of Relational Hash - Twin One-way). Let Ψ be
a probability distribution over X × Y . We define a Relational Hash scheme
(KeyGen,Hash1,Hash2,Verify) to be twin one-way secure for the probability
distribution Ψ , if the following hold:

– pk ← KeyGen(1λ), (x, y)← Ψ , hx← Hash1(pk, x), hy ← Hash2(pk, y)
– For any PPT adversary A1, there exists a negligible function negl(), such

that Pr[A1(pk, hx, hy) = x] < negl(λ).
– For any PPT adversary A2, there exists a negligible function negl(), such

that Pr[A2(pk, hx, hy) = y] < negl(λ).

Here the probabilities are calculated over the internal randomness of KeyGen,
Hash1 and Hash2, internal randomness of the adversarial algorithms A1 and
A2 as well as the probability distribution Ψ .

Note that the twin one-wayness property is actually a stronger version of corre-
lated input security due to Rosen and Segev [RS09]. We require each coordinate
to be one-way, whereas correlated input security requires the input involving all
coordinates should be one-way.



Remark 1. For our application scenarios: biometric identification and authenti-
cation, the twin one-wayness property plays a key role. Intuitively, this guar-
antees that even if the server has access to both type of hashes coming from
biometric templates (possibly generated at different times) of the same person,
the template still remains one-way to the server3.

In this work, we are mostly interested in sparse relations (Definition 7). Infor-
mally speaking, for a sparse relation R ⊆ X × Y × Z and unknown x it is hard
to output y and z such that (x, y, z) ∈ R. A Relational Hash scheme is called
unforgeable if given hx = Hash1(pk, x) and pk it is hard to output hy, z, such
that Verify(pk, hx, hy, z) outputs 1. Formally,

Definition 5 (Security of Relational Hash - Unforgeable). Let X and
Y be (independent) probability distributions over X and Y . A Relational Hash
scheme (KeyGen,Hash1,Hash2, Verify) is unforgeable for the probability
distributions X and Y, if the following holds:

– pk ← KeyGen(1λ), x← X , y ← Y, hx← Hash1(pk, x), hy ← Hash2(pk, y)
– For any PPT adversary A1, there exists a negligible function negl(), such

that: Pr[(hy′, z)← A1(pk, hx) ∧Verify(pk, hx, hy′, z) = 1] < negl(λ)
– For any PPT adversary A2, there exists a negligible function negl(), such

that: Pr[(hx′, z)← A2(pk, hy) ∧Verify(pk, hx′, hy, z) = 1] < negl(λ)

For Relational Hash functions, the strongest form of security notion is based
on oracle simulations. The concept of oracle simulation was introduced in [Can97].
However, over there the author was interested in regular probabilistic hash
functions. In case of Relational Hash functions, we want to say that: having
hx = Hash1(pk, x) gives no information on x, besides the ability to evaluate the
value of R(x, y, z) for any y, z chosen from their respective domains. Similarly,
hy = Hash1(pk, y) should not provide any extra information other than the
ability to evaluate the value of R(x, y, z) for any x ∈ X and z ∈ Z. Also, having
access to both hx and hy, one should be able to only evaluate R(x, y, z) for any
z ∈ Z.

For any relation R ⊆ X × Y × Z and x ∈ X, y ∈ Y , let Rx(·, ·) : Y × Z →
{0, 1}, Ry(·, ·) : X × Z → {0, 1} and Rx,y(·) : Z → {0, 1} be the oracles defined
as follows:

– For any y′ ∈ Y, z′ ∈ Z,Rx(y′, z′) = 1 if and only if (x, y′, z′) ∈ R.
– For any x′ ∈ X, z′ ∈ Z,Ry(x′, z′) = 1 if and only if (x′, y, z′) ∈ R.
– For any z′ ∈ Z,Rx,y(z′) = 1 if and only if (x, y, z′) ∈ R.

We note that giving oracle access to Rx,y on top of Rx and Ry is not super-
fluous as both x and y are generated and kept unknown from the adversary.

3 Strictly speaking, we need a stronger a security criterion, i.e. not only the server
should be able to recover exact x or y, it should not be able to recover any nearby x′

from x or y. Theorem 4 in Section 4, in fact guarantees this stronger security notion.



Definition 6 (Security of Relational Hash - Oracle Simulation). Let Ψ
be a probability distribution over X × Y . A Relational Hash scheme (KeyGen,
Hash1,Hash2,Verify) is said to be oracle simulation secure with respect to the
distribution Ψ if for any PPT adversary C, there exists a PPT simulator S such
that for any predicate P (·, ·, ·) : K ×X × Y → {0, 1} (where K is the range of
KeyGen), there exists a negligible function negl(), such that∣∣∣∣Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]

−Pr[SRx,Ry,Rx,y (pk) = P (pk, x, y)]

∣∣∣∣ < negl(λ),

where (x, y)← Ψ and pk ← Keygen(1λ).

3 Relational Hash for Linearity in Fn
2

We now construct a Relational Hash scheme for the domains X,Y, Z = Fn2 and
the relation R = {(x, y, z) | x+ y = z ∧ x, y, z ∈ Fn2}.

KeyGen: Given the security parameter, bilinear groups G1,G2,GT are gener-
ated of prime order q, exponential in the security parameter, and with a bilinear
pairing operator e. Now we sample generators g0 ← G1 and h0 ← G2. Next we
sample 〈ai〉n+1

i=1 and 〈bi〉n+1
i=1 , all randomly from Z∗q . Define gi = gai0 and hi = hbi0 .

Now we define the output of KeyGen as pk := (pk1, pk2, pkR), defined as fol-
lows:

pk1 := 〈gi〉
n+1
i=0 , pk2 := 〈hi〉n+1

i=0 , pkR :=

n+1∑
i=1

aibi

Hash1: Given plaintext x = 〈xi〉ni=1 ∈ Fn2 and pk1 = 〈gi〉
n+1
i=0 , the hash is

constructed as follows: Sample a random r ∈ Z∗q and then compute the following:

hx :=
(
gr0,
〈
g
(−1)xir
i

〉n
i=1

,grn+1

)
Hash2: Given plaintext y = 〈yi〉ni=1 ∈ Fn2 and pk2 = 〈hi〉n+1

i=0 , the hash is
constructed as follows: Sample a random s ∈ Z∗q and then compute the following:

hy :=
(
hs0,
〈
h
(−1)yis
i

〉n
i=1

,hsn+1

)
Verify: Given hashes hx = 〈hxi〉n+1

i=0 and hy = 〈hyi〉n+1
i=0 , the quantity z =

〈zi〉ni=1 ∈ Fn2 and pkR, the algorithm Verify checks the following equality:

e(hx0, hy0)pkR
?
= e(hxn+1, hyn+1)

n∏
i=1

e(hxi, hyi)
(−1)zi

Correctness. Correctness of the scheme follows from standard algebraic manip-
ulation of pairing operations. Details are given in [MR14].



One-wayness. This Relational Hash can be shown to be one-way secure based
on the SXDH assumption, and a new hardness assumption we call Binary Mix
DLP. The assumption says if we choose a random x from Fn2 (for sufficiently
large n), n random elements g1, · · · ,gn from group G then given the product∏n
i=1 g

(−1)xi
i it is hard to find any candidate x.

Assumption 1. (Binary Mix DLP) : Assuming a generation algorithm G that
outputs a tuple (n, q,G) such that G is a group of prime order q, the Binary
Mix DLP assumption asserts that given random elements 〈gi〉

n
i=1 from the group

G and
∏n
i=1 g

(−1)xi
i , for a random x ← Fn2 , it is computationally infeasible to

output y ∈ Fn2 such that

n∏
i=1

g
(−1)xi
i =

n∏
i=1

g
(−1)yi
i .

There is an interesting parallel between the Binary Mix DLP assumption and
the Discrete Log hardness assumption which may appeal to the appreciation of
its hardness at an intuitive level. The Discrete Log problem asks to find w ∈ Z∗q
given a random element g ∈ G and gw. Consider the sequence of elements

g1 = g,g2 = g2, · · · ,gλ = g2λ , where λ = lg q. When we think of the binary
expansion of w = wλ · · ·w0 and interpret the vector W = wλ · · ·w0 in Fλ+1

2 ,

then equivalently we are asking for computing W , given the product
∏λ
i=0 gwii .

In the Binary Mix DLP problem, the difference is that the gi’s are indepen-
dently random and that instead of raising the gi’s to the powers 0 or 1, we raise
them to the powers ±1. This is, of course, not a formal proof of its hardness.
In [MR14], we show that the Binary Mix DLP assumption can actually be reduced
to the more standard Random Modular Subset Sum assumption [Lyu05]. As an
added assurance, in [MR14], we show that the Binary Mix DLP assumption is
also secure in the Generic Group Model [Sho97].

The Binary Mix DLP assumption is similar to [BGG95], where Bellare et al
define a hash function to be a subset product of publicly given random group
elements based on the bits of the plaintext. In our case, we either use a random
group element or its inverse depending on the bit. They achieve reduction from
DLP to collision resistance. In contrast, this does not work for one-wayness, as
for certain admissible values of (q, n) our function (as also [BGG95]) may turn
out to be collision-free.

Theorem 1. The above algorithms (KeyGen,Hash1,Hash2,Verify) consti-
tute a Relational Hash scheme for the relation R = {(x, y, z) | x+y = z∧x, y, z ∈
Fn2}. The scheme is one-way secure under the SXDH and Binary Mix DLP as-
sumptions, when x and y are sampled uniformly from Fn2 .

Twin one-wayness. Until now, we have shown this Relational Hash is one-way
when the adversary has access to only one type of hash values. However, an
important scenario to consider is the case when adversary has access to both
type of hash values for any x uniformly drawn from Fn2 . The following theorem



claims our scheme is indeed twin one-way secure in this case and is proved
in [MR14].

Theorem 2. The above algorithms (KeyGen,Hash1,Hash2,Verify) consti-
tute a Relational Hash scheme for the relation R = {(x, y, z) | x+y = z∧x, y, z ∈
Fn2}. The scheme is twin one-way secure in the generic group model, when x is
sampled uniformly from Fn2 and y = x.

Unforgeability and Oracle Simulation Security. In Section 5, we show this Rela-
tional Hash is in fact a 2-value perfectly one-way function, albeit under a stronger
hardness assumption. By Theorem 8 from Section 5, that will imply this Rela-
tional Hash construction is also unforgeable and oracle simulation secure.

Remark 2. This linear Relational Hash construction is weakly homomorphic, in
the sense that, given

Hash2(y) = (hy0, 〈hyi〉ni=1 , hyn+1) =
(
hs0,
〈
h
(−1)yis
i

〉n
i=1

,hsn+1

)
,

it is easy to construct

Hash2(y + t) =
(
hy0,

〈
hy

(−1)ti
i

〉n
i=1

, hyn+1

)
=
(
hs0,
〈
h
(−1)yi+tis
i

〉n
i=1

,hsn+1

)
for any t ∈ Fn2 . Hash1 is also homomorphic in a similar manner. However, this
does not really refute any of our security claims. In fact, in next section we
will see this linear homomorphism gives us strong security guarantee for relation
hash construction for hamming proximity (Theorem 4).

Remark 3. Theorem 2 and Remark 2 imply that given Hash1(x), Hash2(y) and
x+ y it is hard to output either of x or y, for uniformly sampled x and y from
Fn2 .

Relational Hash for Linearity in Fnp : For any prime p, we can choose the
order q of the bilinear groups to be exponential in the security parameters as well
as equal to 1 (mod p). This means the group Z∗q has a subgroup Jp of prime order
p. Let ω be an arbitrary generator of Jp. We can publish this arbitrary generator
as part of the public key. For Hash1 evaluation (similarly in Hash2), we can

simply calculate hxi as gω
xir
i (instead of g

(−1)xir
i ). Similarly during verification,

instead of checking e(hx0, hy0)pkR
?
= e(hxn+1, hyn+1)

∏n
i=1 e(hxi, hyi)

(−1)zi , we

can just check e(hx0, hy0)pkR
?
= e(hxn+1, hyn+1)

∏n
i=1 e(hxi, hyi)

ω−zi
. We pro-

vide the details in [MR14].

4 Relational Hash for Hamming Proximity

In this section we construct a Relational Hash for the domains X,Y = Fn2
and the relation4 Rδ = {(x, y) | dist(x, y) ≤ δ ∧ x, y ∈ Fn2}, where dist is

4 Note that Relational Hash is defined over 3-tuple relations (Definition 2). However,
here proximity encryption is defined over 2-tuple relations. 2-tuple relations can



the hamming distance and δ is a positive integer less than n. Specifically, we
construct a Relational Hash for proximity from a family of binary (n, k, d) lin-
ear error correcting codes (ECC) C and a Relational Hash for linearity in Fk2 :
(KeyGenLinear,HashLinear1,HashLinear2,VerifyLinear).

For any C ∈ C, Encode and Decode are the encoding and decoding algo-
rithms of the (n, k, d) error correcting code C. For any x ∈ Fn2 , weight(x) is the
usual hamming weight of x, denoting the number of one’s in the binary repre-
sentation of x. For any error vector e ∈ Fn2 , with weight(e) ≤ d/2 and m ∈ Fk2
we have,

Decode(Encode(m) + e) = m.

If weight(e) > d/2, the decoding algorithm Decode is allowed to return ⊥.

KeyGen: Given the security parameter, choose a binary (n, k, 2δ + 1) linear
error correcting code C, where k is of the order of the security parameter. Run
KeyGenLinear and let pklin be its output. Publish,

pk := (Encode,Decode, pklin)

Hash1: Given plaintext x ∈ Fn2 and pk = (Encode,Decode, pklin), the hash
value is constructed as follows: Sample a random r ← Fk2 and then compute the
following:

hx1 := x+ Encode(r)

hx2 := HashLinear1(pklin, r)

Publish the final hash value hx := (hx1, hx2).

Hash2 is defined similarly.

Verify: Given the hash values hx = (hx1, hx2), hy = (hy1, hy2) and pk =
(Encode,Decode, pklin) verification is done as follows.

– Recover z as z := Decode(hx1 + hy1).
– Output Reject if Decode returns ⊥ or dist(Encode(z), hx1 + hy1) > δ
– Output VerifyLinear(pklin, hx2, hy2, z).

Theorem 3. The above algorithms (KeyGen,Hash1,Hash2,Verify) consti-
tute a Relational Hash for the relation Rδ = {(x, y) | dist(x, y) ≤ δ∧x, y ∈ Fn2}.
The scheme is one-way secure with respect to the uniform distributions on Fn2 if
the linear Relational Hash is a one-way secure with respect to the uniform distri-
butions on Fk2 . The scheme is unforgeable for the uniform distributions on Fn2 if
the linear Relational Hash is unforgeable with respect to the uniform distributions
on Fk2 .

be regarded as special cases of 3-tuple relations, where the third entry does not
matter. E.g. the relation R′

δ ⊆ Fn2 ×Fn2 ×Z (where Z is any non empty domain) and
(x, y, z) ∈ R′

δ if and only if (x, y) ∈ Rδ.



Twin one-wayness. For our target application scenarios (biometric identifica-
tion / authentication), we need a slightly stronger security property compared
to the Twin one-wayness as defined in Definition 4. We only consider a passive
adversary looking at the communication transcripts between the entities. Con-
sideration of active adversaries would require an additional challenge-response
mechanism which we do not develop in this paper. In particular, we should show
that if an attacker has access to Hash1(x) and a number of samples of Hash2(yi)
(where x and the yi’s are biometric templates generated by same individual), the
attacker cannot output any other biometric template z near to x. If we assume
that every individual’s biometric template has full entropy we can model the
scenario as follows:

x← Fn2 , yi = x+ ei,

where the ei’s are sampled from some known noise distribution Ξ, such that with
high probability we have weight(ei) ≤ δ. We now show that, given Hash1(x)
and any number of samples5 Hash2(yi), the attacker cannot output z, such that
dist(x, z) ≤ δ. The proof, which is a reduction to twin one-wayness of the linear
Relational Hash is given in [MR14].

Theorem 4. If the above Relational Hash for Rδ = {(x, y) | dist(x, y) ≤ δ ∧
x, y ∈ Fn2}, is instantiated by the twin one-way secure linear Relational Hash in
Section 3, then for a random x← Fn2 and for any polynomially bounded number
of error samples e1, · · · , et ← Ξ, given (Hash1(x),Hash2(x+e1), · · · ,Hash2(x+
et)) it is hard to output x′ ∈ Fn2 such that dist(x′, x) ≤ δ.

Privacy Preserving Biometric Authentication Scheme. Suppose we have
a biometric authentication scheme, where during registration phase a particular
user generates a biometric template x ∈ {0, 1}n and sends it to the server. Dur-
ing authentication phase the user generates a new biometric template y ∈ {0, 1}n
and sends y to server. The server authenticates the user if dist(x, y) ≤ δ. The
drawback of this scheme is the lack of template privacy. However, if we have
a Relational Hash (KeyGen,Hash1,Hash2,Verify) for the relation Rδ =
{(x, y) | dist(x, y) ≤ δ ∧ x, y ∈ Fn2}, we readily get a privacy preserving bio-
metric authentication scheme as follows: 1. A trusted third party runs KeyGen
and publishes pk ← KeyGen. 2. During Registration, the client generates bio-
metric template x ∈ {0, 1}n and sends hx = Hash1(pk, x) to the server. 3.
During Authentication, the client generates biometric template y ∈ {0, 1}n and
sends hy = Hash2(pk, y) to the server. 4. The server authenticates the client iff
Verify(pk, hx, hy) returns Accept.

If we assume that the biometric templates of individuals follow uniform dis-
tribution over {0, 1}n, then Theorem 3 would imply that the server can never
recover the original biometric template x. Moreover, the unforgeability property
guarantees that even if the server’s database gets leaked to an attacker then also
the attacker cannot come up with a forged hy′, which would authenticate the

5 Limited only by the time complexity of the attacker.



attacker. Theorem 4 will guarantee that even with access to the registered hash
and several authentication transcripts from the same individual, the biometric
template will remain private to the server.

In spite of these strong guarantees there is a significant drawback of our
privacy preserving authentication scheme. One basic premise of this scheme is
that the biometric template x comes from a uniform distribution over {0, 1}n.
From a practical point of view this is really a strong assumption. One interesting
open problem in this direction is whether we can build a privacy preserving
biometric authentication scheme when x comes from a distribution with high
min-entropy which is not necessarily uniform.

5 Relation among Notions of Security for Relational
Hashes

In Section 2 we introduced three natural definitions of security for Relational
Hash functions: one-wayness, unforgeability and oracle simulation security. In
this section we define the notion of sparse and biased relations. We show, if
a Relational Hash function is unforgeable, that implies the relation must be
sparse. Following [CMR98], we extend the notion of 2-value Perfectly One-Way
(2-POW) function. We show if a Relational Hash function is 2-POW, then the
relation must be biased. We also show that the 2-POW property is actually a
sufficient condition for oracle simulation security, as well as unforgeability (when
the relation is sparse).

We begin by asking the question: What kind of relations can support the
existence of an unforgeable Relational Hash? It is easy to see that certain rela-
tions cannot support unforgeability. Take, for example, the relation R(x, y, z),
where x, y ∈ Fn2 and z ∈ F2 which returns 1 iff the parity of x + y is equal to
the bit z. One cannot construct an unforgeable hash for this relation because
given the type 1 hash of a random x, it is easy to construct a type 2 hash of
a y such that the relational verification outputs 1, without knowing x: We just
pick an arbitrary y, compute a type 2 hash of the arbitrary y and verify with
the relational key with the type 1 hash of x for both z values 0 and 1.

So the intuitive property of relations supporting unforgeability is that with-
out knowing x, it should be hard to come up with (y, z), such that R(x, y, z)
holds. We formalize this intuition below in defining sparse relations.

Definition 7. A relation R ⊆ X × Y ×Z is called a sparse relation in the first
co-ordinate with respect to a probability distribution X over X, if for all PPTs
A:

Pr[x← X , (y, z)← A(λ) : (x, y, z) ∈ R] < negl(λ)

Similarly, we can define a sparse relation in the second co-ordinate with respect
to a probability distribution Y over Y . A relation R ⊆ X × Y × Z is called a
sparse relation with respect to probability distributions X over X and Y over
Y , if it is a sparse relation in first coordinate with respect to X , as well as a
sparse relation in second coordinate with respect to Y.



Relations with
Unforgeable Relational

Hash
Biased Relations

Sparse Relations

Relations with 2-POW
Relational Hash

Relations with Oracle
Simulation Secure
Relational Hash

∧
Theorem 5

Remark 7

Theorem 6

Theorem 8

Theorem 7

Remark 6

Fig. 1. Relationship among Types of Relations. Arrowhead indicates direction of im-
plication. Strike on an arrow indicates the existence of a counter-example.

Remark 4. Similar to Section 2, the definitions given in this sections are actually
defined with respect to ensemble of probability distributions Xλ,Yλ,Kλ, ensem-
ble of sets Xλ, Yλ, Zλ,Kλ and ensemble of relation Rλ. However, for simplicity
we drop the subscript λ.

Now, we show if a Relational Hash function is unforgeable, that implies the
relation must be sparse.

Theorem 5. If a Relational Hash scheme (KeyGen,Hash1,Hash2,Verify)
for a relation R is unforgeable for probability distributions X over X and Y over
Y , then the relation R is sparse with respect to X and Y.

Proof. Suppose, the relation R is not sparse over first coordinate, and there
exists an PPT attacker A such that Pr[x ← X , (y, z) ← A(λ) : (x, y, z) ∈
R] is non-negligible. Now, given an unforgeability challenge (pk, cx), such that
pk ← KeyGen(1λ) and cx ← Hash1(pk, x) for some x ← X ; we can just
get (y, z) ← A(λ) and output (Hash2(pk, y), z). From the correctness of the
Relational Hash function, it follows that this output is a valid forgery with non-
negligible probability. ut

Following [CMR98], we recall the definition of 2-value perfectly one-way
(POW) functions. Intuitively, this property states that the distribution of two
probabilistic hashes of the same value is computationally indistinguishable from
the distribution of probabilistic hashes of two independent values. This is a use-
ful property, because if we can show a Relational Hash function is 2-POW, we
show that it would immediately imply the Relational Hash function is oracle
simulation secure, as well as unforgeable (if the relation is sparse).

Definition 8 (2-value Perfectly One-Way function). Let X be a probability
distribution over X. Let H = {hk}k∈K be a keyed probabilistic function family



with domain X and randomness space U , where the key k gets sampled from a
probability distribution K over K. H is 2-value perfectly one-way (POW) with
respect to X and K if for any PPT distinguisher D,∣∣∣∣ Pr[D(k, hk(x, r1), hk(x, r2)) = 1]

−Pr[D(k, hk(x1, r1), hk(x2, r2)) = 1]

∣∣∣∣ < negl(λ),

where x, x1, x2 are drawn independently from X , k is drawn from K and r1, r2
are generated uniformly at random from the randomness space U .

Remark 5. In [CMR98], the key k was universally quantified, and the function
family H was called 2-POW if the inequality was true for all k ∈ K. However, for
our purpose it is sufficient if we consider random k coming from the distribution
K (or KeyGen).

Now we ask what kind of relations can support the existence of 2-POW
Relational Hashes? Intuitively, we require that it should be hard to distinguish
two distinct samples x and w from the distribution X by testing relations with a
(y, z) tuple which is efficiently computable without knowing the samples. That
is we should have R(x, y, z) and R(w, y, z) come out equal most of the time. This
intuition is formalized in the following definition of biased relations.

Definition 9. A relation R ⊆ X × Y ×Z is called a biased relation in the first
co-ordinate with respect to a probability distribution X over X, if for all PPTs
A:

Pr[x,w ← X , (y, z)← A(λ) : R(x, y, z) 6= R(w, y, z)] < negl(λ)

Similarly, we can define a biased relation in the second co-ordinate with respect
to a probability distribution Y over Y . A relation R ⊆ X × Y × Z is called a
biased relation with respect to independent probability distributions X over X
and Y over Y , if it is a biased relation in first coordinate with respect to X , as
well as a biased relation in second coordinate with respect to Y.

Remark 6. We observe that if a relation R is biased, then its complement R̄ is
also biased. Now one might begin to think that maybe for a biased relation R,
either R or R̄ is sparse. However, the following counterexample shows that this
is not the case. Consider the relation R(x, y, z) which outputs the first bit of y.
This is a biased relation, but neither R, nor its complement R̄ is sparse.

Remark 7. The other direction is actually an implication, that is, if a relation
R is sparse then it is also biased. The proof intuition is as follows: Given an
algorithm A breaking the biased-ness of R, we construct an algorithm breaking
the sparse-ness of R. Let A output (y, z), such that with probability p over the
choice of x← X , R(x, y, z) = 1 and therefore with probability 1−p, R(x, y, z) =
0. The probability of breaking the biased-ness of R is thus 2p(1−p) which should
be non-negligible. Hence p should be non-negligible. Now observe that p is the
probability of breaking the sparse-ness of R.



Now, we show if a Relational Hash is 2-POW, then the relation must be
biased.

Theorem 6. For a Relational Hash scheme (KeyGen,Hash1,Hash2,Verify)
for a relation R, if Hash1 is 2-value Perfectly One-Way with respect to X and
KeyGen, then R is a biased relation in the 1st co-ordinate with respect to X .

Proof. We are given that,

∀ PPT D :

∣∣∣∣ Pr[D(k,Hash1(k, x, r1),Hash1(k, x, r2)) = 1]
−Pr[D(k,Hash1(k, x1, r1),Hash1(k, x2, r2)) = 1]

∣∣∣∣ < negl(λ)

Suppose R is not a biased relation in the 1st co-ordinate. Then, there exists an
efficient algorithm A, which outputs (y, z) ∈ Y ×Z, such that Pr[x← X, (y, z)←
A(λ) : R(x, y, z) 6= R(w, y, z)] is non-negligible in the security parameter. So now
given (k,Hash1(k, x, r1),Hash1(k,w, r2)), we generate (y, z)← A(λ), compute
Hash2(k, y, r′) and then compute Verify(k,Hash1(k, x, r1), Hash2(k, y, r′), z)
and Verify(k,Hash1(k,w, r2),Hash2(k, y, r′), z). By the correctness of the Re-
lational Hash scheme, these boolean results are R(x, y, z) and R(w, y, z) respec-
tively. In the case R(x, y, z) = R(w, y, z), the distinguisher D outputs 1, else 0.
By the non-sparseness of R, D will have a non-negligible chance of distinguishing
the distributions. Hence we get a contradiction. ut

Theorem 7, stated below, shows that if a Relational Hash is 2-POW, then it
is also oracle simulation secure.

Theorem 7. For a Relational Hash scheme (KeyGen,Hash1,Hash2,Verify),
if the algorithms Hash1 and Hash2 are individually 2-value Perfectly One-Way
for distributions (X ,KeyGen) and (Y,KeyGen) respectively, then the Rela-
tional Hash scheme is Oracle Simulation Secure for the distribution X × Y.
Formally, for all PPT C, there exists a PPT S, such that:∣∣∣∣Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]

−Pr[SRx,Ry,Rx,y (pk) = P (pk, x, y)]

∣∣∣∣ < negl(λ),

where pk ← KeyGen, x← X , y ← Y.

Finally, we show that if a Relational Hash is 2-POW as well as sparse, then it
must be unforgeable.

Theorem 8. If (KeyGen,Hash1,Hash2,Verify) is a Relational Hash scheme
for a sparse relation R with respect to independent probability distributions X and
Y and Hash1 (Hash2) is 2-value Perfectly One-Way for distribution X (Y) and
KeyGen, then the Relational Hash scheme is unforgeable for the distribution X
(Y).

Proof. Assume that the scheme is not unforgeable. This means that given (pk,
Hash1(pk, x, r)) for x← X , there is an attacker A, which outputs Hash2(pk, y, s)
and z, such that R(x, y, z) = 1, with non-negligible probability. Using A, we now



build an attacker B which distinguishes the distributions (pk,Hash1(pk, x, r1),
Hash1(pk, x, r2)) and (pk,Hash1(pk, x, r1),Hash1(pk, x′, r2)) with non-negligible
probability. Given (pk,Hash1(pk, x, r1),Hash1(pk, w, r2)), B sends Hash1(pk, x,
r1) to A. With non-negligible probability A outputs Hash2(pk, y, s) and z, such
that R(x, y, z) = 1. Now since R is a sparse relation, if w 6= x, then with non-
negligible probability R(w, y, z) = 0, whereas if w = x, then R(w, y, z) = 1. Now
R(w, y, z) can be efficiently evaluated by computing Verify(pk,Hash1(pk,w, r2),
Hash2(pk, y, s), z). Thus, B will have a non-negligible probability of breaking the
2-value POW security of Hash1. ut

Stronger Security Properties for the Relational Hash Constructions.
In Theorem 9, we show that the Relational Hash construction for linearity over
Fn2 from Section 3 is actually a 2-value perfectly one-way function. This prop-
erty is based on a stronger hardness assumption called Decisional Binary Mix
(Assumption 2). In [MR14] we show that this assumption holds in Generic
Group Model [Sho97]. One can easily verify that the linearity relation over Fn2 ,
R = {(r, s, z) | r + s = z ∧ r, s, z ∈ Fn2} is actually a sparse relation with re-
spect to uniform distributions over Fn2 . Hence, by Theorem 7 and Theorem 8
we get that the Relational Hash construction from Section 3 is actually oracle
simulation secure as well as unforgeable with respect to the independent uniform
distributions over Fn2 .

Assumption 2 (Decisional Binary Mix). Assuming a generation algorithm G
that outputs a tuple (n, q,G) such that G is a group of prime order q, the Deci-
sional Binary Mix assumption asserts that for random x, y ← Fn2 , given random
elements 〈gi〉

n
i=1, 〈fi〉ni=1 from the group G it is hard to distinguish the following

distributions:(
n∏
i=1

g
(−1)xi
i ,

n∏
i=1

f
(−1)xi
i

)
and

(
n∏
i=1

g
(−1)xi
i ,

n∏
i=1

f
(−1)yi
i

)
.

Theorem 9. The algorithms (KeyGen,Hash1,Verify) in Section 3 consti-
tute a 2-value Perfectly One Way Function for the uniform distribution on Fn2 ,
under the Decisional Binary Mix and DDH assumptions.

On Stronger Security Properties for the Proximity Hash Construc-
tions. We observe that our proximity hash construction is not 2-POW secure.
This is readily seen by considering the first component of the proximity hash,
which is x + c, where x is the plaintext and c is a codeword. Two independent
hashes of x will have first components x + c and x + c′, and therefore adding
them will lead to c+ c′, which is a codeword. However for the hash of an inde-
pendently randomly generated y, the first component will be y + c′′. If we add
the first components we get x+ y + c+ c′′, which is unlikely to be a codeword.
Therefore there is an efficient distinguisher for the 2-POW distributions. Our
construction is also not Oracle Simulation secure, because it reveals the syn-
drome of the plaintext with respect to the ECC used - this is more information



than what the simulation world can provide. We leave it as an open problem to
construct 2-POW and Oracle Simulation secure Relational Hashes for proximity.

References

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
41–55. Springer, August 2004.

BGG95. Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryp-
tography and application to virus protection. In 27th ACM STOC, pages
45–56. ACM Press, May / June 1995.

Boy04. Xavier Boyen. Reusable cryptographic fuzzy extractors. In Vijayalakshmi
Atluri, Birgit Pfitzmann, and Patrick McDaniel, editors, ACM CCS 04,
pages 82–91. ACM Press, October 2004.

Can97. Ran Canetti. Towards realizing random oracles: Hash functions that hide all
partial information. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume
1294 of LNCS, pages 455–469. Springer, August 1997.

CMR98. Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way
probabilistic hash functions (preliminary version). In 30th ACM STOC,
pages 131–140. ACM Press, May 1998.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

DRS04. Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. In Christian
Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of
LNCS, pages 523–540. Springer, May 2004.

DS05. Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial
information. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 654–663. ACM Press, May 2005.

GGG+14. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan
Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-
input functional encryption. In Phong Q. Nguyen and Elisabeth Oswald, ed-
itors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer,
May 2014.

GGJS13. Shafi Goldwasser, Vipul Goyal, Abhishek Jain, and Amit Sahai. Multi-input
functional encryption. Cryptology ePrint Archive, Report 2013/727, 2013.
http://eprint.iacr.org/2013/727.

GKL+13. S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng
Zhou. Multi-input functional encryption. Cryptology ePrint Archive, Re-
port 2013/774, 2013. http://eprint.iacr.org/2013/774.

JS02. Ari Juels and Madhu Sudan. A fuzzy vault scheme. Cryptology ePrint
Archive, Report 2002/093, 2002. http://eprint.iacr.org/2002/093.

JW99. Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In ACM
CCS 99, pages 28–36. ACM Press, November 1999.

KVM04. Suleyman Serdar Kozat, Ramarathnam Venkatesan, and Mehmet Kivanç
Mihçak. Robust perceptual image hashing via matrix invariants. In Image
Processing, 2004. ICIP’04. 2004 International Conference on, volume 5,
pages 3443–3446. IEEE, 2004.

http://eprint.iacr.org/2013/727
http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2002/093


Lyu05. Vadim Lyubashevsky. On random high density subset sums. Electronic
Colloquium on Computational Complexity (ECCC), 12(007), 2005.

MR14. Avradip Mandal and Arnab Roy. Relational hash. Cryptology ePrint
Archive, Report 2014/394, 2014. http://eprint.iacr.org/2014/394.

PR12. Omkant Pandey and Yannis Rouselakis. Property preserving symmetric
encryption. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 375–391. Springer, April 2012.

RS09. Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated prod-
ucts. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages
419–436. Springer, March 2009.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, May 1997.

A Hardness Assumptions

We summarize the standard hardness assumptions used in this paper.

Assumption 3 (DDH [DH76]). Assuming a generation algorithm G that out-
puts a tuple (q,G,g) such that G is of prime order q and has generator g, the
DDH assumption asserts that it is computationally infeasible to distinguish be-
tween (g,ga,gb,gc) and (g,ga,gb,gab) for a, b, c ← Z∗q . More formally, for all
PPT adversaries A there exists a negligible function negl() such that∣∣∣∣Pr[(q,G,g)← G(1λ); a, b, c← Z∗q : A(g,ga,gb,gc) = 1]−

Pr[(q,G,g)← G(1λ); a, b← Z∗q : A(g,ga,gb,gab) = 1]

∣∣∣∣ < negl(λ)

Assumption 4 (SXDH [BBS04]). Consider a generation algorithm G taking
the security parameter as input, that outputs a tuple (q,G1,G2,GT , e,g1,g2),
where G1,G2 and GT are groups of prime order q with generators g1,g2 and
e(g1,g2) respectively and which allow an efficiently computable Z∗q-bilinear pair-
ing map e : G1 ×G2 → GT . The Symmetric eXternal decisional Diffie-Hellman
(SXDH) assumption asserts that the Decisional Diffie-Hellman (DDH) problem
is hard in both the groups G1 and G2.

Assumption 5 (Random Modular Subset Sum [Lyu05]). Assuming a gen-
eration algorithm G that outputs a tuple (n, q),where q is prime,the Random Mod-
ular Subset Sum assumption asserts that given random elements 〈ai〉ni=1 from the
group Zq and c =

∑n
i=1 εiai for a random ε ← {0, 1}n, it is hard to output

η ∈ {0, 1}n such that
n∑
i=1

ηiai = c (mod q).

More formally, for all PPT A, there exists a negligible function negl() such that

Pr

 (n, q)← G(1λ), 〈ai〉ni=1 ← Zq
ε← {0, 1}n, c =

∑n
i=1 εiai

η ← A(〈ai〉ni=1 , c)
:

n∑
i=1

ηiai = c (mod q)

 < negl(λ).

http://eprint.iacr.org/2014/394

	Relational Hash: Probabilistic Hash for Verifying Relations, Secure against Forgery and More

