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Abstract. We initiate a systematic treatment of the communication com-
plexity of conditional disclosure of secrets (CDS), where two parties want
to disclose a secret to a third party if and only if their respective inputs
satisfy some predicate. We present a general upper bound and the first non-
trivial lower bounds for conditional disclosure of secrets. Moreover, we achieve
tight lower bounds for many interesting setting of parameters for CDS with
linear reconstruction, the latter being a requirement in the application to
attribute-based encryption. In particular, our lower bounds explain the trade-
off between ciphertext and secret key sizes of several existing attribute-based
encryption schemes based on the dual system methodology.

1 Introduction

We revisit a fundamental question in the foundations of cryptography: what is
the communication overhead of privacy in computation? This question has been
considered in several different models and settings [12, 41, 2, 14]. In this work, we
focus on a very simple and natural model where non-private computation requires
very little communication (just a single bit), whereas the best upper bound for
private computation is exponential.

Namely, we consider two-party conditional disclosure of secrets (CDS) [19] (c.f.
Fig 2), a generalization of secret sharing [44, 23]: two parties want to disclose a secret
to a third party if and only if their respective inputs satisfy some fixed predicate P.
Concretely, Alice holds x, Bob holds y and they both share a secret α ∈ {0,1} (along
with some additional private randomness), whereas Carol knows x, y but notα. Alice
and Bob want to disclose α to Carol iff P(x, y) = 1. How many bits do Alice and Bob
need to communicate to Carol? In the non-private setting, Alice or Bob can send α
to Carol, upon which Carol computes P(x, y) and decides whether to output α or ⊥.
This trivial protocol with one-bit communication is not private because Carol learns
α even when the predicate is false; in fact, the best upper bound we have for CDS
for general predicates requires that Alice and Bob each transmits 2Ω(|x|+|y |) bits [7].
Here, we are interested not only in the total communication from Alice and Bob to
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Carol, but also in trade-offs between the length of Alice’s message `A and that of
Bob’s message `B.

Connection to Attribute-based Encryption. Attribute-based encryption (ABE) [43,
20] is a new paradigm for public-key encryption that enables fine-grained access
control for encrypted data. In attribute-based encryption, ciphertexts are associated
with descriptive values x in addition to a plaintext, secret keys are associated with
values y , and a secret key decrypts the ciphertext if and only if P(x, y) = 1 for some
boolean predicate P. Note that x and y are public given the respective ciphertext and
secret key. Here, y together with P may express an arbitrarily complex access policy,
which is in stark contrast to traditional public-key encryption, where access is all
or nothing. The simplest example of ABE is that of identity-based encryption (IBE)
[45, 8, 13] where P corresponds to equality. The security requirement for attribute-
based encryption enforces resilience to collusion attacks, namely any group of users
holding secret keys for different values learns nothing about the plaintext if none of
them is individually authorized to decrypt the ciphertext. This should hold even if
the adversary adaptively decides which secret keys to ask for.

In [47], Waters introduced the powerful dual system encryption methodology for
building adaptively secure IBE in bilinear groups; this has since been extended to
obtain adaptively secure ABE for a large class of predicates [31, 35, 38, 33, 30, 40]. In
recent works [3, 48], Attrapadung and Wee presented a unifying framework for the
design and analysis of dual system ABE schemes, which decouples the predicate P
from the security proof. Specifically, the latter work puts forth the notion of predicate
encoding, a private-key, one-time, information-theoretic primitive similar to condi-
tional disclosure of secrets, and provides a compiler from predicate encoding for a
predicate P into an ABE for the same predicate using the dual system encryption
methodology. Moreover, the parameters in the predicate encoding scheme and in
CDS correspond naturally to ciphertext and key sizes in the ABE. In particular, Alice’s
message corresponds to the ciphertext, and Bob’s message to the secret key. For
these applications, we require that Alice’s and Bob’s messages are linear functions
of the shared randomness, and also that Carol computes a linear function of the
messages to reconstruct the secret α. These applications consider linear functions
over Zp where p is the order of the underlying bilinear group; in this work, we focus
on lower bounds for the case p = 2 although our techniques do hold for general p.
Note that while the parameters for ABE schemes coming from predicate encodings
are not necessarily the best known parameters, they do match the state-of-the-art in
terms of ciphertext and secret key sizes for many predicates such as inner product,
index, and read-once formula.

CDS Parameters. Unlike in traditional communication complexity where the pri-
mary measure is the total communication from Alice and from Bob, we make a more
fine-grained distinction between the lengths of Alice’s and Bob’s messages `A and
`B. For instance, in the application to ABE, `A and `B correspond to ciphertext and
secret key sizes respectively. Note that for ABE ciphertext and key sizes, we ignore the
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Fig. 1. Summary of our upper and lower bounds for linear CDS, where `A and `B denote the
length of the messages from Alice and Bob respectively. We marked the tight lower bounds
with an asterisk ∗.

contributions from the descriptive values x, y as well as multiplicative factors in the
security parameter.1 We are particularly interested in three regimes of parameters for
(`A,`B):

– How small can `B be when `A is constant? This corresponding to minimizing
key sizes for schemes with constant-size ciphertexts;

– How small can `A be when `B is constant? This corresponding to minimizing
ciphertext sizes for schemes with constant-size keys;

– How small can max(`A,`B) be? This corresponds to minimizing the overall
parameter sizes of the scheme.

We also care about the complexity of the reconstruction function as computed by
Carol, as a function of the messages from Alice and Bob; as noted earlier, for ABE, we
will require linear reconstruction.

Prior works. There have been several works studying CDS protocols (and strength-
enings thereof) for a large class of predicates [19, 3, 48, 22]: the best general upper
bound achieves both linear reconstruction and communication that is linear in the
size of the smallest (arithmetic) branching program computing the predicate [19, 22].
However, we basically do not have any techniques for proving lower bounds on the
communication complexity of CDS protocols. Here, even the probabilistic method or
a counting argument does not seem to yield meaningful lower bounds for a random
function (in contrast, these techniques do yield meaningful lower bounds for circuit
complexity of a random function).

1.1 Our results

We initiate a systematic treatment of the communication complexity of conditional
disclosure of secrets (CDS). We present a general upper bound and the first non-
trivial lower bounds for conditional disclosure of secrets, summarized in Fig 1.

1 The latter suppresses the distinction between counting bits and group elements, and also
between working over Z2 vs Zp , where p is the order of the underlying bilinear group.
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Fig. 2. Pictorial representation of CDS and communication complexity.

Moreover, we achieve tight lower bounds for many interesting setting of parameters
for CDS with linear reconstruction, the latter being a requirement in the application
to attribute-based encryption; this addresses an open problem posed in [48]. Very
informally, for CDS with linear reconstruction, we obtain lower bounds of the form:

`A ·`B ≥ “communication complexity of P”

For example, for inner product on n-bit vectors, we have `A · `B = Ω(n). Our
lower bounds partially explain the trade-off between ciphertext and secret key sizes
of several existing attribute-based encryption schemes based on the dual system
methodology, c.f. [31, 35, 39, 48, 3, 10].

Proof techniques. Since we want to argue about the lengths of the messages of Alice
and Bob to Carol, the first idea would be to look at the communication complexity of
the predicate P [49, 29]. Informally, communication complexity measures how many
bits of information about x and y we need to transmit in order to computeP(x, y) (c.f.
Fig 2). Namely, Alice holds x and Bob holds y and each of them sends a message to
a third party Carol who wants to compute P(x, y). We also allow all three parties to
share public randomness w . The goal is to minimize the communication from Alice
and Bob to Carol, and there is no privacy requirement. There is now a large body of
works in communication complexity giving tight upper and lower bounds for a large
class of predicates. For instance, a classic result from communication complexity
tells us that to compute the inner product of two vectors x,y ∈ {0,1}n , each of Alice
and Bob must send n−Ω(1) bits [11]. That is, we need to know essentially all of x and
all of y in order to compute their inner product.

Our goal is to leverage the rich literature on lower bounds for communication
complexity to obtain lower bounds for CDS. Namely, we want to transform any CDS
Πcds for a predicate P into a communication complexity protocolΠcc for P with only
a small blow-up in communication complexity. The crucial distinction between CDS
and communication complexity is that Carol knows x, y in Πcds but not in Πcc (as
shown in Fig 2).



The first attempt would be to show that a Πcds for a predicate P is also a Πcc for
P. Fix x, y to denote the inputs to Πcc. That is, we would like to argue that Alice’s
message together with Bob’s message in a CDS (even without x, y) must completely
determine P(x, y). Intuitively, this ought to be the case because if the CDS messages
are consistent with both values of P(x, y), then they must simultaneously uniquely
determineα (via correctness) and hideα (via privacy), a contradiction. Indeed, if this
worked out, we would have a lower bound of the form

`A+`B ≥ “communication complexity for P”

Unfortunately, the above statement is false for inner product. The above statement
implies a lower bound of 2n−Ω(1) bits for inner product, but we have a CDS for inner
product with n+1 bits! It is instructive to understand why the above attempt fails. The
issue arises in using correctness of CDS to argue that Alice’s and Bob’s message must
determine α: specifically, it is necessary for Carol to specify inputs x ′, y ′ in order to
reconstruct α from Alice’s and Bob’s messages. In fact, different inputs (x ′, y ′) could
yield different values for α. We need to fix this issue.

– The first idea is to have Alice in Πcc also send the secret α; Carol then tries
all possible (x ′, y ′) for which P (x ′, y ′) = 1 and output 1 iff for some x, y the
reconstructed secret indeed equals α. By the correctness of CDS, Carol will
output 1 when P (x, y) = 1. However, there could be false positives, since even
when P (x, y) = 0, there could be inputs (x ′, y ′) for which P (x ′, y ′) = 1 and the
reconstructed secret matches α, upon which Carol will incorrectly output 1. In
fact, privacy tells us that Carol will recover a random value for the secret for each
choice of (x ′, y ′), and with pretty good probability, at least one of them will match
α.

– The second idea is to avoid false positives by having Alice and Bob run the
CDS protocol Πcds N times, with fresh independent private randomness and
secrets across the repetitions. As before, Carol will try all possible (x ′, y ′) for
which P (x ′, y ′) = 1 and output 1 iff for some x ′, y ′ the reconstructed secret
equals α in all repetitions of the protocol. By the correctness of CDS, Carol
will always output 1 when P (x, y) = 1. On the other hand, if P (x, y) = 0, a
straight-forward union bound over (x ′, y ′) ∈ P−1(1) tells us Carol outputs 1 with
probability at most P−1(1) · 2−N , since Carol recovers a random value in each
repetition. For inner product, we need to take a union bound over 22n−1 possible
pairs, which requires running N = 2n − 1 copies of the CDS protocol Πcds; the
communication complexity ofΠcc is then 2n−1 times that ofΠcds. This does not
yield any non-trivial lower bound for Πcds since we have an upper bound of 2n
for communication complexity.

Here comes our key observation: we can substantially reduce the number of repe-
titions needed if the CDS protocol Πcds has small communication complexity! Sup-
poseΠcds has total communication `A+`B ¿ n bits. Observe that the reconstruction
function computed by Carol in Πcds is a function from {0,1}`A+`B to {0,1}. Now,
instead of having Carol in Πcc enumerate over all possible (x, y), she will instead



enumerate over all functions from {0,1}`A+`B to {0,1}, and output 1 iff for some
function the reconstructed secret equals α in all N repetitions. By the correctness of

CDS, Carol will always output 1 when P (x, y) = 1. Moreover, there are 22`A+`B possible
functions, which means we will need to run 2`A+`B copies ofΠcds inΠcc; this already
implies a Ω(logn) lower bound for inner product! Moreover, if the CDS Πcds admits
linear reconstruction, then Carol in Πcc will also need to enumerate over all 2`A+`B

linear functions from {0,1}`A+`B to {0,1}, which means we only need to run `A +`B

copies ofΠcds inΠcc; this in turn yields aΩ(
p

n) lower bound for inner product.
We obtain our lower bounds on CDS for concrete predicates by instantiating the

above argument with existing lower bounds in communication complexity [36, 28,
24, 42, 4, 11] (c.f. Section 5).

Implications for dual system ABE. As observed in [3, 48, 10], underlying most
“information-theoretic” dual system ABE schemes for a predicate P is a CDS for the
same predicate, and our lower bounds apply to ciphertext and secret key sizes for
these dual system ABE schemes. On the other hand, we do have ABE schemes based
on a “computational” dual system argument, such as those in [32, 34, 9, 3, 27], many
of which are more efficient and do avoid the lower bounds in this work. Informally,
underlying the “computational” dual system argument is a computational analogue
of CDS, where the privacy requirement is computational rather than information-
theoretic. As it turns out, formalizing the right notion of computational privacy in
CDS is quite tricky.

Recall that CDS guarantees privacy of the secret α whenever P(x, y) = 0, and
in the application to ABE, we require that privacy holds even if x, y are chosen
adaptively, namely Alice’s input x may be chosen depending on Bob’s input y
and Bob’s message, and vice versa. Now, if the privacy guarantee is information-
theoretic and perfect, then privacy for non-adaptive choices of x, y implies privacy
for adaptive choices2; this equivalence dissipates as soon as we relax the privacy
requirement to be statistical or computational. The “right” notion of computational
privacy for use in ABE schemes is that of “doubly selective” security [3, 34], where
“doubly” refers to the two possibilities depending on whether x or y is chosen first.
Unsurprisingly, proving3 and using doubly selective security require substantially
more delicate security reductions, and in most cases, stronger and less desirable
q-type assumptions. This raises the natural question of whether the increased
complexity in these proofs and assumptions are inherent, or simply a failure to find
more clever and efficient CDS with information-theoretic privacy. Our work rules out
the latter option.

2 The easiest way to see this is via complexity leveraging: an adaptive distinguisher with
advantage ε can be converted into a non-adaptive distinguisher with an exponential loss
in ε via random guessing. Since any non-adaptive distinguisher has advantage 0, we must
have ε= 0 to begin with.

3 Typically, this entails two separate reductions, one for x being chosen first and the other
for y . In [34], these correspond to selectively secure key-policy and ciphertext-policy ABE
schemes; in [3], these correspond to so-called selective and co-selective security.



1.2 Discussion

Perspective. Note that our set-up is quite different from previous lower bounds for
private computation in the literature; to the best of our knowledge, this is the first
super-constant lower bound in a setting where the price of privacy in computation
is always bounded. For instance, in interactive secure two-party computation, some
functions are impossible to compute securely [12], so the cost of privacy is infinite for
these functions (whereas ours is bounded for all predicates). For secure computation
in the FKN model [15, 14], we do not have any techniques for super-constant gaps.
For locally decodable codes, there is no gap for privacy in some ranges of parameters,
for instance, when we want to minimize one-way communication from the client
and communication from the server is essentially “free”; here, the server needs to
send the entire database, whether or not we care about client privacy.

Additional related work. There is a large body of work on lower bounds on share
sizes in secret-sharing (c.f. [5, Section 5]). Most of these works rely on Shannon-type
inequalities on entropy of random variables, which do not seem applicable to our
setting. Roughly speaking, in secret sharing, Carol either gets a share or not, whereas
Alice and Bob in CDS can do more complex computations than simply computing
shares and then deciding whether to send each share to Carol. The recent work of
Data, Prabhakaran and Prabhakaran [14] draws upon tools from information theory
to obtain new communication complexity lower bounds for secure computation in
three-party setting. In their model which allows multiple rounds of interaction, the
problem we consider admits a secure protocol with a single bit of communication,
and their techniques do not yield better bounds in the non-interactive setting.

Open problems. We conclude with a number of open problems:

– explore the power of non-linear reconstruction in CDS (that is, positive results,
c.f. [6, 46]);

– tight lower bounds for inner product with linear reconstruction (which we
conjecture to beΩ(n));

– obtain better lower bounds for multi-bit secrets (which is related to lower
bounds for secret sharing for multi-bit secrets), or obtain upper bounds that are
better than the naive “direct product” construction;

– improve the upper or lower bounds in CDS for read-once span programs for con-
stant `A or constant `B. A related problem is to prove stronger communication
complexity lower bounds for general span programs (which may not be read-
once).

2 Preliminaries

Notations. We denote by s ←R S the fact that s is picked uniformly at random from
a finite set S or from a distribution. Throughout this paper, we denote by log the
logarithm of base 2.



2.1 Conditional disclosure of secrets

We recall the notion of conditional disclosure of secrets (CDS), c.f. Fig 2. The
definition we give here is for two parties Alice and Bob and a referee Carol, where
Alice and Bob share randomness w and want to conditionally disclose a secret
α to Carol. The general notion of conditional disclosure of secrets has first been
investigated in [19]. Two-party CDS is closely related to the notions of predicate
encoding [48, 10] and pairing encoding [3]; in particular, the latter two notions imply
two-party CDS with linear reconstruction.

Definition 1 (conditional disclosure of secrets (CDS) [19, 48]). Fix a predicate P :
X×Y→ {0,1}. A (`A,`B)-conditional disclosure of secrets (CDS) for P is a triplet of
deterministic functions (A,B,C)

A :X×W×D→ {0,1}`A , B :Y×W×D→ {0,1}`B , C :X×Y× {0,1}`A × {0,1}`B →D

satisfying the following properties:

(reconstruction.) For all (x, y) ∈X×Y such that P(x, y) = 1, for all w ∈W, and for all
α ∈D:

C(x, y,A(x, w,α),B(y, w,α)) =α
(privacy.) For all (x, y) ∈X×Y such thatP(x, y) = 0, and for allC∗ : {0,1}`A×{0,1}`B →

D,

Pr
w←W,α←RD

[
C∗(

A(x, w,α),B(y, w,α)
)=α]

≤ 1

|D|

Note that the formulation of privacy above with uniformly random secrets is equiv-
alent to standard indistinguishability-based formulations.

A useful measure for the complexity of a CDS is the complexity of reconstruction
as a function of the outputs of A,B, as captured by the function C, with (x, y) hard-
wired.

Definition 2 (C-reconstruction). Given a set C of functions from {0,1}`A × {0,1}`B →
D, we say that a CDS (A,B,C) admits C-reconstruction if for all (x, y) such that
P(x, y) = 1, C(x, y, ·, ·) ∈C.

Two examples of C of interest are:

– Call is the set of all functions from {0,1}`A × {0,1}`B →D; that is, we do not place

any restriction on the complexity of reconstruction. Note that |Call| = |D|2`A+`B .
– Clin is the set of all linear functions over Z2 from {0,1}`A × {0,1}`B → D; that

is, we require the reconstruction to be linear as a function of the outputs of A
and B as bit strings (but may depend arbitrarily on x, y). This is the analogue
of linear reconstruction in linear secret sharing schemes and is a requirement
for the applications to attribute-based encryption [48, 3, 10]. Note that |Clinear| ≤
|D|`A+`B for |D| ≥ 2.



Remark 1. Note that while looking atC, we considerC(x, y, ·, ·), which has (x, y) hard-
wired, and takes an input of total length `A+`B. In particular, it could be that C runs
in time linear in |x| = |y | = n, and yet `A = `B = O(logn) so C has “exponential”
complexity w.r.t. `A+`B.

Definition 3 (linear CDS). We say that a CDS (A,B,C) is linear if it admits Clin-
reconstruction.

2.2 Communication complexity

The description of communication complexity in Fig 2 actually refers to the “simul-
taneous message” model, where A and B each sends a message to C. For our actual
proof, it suffices to consider one way communication complexity, where there is no
C, but either A sends a single message to B or B sends a single message to A. We
now proceed to recall the basic definitions for communication complexity [49, 29],
specifically one-way communication complexity with one-sided error [1, 28, 37].

Definition 4 ([28, 49]). A one-way (A→B) communication protocol for a predicate
P :X×Y→ {0,1} is a pair of deterministic functions (A,B) where

A :X×W× {0,1}`→ {0,1}, B :Y×W× {0,1}`→ {0,1},

and the following properties are satisfied for every (x, y) ∈X×Y:

– If P(x, y) = 1, then Prw←RW[B(y, w,A(x, w)) = 1] = 1
– If P(x, y) = 0, then Prw←RW[B(y, w,A(x, w)) = 0] ≥ 1/2.

The one-way communication complexity of P, denoted by RA→B(P), is the minimum
` over all one-way communication protocols (A,B) for P.

We also denote by RB→A(P) the minimum ` over all one-way (B→A) communi-
cation protocols (A,B), where

A :X×W× {0,1}`→ {0,1}, B :Y×W× {0,1}`→ {0,1},

and the following properties are satisfied for every (x, y) ∈X×Y:

– If P(x, y) = 1, then Prw←RW[A(x, w,B(y, w)) = 1] = 1
– If P(x, y) = 0, then Prw←RW[A(x, w,B(y, w)) = 0] ≥ 1/2.

3 CDS for General Predicates

We present a general upper bound for linear CDS for any predicate:

Theorem 1 (generic upper bounds for linear CDS). Given any predicate P : {0,1}n ×
{0,1}n → {0,1}, for any t ≤ 2n , there exists a linear (t ,2n/t )-CDS for P with D = {0,1}.
In particular, there exists a (1,2n)-CDS, a (2n ,1)-CDS, a (2n/2,2n/2)-CDS forP, all three
of which are linear.



The result improves upon the (2n/2,2n/2)-CDS (but not linear) given in [7]; our
construction is also considerably simpler.

Proof (sketch). The construction follows from a standard reduction of any general
predicate to the INDEX predicate on 2n-dimensional vectors: Alice treats the truth
table P(x, ·) as a vector of length 2n and Bob treats y ∈ {0,1}n as an index, so that the
INDEX predicate returns P(x, y). Then, we can use the (t ,2n/t )-linear CDS for the
INDEX predicate on 2n-dimensional vectors in [17, 10]. ut
More generally, for any predicateP :X×Y→ {0,1}, we have a (t ,min(|X|, |Y|)/t )-linear
CDS, by treating either x or y as an index depending on whether |X| ≤ |Y| or not. This
is essentially optimal for linear reconstruction, since we prove a tight lower bound
for INDEX: {0,1}n × [n] → {0,1} in Section 5.

4 Lower Bounds for CDS

In this section, we present our lower bounds on the communication complexity of
CDS.

Theorem 2 (lower bounds for linear CDS). Let P : X×Y→ {0,1} be a predicate. For
all linear (`A,`B)-CDS of P with |D| ≥ 2, we have

`A · (`A+`B+1) ≥RA→B(P) and `B · (`A+`B+1) ≥RB→A(P).

We then derive our lower bounds for linear CDS by using existing lower bounds on
one-way communication complexity; see Section 5. In fact, our techniques are fairly
general and also yield lower bounds on non-linear CDS.

Theorem 3 (lower bounds for general CDS). Let P :X×Y→ {0,1} be a predicate. For
all (`A,`B)-predicate CDS of P with |D| ≥ 2, we have

`A+`B ≥ 1

2
log

(
RA→B(P)+RB→A(P)

)
.

While the lower bounds for general CDS are exponentially smaller than those
for linear CDS, we still do obtain non-trivial logarithmic lower bounds for many
concrete predicates.

4.1 Main lemma

We obtain both lower bounds via a general reduction from CDS for a predicate P
to one-way communication protocols for the same predicate; the communication
cost of the reduction depends crucially on the complexity of reconstruction (c.f.
Definition 2):

Lemma 1 (main technical lemma). Let P : X×Y → {0,1} be a predicate. Then, any
(`A,`B)-CDS for P with |D| ≥ 2 and which admits C-reconstruction satisfies

(log |C|+1) ·`A ≥RA→B(P) · log |D| and (log |C|+1) ·`B ≥RB→A(P) · log |D|



Theorem 2 then follows from instantiating the lemma withC :=Clin, where log |Clin| =
(`A+`B) · log |D|. Similarly, Theorem 3 uses C :=Call where log |Call| = 2`A+`B · log |D|.

Proof (of Lemma 1). Let N := log |C|+1
log |D| . We build a one-way communication protocol

(Ã,B̃) for the predicate P as follows:

– Sample wi ←R W,αi ←R D for i = 1, . . . , N and set

w := (w1,α1, . . . , wN ,αN )

– Alice computes

Ã(x, w) := (A(x, w1,α1), . . . ,A(x, wN ,αN ))

– Bob outputs 1 iff there exists a function C∗ ∈C such that

C∗(
A(x, wi ,αi ),B(y, wi ,αi )

)=αi , ∀ i = 1, . . . , N

We proceed to analyze the protocol (Ã,B̃).

– Completeness. Suppose P(x, y) = 1. Then, by the reconstruction property, the
function C∗(·) :=C(x, y, ·) ∈C satisfies

C∗(A(x, wi ,αi ),B(y, wi ,αi )
)=αi , ∀ i = 1, . . . , N

for all (w1,α1, . . . , wN ,αN ). Therefore, B̃ outputs 1 with probability 1.

– Soundness. Suppose P(x, y) = 0. Fix C∗ ∈ C. For each i = 1, . . . , N , α-privacy
implies that

Pr
wi ,αi

[
C∗(

A(x, wi ,αi ),B(y, wi ,αi )
)=αi

]
≤ 1

|D|

Since the (wi ,αi ) are chosen independently at random, we have

Pr
w1,α1,...,wN ,αN

[
C∗(

A(x, wi ,αi ),B(y, wi ,αi )
)=αi , ∀ i = 1, . . . , N

]
≤ 1

|D|N

By a union bound over all |C| functions C∗ ∈C, we have

Pr
[
B̃ outputs 1

]
≤ |C| · |D|−N ≤ 1/2

by our choice of N .

It is straightforward to check that Ã sends log |C|+1
log |D| · `A bits to B̃. Similarly, we can

build a (B̃,Ã) protocol for P, where B̃ sends log |C|+1
log |D| ·`B bits to Ã. This completes the

proof. ut

Remark 2 (extensions). It is easy to see that the reduction also works for CDS with
imperfect reconstruction and weak privacy. If the gap between the probability of
reconstructing αwhen P(x, y) = 1 and the probability of recovering αwhen P(x, y) =



0 is δ, then it suffices to take N :=O
(

1
δ log |C|

)
via a straightforward application of the

Chernoff bound. The ensuing randomized protocol for communication complexity
will then have a two-sided error.

Remark 3 (beyond linear CDS). Note that the bounds of Theorem 2 are much more
general than just for linear CDS. For instance, if we require that reconstruction be
carried out by circuits of size `c for some constant c (where ` := `A + `B), or by
polynomials of degree c, then we get lower bounds of the form

`A+`B =Ω
(
(RA→B(P)+RB→A(P))1/(c+1)

)
4.2 Lower bounds for multi-bit secrets

We now look at CDS where the secret α is a multi-bit string; that is, D is of the form
{0,1}d , for d ≥ 1. There is a trivial upper bound for d-bit secrets obtained by running
d times a CDS for single-bit secrets. Note, of course, that hiding a secret of size d = 1
is the easiest case, since we can simply embed this secret to a larger d-bit string by
randomly adding d −1 bits and use the CDS for the secret of size d . Hence, the lower
bounds on the message lengths of the CDS for a secret of size d = 1 still hold for the
CDS of secret of size d ≥ 1. We would like a lower bound that grows with d .

Here, we prove that for any non-trivial predicate P, for any (`A,`B)-CDS of P,
both `A and `B need to be at least d . A trivial predicate is one whose output is
completely determined by either x or y (e.g. the output of the predicate is the first
bit of x), for which there is a protocol with `A +`B = d . The intuition is that in any
non-trivial predicate, Alice’s message essentially serves as the secret key for a one-
time pad, which is needed to “unlock” α ∈ {0,1}d from Bob’s message. This means
that Alice’s message must itself be at least d bits.

It is easy to see that the lower bound is tight for the equality predicate. For all
other non-trivial predicates, it remains an open problem to close the gap between
lower and upper bounds for CDS of multi-bit secrets.

Theorem 4. Let D := {0,1}d , and let P : X×Y→ {0,1} be a non-trivial predicate that
depends on both inputs x and y; that is, there exists x∗ ∈ X, such that P(x∗, ·) is not
constant on Y, and there exists y∗ ∈Y such that P(·, y∗) is not constant on X. Then, for
any (`A,`B)-CDS of P, we have

`A ≥ d and `B ≥ d .

Proof. We begin with the lower bound on `A . Let x0, x1 ∈X be such that

P(x0, y∗) = 0 and P(x1, y∗) = 1

Let C∗ : {0,1}`A+`B → {0,1}d be a randomized function defined as follows: on input
mA ∈ {0,1}`A and mB ∈ {0,1}`B ,

– picks a message m ←R {0,1}`A at random (and ignores mA);
– outputs C(x1, y∗,m,mB).



By α-reconstruction for P(x1, y∗) = 1, for all α ∈D, w ∈W, we have

C
(
x1, y∗,A(x1, w,α),B(y∗, w,α)

)=α.

Therefore, for all α ∈D, w ∈W, we have

Pr
m←R {0,1}`A

[
C

(
x1, y∗,A(x1, w,α),B(y∗, w,α)

)=α and m =A(x1, w,α)
]
= 1/2`A

Thus,

Pr
w←W,α←RD, coins of C∗

[
C∗(

A(x1, w,α),B(y∗, w,α)
)=α]

≥ Prw←W,α←RD,m←R {0,1}`A

[
C

(
x1, y∗,A(x1, w,α),B(y∗, w,α)

)=α and m =A(x1, w,α)
]

= 1/2`A

Since C∗ ignores mA, this means that for all mA, and in particular for mA =
A(x0, w,α), we have

Pr
w←W,α←RD, coins of C∗

[
C∗(

A(x0, w,α),B(y∗, w,α)
)=α]

≥ 1/2`A

On the other hand, by α-privacy for P(x0, y∗) = 0, we have

Pr
w←W,α←RD, coins of C∗

[
C∗(

A(x0, w,α),B(y∗, w,α)
)=α]

≤ 1/2d

Combining the two preceding inequalities, we have 1/2`A ≤ 1/2d and thus,

`A ≥ d .

For the same reason,
`B ≥ d .

ut

5 Concrete predicates

In this section, we describe how we can combine the results in the previous section
with lower bounds in one-way communication complexity to obtain the results in
Figure 1. Each of these predicates has been studied in prior works on attribute-
based encryption. For each of these predicates, we obtain non-trivial lower bounds
for general (`A,`B)-CDS of the form:

`A+`B =Ω(logn).

We focus hence-forth on lower bounds for linear (`A,`B)-CDS, where linearity is
over Z2. In the applications to ABE, we will typically work with linear functions over



D = Zp (where log p is linear in the security parameter), in which case we lose a
multiplicative log p factor in the lower bounds.

Index, Prefix. We consider the following predicates:

– Index: X := {0,1}n ,Y := [n] and

Pindex(x, i ) = 1 iff xi = 1

That is, x is the characteristic vector of a subset of [n]. In the context of ABE, this
corresponds to broadcast encryption [16].

– Prefix: X := {0,1}n ,Y := {0,1}≤n and

Pprefix(x,y) = 1 iff y is a prefix of x

In the context of ABE, this corresponds to hierarchical identity-based encryption
[18, 21].

For both predicates, we have tight bounds for one-way communication complexity:

RA→B(P) =Θ(n) and RB→A(P) =Θ(logn)

given in [36, 28]for index, and in the full version of this paper for prefix.
By Theorem 2, this means that any linear (`A,`B)-CDS for any of the two

predicates must satisfy
`A(`A+`B+1) =Ω(n)

This immediately yields

– `B =Ω(n) if `A =O(1) and more generally, `B =Ω(n/`A) for any `A = o(
p

n);

– `A =Ω(
p

n) if `B =O(1);

– max(`A,`B) =Ω(
p

n).

The first and third lower bounds are tight, as we have matching upper bounds in
[10, 48, 3] exhibiting a linear (t ,n/t )-CDS for both predicates and any t ∈ [n].

Disjointness, Inner product. We consider the following predicates:

– Disjointness: X=Y := {S ⊆ [n]} and

Pdisj(X ,Y ) = 1 iff X ∩Y =;

In the context of ABE, this is related to a special case of fuzzy IBE [43].

– Inner Product [26]: X=Y :=Zn
p and

PIP(x,y) = 1 iff x>y = 0

For both predicates, we have tight bounds for one-way communication complexity:

RA→B(P) =Θ(n) and RB→A(P) =Θ(n)



given in [24, 42, 4] for disjointness, in [11] for inner product. By Theorem 2, this
means that any linear (`A,`B)-CDS for any of the two predicates must satisfy

`A(`A+`B+1) =Ω(n) and `B(`A+`B+1) =Ω(n)

This immediately yields

– `B =Ω(n) if `A =O(1);

– `A =Ω(n) if `B =O(1);

– max(`A,`B) =Ω(
p

n).

The first and second lower bounds are tight, as we have matching upper bounds in
[10, 48, 3] exhibiting a linear (t ,n− t +O(1))-CDS for these predicates and any t ∈ [n].
It is open whether a CDS with overall parameter size of O(

p
n) is possible.

Read-once monotone span programs. We consider the following predicate:

– Read-once monotone span program: X := {0,1}n , Y := Zn×n
p is a collection of

read-once monotone span programs [25] specified by a matrix M of height n
and

PMSP(x,M) = 1 iff x satisfies M

Here, x satisfies M iff (1,0, . . . ,0) lies in the row span of {M j : x j = 1} where M j is
the j ’th row of M. In the context of ABE, this corresponds to key-policy ABE for
access structures [20].

In the full version of this paper, we prove tight lower bounds for one-way communi-
cation complexity:

RA→B(P) =Θ(n) and RB→A(P) =Θ(n2)

By Theorem 2, this means that any linear (`A,`B)-CDS for both predicates must
satisfy

`A(`A+`B+1) =Ω(n) and `B(`A+`B+1) =Ω(n2)

This immediately yields

– `B =Ω(n) if `A =O(1);

– `A =Ω(n2) if `B =O(1);

– max(`A,`B) =Ω(n).

The third lower bound is tight, as we have matching upper bounds in [10, 48,
3] exhibiting a linear (n,n)-CDS for the predicate. It is open what the optimal
parameters are when we keep either the key or the ciphertext size constant.
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