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Abstract. We study a model of fairness in secure computation in which
an adversarial party that aborts on receiving output is forced to pay a
mutually predefined monetary penalty. We then show how the Bitcoin
network can be used to achieve the above notion of fairness in the two-
party as well as the multiparty setting (with a dishonest majority). In
particular, we propose new ideal functionalities and protocols for fair
secure computation and fair lottery in this model.

One of our main contributions is the definition of an ideal primitive,
which we call F?CR (CR stands for “claim-or-refund”), that formalizes
and abstracts the exact properties we require from the Bitcoin network
to achieve our goals. Naturally, this abstraction allows us to design fair
protocols in a hybrid model in which parties have access to the F?CR

functionality, and is otherwise independent of the Bitcoin ecosystem. We
also show an efficient realization of F?CR that requires only two Bitcoin
transactions to be made on the network.

Our constructions also enjoy high efficiency. In a multiparty setting, our
protocols only require a constant number of calls to F?CR per party on
top of a standard multiparty secure computation protocol. Our fair mul-
tiparty lottery protocol improves over previous solutions which required
a quadratic number of Bitcoin transactions.
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1 Introduction

Secure computation enables a set of mutually distrusting parties to carry out
a distributed computation without compromising on privacy of inputs or correct-
ness of the end result. Indeed, secure computation is widely applicable to variety
of everyday tasks ranging from electronic auctions to privacy-preserving data
mining. Showing feasibility [50, 30, 12, 19] of this seemingly impossible-to-achieve
notion has been one of the most striking contributions of modern cryptography.
However, definitions of secure computation [29] do vary across models, in part
owing to general impossibility results for fair coin-tossing [22]. In settings where
the majority of the participating parties are dishonest (including the two party
setting), a protocol for secure computation protocols is not required to guarantee
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important properties such as guaranteed output delivery or fairness.1 Address-
ing this deficiency is critical if secure computation is to be widely adopted in
practice, especially given the current interest in practical secure computation.
Needless to say, it is not very appealing for an honest party to invest time and
money to carry out a secure computation protocol until the very end, only to
find out that its adversarial partner has aborted the protocol after learning the
output.

Fair exchange of digital commodities is a well-motivated and well-studied prob-
lem. Loosely speaking, in the problem of fair exchange, there are two (or more)
parties that wish to exchange digital commodities (e.g., signed contracts) in
a fair manner, i.e., either both parties complete the exchange, or none do. A
moment’s thought reveals that fair exchange is indeed a special subcase of fair
secure computation. Unfortunately, as is the case with fair secure computation,
it is known that fair exchange in the standard model cannot be achieved [14, 22].
However, solutions for fair exchange were investigated and proposed in a vari-
ety of weaker models, most notably in the optimistic model mentioned below.
Typically such solutions require cryptosystems with some tailor-made proper-
ties, and employ tools of generic secure computation only sparingly (see [15, 40])
in part owing to the assumed inefficiency of secure computation protocols. Re-
cent years, however, have witnessed a tremendous momentum shift in practical
secure computation (see [36, 43] and references therein). Given the zeitgeist, it
may seem that solving the problem of fair exchange as a subcase of fair secure
computation is perhaps the right approach to take.2 Unfortunately as described
earlier, fair secure computation is impossible.

Workarounds. Indeed, several workarounds have been proposed in the liter-
ature to counter adversaries that may decide to abort possibly depending on
the outcome of the protocol. The most prominent lines of work include gradual
release mechanisms, optimistic models, and partially fair secure computation.
Gradual release mechanisms ensure that at any stage of the protocol, the adver-
sary has not learned much more about the output than honest parties. Optimistic
models allow parties to pay a subscription fee to a trusted server that can be
contacted to restore fairness whenever fairness is breached. Partially fair secure
computation provides a solution for secure computation where fairness may be
breached but only with some parameterizable (inverse polynomial) probability.
In all of the above solutions, one of two things hold: either (1) parties have to
run a secure computation protocol that could potentially be much more expen-
sive (especially in the number of rounds) than a standard secure computation
protocol, or (2) an external party must be trusted to not collude with the adver-

1 Fairness guarantees that if one party receives output then all parties receive output.
Guaranteed output delivery ensures that an adversary cannot prevent the honest
parties from computing the function.

2 A similar parallel may be drawn to the practicality of secure computation itself.
Special purpose protocols for secure computation were exclusively in vogue until
very recently. However, a number of recent works have shown that generic secure
computation can be much more practical [44, 35].
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sary. Further, when an adversary aborts, the honest parties have to expend extra
effort to restore fairness, e.g., the trusted server in the optimistic model needs
to contacted each time fairness is breached. In summary, in all these works, (1)
the honest party has to expend extra effort, and (2) the adversary essentially
gets away with cheating.3

Ideally, rather than asking an honest party to invest additional time and
money whenever fairness is (expected to be) breached by the adversary, one
would expect “fair” mechanisms to compensate an honest party in such situa-
tions. Indeed, this point-of-view was taken by several works [42, 41, 10]. These
works ensure that an honest party would be monetarily compensated whenever
a dishonest party aborts. In practice, such mechanisms would be effective if the
compensation amount is rightly defined. Note that in contrast to the optimistic
model, here the honest party is not guaranteed to get output, but still these
works provide a reasonable and practical notion of fairness. Perhaps the main
drawback of such works is their dependance on e-cash systems (which unfortu-
nately are not widely adopted yet) or central bank systems which need to be
completely trusted.

Bitcoin [47] is a peer-to-peer network that uses the power of cryptography to
emulate (among other things) a trusted bank. Its claim to fame is that it is the
first practical decentralized digital currency system (which also provides some
level of anonymity for its users). A wide variety of electronic transactions take
place on the Bitcoin network. As an illustrative example, consider the case of
(multiparty) lotteries which are typically conducted by gambling websites (e.g.,
SatoshiDice). Note that such a lottery requires the participants to trust the
gambling website to properly conduct the lottery which may be unreasonable in
some cases (and further necessitates paying a house edge). One might wonder
if secure computation would provide a natural solution for multiparty lotteries
over Bitcoin. Unfortunately, our understanding of Bitcoin is diminished by a lack
of abstraction of what the Bitcoin network provides. Consequently there exist
relatively very few works that provide any constructive uses of Bitcoin [21, 2, 6].

Our contributions. Conceptually, our work provides the missing piece that
simultaneously allows (1) designing protocols of fair secure computation that
rely on Bitcoin (and not a trusted central bank), and (2) designing protocols for
fair lottery on Bitcoin that use secure computation (and not a trusted gambling
website). Our model of fairness is essentially the same as in [2, 42, 41, 1] in that
we wish to monetarily penalize an adversary that aborts the protocol after learn-
ing the output. We distinguish ourselves from most prior work by providing a
formal treatment, namely specifying formal security models and definitions, and
proving security of our constructions. In addition, we extensively consider the
multiparty setting, and construct protocols that are both more efficient as well
as provably secure (in our new model). Our clear abstraction of the functionality
that we require from Bitcoin network enables us to not only design modular pro-
tocols, but also allow easy adaptations of our solutions to settings other than the

3 This is especially true in today’s world where cheap digital pseudonyms [23] are
available.



4 I. Bentov and R. Kumaresan

Bitcoin network (e.g., Litecoin, PayPal, or a central trusted bank).4 Our main
contributions include providing formal definitions and efficient realizations for:

Claim-or-refund functionality F?CR. A simple yet powerful two-party
primitive that accepts deposits from a “sender” and conditionally trans-
fers the deposit to a “receiver.” If the receiver defaults, then the deposit is
returned to the sender after a prespecified time. In the full version of our
paper [13], we describe a Bitcoin protocol for realizing this functionality that
requires parties to make only two transactions on the Bitcoin network. We
note that variants of F?CR have been constructed and used in [45, 7, 6].

Secure computation with penalties F?f . In a n-party setting, a protocol
for secure computation with penalties guarantees that if an adversary aborts
after learning the output but before delivering output to honest parties, then
each honest party is compensated by a prespecified amount. We show how
to construct such a protocol in the (FOT,F?CR)-hybrid model that requires
only O(n) rounds5 and O(n) calls to F?CR.

Secure lottery with penalties F?lot. In a multiparty setting, a protocol
for secure lottery with penalties guarantees that if an adversary aborts after
learning the outcome of the lottery but before revealing the outcome to
honest parties, then each honest party is compensated by a prespecified
amount equal to the lottery prize. We show how to construct such a protocol
in the (FOT,F?CR)-hybrid model that requires only O(n) rounds and O(n)
calls to F?CR.

Potential impact. We hope that our work will encourage researchers to under-
take similar attempts at formalizing other important properties of the Bitcoin
network, and perhaps even develop a fully rigorous framework for secure com-
putations that involve financial transactions. Also, we design our protocols in a
hybrid model, thus enabling us to take advantage of advances in practical secure
computation. One reason to do this was because we are somewhat optimistic that
our protocols will have a practical impact on the way electronic transactions are
conducted over the internet and the Bitcoin network.

Related work. Most related to our work are the works of Back and Bentov [6]
and Andrychowicz et al. [2, 1]. Indeed, our work is heavily inspired by [6, 2] who,
to the best of our knowledge, were the first to propose fair two-party (resp.
multiparty) lottery protocols over the Bitcoin network. We point out that the
n-party lottery protocols of [2] require quadratic number of transactions to be
made on the Bitcoin network. In contrast our protocols require only a linear
number of Bitcoin transactions. (See full version for a more detailed comparison
with [2].) In a followup work [1] that is concurrent to and independent of ours,
the authors of [2] propose solutions for fair two-party secure computation over
the Bitcoin network. In contrast, in this work, we propose formal security mod-
els for fair computations, and construct fair secure computation and lottery in

4 Indeed, we can readily adapt our constructions to obtain the first multiparty solu-
tions enjoying “legally enforceable” fairness [42].

5 Contrast this with the gradual release mechanism which require security parameter
number of rounds even when n = 2.
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the multiparty setting. As far as fair two-party secure computation is concerned,
although the goal of [1] and ours is the same, the means to achieve the goal are
significantly different. Specifically, the protocols of [2, 1] directly works by build-
ing particular Bitcoin transactions (i.e., with no formal definitions of relevant
functionalities). In the following, we provide a summary of other related works.

Fairness in standard secure computation. Fair two party coin tossing was
shown to be impossible in [22]. Completely fair secure computation for re-
stricted classes of functions was shown in [32, 3], while partially fair secure
computation for all functions were constructed in [34, 9]. Complete primi-
tives for fairness were extensively studied in [33].

Gradual release mechanisms. Starting from early works [8, 31], gradual re-
lease mechanism have been employed to solve the problem of fair exchange
in several settings [14, 24, 28]. A good survey of this area can be found in [49].
A formal treatment of gradual release mechanisms can also be found in [27].

Optimistic model. There has been a huge body of work starting from [5, 4,
11] that deals with optimistic models for fair exchange (e.g., [41, 46, 25]).
Optimistic models for secure computation was considered in [15]. [41] con-
sider a model similar to ours where receiving payment in the event of breach
of fairness is also considered fair.

Legally enforceable fairness. Chen, Kudla, and Paterson [20] designed proto-
cols for fair exchange of signatures in a model where signatures are validated
only in a court-of-law. Following this, Lindell [42] showed how to construct
legally enforceable fairness in the two party secure computation where par-
ties have access to a trusted bank (or a court of law).

2 Models and Definitions

Before we begin, we note that our formalization is heavily inspired by prior
formalizations in settings similar to ours [42, 27]. Let n denote the number of
parties and t (resp. h) denote the number of corrupted (resp. honest) parties.
We consider settings where t < n.6 In our setting we are interested in dealing
with non-standard commodities which we call “coins,” that cannot be directly
incorporated in standard definitions of secure computation.

Coins. In this paper, we define coins as atomic entities that are fungible and
cannot be duplicated. In particular, we assume coins have the following properties:
(1) the owner of a coin is simply the party that possesses it, and further it is
guaranteed that no other party can possess that coin simultaneously, and (2)
coins can be freely transferred from a sender to a receiver (i.e, the sender is no
longer the owner of the item while the receiver becomes the new owner of the
item), and further, the validity of a received coin can be immediately checked
and confirmed. Note we assume that each coin is perfectly indistinguishable from

6 Note that even when t < n/2, it is not clear how to design a “fair” lottery simply
because standard models do not deal with coins.
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one another. Further we assume that each party has its own wallet and safe.7

All its coins are distributed between its wallet and its safe.

Our definition of coin is intended to capture physical/cryptographic curren-
cies contained in (individual) physical/cryptographic wallets. As such the above
description of a coin does not capture digital cheques or financial contracts (i.e.,
those that need external parties such as banks or a court-of-law to validate
them). However, we chose this definition to keep things simple, and more tech-
nically speaking, such a formalization would enable us to consider concurrent
composition of protocols that deal with coins (in contrast with the formalization
in [42]).

Notation. We use coins(x) to denote an item whose value is described by x ∈ N.
Suppose a party possesses coins(x1) and receives coins(x2) from another party,
then we say it now possesses coins(x1 +x2). Suppose a party possesses coins(x1)
and sends coins(x2) to another party, then we say it now possesses coins(x1−x2).

Model. We will prove security of our protocols using the simulation paradigm.
To keep things simple:

Our protocols are designed in a hybrid model where parties have access to
two types of ideal functionalities which we describe below. In the relevant
hybrid model, our protocols will have straightline simulators, and thus we
can hope for achieving standalone as well as universally composable (UC)
security. We chose to provide UC-style definitions [17] of our ideal function-
alities.

The first type of ideal functionalities are standard ideal functionalities
used in secure computation literature These functionalities only provide
security with agreement on abort [29]. In particular, they do not provide
the notion of fairness that we are interested in.

The second type of ideal functionalities are special ideal functionalities
that deal with coins. These are the ideal functionalities that we will be
interested in realizing. Note that only special ideal functionalities deal
with coins.

Special ideal functionalities are denoted by F?xxx (i.e., with superscript ?) to
distinguish them notationally from standard ideal functionalities. We will
be interested in secure realization of these functionalities.

We work in the standard model of secure computation where parties are
assumed to be connected with pairwise secure channels over a synchronous
network (i.e., the computation proceeds in “rounds”). See [27, 38] on how to
make the relevant modifications about synchrony assumptions in the UC-
framework [17].

Our special ideal functionality F?CR that idealizes Bitcoin transactions, is
assumed to be aware of the round structure of the protocol. This choice is
inspired by similar assumptions about the “wrapped functionalities” consid-
ered in [27].

7 The distinction between wallet and safe will become clear in the description of the
ideal/real processes.
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On the choice of UC-style definitions. In practice, we expect parties to run va-
riety of electronic transactions concurrently. A natural requirement for proving
security would be to consider universally composable (UC) security which would
in turn also enable modular design of protocols. Perhaps, the main drawback
in considering UC security is the fact that to UC realize most (standard) func-
tionalities one typically needs to assume the existence of a trusted setup [18].
To avoid this, one may design concurrently secure protocols based only on pure
complexity-theoretic assumptions. Despite this, we chose to work in a UC-like
framework (which we describe below) because we believe it enables simpler and
cleaner abstraction and description of our ideal functionalities and our proto-
cols. Also we argue that the trusted setup in UC is typically a one-time setup
(as opposed to say the optimistic model where trusted help needs to be online).8

Further, the standalone variant of our protocols require no such setup.

Preliminaries. A function µ(·) is negligible in λ if for every positive polyno-
mial p(·) and all sufficiently large λ’s it holds that µ(λ) < 1/p(λ). A probability
ensemble X = {X(a, λ)}a∈{0,1}∗,n∈N is an infinite sequence of random vari-
ables indexed by a and λ ∈ N. Two distribution ensembles X = {X(a, λ)}λ∈N
and Y = {Y (a, λ)}λ∈N are said to be computationally indistinguishable, denoted

X
c≡ Y if for every non-uniform polynomial-time algorithm D there exists a

negligible function µ(·) such that for every a ∈ {0, 1}∗,

|Pr[D(X(a, λ)) = 1]− Pr[D(Y (a, λ)) = 1]| ≤ µ(λ).

All parties are assumed to run in time polynomial in the security parameter
λ. We follow standard definitions of secure computation [29]. Our main mod-
ification is now each party has its own wallet and safe, and further, the view
of Z contains the distribution of coins. We provide a succinct description of
our model, which we call “security computation with coins” (SCC), highlighting
the differences from standard secure computation. Before that we describe the
distinction between wallets and safes.

Wallets vs. safes. Recall that in standard models each party is modeled as an
interactive Turing machine. For our purposes, we need to augment the model by
providing each party with its own wallet and safe. We allow each party’s wallet
to be arbitrarily modified by the distinguisher Z (aka environment). However,
parties’ safes are out of Z’s control. This is meant to reflect honest behavior
in situations where the party has no coins left to participate in a protocol. We
require honest parties to simply not participate in such situations. In other words,
in order to participate in a protocol, an honest party first locks the required
number of coins (specified by the protocol) in its safe. During the course of a
protocol, the honest party may gain coins (e.g., by receiving a penalty), or may
lose coins (e.g., in a lottery). These gains and losses affect the content of the safes
and not the wallets. Finally, at the end of the protocol, the honest party releases
the coins associated with that protocol (including new gains) into the wallet.

8 Also note, in practice, one may obtain heuristic UC security in the programmable
random oracle model.
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Note on the other hand, we give the real/ideal adversary complete control over
a corrupt party’s wallet and safe.

Secure computation with coins (SCC security). We now describe the
ideal/real processes for SCC. The order of activations is the same as in UC, and
in particular, Z is activated first. In each activation of Z, in addition to choosing
(both honest and corrupt) parties’ inputs (as in standard UC), Z also initializes
each party’s wallet with some number of coins and may activate the hybrid (resp.
ideal) adversary A (resp. S). In every subsequent activation, Z may read and/or
modify (i.e., add coins to or retrieve coins from)9 the contents of the wallet (but
not the safe) of each honest party. Further, Z may also read each honest party’s
local output tapes, and may write information on its input tape. In the hybrid
(resp. ideal) process, the adversary A (resp. S) has complete access to all tapes,
wallets, and safes of a corrupt party. Note that, as in UC, the environment Z
will be an interactive distinguisher.

Let idealf,S,Z(λ, z) denote the output of environment Z initialized with
input z after interacting in the ideal process with ideal process adversary S and
(standard or special) ideal functionality Gf on security parameter λ. Recall that
our protocols will be run in a hybrid model where parties will have access to
a (standard or special) ideal functionality Gg. We denote the output of Z after
interacting in an execution of π in such a model with A by hybridgπ,A,Z(λ, z),
where z denotes Z’s input. We are now ready to define what it means for a
protocol to SCC realize a functionality.

Definition 1. Let n ∈ N. Let π be a probabilistic polynomial-time n-party pro-
tocol and let Gf be a probabilistic polynomial-time n-party (standard or special)
ideal functionality. We say that π SCC realizes Gf with abort in the Gg-hybrid
model (where Gg is a standard or a special ideal functionality) if for every non-
uniform probabilistic polynomial-time adversary A attacking π there exists a
non-uniform probabilistic polynomial-time adversary S for the ideal model such
that for every non-uniform probabilistic polynomial-time adversary Z,

{idealf,S,Z(λ, z)}λ∈N,z∈{0,1}∗
c≡ {hybridgπ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

♦

We have not proven a composition theorem for our definition (although we
believe our model should in principle allow composition analogous to the UC
composition theorem [17]). For the results in this paper, we only need to assume
that the Bitcoin protocol realizing F?CR is concurrently composable. Other than
this, we require only standard sequential composition [16]. We stress that our
protocols enjoy straightline simulation (both in the way coins and cryptographic
primitives are handled), and thus they may be adaptable to a concurrent setting.
Finally, we note that we consider only static corruptions.

Next, we define the security notion we wish to realize for fair secure computation
and for fair lottery.

9 I.e., we implicitly give Z the power to create new coins.
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Definition 2. Let π be a protocol and f be a multiparty functionality. We say
that π securely computes f with penalties if π SCC realizes the functionality F?f
according to Definition 1.

Definition 3. Let π be a protocol. We say that π is a secure lottery with penalties
if π SCC realizes the functionality F?lot according to Definition 1.

2.1 Special ideal functionalities

Ideal functionality F?CR. This is our main special ideal functionality and will
serve as a building block for securely realizing more complex special functional-
ities. (See Figure 1 for a formal description.) At a very basic level, F?CR allows
a sender Ps to conditionally send coins(x) to a receiver Pr. The condition is for-
malized as the revelation of a satisfying assignment (i.e., witness) for a sender-
specified circuit φs,r (i.e., relation). Further, there is a “time” bound, formalized
as a round number τ , within which Pr has to act in order to claim the coins. An
important property that we wish to stress is that the satisfying witness is made
public by F?CR.

The importance of the above functionality is a highly efficient realization via
Bitcoin that requires only two transactions to be made on the network. See full
version [13] for more details. In the Bitcoin realizations of the ideal functionali-
ties, sending a message with coins(x) corresponds to broadcasting a transaction
to the Bitcoin network, and waiting according to some time parameter until
there is enough confidence that the transaction will not be reversed.

F?CR with session identifier sid, running with parties P1, . . . , Pn, a parameter 1λ,
and an ideal adversary S proceeds as follows:

– Deposit phase. Upon receiving the tuple (deposit, sid, ssid, s, r, φs,r, τ, coins(x))
from Ps, record the message (deposit, sid, ssid, s, r, φs,r, τ, x) and send it to all
parties. Ignore any future deposit messages with the same ssid from Ps to Pr.

– Claim phase. In round τ , upon receiving (claim, sid, ssid, s, r, φs,r, τ, x, w) from
Pr, check if (1) a tuple (deposit, sid, ssid, s, r, φs,r, τ, x) was recorded, and (2)
if φs,r(w) = 1. If both checks pass, send (claim, sid, ssid, s, r, φs,r, τ, x, w) to all
parties, send (claim, sid, ssid, s, r, φs,r, τ, coins(x)) to Pr, and delete the record
(deposit, sid, ssid, s, r, φs,r, τ, x).

– Refund phase: In round τ + 1, if the record (deposit, sid, ssid, s, r, φs,r, τ, x)
was not deleted, then send (refund, sid, ssid, s, r, φs,r, τ, coins(x)) to Ps, and
delete the record (deposit, sid, ssid, s, r, φs,r, τ, x).

Fig. 1. The special ideal functionality F?CR.

Secure computation with penalties. Loosely speaking, our notion of fair
secure computation guarantees:
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F?f with session identifier sid running with parties P1, . . . , Pn, a parameter 1λ,
and an ideal adversary S that corrupts parties {Ps}s∈C proceeds as follows: Let
H = [n] \ C and h = |H|. Let d be a parameter representing the safety deposit,
and let q denote the penalty amount.

– Input phase: Wait to receive a message (input, sid, ssid, r, yr, coins(d)) from
Pr for all r ∈ H. Then wait to receive a message (input, sid, ssid, {ys}s∈C ,
H ′, coins(h′q)) from S where h′ = |H ′|.

– Output phase:

Send (return, sid, ssid, coins(d)) to each Pr for r ∈ H.

Compute (z1, . . . , zn)← f(y1, . . . , yn).

If h′ = 0, then send message (output, sid, ssid, zr) to Pr for r ∈ [n],
and terminate.

If 0 < h′ < h, then send (extra, sid, ssid, coins(q)) to Pr for each
r ∈ H ′, and terminate.

If h′ = h, then send message (output, sid, ssid, {zs}s∈C) to S.

If S returns (continue, sid, ssid,H ′′), then send (output, sid, ssid, zr) to Pr
for all r ∈ H, and send (payback, sid, ssid, coins((h − h′′)q)) to S where
h′′ = |H ′′|, and send (extrapay, sid, ssid, coins(q)) to Pr for each r ∈ H ′′.
Else if S returns (abort, sid, ssid), send (penalty, sid, ssid, coins(q)) to Pr
for all r ∈ H.

Fig. 2. The special ideal functionality F?f for secure computation with penalties.

An honest party never has to pay any penalty.

If a party aborts after learning the output and does not deliver output to
honest parties, then every honest party is compensated.

These guarantees are exactly captured in our description of the ideal function-
ality F?f for secure computation with penalties in Figure 2. We elaborate more
on the definition of the ideal functionality F?f below.

Ideal functionality F?f . In the first phase, the functionality F?f receives inputs
for f from all parties. In addition, F?f allows the ideal world adverary S to deposit
some coins which may be used to compensate honest parties if S aborts after
receiving the outputs. Note that an honest party makes a fixed deposit coins(d)
in the input phase.10,11 Then, in the output phase, F?f returns the deposit made
by honest parties back to them. If insufficient number of coins are deposited,
then S does not obtain the output, yet may potentially pay penalty to some
subset H ′ of the honest parties. If S deposited sufficient number of coins, then

10 Ideally, we wouldn’t want an honest party to deposit any coins, but we impose this
requirement for technical reasons.

11 To keep the definitions simple (here and in the following), we omitted details involv-
ing obvious checks that will be performed to ensure parties provide correct inputs
to the ideal functionality, including (1) checks that the provided coins are valid, and
(2) deposit amounts are consistent across all parties. If checks fail, then the ideal
functionality simply informs all parties and terminates the session.
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it gets a chance to look at the output and then decide to continue delivering
output to all parties (and further pay an additional “penalty” to some subset
H ′′), or just abort, in which case all honest parties are compensated using the
penalty deposited by S.

F?lot with session identifier sid running with parties P1, . . . , Pn, a parameter 1λ,
and an ideal adversary S that corrupts parties {Ps}s∈C proceeds as follows: Let
H = [n]\C and h = |H| and t = |C|. Let d be a parameter representing the safety
deposit, and let q be the value of the lottery prize (note: q is also the penalty
amount). We assume d ≥ q/n.

– Input phase: Wait to receive a message (input, sid, ssid, r, coins(d)) from Pr
for all r ∈ H. Then wait to receive a message (input, sid, ssid, {ys}s∈C ,
H ′, coins(h′q + (tq/n))) from S where h′ = |H ′|.

– Output phase: Choose r∗ ←R {1, . . . , n}.
If h′ = 0, then send message (output, sid, ssid, r∗) to Pr for r ∈ [n],
and message (return, sid, ssid, coins(d − q/n)) to each Pr for r ∈ H. and
message (prize, sid, ssid, coins(q)) to Pr∗ , and terminate.

If 0 < h′ < h, then send (extra, sid, ssid, coins(q)) to Pr for each r ∈ H ′,
and message (return, sid, ssid, coins(d)) to each Pr for r ∈ H, and send
(sendback, sid, ssid, coins(tq/n)) to S, and terminate.

If h′ = h, then send message (output, sid, ssid, r∗) to S.

If S returns (continue, sid, ssid, H̃ ′, H ′′), then send message (output, sid,
ssid, r∗) to Pr for r ∈ [n], and message (return, sid, ssid, coins(d − q/n))
to each Pr for r ∈ H, and message (prize, sid, ssid, coins(q)) to Pr∗ , and

message (extrapay1, sid, ssid, coins(q)) to Pr for r ∈ H̃ ′, and message
(extrapay2, sid, ssid, coins(q/n)) to Pr for r ∈ H ′′, and message (payback,

sid, ssid, coins((h− h̃′)q − h′′q/n)) to S where h̃′ = |H̃ ′| and h′′ = |H ′′|,
and terminate.

Else if S returns (abort, sid, ssid), send messages
(return, sid, ssid, coins(d)) and (penalty, sid, ssid, coins(q)) to Pr for
all r ∈ H, and messages (sendback, sid, ssid, coins(tq/n)) to S, and
terminate.

Fig. 3. The ideal functionality F?lot for secure lottery with penalties.

Secure lottery with penalties. Loosely speaking, our notion of fair lottery
guarantees the following:

An honest party never has to pay any penalty.

The lottery winner has to be chosen uniformly at random.

If a party aborts after learning whether or not it won the lottery without
disclosing this information to honest parties, then every honest party is
compensated.
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These guarantees are exactly captured in our description of the ideal functional-
ity F?lot for secure lottery with penalties in Figure 3. We elaborate more on the
definition of the ideal functionality F?lot below.

Ideal functionality F?lot. The high level idea behind the design of F?lot is the
same as that for F?f . The main distinction is that now the functionality has to
ensure that the lottery is conducted properly, in the sense that all parties pay
their fair share of the lottery prize (i.e., coins(q/n)). Thus we require that each
honest party makes a fixed lottery deposit coins(d) with d ≥ q/n. Then, in the
second phase, as was the case with F?f , the ideal functionality F?lot allows S
to learn the outcome of the lottery only if it made a sufficient penalty deposit
(i.e., coins(hq+ (tq/n))). As before, if S decides to abort, then all honest parties
are compensated using the penalty deposited by S in addition to getting their
lottery deposits back. (I.e., effectively, every honest party wins the lottery!)

Remarks. At first glance, it may appear that the sets H ′, H ′′ (resp. H ′, H̃ ′, H ′′)
in the definition of F?f (resp. F?lot) are somewhat unnatural. We stress that we re-
quire specification of these sets in the ideal functionalities in order to ensure that
we can prove that our protocols securely realize these functionalities. We also
stress that it is plausible that a different security definition (cf. Definitions 2, 3)
or a different protocol construction may satisfy more “natural” formulations of
F?f and F?lot. We leave this for future work.

3 Secure Multiparty Computation with Penalties

We design protocols for secure computation with penalties in a hybrid model
with (1) a standard ideal functionality realizing an augmented version of the
unfair underlying function we are interested in computing, and (2) the special
ideal functionality F?CR that will enable us to provide fairness. In the following,
we assume, without loss of generality, that f delivers the same output to all
parties. For a function f , the corresponding augmented function f̂ performs
secret sharing of the output of f using a variant of non-malleable secret sharing
scheme that is both publicly verifiable and publicly reconstructible (in short,
pubNMSS). Secure computation with penalties is then achieved via carrying out
“fair reconstruction” for the pubNMSS scheme.12

First, we provide a high level description of the semantics of the pubNMSS
scheme. The Share algorithm takes as input a secret u, and generates “tag-token”
pairs {(Tagi,Tokeni)}i∈[n]. Finally it outputs to each party Pi the i-th token
Tokeni and AllTags = (Tag1, . . . ,Tagn). Loosely speaking, the properties that we

12 Our strategy is similar to the use of non-malleable secret sharing in [33] to construct
complete primitives for fair secure computation in the standard model. In addition
to working in a different model, the main difference is that here we explicitly require
public verification and public reconstruction for the non-malleable secret sharing
scheme. This requirement is in part motivated by the final Bitcoin realizations where
validity of the shares need to be publicly verifiable (e.g., by miners) in order to
successfully complete the transactions.
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require from pubNMSS are (1) an adversary corrupting t < n parties does not
learn any information about the secret unless all shares held by honest parties
are disclosed (i.e., in particular, AllTags does not reveal any further information),
and (2) for any j ∈ [n], the adversary cannot reveal Token′j 6= Tokenj such that

(Tagj ,Token
′
j) is a valid tag-token pair. Since Share is evaluated inside a secure

protocol, we are guaranteed honest generation of tags and tokens. Given this, a
natural candidate for a pubNMSS scheme can be obtained via commitments that
are binding for honest sender (exactly as in [26]) and are equivocal. Instantiat-
ing a variant of the Naor commitment scheme [48] as done in [26], we obtain a
construction of a pubNMSS scheme using only one-way functions. (See full ver-
sion [13] for more details.) We do not attempt to provide a formal definition of
pubNMSS schemes. Rather, our approach here is to sketch a specific construction
which essentially satisfies all our requirements outlined above. Given a secret u,
we generate tag-token pairs in the following way:

Perform an n-out-of-n secret sharing of u to obtain u1, . . . , un.

To generate the i-th “tag-token” pair, apply the sender algorithm for a
honest-binding commitment using randomness ωi to secret share ui to obtain
comi, and set Tagi = comi and Tokeni = (ui, ωi).

The reconstruction algorithm Rec takes as inputs (AllTags′, {Token′i}i∈[n]) and
proceeds in the natural way. First, it checks if (Tag′i,Token

′
i = (u′i, ω

′
i)) is a valid

tag-token pair (i.e., if Token′i is a valid decommitment for Tag′i) for every i ∈ [n].
Next, if the check passes, then it outputs u′ = ⊕`∈[n]u′`, else it outputs ⊥.

Next we show how to perform “fair reconstruction” for this scheme.

3.1 Fair Reconstruction

Loosely speaking, our notion of fair reconstruction guarantees the following:

An honest party never has to pay any penalty.

If the adversary reconstructs the secret, but an honest party cannot, then
the honest party is compensated.

In this section, we show how to design a protocol for fair reconstruction in the
F?CR-hybrid model. For lack of space, we refer to the full version for intuition,
detailed description, and a proof of security of our protocol.

Notation. As discussed before, we assume that the secret has been shared using
pubNMSS, i.e., each party Pi now has AllTags and its own token Tokeni. Once
a party learns all the tokens, then it can reconstruct the secret. On the other
hand, even if one token is not revealed, then the secret is hidden. We use Ti as
shorthand to denote Tokeni. A sender Ps may use (a set of) tags to specify a
F?CR transaction with the guarantee that (except with negligible probability) its
deposit can be claimed by a receiver Pr only if it produces the corresponding (set
of) tokens. (More precisely, this is captured via the relation φs,r specified by Ps).

In the following, we use P1
T−−−−→
q,τ

P2 to represent a F?CR deposit transaction

made by P1 with coins(q) which can be claimed by P2 in round τ only if it
produces token T , and if P2 does not claim the transaction, then P1 gets coins(q)
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refunded back after round τ . We use τ1, . . . , τn to denote round numbers. In order
to keep the presentation simple and easy to follow, we avoid specifying the exact
round numbers, and instead only specify constraints, e.g., τ1 < τ2.

Multiparty fair reconstruction via the “ladder” construction. We will
ask parties to make deposits in two phases. In the first phase, parties P1, . . . , Pn
simultaneously make a deposit of coins(q) to recipient Pn that can be claimed
only if tokens T1, . . . , Tn are produced by Pn. We call these deposits roof deposits.
Then, in the second phase, each Ps+1 makes a deposit of coins(s · q) to recipient
Ps that can be claimed only if tokens T1, . . . , Ts are produced by Ps. These
deposits are called the ladder deposits. We also force Ps+1 to make its ladder
deposit only if for all r > s + 1, party Pr already made its ladder deposit. We
present a pictorial description of the deposit phase of the n-party protocol in
Figure 4.

Roof Deposits.

P1
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

P2
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

...

Pn−2
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

Pn−1
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

Ladder Deposits.

Pn
T1∧···∧Tn−1−−−−−−−−−−−−−−−−−−−−→
(n−1)q,τn−1

Pn−1

Pn−1
T1∧···∧Tn−2−−−−−−−−−−−−−−−−−−−−→
(n−2)q,τn−2

Pn−2

...

P3
T1∧T2−−−−−−−−−−−−−−−−→
2q,τ2

P2

P2
T1−−−−−−−−−−−−−→
q,τ1

P1

Fig. 4. Roof and Ladder deposit phases for fair reconstruction.

We deal with aborts in the deposit phase in the following way. If a corrupt
party does not make the roof deposit it is supposed to make, then all parties get
their roof deposits refunded following which they terminate the protocol. On the
other hand, if a corrupt party Pr fails to make the ladder deposit it is supposed
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to make, then for all s < r, party Ps does not make its ladder deposit at all,
while for all s > r, party Ps continues to wait until a designated round to see
whether its ladder deposit is claimed (and in particular, does not terminate the
protocol immediately).

The deposits are then claimed in the reverse direction. Note that the to-
kens required to claim the i-th ladder deposit consist of tokens possessed by the
recipient of the i-th ladder deposit plus the tokens required to claim the (i+ 1)-
th ladder deposit (for i + 1 < n). Therefore, if the (i + 1)-th ladder deposit is
claimed, then the i-th ladder deposit can always be claimed. In particular, the
above holds even if for some j > i+1, (1) the j-th ladder deposit was not claimed
by a possibly corrupt party, or (2) the j-th ladder deposit was not even made
(which indeed is the reason why we require parties that have made their ladder
deposit to wait even if a subsequent ladder deposit was not made). Further, it
can be verified that if all parties behave honestly, then across all roof and ladder
deposits, the amount deposited equals the amount claimed. See full version for a
formal description of the protocol in the F?CR-hybrid model. Since FOT, the ideal
functionality for oblivious transfer, is sufficient [37, 39] to compute any standard
ideal functionality we have the following theorem:

Theorem 1. Assuming the existence of one-way functions, for every n-party
functionality f there exists a protocol that securely computes f with penalties in
the (FOT,F?CR)-hybrid model. Further, the protocol requires O(n) rounds, a total
of O(n) calls to F?CR, and each party deposits O(n) times the penalty amount.

Somewhat surprisingly, minor modifications to the above protocol leads us
to a construction for secure lotteries with penalties.

4 Secure Lottery with Penalties

Recall that our notion of fair lottery guarantees the following:

An honest party never has to pay any penalty.

The lottery winner has to be chosen uniformly at random.

If a party aborts after learning whether or not it won the lottery without
disclosing this information to honest parties, then every honest party is
compensated.

For a formal specification of the ideal functionality see Figure 3. Our protocol
proceeds in a similar way to our protocol for secure computation with penalties.
Specifically, the parties first engage in a standard secure computation protocol
that computes the identity of the lottery winner (i.e., by uniformly selecting an
integer from [n]), and secret shares this result using pubNMSS (scheme described
in Section 3). Now parties need to reconstruct this secret in a fair manner. Note
that a malicious party may abort upon learning the outcome of the lottery (say,
on learning that it did not win). This is where the fair reconstruction helps,
in the sense that parties that did not learn the outcome of the protocol (i.e.,
the identity of the lottery winner) now receive a penalty payment equal to the
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lottery prize. However, this alone is not sufficient. One needs to ensure that the
lottery winner actually receives the lottery prize too.

Fortunately, by making a minor modification to the “ladder” protocol, we
are able to ensure that the lottery winner receives its lottery prize when the
reconstruction is completed. Specifically, our modifed ladder protocol now has 3
phases: ridge, roof, and ladder phases. The ladder phase is identical to the ladder
phase in the fair reconstruction protocol. We now describe at a high level how
this modification works.

First recall that if parties follow the protocol, then at the end of the ladder
claims, Pn has lost (n − 1)q coins and every other party has gained q coins
(assuming it can get its roof deposits refunded). That is, effectively party Pn
has “paid” (n− 1)q coins to learn the outcome of the lottery. Now suppose our
roof deposit phase was made w.r.t relations φjrf by party Pj such that it pays q
coins to Pn only if Pj did not win the lottery.13 Then, at the end of this phase,
it is guaranteed that the lottery winner Pj , if j 6= n, has won q coins, and (only)
Pn has completely paid for the lottery prize. Further even when j = n (i.e., Pn
won the lottery) then at the end of the roof deposit phase, party Pn has only
“evened out” and in particular has not won the lottery prize. Effectively, Pn has
paid the lottery prize to the lottery winner.

Of course, such a situation is highly unsatisfactory. We remedy the situation
by introducing “ridge” deposits made by each party Pj except Pn where Pj
promises to pay its lottery share q/n to Pn as long as Pn reveals all the tokens.
This simple fix allows us to prove the following theorem:

Theorem 2. Assuming the existence of one-way functions, there exists a n-
party protocol for secure lottery with penalties in the (FOT,F?CR)-hybrid model.
Further, the protocol requires O(n) rounds, a total of O(n) calls to F?CR, and
each party is required to deposit O(n) times the penalty amount.
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