
Amortizing Garbled Circuits

Yan Huang1, Jonathan Katz1, Vladimir Kolesnikov2, Ranjit Kumaresan3, and
Alex J. Malozemoff1

1 University of Maryland
{yhuang,jkatz,amaloz}@cs.umd.edu

2 Bell Labs
kolesnikov@research.bell-labs.com

3 Technion
ranjit@cs.technion.ac.il

Abstract. We consider secure two-party computation in a multiple-
execution setting, where two parties wish to securely evaluate the same
circuit multiple times. We design efficient garbled-circuit-based two-party
protocols secure against malicious adversaries. Recent works by Lindell
(Crypto 2013) and Huang-Katz-Evans (Crypto 2013) have obtained opti-
mal complexity for cut-and-choose performed over garbled circuits in the
single execution setting. We show that it is possible to obtain much lower
amortized overhead for cut-and-choose in the multiple-execution setting.

Our efficiency improvements result from a novel way to combine a recent
technique of Lindell (Crypto 2013) with LEGO-based cut-and-choose
techniques (TCC 2009, Eurocrypt 2013). In concrete terms, for 40-bit
statistical security we obtain a 2× improvement (per execution) in com-
munication and computation for as few as 7 executions, and require only
8 garbled circuits (i.e., a 5× improvement) per execution for as low as
3500 executions. Our results suggest the exciting possibility that secure
two-party computation in the malicious setting can be less than an order
of magnitude more expensive than in the semi-honest setting.

1 Introduction

Two-party secure computation (2PC) is a rapidly developing area of cryptography.
While the basic approach for semi-honest security, garbled circuits (GC) [27], is
extensively studied and is largely settled, security against malicious players has
seen recent significant improvements. The classical technique for lifting the GC
approach to work in the malicious setting is cut-and-choose (C&C), formalized and
proven secure by Lindell and Pinkas [15]. Until recently, this approach required
significant overhead: to guarantee probability of cheating < 2−s, approximately
3s garbled circuits needed to be generated and sent. However, in Crypto 2013
two works reduced the number of garbled circuits required in cut-and-choose to
s+O(log s) [9] and to s [14].

Our contribution. We further significantly reduce the replication factor for
C&C-based protocols in the multiple execution setting, where the same function

(possibly with different inputs) is evaluated multiple times either in parallel or
sequentially. To achieve this, we combine in a novel way the “fast C&C” technique
of Lindell [14] with the “LEGO C&C” technique [6, 22].

Our setting and motivation. We consider the multiple execution setting,
where two parties compute the same function on possibly different inputs either
in parallel or sequentially. Here we argue that multiple evaluations of the same
function is indeed a natural and frequently-occurring important scenario.

Today, 2PC is only beginning to enter practical deployment. However, we can
reasonably speculate on likely future use cases. In the commercial setting, 2PC is
natural in both business-to-business and business-to-customer interactions. For
example, a bank customer could perform financial transactions (e.g., payments or
transfers), a cell phone customer could perform private location-based queries, two
businesses or government agencies might query their joint databases of customers,
etc. In all of these scenarios, many of the securely evaluated functions are the
same, only differing on their inputs. In fact, we conjecture that single-execution
functions may be less likely to be used in commercial settings. This is because,
as a rule-of-thumb of security, externally-accessible interfaces need to be clean
and standardized. Allowing a small number of predetermined customer actions
allows for more manageable overall security.

Additionally, many complex protocols from the research literature include
multiple executions of the same function evaluated on different inputs. For
example, Gordon et al. [8] propose sublinear 2PC based on oblivious RAM
(ORAM). In their protocol, each ORAM step is executed by evaluating the same
function using 2PC. Another frequently used subroutine is oblivious PRF, used,
e.g., in the previously mentioned sublinear 2PC work [8] as well as in private
database searches [4, 12]. A recent such work [23] traverses the database search
tree by evaluating the same match function at each tree node. Finally, any two
universal circuits (of the same size) are implementing the same function.

1.1 Preliminaries

Let s denote the statistical security parameter; namely, an adversary can succeed
in cheating with probability up to 2−s. Let n denote the computational security
parameter. We let t denote the total number of times the parties wish to evaluate
a given circuit, and let ρ = ρ(s, t) represent the number of circuits, per evaluation,
that need to be generated to achieve an error probability of 2−s. Before discussing
our specific technical contribution, we recall the main ideas of our building blocks.

Fast cut-and-choose using cheating punishment [14]. Cut-and-choose
(C&C) protocols for GCs work by letting circuit constructor P1 generate and
send a number of GCs to the evaluator P2, who then chooses a subset of circuits
to open and check for correctness. If the checks pass, the remaining circuits are
evaluated as in Yao’s protocol [27], and the final output is obtained by taking
majority over the individual outputs. In concrete terms, prior works [15, 25] re-
quired at least 125 circuits to be sent by P1 to guarantee security 2−40. Lindell’s

improved technique [14] achieves 2−s security while requiring P1 to send only s
circuits (i.e., 40 circuits for 2−40 security).

Lindell’s protocol (which we call the “fast C&C” protocol) has two phases. In
the first phase, P1 with input x and P2 with input y run a modified C&C which
ensures that P2 obtains a proof of cheating φ if it receives two inconsistent output
values in any two evaluation circuits. Now, if all evaluation circuits produce the
same output z, P2 locally stores z as its output. Both parties always continue
to the second cheating-punishment phase. In it, P1 and P2 securely evaluate a
smaller circuit C ′, which takes as inputs P1’s input x and P2’s proof φ. (P2 inputs
random values if he does not have φ.) P1 proves in zero-knowledge the consistency
of its input x between the two phases. C ′ outputs x to P2 if φ is a valid proof of
cheating; otherwise P2 receives nothing. The efficiency improvement is due to
the fact that cheating is punished if there is any inconsistency in outputs.

LEGO cut-and-choose [6, 22]. These works take a different approach by
implementing a two-stage C&C at the gate level. The evaluation circuit is
then constructed from the unopened garbled gates. In the first stage, P1 sends
multiple garbled gates and P2 performs a standard C&C with replication factor
ρ(s) = O(s/ log |C|). P2 aborts if any opened gate is garbled incorrectly. In the
next stage, P2 partitions the ρ(s)|C| garbled gates into buckets such that each
bucket contains O(ρ(s)) garbled gates. This two-stage C&C ensures that, except
with probability 2−s, each bucket contains a majority of correctly constructed
garbled gates.

To connect gates with one another, Nielsen and Orlandi [22] use homomorphic
Pedersen commitments. The resulting computational efficiency is relatively poor
as they perform several expensive public-key operations per gate. This is addressed
in the miniLEGO work [6], where the authors (among other things) construct
homomorphic commitments from oblivious transfer (OT), whose cost can be
amortized by OT extension [10]. However, the overall efficiency of this construction
is still lacking in concrete terms due to large constants inside the big-O notation.
In particular, the communication efficiency is adversely affected by the use of
asymptotically constant-rate codes that are concretely inefficient.

1.2 Overview of Our Approach

Our main idea for the multiple execution setting is to run two-stage LEGO C&C
at the circuit level, and then use fast C&C in the second stage (thereby requiring
only a single correctly constructed circuit from each bucket). In particular, now
the size of C ′ used in each execution depends only on the input and output
lengths of C, and is no longer proportional to |C|. In this section, we focus only
on the cut-and-choose aspect of the protocol; namely, on preventing P1’s cheating
by submitting incorrect garbled circuits. More detailed protocol descriptions for
both the parallel and sequential settings can be found in Section 2 and Section 3.

In the first-stage cut-and-choose, P1 constructs and sends to P2 a total of ρt
GCs. Next, P2 requests that P1 open a random ρt/2-sized subset of the garbled
circuits. If P2 discovers that any opened garbled circuit is incorrectly constructed,

of Executions Replication Replication for Fast C&C
parallel/sequential parallel sequential

2 32 40 41
4 24 40 42
7 20 40 42
20 16 40 44
100 12 40 46
3500 8 40 51

Table 1. The number of garbled circuits required per execution in order to guarantee
a security loss of < 2−40. For comparison, the last two columns show the number of
circuits required by the fast C&C protocol [14] in the parallel and sequential settings.
Note that when using the fast C&C protocol for sequential executions we need to
increase the replication factor from s to s+ log t.

it aborts. Otherwise, P2 proceeds to the second stage cut-and-choose, where it
randomly assigns unopened circuits to t buckets such that each bucket contains
ρ/2 circuits. Now, as in the fast C&C protocol [14], each of the t evaluations
are executed in two phases. In the first phase of the kth execution, party P2

evaluates the ρ/2 evaluation circuits contained in the kth bucket. The circuits are
designed such that if P2 obtains different outputs from evaluating circuits in the
kth bucket, then it obtains a proof of cheating φk. Next, both parties continue
to the cheating-punishment phase, where P1 and P2 securely evaluate a smaller
circuit that outputs P1’s input xk if P2 provides a valid proof φk.

Clearly, P1 succeeds in cheating only if (1) it constructed m ≥ ρ/2 bad circuits,
(2) none of these m bad circuits were caught in the first cut-and-choose stage
(i.e., m ≤ ρt/2), and (3) in the second stage, there exists a bucket that contains
all bad circuits. It is easy to see that the probability with which m bad circuits
escape detection in the first stage cut-and-choose is

(
ρt−m
ρt/2

)
/
(
ρt
ρt/2

)
. Conditioned

on this event happening, the probability that a particular bucket contains all
bad circuits is

(
m
ρ/2

)
/
(
ρt/2
ρ/2

)
. Applying the union bound, we conclude that the

probability that P1 succeeds in cheating is bounded by

t

(
ρt−m
ρt/2

)(
m

ρ/2

)/(
ρt

ρt/2

)(
ρt/2

ρ/2

)
.

For any given t and s, the smallest ρ, hinging on the maximal probability of P1’s
successful attack, can be determined by enumerating over all possible values of
m (i.e., {ρ/2, ρ/2 + 1, . . . , ρt/2}).

As an example, for t = 20 in a parallel execution setting with s = 40, using
our protocol the circuit generator needs to construct 16 · t = 320 garbled circuits,
whereas using a näıve application of Lindell’s protocol [14] requires 40 · t = 800
garbled circuits.

Parallel vs. sequential executions. As will be evident, it is important to
distinguish between the settings where multiple evaluations are carried out in

parallel (e.g., when all inputs are available at the start of the protocol) and
where these evaluations are carried out sequentially (e.g., when not all inputs are
available as they, for example, depend on the outputs of previous executions).
Below, we provide an overview of the main challenges of each setting, and an
outline of our solutions.

Parallel executions. Under the DDH assumption, we apply our C&C technique in
the parallel execution setting by modifying Lindell’s protocol [14] as follows. We
construct a generalized cut-and-choose oblivious transfer (C&C OT) functional-
ity that supports multi-stage cut-and-choose. We call this functionality Fmcot.
Asymptotically, we can realize Fmcot using general secure computation, since
the circuit for Fmcot depends only on the length of P2’s input and is otherwise
independent of the circuit. However, such a realization is extremely inefficient
in practice (the size of the circuit for realizing Fmcot needs to accept inputs of
length at least nρt`, where n is the computational security parameter and ` is
the input length). Instead, we show an efficient realization that is only a factor
ρt2/s less efficient (per execution) than the modified C&C OT realization of
Lindell [14]. We elaborate more on this, and other important details, in Section 2.

Sequential executions. To prevent a malicious evaluator from choosing its inputs
based on the garbled circuit, GC-based 2PC protocols perform OT before the
constructor sends its GCs to the evaluator (i.e., before the cut-and-choose phase).
This forces the parties, and in particular the evaluator, to “commit” to their
inputs before performing the cut-and-choose. This, however, does not work in
the sequential setting, where the parties may not know all their inputs at the
beginning of the protocol. Standard solutions used in previous works [1, 7, 20]
include assuming the garbled-circuit construction is adaptively secure or using
adaptively-secure garbling [3] explicitly, assuming the programmable random-
oracle model. Another issue is that since now we perform OTs for each execution
separately, we can no longer use C&C OT or its variants; instead we rely on the
“XOR-tree” approach of Lindell and Pinkas [15] to avoid selective failure attacks.
We elaborate more on this, and other details, in Section 3.

Our solution for the sequential setting readily carries over to the parallel
setting. In particular, adapting our protocol from the sequential to the parallel
setting may address situations where the cost incurred by the use of Fmcot

outweighs the cost of using both the XOR-tree approach and adaptively secure
garbled circuits.

1.3 Related Work

Lindell and Pinkas [15] gave the first4 rigorous 2PC protocol based on cut-and-
choose. For s = 40, their protocol required at least 17s = 680 garbled circuits.
Subsequent work by the same authors [16] reduced the number of circuits to 128.
This was later improved by shelat and Shen [25] to 125 using a more precise
analysis of the C&C approach. In Crypto 2013, two works [9, 14] proposed (among

4 C&C mechanisms were previously employed in works by Pinkas [24] and Malkhi et
al. [18] but these approaches were later shown to be flawed [13, 19].

other things) dramatic improvements to the number of garbled circuits that need
to be sent. In more detail, for achieving statistical security 2−s, Huang et al.’s
protocol [9] requires 2s + O(log s) circuits, where each party generates half of
them, and Lindell’s protocol [14] requires exactly s circuits.

While all of the above works perform cut-and-choose over circuits, applying
cut-and-choose at the gate-level has also been considered [5, 6, 21, 22]. As discussed
above, this approach naturally extends to the multiple execution setting, and
furthermore is not inherently limited to considering settings where the same
function is evaluated multiple times. Nielsen et al. [21] indeed show concrete
efficiency improvements using gate-level cut-and-choose techniques. However, the
number of rounds grows linearly with the depth of the evaluated circuit.

Finally, in independent and concurrent work, Lindell and Riva [17] also
investigate the multiple execution setting, and obtain performance improvements
similar to ours. An interesting difference between our works is that while we
always let the evaluator pick half the circuits to check, they show that varying the
number of check circuits can lead to an additional performance improvement.

2 The Parallel Execution Setting

Consider a setting where two parties wish to securely evaluate the same function
multiple times in parallel. Let f denote the function of interest, and let t denote
the number of times the parties wish to evaluate f . Let P1’s (resp., P2’s) input in
the kth execution be xk (resp., yk), and let x = (x1, . . . , xt) and y = (y1, . . . , yt).
We define f (t)(x, y) = (f(x1, y1), . . . , f(xt, yt)).

We adapt Lindell’s protocol [14] to support our cut-and-choose technique in
the parallel execution setting. The main difficulty is the design and construction
of a generalization of cut-and-choose oblivious transfer [16] which we use to avoid
the “selective failure attack” where a malicious P1 constructs invalid keys for
P2’s input wires to try and deduce P2’s inputs based on if P2 aborts execution
or not. We discuss this more in Section 2.1. We note that the näıve idea of using
the XOR-tree approach [15] in our setting does not appear to work without
using adaptively secure garbled circuits. Specifically, it is no longer clear how P1,
without any knowledge of which circuits will end up as evaluation circuits, can
batch P2’s input keys together in a way that lets P2 learn different sets of input
keys corresponding to different evaluation circuits and yet within each evaluation
bucket guaranteeing that P2 can learn only input keys corresponding to the same
set of inputs.

We give details of our protocol construction for the parallel executions setting
in Section 2.2.

2.1 Generalizing Cut-and-Choose Oblivious Transfer

Cut-and-choose oblivious transfer (C&C OT) [16] is an extension of standard
one-out-of-two oblivious transfer (OT). The sender inputs L pairs of strings,
and the receiver inputs L selection bits to select one string out of each pair of

Inputs:

– P1 inputs ` vectors xi, each containing s pairs of values xi,j0 , xi,j1 ∈ {0, 1}n×n,
i ∈ [`], j ∈ [s]. In addition, P1 inputs s “check values” χ1, . . . , χs ∈ ({0, 1}n)s.

– P2 inputs σ1, . . . , σ` ∈ {0, 1} and a set of indices J ⊆ [s].

Outputs: P1 receives no output. P2 receives the following:

– For every i ∈ [`] and j ∈ J , P2 receives (xi,j0 , xi,j1).
– For every i ∈ [`], P2 receives 〈xi,1σi , . . . , x

i,s
σi 〉.

– For every k 6∈ J , P2 receives χk.

In other words, P2 receives {χj}j∈[s]\J and {{xi,jσi }j∈[s]\J , {(x
i,j
0 , xi,j1)}j∈J}i∈[`].

Fig. 1. Modified batch single-choice cut-and-choose OT functionality Fccot [14].

sender strings. The receiver also inputs a set J of size L/2 that consists of indices
where it wants both the sender’s inputs to be revealed. Note that for indices
not contained in J , only those sender inputs that correspond to the receiver’s
selection bits are revealed. In applications to secure computation, and in particular
when transferring input keys corresponding to a particular input wire across
all evaluation circuits, one needs single-choice cut-and-choose oblivious transfer,
where the receiver is restricted to inputting the same selection bit in all the L/2
instances where it receives exactly one out of two sender strings. Furthermore,
when transferring input keys for multiple input wires, it is crucial that the
subset J input by the receiver is the same across each instance of single-choice
C&C OT executed for all input wires. This variant, called batch single-choice
C&C OT, can be realized from the decisional Diffie-Hellman problem [16].

Lindell [14] presented a variant of batch single-choice C&C OT [16] in order to
address settings where the check set J input by the receiver may be of arbitrary
size. We denote this variant by Fccot; see Figure 1 for the formal description.
In this variant, in addition to obtaining one of the two sender inputs for pairs
whose indices are not in J , the receiver also obtains a “check value” for each
index not in J . These check values are used to confirm whether or not a circuit
is an evaluation circuit.

For our purposes, we introduce a new variant of Fccot, which we call batch
single-choice multi-stage C&C OT. We denote this primitive by Fmcot and present
its formal description in Figure 2. At a high level, our variant differs from Fccot in
that receiver P2 can now input multiple sets J1, . . . , Jt (where J is now implicitly
defined as [ρt] \ ∪k∈[t]Jk) and make independent selections for each of J1, . . . , Jt.
Unlike in Lindell’s scheme [14], we only need to consider sets J1, . . . , Jt whose
sizes are pre-specified in order to provide the desired security guarantees. However,
as in the Fccot functionality, Fmcot (1) does not require sets J1, . . . , Jt to be of
a particular size, and (2) delivers “check values” for indices contained in each
of J1, . . . , Jt. These check values are used to confirm whether a circuit is an
evaluation circuit in the kth bucket for some k ∈ [t].

Inputs:

– P1 inputs ` vectors xi, each containing ρt2 pairs xi,j0 , xi,j1 ∈ {0, 1}n. In addition,
P1 inputs ρt2 “check values” χ1

1, . . . , χ
1
ρt; . . . ;χ

t
1, . . . , χ

t
ρt ∈ {0, 1}n.

– P2 inputs σ1 = (σ1,1, . . . , σ1,`), . . . ,σt = (σt,1, . . . , σt,`) ∈ {0, 1}` and sets
J1, . . . , Jt that are pairwise non-intersecting subsets of [ρt].

Outputs: Party P1 receives no output. Party P2 receives the following:

– For every k ∈ [t] and for every j ∈ Jk, party P2 receives χkj .
– Let J = [ρt] \ ∪k∈[t]Jk. For every i ∈ [`] and j ∈ [ρt]:

• If j ∈ J , then P2 receives (xi,j0 , xi,j1).
• Otherwise, if there exists a (unique) k ∈ [t] such that j ∈ Jk, then P2

receives xi,jσk,i .

In other words, P2 receives sets {χ1
j}j∈J1 , . . . , {χtj}j∈Jt and {{xi,jσ1,i}j∈J1 , . . . ,

{xi,jσt,i}j∈Jt , {(x
i,j
0 , xi,j1)}j∈J}i∈[`].

Fig. 2. Batch single-choice multi-stage cut-and-choose OT functionality Fmcot.

Designing the Fmcot functionality. As in Fccot, the sender P1 inputs ` vectors
x1, . . . ,x` each of length ρt, where each element in the vector is a pair of values
(corresponding to the 0-key and the 1-key of a given garbled wire). In addition, P1

inputs ρt2 “check values”. Receiver P2 inputs t vectors σ1, . . . ,σt each of length
` and pairwise non-intersecting sets J1, . . . , Jt. Upon receiving these inputs from
P1 and P2, the functionality computes J = [ρt] \ ∪k∈[t]Ik, and delivers, for each
j ∈ J , the jth element (i.e., both values in the jth pair) in each of the ` vectors.
Next, for every k ∈ [t] and for each j ∈ Jk, the functionality delivers to P2 the
σk,i value in the jth pair of vector xi for every i ∈ [`] along with the check value
χkj .

Realizing Fmcot in the Fccot-hybrid model. We now proceed to construct a
protocol for Fmcot. Our goal is to provide an information-theoretic reduction
from Fmcot to Fccot. We first consider a näıve approach which serves as a warm-up
to our final construction and provides intuition behind our definition of Fmcot.

The näıve approach. We propose the following natural approach to realizing
Fmcot from Fccot: P1 first performs a t-out-of-t additive secret sharing of all
input keys corresponding to P2’s inputs. In addition, P1 chooses ρt2 check values.
Next, P1 and P2 interact with the Fccot functionality t times in parallel. In the
kth interaction, P1 provides the kth additive share of its input plus ρt check
values χk1 , . . . , χ

k
ρt (i.e., a check value for each circuit that could potentially be

an evaluation circuit in the kth execution), while P2 provides its inputs for the
kth execution along with a set [ρt] \ Jk, where Jk indicates the indices of the
evaluation circuits to be used in the kth execution. Let J = [ρt] \ ∪k∈[t]Jk. At
the end of the interaction, P2 obtains (1) all t additive shares of input keys,
and therefore all input keys, for circuits GCj with j ∈ J , and (2) all t additive

shares of input keys that correspond to its actual input in the kth execution, and
therefore its input keys, along with check values for circuits GCj with j 6∈ J .

Note, in particular, that for the check circuits, P2 does not obtain the check
values, and for the evaluation circuits, P2 does not obtain both input keys. Thus,
the above protocol seems to successfully fulfill our requirements from the Fmcot

functionality. However, note that there is no mechanism in place to enforce that
P2 supplies non-intersecting sets J1, . . . , Jk. In the following we show that this
prevents the above protocol from realizing Fmcot.

Suppose t = 2. A malicious P2 may input overlapping sets J1, J2 to Fccot.
The consequence of this is that P2 now possesses check values χ1

j and χ2
j for

j ∈ J1 ∩ J2. Clearly, the functionality Fmcot does not allow this. On the other
hand, recall that the input keys are all additively shared, and as a result P2

does not possess input keys corresponding to its input in circuit GCj unless
its input in both executions are identical. At the surface, there does not seem
to be any attack due to this malicious strategy. Sure, P2 can now equivocate
on assigning GCj to either the first evaluation bucket or the second evaluation.
However, as observed earlier, it either has no corresponding keys, or it is going to
evaluate both circuits on the same input, say y (in which case it seems immaterial
whether j is revealed as part of J1 or J2). Unfortunately, we show that the above
strategy for malicious P2 is not simulatable. In particular, at the end of the
interaction with Fccot, the simulator successfully extracts P2’s input in the first
and second execution, but is now unable to decide on how to fake the garbled
circuit GCj . On the one hand, if j ∈ J1, then the fake garbled circuit has to
output z1 = f(x1, y). On the other hand, if j ∈ J2, then the fake garbled circuit
has to output z2 = f(x2, y). Therefore, the simulator has to choose on how to
fake GCj in the dark. Note that a simulation strategy for this specific case that
decides to fake GCj to output z1 with probability 1/2, and to output z2 with
probability 1/2, does indeed succeed with probability 1/2. However, this strategy
does not extend well to the case when t is large.

The discussion above motivates our definition of Fmcot; in particular, it
reinforces why Fmcot must deliver at most one check value per circuit. In the
following, we explain how to modify the näıve construction to enforce this.

Our approach. The high level idea behind our protocol is to let P1 perform
independent additive sharings of both the input values as well as the check values.
Then P1 and P2 query the Fccot functionality t times to transfer the values as
required by Fmcot. We detail this below, explaining it in the context of our secure
computation protocol.

Let (xi,j0 , xi,j1) be the input keys corresponding to P2’s ith input wire in
GCj . First, P1 performs a t-out-of-t additive secret sharing of all input values

corresponding to P2’s inputs; i.e., for each i ∈ [`], j ∈ [ρt], P1 secret shares xi,j0
(resp., xi,j1) into {xi,j,k0 }k∈[t] (resp., {xi,j,k1 }k∈[t]). P1 then chooses ρt2 check values

{χk1 , . . . , χkρt}k∈[t]. It then performs a (2`(t−1)+1)-out-of-(2`(t−1)+1) additive

sharing of each value χkj to obtain shares denoted χ̃kj , {χi,j,k
′

0,k , χi,j,k
′

1,k }k′∈[t]\{k},i∈[`].
Then, instead of creating inputs to Fccot using xi,j,kc shares alone, P1 instead

creates a “share block” Xi,j,k
c = (xi,j,kc , χi,j,kc,1 , . . . , χi,j,kc,t). That is, a share block

Xi,j,k
c contains, in addition to a share of the input key, a share of all check values

corresponding to circuit GCj .
Next, P1 and P2 run t instances of Fccot in parallel. In the kth interaction,

in addition to the ρt check value shares χ̃k1 , . . . , χ̃
k
ρt, P1 provides its kth share

block while P2 provides its inputs for the kth execution along with a set [ρt] \ Jk,
where Jk indicates the indices of the evaluation circuits to be used in the kth
execution. Let J = [ρt] \ ∪k∈[t]Jk. At the end of the interaction, P2 obtains (1)
all t share blocks of input keys, and therefore all input keys, for circuits GCj
with j ∈ J , and (2) all t share blocks of input keys that correspond to its actual
input in the kth execution, and therefore its input keys, along with a check value
χ̃kj for circuits GCj with j ∈ Jk.

Note, in particular, that for each check circuit GCj , P2 does not obtain the
check value χkj for any k, because it always misses the check value share χ̃kj . For
each evaluation circuit GCj with j ∈ Jk, P2 does not obtain both input keys,
and more importantly can obtain at most one check value (which is χkj). This is
because share blocks contain shares of input keys as well as shares of check values.
For an evaluation circuit, party P2 always misses a share block, and consequently
shares of all values χk

′

j with k′ 6= k. Furthermore, if P2 wants to ensure it receives

χkj , then it should never input Jk′′ such that k′′ 6= k and yet j ∈ Jk′′ . This is
because for j ∈ Jk′′ , P2 is guaranteed to miss a share block that contains an
additive share of χkj . Note that the above observations suffice to deal with a
malicious P2 that inputs overlapping sets since in this case P2 fails to obtain any
check values corresponding to indices in the intersection.

The formal description of the protocol in the Fccot-hybrid model can be found
in Figure 3. We prove the following in the full version.

Theorem 1. There exists a protocol perfectly realizing Fmcot in the Fccot-hybrid
model.

2.2 Using Fmcot in the Parallel Execution Setting

The input vectors xi, for i ∈ [`], contain the key pairs associated with the ith input
wire for P2 in each of the ρt circuits. The vector σk corresponds to the inputs
used by P2 in the kth execution. An honest P2 chooses sets J1, . . . , Jt such that
they are pairwise non-intersecting and each set is of size exactly ρ/2. The main
observation is that, for a given execution k ∈ [t], P2 obtains check values χkj from
Fmcot only for j ∈ Jk. Therefore, once the parties complete the interaction with
Fmcot and P1 sends all the garbled circuits, we let P1 determine the evaluation
circuits in each bucket based on whether P2 sends the corresponding check values.
At this point, P1 checks that each bucket of evaluation circuits is well-defined
and that these buckets are of equal size, i.e., ρ/2. If not, P1 aborts. To overcome
technical difficulties, we also require P2 to provide “check values” for the check
circuits as well. A check value for check circuit GCj , denoted χj , may simply be
the set of all input keys (i.e., both the 0-key and the 1-key) on all wires in circuit
GCj .

Inputs:

– P1 inputs ` vectors of pairs xi = 〈(xi,10 , xi,11), . . . , (xi,ρt0 , xi,ρt1)〉 for i ∈ [`].
In addition, P1 inputs ρt2 “check values” (χ1

1, . . . , χ
1
ρt), . . . , (χ

t
1, . . . , χ

t
ρt). All

values are in {0, 1}n.
– P2 inputs σ1 = (σ1,1, . . . , σ1,`), . . . ,σt = (σt,1, . . . , σt,`) ∈ {0, 1}` and sets
J1, . . . , Jt.

Protocol:

– For all i ∈ [`], P1 performs a t-out-of-t additive secret sharing of xi to obtain
shares xi,1, . . . ,xi,t. For k ∈ [t], let xi,k = 〈(xi,1,k0 , xi,1,k1), . . . , (xi,ρt,k0 , xi,ρt,k1)〉.
Let Xi,j,k

0 = (xi,j,k0 , χi,j,k0,1 , . . . , χi,j,k0,t) and Xi,j,k
1 = (xi,j,k1 , χi,j,k1,1 , . . . , χi,j,k1,t),

where χi,j,k0,1 , . . . , χi,j,k0,t and χi,j,k1,1 , . . . , χi,j,k1,t are random independent values in

{0, 1}n. Let Xi,k = 〈(Xi,1,k
0 , Xi,1,k

1), . . . , (Xi,ρt,k
0 , Xi,ρt,k

1)〉.
– For all k ∈ [t] and j ∈ [ρt], set χ̃kj = χkj ⊕

⊕
k′∈[t]\{k},i∈[`](χ

i,j,k′

0,k ⊕ χi,j,k
′

1,k).
– P1 and P2 run t instances of Fccot in parallel as follows. In the kth instance:
• P1 inputs ` vectors of pairs Xi,k of length ρt for i ∈ [`] and ρt “check

values” χ̃k1 , . . . , χ̃
k
ρt. P2 inputs σk,1, . . . , σk,` ∈ {0, 1} and the set [ρt] \ Jk.

• P2 receives {χ̃kj }j∈Jk and {{Xi,j,k
σk,i }j∈Jk ∪ {(X

i,j,k
0 , Xi,j,k

1)}j∈[ρt]\Jk}i∈[`].
– For all k ∈ [t] and j ∈ Jk, P2 reconstructs χkj = χ̃kj ⊕

⊕
k′∈[t]\{k},i∈[`](χ

i,j,k′

0,k

⊕ χi,j,k
′

1,k).
– Let J = [ρt] \ ∪k∈[t]Jk. For all i ∈ [`] and j ∈ [ρt], P2 does the following:

• If j ∈ J : set xi,j0 =
⊕

k∈[t] x
i,j,k
0 , and xi,j1 =

⊕
k∈[t] x

i,j,k
1 .

• If there exists (unique) k ∈ [t] such that j ∈ Jk: set xi,jσk,i =
⊕

k∈[t] x
i,j,k
σk,i .

– P2 outputs sets {χ1
j}j∈J1 , . . . , {χtj}j∈Jt and {{(xi,j0 , xi,j1)}j∈J , {xi,jσ1,i}j∈J1 , . . . ,

{xi,jσt,i}j∈Jt}i∈[`].

Fig. 3. Realizing Fmcot in the Fccot-hybrid model.

Applying the cheating-punishment technique. Inspired by Lindell’s proto-
col [14], we use the knowledge of two different garbled values for a single output
wire as a “proof” that P2 received inconsistent outputs in a given execution. P2

can use this proof to obtain P1’s input in a cheating-punishment phase. This
cheating-punishment phase is implemented via a secure computation protocol,
and thus it is important that the second phase functionality has a small circuit.
We employ several optimizations proposed by Lindell [14] to keep the size of this
circuit small. One important difference in our setting is that, unlike in Lindell’s
protocol [14], we cannot have, for a given output wire w, the same output keys
b0w, b

1
w across all garbled circuits. This is because in our setting garbled circuits

are assigned to different evaluation buckets, and the circuits in each bucket can
be evaluated with different input values, and thus can produce different outputs.
Thus (even an honest) P2 could potentially learn, say, output key b0w in one
execution and output key b1w in another. We address this by simply removing

the requirement that the set of output keys across different garbled circuits
are the same. Thus, the circuit for the cheating-punishment phase for the kth
execution must now take as input from P1 all of the output keys in all of the
evaluation circuits in the kth bucket, and from P2 a pair of output keys that
serve as proof of cheating. Somewhat surprisingly, we show that the size of the
circuit (measured as the number of non-XOR gates) for the cheating-punishment
phase is essentially the same as the circuit in Lindell’s protocol [14].5

Another detail we wish to point out is that in our protocol we need to run
separate cheating-punishment phases for each execution. This is a restriction
imposed by the way in which P1 proves consistency of its inputs [14, 16]. However,
we can run all of the t cheating-punishment phases in parallel. For this reason
we use the universally composable variant of Lindell and Pinkas’s protocol [16]
(which is essentially obtained by replacing oblivious transfers and zero-knowledge
subprotocols with their universally composable variants) to implement each
cheating-punishment phase.

Other details. We now describe other important details of our protocol.

– Input consistency across multiple executions. It is important to guarantee
that P1 provides consistent inputs across all circuits in the kth execution.
Fortunately, existing mechanisms [14, 16] for ensuring input consistency in
the single execution setting can be readily extended to the multiple execution
setting as well.

– Encoded translation tables for garbled circuits. As in Lindell’s protocol [14],
we modify the output translation tables used in the garbled circuits. Specif-
ically, for keys k0i , k

1
i on output wire i, we create an encoded output table

[h(k0i), h(k1i)], where h is some one-way function. We require that the out-
put keys (or more precisely, the output of h applied to the output keys)
corresponding to 0 and 1 are distinct. This encoding gives us the following
two properties: (1) P2 after evaluating a garbled circuit can use the encoded
translation tables to determine whether the output is 0 or 1, and (2) the
encoded translation table does not reveal the other output key (since this is
equivalent to inverting the one-way function) to P2.

– Optimizing the cheating-punishment circuit. We can apply similar techniques
as shown by Lindell [14] to optimize the size of the cheating-punishment
circuit to contain only ` non-XOR gates. We leave the details to the full
version.

Formal description. We proceed to the formal description of our protocol.

Inputs: P1 has input x = (x1, . . . , xt), where xk ∈ {0, 1}`, and P2 has input
y = (y1, . . . , yt), where yk ∈ {0, 1}`.

5 Of course, the cost of realizing our cheating-punishment phase is more than the
corresponding cost in Lindell’s protocol [14], mainly due to P1’s input being larger
(but only by a factor of ρ/2).

Auxiliary Inputs: A statistical security parameter s, a computational security
parameter n, the description of a circuit C where C(x, y) = f(x, y), the number
of evaluations t of the function f , and (G, q, g) where G is a cyclic group with
generator g and prime order q, where q is of length n. Let Ext : G → {0, 1}n
be a function mapping group elements to bitstrings. In the following, ρ = ρ(s, t)
is the replication factor defined as being the smallest u ∈ N such that for all
m ∈ {u/2, . . . , ut/2} it holds that t ·

(
ut−m
ut/2

)(
m
u/2

)
/
(
ut
ut/2

)(
ut/2
u/2

)
≤ 2−s. If no such u

exists or if ρ ≥ s, then parties abort this protocol, and instead run the fast C&C
protocol [14] for the function f (t).

Outputs: P2 receives f (t)(x, y) and P1 receives no output. Let `′ denote the length
of the output of f(x, y).

Protocol:

1. Input key choice and circuit preparation:
– P1 chooses random values a01, a

1
1, . . . , a

0
` , a

1
` ∈R Zq, r1, . . . , rρt ∈R Zq

and (b01,1, b
1
1,1, . . . , b

0
1,`′ , b

1
1,`′), . . . , (b

0
ρt,1, b

1
ρt,1, . . . , b

0
ρt,`′ , b

1
ρt,`′) ∈R {0, 1}n`

′

such that for every c1, c2 ∈ {0, 1}, j1, j2 ∈ [ρt], i1, i2 ∈ [`′] it holds that
bc1j1,i1 = bc2j2,i2 iff i1 = i2 and j1 = j2 and c1 = c2.

– Let w1, . . . , w` denote the input wires corresponding to P1’s input, let wi,j
denote the ith input wire in the jth garbled circuit, and let kbi,j denote
the key associated with bit b on wire wi,j . P1 sets kbi,j as follows:

k0i,j = Ext(ga
0
i ·rj) and k1i,j = Ext(ga

1
i ·rj).

– Let w′1, . . . , w
′
`′ denote the output wires. The keys for wire w′i in the jth

garbled circuit are set to b0j,i and b1j,i.
– P1 constructs ρt independent garblings, GC1, . . . , GCρt, of circuit C, using

random keys except for wires w1, . . . , w` and w′1, . . . , w
′
m, where the keys

are set as above.
2. Oblivious transfers: P1 and P2 run Fmcot as follows:

– For i ∈ [`], let zi denote a vector containing the ρt pairs of keys associated
with P2’s ith input bit in all the garbled circuits. P1 inputs z1, . . . , z`, as
well as random values χ1

1, . . . , χ
1
ρt; . . . ;χ

t
1, . . . , χ

t
ρt.

– P2 inputs random sets J1, . . . , Jt which are pairwise non-intersecting
subsets of [ρt] such that for all k ∈ [t] it holds that |Jk| = ρ/2. Let
J = [ρt]\∪k∈[t]Jk. P2 also inputs bits (σ1,1, . . . , σ1,`), . . . , (σt,1, . . . , σt,`) ∈
{0, 1}`, where σk,i = yk,i for every i ∈ [`] and k ∈ [t].

– For j ∈ J , P2 receives both input keys associated with its input wires in
garbled circuit GCj , and for each k ∈ [t] and j ∈ Jk, P2 receives the keys
associated with its input yk on its input wires in garbled circuit GCj . Also,
for every k ∈ [t] and j ∈ Jk, P2 receives χkj .

3. Send circuits and commitments: P1 sends P2 the garbled circuits
GC1, . . . , GCρt, the “seed” for the randomness extractor Ext, the following
commitment to the garbled values associated with P1’s input wires:

{(i, 0, ga
0
i), (i, 1, ga

1
i)}i∈[`] and {(j, grj)}ρtj=1

and the encoded output translation tables:

{[(h(b0j,1), h(b1j,1)), . . . , (h(b0j,`′), h(b1j,`′))]}j∈[ρt].

If h(b0j,i) = h(b1j,i) for any 1 ≤ i ≤ `′, 1 ≤ j ≤ ρt, then P2 aborts.

4. Send cut-and-choose challenge: P2 sends P1 the sets J, J1, . . . , Jt along
with values {χ1

j}j∈J1 , . . . , {χtj}j∈Jt , and all the keys associated with its input
wires in all circuits GCj for j ∈ J . If the values received by P1 are (1) incorrect,
or (2) the sets J1, . . . , Jt are not pairwise non-intersecting, or (3) the input
keys associated with P2’s input wires in circuits GCj are revealed incorrectly,
or (4) there exists some k ∈ [t] such that |Jk| 6= ρ/2, then it outputs ⊥ and
aborts. Circuits GCj for j ∈ J are called check circuits and circuits GCj for
j ∈ Jk are called evaluation circuits in the kth bucket.

5. Send garbled input values in the evaluation circuits: For each k ∈ [t]:
P1 sends the input keys associated with input xk for the evaluation circuits
in the kth bucket: For each j ∈ Jk and every wire i ∈ [`], P1 sends the value

k′i,j = ga
xk,i
i ·rj and P2 sets ki,j = Ext(k′i,j).

6. Circuit evaluation: For each k ∈ [t], P2 does the following:
– For each j ∈ Jk and every wire i ∈ [`′], P2 computes b′j,i by evaluating GCj .

If P2 receives exactly one valid output value per output wire, then let zk
denote this output. In this case, it chooses random values bk0 , b

k
1 ∈R {0, 1}n.

If P2 receives two valid outputs on any output wire then it sets bk0 = b′j1,i
and bk1 = b′j2,i, where j1, j2 ∈ Jk denote the conflicting circuit indices. If
P2 receives no valid output values on any output wire, then P2 aborts.

7. Run secure computation to detect cheating: For each k ∈ [t], P1 and
P2 do the following in parallel :
P1 defines a circuit with the values {b0j,1, b1j,1, . . . , b0j,`′ , b1j,`′}j∈Jk hardcoded.
The circuit computes the following function:
– P1 inputs xk ∈ {0, 1}` and has no output.
– P2 inputs a pair of values bk0 , b

k
1 .

– If there exists values i ∈ [`′] and j1, j2 ∈ Jk such that bk0 = b0j1,i and
bk1 = b1j2,i, then P2’s output is xk; otherwise it receives no output.

P1 and P2 run the UC-secure protocol of Lindell and Pinkas [16] on this circuit
(except for the proof of P1’s input values), as follows:
– P1 inputs xk; P2 inputs bk0 and bk1 as computed in Step 6.
– The garbled circuits constructed by P1 use the same a0i , a

1
i values as were

chosen in Step 1, and the parties use 3(s+ log t) copies of the circuit for
the cut-and-choose.

If this computation results in an abort, then both parties halt.
8. Check circuits for computing f (t)(x, y):

– For j ∈ J , P1 sends rj to P2, and P2 checks that these values are consistent
with the pairs {(j, grj)}j∈J received in Step 3. If not, P2 aborts.

– For every j ∈ J , P2 uses the ga
0
i , ga

1
i values received in Step 3 and

the rj values received above to compute the keys for P1’s input wires as

k0i,j = Ext(ga
0
i ·rj), k1i,j = Ext(ga

1
i ·rj). In addition, P2 uses the keys obtained

from Fmcot in Step 2 for its own input wires. P2 verifies that GCj is a
correct garbling of C. If there exists a circuit for which this does not hold,
then P2 aborts.

9. Verify consistency of P1’s input: For each k ∈ [t]: Let Ĵk be the set of
check circuits used in the 2PC computation in Step 7 for the kth bucket, let
r̂j,k be the value used in that computation, and let k̂i,j be the analogous value
of k′i,j in Step 5 received by P2 in the computation in Step 7. For each k ∈ [t],
P1 and P2 do the following in parallel :

– For every input wire i ∈ [`′], P1 proves a zero-knowledge proof-of-knowledge
that there exist some σk,i ∈ {0, 1} such that for every j ∈ Jk and every

j′ 6∈ Ĵk, it holds that k′i,j = ga
σk,i
i ·rj and k̂i,j = ga

σk,i
i ·r̂j′,k . If any of the t

proofs fail, then P2 aborts.
10. Output evaluation: For each k ∈ [t], P2 does the following:

– If P2 received no inconsistent outputs in Step 6, then it uses the encoded
translation tables to decode the outputs it received, and sets zk to that
value. If P2 received inconsistent output, then let xk be the output that
P2 received from the circuit in Step 7. Let zk = f(xk, yk) be the output in
this case.

P2 outputs z = (z1, . . . , zt) and terminates.

We prove the following theorem in the full version.

Theorem 2. Let s (resp., n) be the statistical (resp., computational) security
parameter. If the decisional Diffie-Hellman assumption holds in (G, g, q), h is a
one-way function, and the underlying circuit garbling procedure is secure, then
for all t = poly(n), the protocol described above securely computes f (t) in the
presence of a malicious adversary with error at most 2−s+µ(n) for some negligible
function µ(·).

3 The Sequential Execution Setting

We now consider the setting where the parties securely evaluate the same function
f multiple times sequentially. Let t denote the number of times the parties wish
to evaluate f . Let P1’s (resp., P2’s) input in the kth execution be denoted by xk
(resp., yk). Let f [t] denote the reactive functionality that computes f a total of t
times sequentially.

The main difference between this setting and the parallel setting discussed in
Section 2 is that in the sequential setting the parties may not know their inputs
to all executions at the start of the protocol. In particular, inputs may depend on
outputs from previous executions. Thus, the parallel execution protocol does not
immediately carry over to the sequential setting. To see why, observe for instance
that Fmcot requires P2 to submit all of its inputs at once6. This is not possible
since in the sequential setting we cannot assume that P2 has all its inputs at the
beginning of the protocol. Instead, we take a different route; namely, we use the
“XOR-tree” approach [15, 26] to protect against the so-called “selective failure
attack” [13, 19, 25]. (In the parallel execution setting, this attack was implicitly
avoided due to the use of Fmcot.) In this approach, the circuit C to be evaluated
is first modified into an equivalent circuit CXT (to include an “XOR-tree” for

6 Standard oblivious transfer precomputation/“correction” techniques [2] still apply to
Fmcot as well; however, it is not clear how to “correct” Fmcot correlations in a way
suitable for the sequential setting.

P2’s inputs). Then, P1 sends commitments to input keys corresponding to P2’s
input wires in CXT. The corresponding decommitments are revealed to P2 via
a standard one-out-of-two oblivious transfer. In order to prevent P2 from using
different inputs across evaluation circuits within the same bucket, P1 batches
together the decommitments corresponding to a particular input wire across all
evaluation circuits in a given bucket. Note that herein lies an opportunity for a
malicious P1 to force P2 to abort the protocol depending on its input. (This can
be done for instance by sending incorrect decommitments for say only the 0-key
on a particular wire.) However, the modified circuit CXT is such that the success
of any such selective OT attack is statistically independent of P2’s actual input
value. Therefore, if an honest P2 receives an invalid decommitment and is unable
to decrypt the evaluation circuit, then it simply aborts knowing that its privacy
is not compromised. Finally, we note that since we use one-out-of-two oblivious
transfer (as opposed to Fmcot), we can leverage oblivious transfer extension
techniques [10, 11, 21] to obtain better efficiency.

We stress that the oblivious transfer step happens after P1 sends all the
GCs to P2. This is because P2’s inputs to all t executions are not available at
the beginning of the protocol. Further, P2’s inputs may depend on previous
outputs, which can be obtained only by decrypting evaluation circuits, i.e., after
the evaluation bucket for the current execution is fully determined. Note that our
cut-and-choose technique guarantees that there is at least one good evaluation
circuit in every bucket under the assumption that P1 has already committed to
all its (good and bad) garbled circuits before the check sets and the evaluation
sets are determined. Unfortunately, the above ordering of the oblivious transfer
step and the garbled circuit sending step now allows a malicious P2 to choose
its input as a function of the garbled circuits it receives. To counter this, we
need to use adaptively secure garbling schemes [3] instead of standard garbled
circuits; adaptively secure garbling schemes can be constructed efficiently in the
programmable random oracle model [3]. Note that we do not need the use of
adaptively secure garbling schemes for implementing the cheating-punishment
phase. Indeed, all the inputs for that subprotocol are known before the phase
begins, and therefore, the oblivious transfer step can be carried out before P1

sends its garbled circuits for that phase.

Due to lack of space, we leave both the formal description and the proof of
the following theorem to the full version.

Theorem 3. Let s (resp., n) be the statistical (resp., computational) security
parameter. If the decisional Diffie-Hellman assumption holds in (G, g, q), h is a
one-way function, and the circuit is garbled using an adaptively secure garbling
scheme, then for all polynomial values of t, the protocol described above securely
computes f [t] in the presence of a malicious adversary with error at most 2−s+µ(n)
for some negligible function µ(·).

Acknowledgments

Work of Yan Huang and Jonathan Katz supported in part by NSF
award #1111599. Work of Vladimir Kolesnikov supported in part by the Intelli-
gence Advanced Research Project Activity (IARPA) via Department of Interior
National Business Center (DoI/NBC) contract Number D11PC20194. Work of
Ranjit Kumaresan supported by funding from the European Community’s Sev-
enth Framework Programme (FP7/2007–2013) under grant agreement number
259426. Work of Alex J. Malozemoff conducted with Government support through
the National Defense Science and Engineering Graduate (NDSEG) Fellowship,
32 CFG 168a, awarded by DoD, Air Force Office of Scientific Research. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. Disclaimer: The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with
constant online rate or how to compress garbled circuits keys. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 166–184. Springer (Aug
2013)

2. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO’95.
LNCS, vol. 963, pp. 97–109. Springer (Aug 1995)

3. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer (Dec 2012)

4. Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–
373. Springer (Aug 2013)

5. Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest majority: From
passive to active security at low cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 558–576. Springer (Aug 2010)

6. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Mini-
LEGO: Efficient secure two-party computation from general assumptions. In: Jo-
hansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–556.
Springer (May 2013)

7. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer (Aug 2010)

8. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: Yu, T., Danezis,
G., Gligor, V.D. (eds.) ACM CCS 12. pp. 513–524. ACM Press (Oct 2012)

9. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using
symmetric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part
II. LNCS, vol. 8043, pp. 18–35. Springer (Aug 2013)

10. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer (Aug
2003)

11. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer (Aug 2008)

12. Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., Steiner, M.: Outsourced symmet-
ric private information retrieval. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 13. pp. 875–888. ACM Press (Nov 2013)

13. Kiraz, M., Schoenmakers, B.: A protocol issue for the malicious case of Yao’s
garbled-circuit construction. In: 27th Symposium on Information Theory in the
Benelux. pp. 283–290 (Jun 2006)

14. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
1–17. Springer (Aug 2013)

15. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer (May 2007)

16. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer (Mar
2011)

17. Lindell, Y., Riva, B.: Cut-and-choose secure computation in the online/offline and
batch settings. In: Garay, J., Gennaro, R. (eds.) CRYPTO 2014. LNCS, Springer,
Santa Barbara, CA, USA (2014)

18. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party compu-
tation system. In: Blaze, M. (ed.) 13th USENIX Security Symposium. USENIX
Association (Aug 2004)

19. Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party computation.
In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 458–473. Springer (Apr 2006)

20. Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: More efficient and
secure two-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 36–53. Springer (Aug 2013)

21. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer (Aug 2012)

22. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer (Mar 2009)

23. Pappas, V., Vo, B., Krell, F., Choi, S.G., Kolesnikov, V., Bellovin, S., Keromytis,
A., Malkin, T.: Blind seer: A scalable private DBMS. In: 2014 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press (May 2014)

24. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 87–105. Springer (May 2003)

25. shelat, a., Shen, C.H.: Two-output secure computation with malicious adversaries.
In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer
(May 2011)

26. Woodruff, D.P.: Revisiting the efficiency of malicious two-party computation. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96. Springer (May
2007)

27. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. pp. 162–167. IEEE Computer Society Press (Oct 1986)

