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Abstract. With relatively few exceptions, the literature on efficient
(practical) secure computation has focused on secure two-party com-
putation (2PC). It is, in general, unclear whether the techniques used
to construct practical 2PC protocols—in particular, the cut-and-choose
approach—can be adapted to the multi-party setting.

In this work we explore the possibility of using cut-and-choose for practi-
cal secure three-party computation. The three-party case has been stud-
ied in prior work in the semi-honest setting, and is motivated by the
observation that real-world deployments of multi-party computation are
likely to involve few parties. We propose a constant-round protocol for
three-party computation tolerating any number of malicious parties,
whose computational cost is only a small constant worse than that of
state-of-the-art two-party protocols.

1 Introduction

The past few years have seen a tremendous amount of attention devoted to
making secure computation truly practical (e.g., [19, 23, 24]). With only a few
exceptions [13, 14, 23], however, this work has tended to focus on secure two-
party computation (2PC). In the semi-honest setting, a series of papers [3, 17–19]
showed that Yao’s garbled circuit technique [38] can yield very efficient proto-
cols for the computation of boolean circuits. In the malicious setting, Lindell
and Pinkas [27] initiated use of the cut-and-choose technique, also based on
Yao’s garbled circuits, for constructing efficient, constant-round protocols. This
technique was developed further in several subsequent works [20, 24, 25, 28, 29,
31, 33, 34, 36, 37], and yields the fastest known protocols for (malicious) secure
two-party computation (2PC) of boolean circuits.

2PC protocols with malicious security can also be based on the GMW proto-
col [15] (e.g., the TinyOT protocol [32]). Although this approach yields protocols
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with round complexity linear in the (multiplicative) depth of the circuit, it of-
fers the advantage that much of the computation can be pushed to an offline,
pre-processing phase that is executed before the parties receive their inputs.
The subsequent online computation is very fast and uses mainly information-
theoretic techniques.

In the setting of multi -party computation (MPC) with security against an
arbitrary number of corruptions, the situation is somewhat different. While there
has been much recent work on optimizing MPC for semi-honest adversaries [3,
5–8, 10], less work has focused on security against malicious corruptions. The
work of Ishai, Prabhakaran, and Sahai [22] gives protocols with good asymp-
totic efficiency; however, despite some promising optimizations [26], it has not
yet produced practical instantiations. The SPDZ protocol [4, 12–14, 23], which
handles arithmetic circuits, has extremely fast online running time at the cost
of a very slow offline phase. However, unlike protocols based on garbled circuits,
SPDZ runs for a linear (instead of constant) number of (online) rounds, and
in each such round every party needs to utilize a broadcast channel. To our
knowledge, SPDZ’s implementation experiments [12–14] were run on a local-
area network where physical broadcast is available, and thus the delay due to
accounting for round-timeouts and/or running a multi-party broadcasting proto-
col when operating in a wide-area network environment has not been taken into
account. This delay may be non-trivial depending on circumstances: Schneider
and Zohner [35] have shown that as the latency between machines increases, the
cost of each round becomes more and more significant.

Finally, the work of Goyal, Mohassel, and Smith [16] uses the cut-and-choose
technique to construct a multi-party protocol secure in the covert setting.

Multi-party computation for a small number of parties. Research on se-
cure computation has traditionally been divided into two classes: work focusing
on two-party computation, and work focusing on multi-party computation for
an arbitrary number of parties.4 Yet, in practice, it seems that the most likely
scenarios for secure MPC would involve a small number of parties [5]. In gen-
eral, as the number of parties increases, the cost of communication amongst the
parties increases as well. In a wide-area network setting, this may have a huge
impact on the running time of the protocol.

In addition, the three-party setting is interesting in its own right. For exam-
ple, suppose the government would like to run some privacy preserving compu-
tation on a company’s dataset, such as flight manifests. Now, suppose the public
does not trust that these parties are not colluding. Thus, we could add a third
party, trusted by the public, into the computation to enforce that the two main
parties are not simply sharing all their information.

Our contributions. We construct the first practical, constant-round protocol
for secure three-party computation of boolean circuits. Our protocol uses player-
simulation techniques in order to compile existing (cut-and-choose-based) 2PC
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protocols into three-party protocols. We instantiate our compiler with state-of-
the-art 2PC constructions and show that the addition of a third party comes at
the cost of roughly a factor eight overhead over the underlying 2PC protocol in
terms of computation, and a factor sixteen overhead in terms of communication.
This running time appears to be superior to the state-of-the-art MPC protocols
in terms of start-to-finish running time. Of course, computing the exact overhead
requires implementations of both our protocol and the underlying 2PC protocol
and is a subject of future research. As a further optimization point, our protocol
makes only three calls overall to a broadcast channel (one with each party as
sender), as opposed to existing practical MPC solutions (for more than two
parties) which use broadcast for communicating all protocol messages. This may
be important in certain wide-area network settings where communication (and
broadcast specifically) is very expensive. The most efficient instantiation of our
protocol requires the random oracle model.

Overview of our protocol. Denote the three parties by P1, P2, and P3. The
high-level idea of our construction is to execute a two-party protocol π̂, where
one of the two parties (say P̂1) is emulated by P1 and P2 via a two-party protocol
π, and the other party is played by P3.

Näıvely applying the above idea yields an inefficient construction even when
state-of-the-art 2PC protocols are used for π and π̂. Assume, for example, that
the most efficient 2PC protocol is used for both π and π̂, where π simply com-
putes the circuit of P̂1 among P1 and P2. The security of the resulting construc-
tion follows trivially from the composition theorem. However, unless the size of
the circuit is very small, this approach results in a huge blowup on the overall
runtime; in particular, if t is the time π needs to compute the circuit of P̂1 and
t̂ is the time that π̂ needs to compute the three-party circuit, then the runtime
of the above näıve construction is t · t̂, yielding at least a quadratic blowup.

Emulating the sender vs. emulating the receiver. In most cut-and-choose-
based 2PC protocols, the parties have distinct roles: one is the sender, or circuit
generator, and the other is the receiver, or circuit verifier. One might be tempted
to think that, because the role of the verifier in the protocol is more “passive” (in
the sense that the computation is less complicated), the most natural approach
would be to emulate the verifier among P1 and P2 (and have P3 locally do
the heavier work doing circuit generation and opening over broadcast). This
seemingly direct approach fails as one needs a mechanism for P1 and P2 to
include their inputs into the garbled circuits. Clearly, doing so by having P1

first receive his input-keys via OT (as in the original Yao-based constructions)
and then handing them to P2 yields an insecure protocol; indeed, an adversary
corrupting P2 and P3 can then trivially learn P1’s inputs.

Instead, in this work we have P1 and P2 emulate the sender, and we have
P3 play the role of the receiver. More precisely, we adapt the distributed circuit-
garbling technique [1, 11] to the two-party setting, allowing P1 and P2 to compute
a sharing of a garbled circuit which they then reconstruct for P3. By appropriate
optimizations, we ensure that distributed garbling requires P1 and P2 to compute
and communicate roughly as much as the sender in an execution of the Yao



protocol (plus some OT calls per gate); P3 needs to do nothing during the circuit
garbling. Most interestingly, our construction features a mechanism which allows
P3 to receive the keys corresponding to his input bits for evaluating the garbled
circuit by only one invocation of OT per input-bit with each of P1 and P2.

Our distributed garbling scheme is secure against malicious adversaries,
which ensures that an adversary corrupting only one of the parties P1 or P2

cannot produce a maliciously constructed garbled circuit. In order to protect
against an adversary who corrupts both P1 and P2, we rely on the cut-and-choose
technique. We give concrete instantiations (in the random oracle model) of our
protocol using a combination of two 2PC protocols by Lindell and Pinkas [27,
28]. In the full version [9], we present a construction based on the more recent
protocol by Lindell [25] which drastically reduces the number of circuit garblings
required for cut-and-choose.

Interestingly, the cut-and-choose technique does not only protect against cor-
rupting both P1 and P2, but allows a considerable efficiency improvement. More
precisely, it allows us to avoid using costly authenticated shares (towards P3) for
the computed (shared) garbled circuit. Instead, our distributed garbling scheme
outputs, even in the malicious setting, a plain two-out-of-two sum sharing of the
garbled circuit.

2 Preliminaries

We let k denote the computational security parameter and let s denote the

statistical security parameter. We use x
$← S to denote choosing a value x

uniformly at random from the set S, and use ‖ to denote concatenation.

Circuit notation. We follow the circuit notation of Bellare, Hoang, and Rog-
away [2]. A circuit C is defined by parameters (n,m, q, L,R,G), where n is the
number of input wires, m is the number of output wires, and q is the number
of gates, where each gate is indexed by its output wire. Thus, the total num-
ber of wires in the circuit is n + q. The numbering of wires starts with the
inputs and ends with the outputs; i.e., we have inputs {1, . . . , n} and outputs
{n+q−m+1, . . . , n+q}. The function L (resp., R) takes as input a gate index and
returns the left (resp., right) input wire to the gate. We require L(γ) < R(γ) < γ
for any gate index γ. The function G encodes the functionality of a given gate,
e.g., Gγ(0, 1) = 0 if the gate with index γ is an AND gate. Because we consider
circuits with inputs from multiple parties, let {ni−1 +1, . . . , ni} denote the input
wires “controlled” by party Pi, with n0 = 0.

We denote input gates as those gates with one or more input wires, inner
gates as those gates with no input or output wires, and output gates as those
gates with an output wire.

Secret sharing. Our constructions use two-out-of-two secret sharing. In the
semi-honest setting, we use a standard (linear) sharing of strings: the secret x ∈
{0, 1}∗ is split into two random summands x1 and x2 such that x1⊕x2 = x, with

Pi holding the summand xi. We denote the sharing of x by [x] = ([x]
(1)
, [x]

(2)
),



where we refer to each [x]
(i)

= xi as Pi’s share of x. This sharing is linear: If [x]
and [y] are sharings of x and y respectively, then [x]⊕[y] is a sharing of x⊕y; that

is, [x⊕ y] = [x] ⊕ [y] and thus Pi can locally compute his share as [x⊕ y]
(i)

=

[x]
(i) ⊕ [y]

(i)
. It is straight-forward to verify that the above secret-sharing is

private provided that the summands x1 and x2 are uniformly chosen (restricted

only on x1 ⊕ x2 = x); i.e., any single share [x]
(i)

contains no information about
the secret x. Reconstructing a sharing [x] is done by having each party announce

his share [x]
(i)

and taking x to be the exclusive-or of the announced shares.

Our protocols use shares of two types of secrets: k-bit strings x ∈ {0, 1}k
and bits b ∈ {0, 1}. For clarity in the presentation, we use the bracket notation
introduced above for sharings of x ∈ {0, 1}k, and use the notation 〈·〉 for sharings
of bits; i.e., if b ∈ {0, 1} then a sharing of b is denoted as 〈b〉 = (〈b〉(1), 〈b〉(2)).

In the malicious setting we need the sharings of bits to be authenticated ; i.e.,
in addition to his summand bi, each party Pi holds an authentication tag ti for
a message authentication code (MAC), with another party Pj holding the cor-
responding verification key kj . More precisely, in a sharing 〈b〉 = (〈b〉(1), 〈b〉(2))
of b, each party’s share is now a tuple 〈b〉(i) := (bi, ti, kj), where b1 ⊕ b2 = b,
and ti is a valid MAC on bi with key kj . This ensures that the adversary cannot
make the reconstruction output any value other than the secret b. In particular,
to reconstruct some sharing 〈b〉 = (〈b〉(1), 〈b〉(2)), each party Pi first announces
his summand bi and the corresponding authentication tag ti; subsequently, each
party Pi checks that the other party Pj announced a validly authenticated sum-
mand matching his own verification key and if this is not the case he rejects.
The inability of an adversarial Pi to announce a summand other than bi follows
from the unforgeability of the MAC, as Pi does not know the key kj matching
his authentication tag.

We also assume this authentication is linear in the following sense: Given
〈b〉 and 〈b′〉, the parties can compute 〈b〉 ⊕ 〈b′〉 locally. Namely, 〈b〉 ⊕ 〈b′〉 =
(〈b⊕ b′〉(1), 〈b⊕ b′〉(2)), where 〈b⊕ b′〉(i) = (bi ⊕ b′i, ti ⊕ t′i, kj ⊕ k′j) is a valid
authentication. We can construct such authenticated sharings using the TinyOT
protocol [32]; see the full version [9] for details.

3 Two-Party Distributed Garbling Scheme

In this section we describe our construction of a two-party distributed garbling
scheme. Our protocol combines the standard Yao garbling circuit technique with
the distributed garbling ideas from Damg̊ard and Ishai [11]. The main idea is
the following: The players jointly compute a garbled circuit, where the gates
are garbled by use of a distributed encryption scheme which takes, for each
encryption, one key from each party.

We describe our construction in several steps. In Section 3.1 we give a de-
scription of our garbling scheme; i.e., the code of the sender in our version of
Yao’s protocol. This section gives the reader familiarity with our notation and is
used as a reference in the distributed protocol. Next, in Section 3.2 we describe



Auxiliary Inputs: Security parameter k, circuit (n,m, q, L,R,G)← C.

1. Generate masks:
– For w ∈ {1, . . . , n + q−m}: set λw

$← {0, 1}.
– For w ∈ {n + q−m + 1, . . . , n + q}: set λw ← 0.

2. Generate sub-keys:

– For w ∈ {1, . . . , n + q} and b ∈ {0, 1}: set s1w,b, s
2
w,b

$← {0, 1}k.
3. Construct garbled circuit:

– For γ ∈ {n + 1, . . . , n + q}: Let α ← L(γ) and β ← R(γ) be the index
of the left and right input wires, respectively, of the gate indexed by γ.
Letting Kw,b = (s1w,b, s

2
w,b), for i, j ∈ {0, 1}2, compute the following:

P [γ, i, j]← EncKα,i,Kβ,j

(
Kγ,Gγ(λα⊕i,λβ⊕j)⊕λγ‖Gγ(λα, λβ)⊕ λγ

)
4. Output circuit:

– Set GC ← (n,m, q, L,R, P ), and output:(
GC,

{
(s1w,b⊕λw , s

2
w,b⊕λw , b⊕ λw) : w ∈ {1, . . . , n}, b ∈ {0, 1}

})
.

Fig. 1. Circuit garbling scheme.

an efficient (semi-honest) protocol that allows parties P1 and P2 to securely em-
ulate the circuit-garbling procedure from Section 3.1. Finally, in Section 3.3, we
show how to make the garbling procedure maliciously secure.

3.1 Single-Party Garbling Scheme

Our garbling scheme is a slight variant of the Damg̊ard and Ishai protocol [11]
adapted to two parties. This should be regarded as an initial step towards our
ultimate goal of a distributed garbling scheme. Here, we describe the high-level
construction; see Figure 1 for the detailed protocol.

We associate two random keys Kw,0,Kw,1 with each wire w in the circuit; key
Kw,0 corresponds to the value ‘0’ and Kw,1 corresponds to the value ‘1’. Each
key Kw,b consists of two sub-keys s1w,b and s2w,b; that is, Kw,b = (s1w,b, s

2
w,b). In

addition, for each wire w we choose a random mask bit λw. Each key has an
associated tag, derived from the mask bit, which acts as a blinding of the true
value the key represents.

Now, consider gate Gγ in the circuit with input wires α and β. The garbled
gate of Gγ consists of an array of four encryptions: for each (bα, bβ) ∈ {0, 1} ×
{0, 1}, the row (bα, bβ) consists of an encryption of Kγ,Gγ(bα⊕λα,bβ⊕λβ)⊕λγ and
its corresponding tag Gγ(bα ⊕ λα, bβ ⊕ λβ) ⊕ λγ under keys Kα,bα and Kβ,bβ .
Let P denote a table that stores all the garbled gates; in particular, the entry
P [γ, bα, bβ ] contains an encryption corresponding to row (bα, bβ) of the garbled
gate for Gγ .

Evaluation proceeds as follows. Let α and β be input wires connected to gate
G with index γ. The evaluator is given (Kα,bα⊕λα , bα⊕λα) and (Kβ,bβ⊕λβ , bβ ⊕



λβ), along with P . He takes the row P [γ, bα⊕λα, bβ ⊕λβ ] and decrypts it using
the keys Kα,bα⊕λα and Kβ,bβ⊕λβ , resulting in (Kγ,G(bα,bβ)⊕λγ , G(bα, bβ)⊕λγ). It
is straightforward to verify that by continuing this evaluation, the output of each
gate will be revealed masked by its corresponding mask. By picking masks of
the output wires to be ‘0’ we ensure that the evaluator receives the (unmasked)
output of the circuit.

3.2 Distributing the Garbling Scheme Between Two Parties

We now show how to emulate the above garbling scheme between two parties
in the semi-honest setting. We assume the parties have access to the following
two-party ideal functionalities:

– Gate computation FGgate(〈a〉, 〈b〉): The functionality takes as input sharings
〈a〉 and 〈b〉 of bits a and b, respectively, and is parameterized by a binary
gate G; it outputs a sharing 〈G(a, b)〉 of the output of G on input (a, b).

– One-out-of-two oblivious secret sharing F ioshare(〈b〉,m0,m1): The function-
ality takes as input a sharing 〈b〉 of a bit b (i.e., each party inputs his share),
along with two messages m0, m1 from Pi, and outputs a random two-out-
of-two sharing [mb] of mb.

– Constant bit sharing Fbconst(): The functionality is parameterized by a bit
b ∈ {0, 1}, and outputs a random sharing 〈b〉 of b.

– Random bit sharing Frand(): The functionality chooses a random bit r
$←

{0, 1} and computes and outputs a random sharing 〈r〉 of r.
– Bit secret sharing F iss(b): The functionality takes input bit b ∈ {0, 1} from
Pi and outputs a random two-out-of-two sharing 〈b〉 of b.

Each of these can be instantiated efficiently in the semi-honest setting; see the
full version [9] for details.

Distributed encryption scheme. We utilize Damg̊ard and Ishai’s distributed
encryption scheme [11]. Suppose the message and the key for the encryption
scheme are distributed as follows:

– The message m is secret-shared; i.e., P1 holds [m]
(1)

and P2 holds [m]
(2)

.
– The encryption key K = (s1, s2) is distributed such that P1 holds s1 and P2

holds s2.

The encryption of the secret-shared message m with tweak T under key K =
(s1, s2) is:

EncTK(m) = (Enc1s1,T (m),Enc2s2,T (m)) =
(

[m]
(1) ⊕ F 1

s1(T ), [m]
(2) ⊕ F 1

s2(T )
)
,

where F 1
k is a PRF keyed by key k. To decrypt a ciphertext c := EncTK(m), each

party Pi sends his sub-key si to the decrypter, who uses them to recover the
shares of m and reconstruct m.



Double encryption is defined analogously. For keys Kα = (s1α, s
2
α) and Kβ =

(s1β , s
2
β), where Pi holds (siα, s

i
β), encryption with tweak T works as follows:

EncTKα,Kβ (m) =
(

[m]
(1) ⊕ F 1

s1α
(T )⊕ F 2

s1β
(T ), [m]

(2) ⊕ F 1
s2α

(T )⊕ F 2
s2β

(T )
)
.

Distributed garbling scheme. We now give a high-level description of our
two-party distributed garbling scheme ΠGC(P1, P2); see Figure 2 for details. As
before, for each wire w in the circuit we associate keys Kw,0 = (s1w,0, s

2
w,0) and

Kw,1 = (s1w,1, s
2
w,1) corresponding to bits ‘0’ and ‘1’, respectively. However, in

the distributed setting, each sub-key is only known to one of the two parties;
i.e., Pi only knows (siw,0, s

i
w,1). Each wire is also associated with a mask bit λw

which is secret shared between the two parties such that no party knows λw.
Consider gate Gγ in the circuit with input wires indexed by α and β. As

in the non-distributed case, we construct an array containing four rows corre-
sponding to a random permutation of the four possible outcomes of gate Gγ
applied to bits bα and bβ . However, in the distributed case neither party should
know what is being encrypted. Recall that in the non-distributed setting, the
circuit generator can easily compute Gγ(λα ⊕ bα, λβ ⊕ bβ) to construct the ar-
ray. However, in the distributed setting, neither party knows (and should not
know) λα or λβ . Thus, the parties utilize the Fgate functionality, which takes
as input the shares 〈λα〉 ⊕ 〈bα〉 and 〈λβ〉 ⊕ 〈bβ〉, and computes a sharing of
Gγ(λα⊕bα, λβ⊕bβ). Let 〈σγ,bα,bβ 〉 = FGgate(〈bα〉⊕〈λα〉, 〈bβ〉⊕〈λβ〉)⊕〈λγ〉. The
value σγ,bα,bβ denotes which key to encrypt; that is, in row (bα, bβ) we encrypt
key Kγ,σγ,bα,bβ

. However, we must still enforce that neither party knows what key

Kγ,σγ,bα,bβ
represents. We handle this by utilizing another functionality, Foshare.

For each of the four σγ,bα,bβ values, and for each party Pi, the parties compute
F ioshare(〈σγ,bα,bβ 〉, siγ,0, siγ,1). This produces a share of the appropriate sub-key
for party Pi, with the crucial fact that Pi does not know which of his sub-keys
was shared. The results of Foshare are used as the shares to be encrypted.

Note that we can use this two-party distributed garbling scheme as a build-
ing block for a somewhat efficient semi-honest two-party secure computation
protocol. See the full version [9] for the detailed construction. We do not claim
that this scheme is superior to existing 2PC protocols; however, it serves as an
important building-block to our end goal of an efficient 3PC protocol.

Also note that this distributed garbling scheme can scale to more than two
parties, given access to multi-party variants of the necessary functionalities.
Thus, we can also achieve (semi-honest) multi -party secure computation us-
ing this approach; we leave the development of efficient instantiations of these
functionalities as future work.

3.3 Achieving Malicious Security

The semi-honest distributed garbling scheme described in Section 3.2 can be
directly adapted to work against a malicious adversary by modifying the hybrid
functionalities to work in an authenticated manner; namely, we use authenticated
sharings in place of standard secret sharings:



Auxiliary Inputs: Security parameter k, circuit (n,m, q, L,R,G)← C.

P1 and P2 compute 〈1〉 ← F1
const, which they use throughout.

1. Generate mask bits:
– For w ∈ {1, . . . , n1}: P1 sets λw

$← {0, 1} and 〈λw〉 ← F1
ss(λw).

– For w ∈ {n1 + 1, . . . , n}: P2 sets λw
$← {0, 1} and 〈λw〉 ← F2

ss(λw).
– For w ∈ {n + 1, . . . , n + q−m}: set 〈λw〉 ← Frand.
– For w ∈ {n + q−m + 1, . . . , n + q}: set 〈λw〉 ← F0

const.
2. Generate sub-keys:

– For w ∈ {1, . . . , n + q} and b ∈ {0, 1}: Pi sets siw,b
$← {0, 1}k.

3. Construct garbled circuit:
– For γ ∈ {n + 1, . . . , n + q}: Let α← L(γ) and β ← R(γ) be the indices of

the left and right input wires, respectively, of the gate indexed by γ. For
i, j ∈ {0, 1}2, compute the following selector bits:

〈σγ,i,j〉 ← FGγgate(〈λα〉 ⊕ 〈i〉, 〈λβ〉 ⊕ 〈j〉)⊕ 〈λγ〉.

Next, for i, j ∈ {0, 1}2, compute sharings of the appropriate sub-keys to
use for each row: [

ŝ1γ,i,j
]
← F1

oshare(〈σγ,i,j〉, s1γ,0, s1γ,1),[
ŝ2γ,i,j

]
← F2

oshare(〈σγ,i,j〉, s2γ,0, s2γ,1).

Finally, for i, j ∈ {0, 1}2, compute the distributed encryptions of the (per-
muted) sub-keys and selector bits. That is, letting Kw,b = (s1w,b, s

2
w,b),

compute:

(P 1[γ, i, j], P 2[γ, i, j])← Enc
γ‖i‖j
Kα,i,Kβ,j

(
[
ŝ1γ,i,j

]
‖
[
ŝ2γ,i,j

]
‖〈σγ,i,j〉).

4. Output circuit:
– Let Ci ← (n,m, q, L,R, P i), Si ←

{
(siw,0, s

i
w,1) : w ∈ {1, . . . , n}

}
.

– P1 outputs
(
C1, S1,

{
(〈bw〉(1), 〈λw〉(1), bw, λw) : w ∈ {1, . . . , n1}

})
.

– P2 outputs
(
C2, S2,

{
(〈bw〉(2), 〈λw〉(2), bw, λw) : w ∈ {n1 + 1, . . . , n}

})
.

Fig. 2. Two-party distributed circuit-garbling protocol ΠGC(P1, P2). For semi-honest
security, use standard secret sharing; for malicious security use authenticated secret
sharing.

– F1
const() and Frand(): The output share is authenticated.

– FGgate(〈a〉, 〈b〉): The inputs and outputs are all authenticated sharings.

– F ioshare(〈b〉,m0,m1): The selection bit b is an authenticated sharing.
– F iss(b): The output is an authenticated sharing of b.

Observe that we only authenticate sharings of bits and not sharings of the sub-
keys siw,b. This complicates the proof, as the sharing does not provide means of
protecting against a malicious party sending inconsistent key-shares, but yields
a more efficient construction; see the full version [9] for details.



We also need a notion of encrypting authenticated shares. Recall that for an
authenticated share 〈b〉 = (〈b〉(1), 〈b〉(2)), we have 〈b〉(i) = (bi, ti, kj), where party
Pi holds bi and ti, and party Pj holds kj . Thus, letting K = (s1, s2), we define

EncTK(〈b〉) = (Enc1s1,T (b1‖t1‖k1),Enc2s2,T (b2‖t2‖k2)).

On decryption, each party’s ciphertext is decrypted and the authenticity of b1
and b2 are verified using the (encrypted) tags and keys. Thus, when evaluating a
garbled circuit, the party checks the authenticity of the share from the decrypted
row of each garbled gate; if the check fails, the party aborts.

Again, we can convert this garbling scheme into a (now maliciously-secure)
2PC scheme; see the full version [9] for the details. Likewise, we could also con-
struct an MPC variant with efficient multi-party instantiations of the underlying
functionalities which we leave as future work.

4 Three-Party Computation from Cut-and-Choose

As mentioned above, we can directly adapt the distributed garbling scheme to
work over multiple parties, and thus construct a 3PC scheme; however, in this
case the underlying functionalities need to support multiple parties rather than
just two parties and are thus unlikely to be more efficient in practice. Thus, in
this section we show how to utilize the maliciously secure two-party distributed
garbling scheme from Section 3 to construct a maliciously secure three-party
secure computation protocol, using almost entirely two-party constructs (the
only three-party functionality needed is that of coin-tossing).

We first cover preliminary notions, such as the ideal functionalities we need,
in Section 4.1. Then, in Section 4.2 we show how to adapt a combination of
two existing cut-and-choose protocols [27, 28] to the three-party setting. In the
full version [9] we use this “generic” protocol to show how to adapt Lindell’s
protocol [25] (the current state-of-the-art garbled-circuit-based protocol at the
time of writing) to the three-party setting. The cost of each of these three-party
protocols is roughly eight times the computational cost of the underlying two-
party protocol they are based on, and roughly sixteen times the communication
cost (plus the cost of a small number of OTs per gate, which can be efficiently
amortized using OT extension [21, 32]), and thus we show that we can achieve
efficient secure three-party computation at only a small factor of the cost of the
most efficient Yao-based two-party protocol.

4.1 Preliminaries

Ideal functionalities. In addition to the ideal functionalities used in the two-
party distributed garbling scheme, we need the following additional (maliciously
secure) functionalities:

– Three-party coin-flipping Fcf (): The functionality outputs a random bit-

string ρ
$← {0, 1}s to each party.



– One-out-of-two oblivious transfer F i,jot (b,m0,m1): The functionality takes as
input a choice bit b from party Pi and messages m0, m1 from Pj , and outputs
mb to party Pi.

– ZKPoK of extended Diffie-Hellman tuple F i,jzkpok(a, (g, h0, h1, {ui, vi}i)): The
functionality takes as input a from party Pi, and tuple (g, h0, h1, {ui, vi}i)
from party Pj , and outputs 1 to party Pj if either all tuples in {(g, h0, ui, vi)}i
are Diffie-Hellman tuples with h0 = ga or all tuples in {(g, h1, ui, vi)}i are
Diffie-Hellman tuples with h1 = ga, and 0 otherwise.

These can all be efficiently instantiated in a standard fashion; see the full ver-
sion [9] for the details.

Distributed garbled circuits for three parties. Note that the garbling pro-
tocol ΠGC in Figure 2 only garbles a circuit containing inputs from two parties.
We can easily adapt this to support input from a third (external) party as fol-
lows. Let Π ′GC(P1, P2) be the same as ΠGC(P1, P2) except for the following
modifications:

– All operations over P2’s input now operate over wires w ∈ {n1 + 1, . . . , n2}.
– In Step 1, we add the following for generating shares for P3’s input wires:

For w ∈ {n2 + 1, . . . , n}: generate 〈λw〉 ← Frand.
– In Step 4, party Pi outputs

{
〈λw〉(i) : w ∈ {n2 + 1, . . . , n}

}
in addition to his

normal outputs.

4.2 Achieving Malicious Security for Three Parties

Note that our two-party distributed garbling scheme has the property that if at
most one of the two parties is corrupt, the garbling of circuit C either correctly
evaluates C on P1’s and P2’s inputs, or causes the evaluator to abort. That
is, a malicious party cannot “alter” the garbling to evaluate some circuit other
than C. Now, if both P1 and P2 are corrupt, they can of course garble an arbi-
trary circuit. This suggests the following approach to three-party computation:
If either P1 or P2 are honest, we need only construct a single garbled circuit,
which is sent to P3 to be evaluated. To cover the case where both P1 and P2

are corrupt, we use cut-and-choose to prevent P3 from evaluating a maliciously
constructed circuit. In what follows, we utilize existing cut-and-choose protocols
from the literature [27, 28] and “plug in” our distributed garbling scheme as nec-
essary. Thus, security mostly follows from the security proofs of the underlying
cut-and-choose protocols. In the full version [9] we show how we can use this
protocol in an adaptation of Lindell’s protocol [25] to the three-party setting.

The basic intuition for security is as follows. Cut-and-choose is used to pre-
vent P3 from evaluating maliciously constructed circuits when both P1 and P2

are malicious. For the case where either P1 or P2 is honest, Π ′GC(P1, P2) assures
us that the garbled circuit constructed between P1 and P2 is either correctly
constructed or causes P3 to abort (independent of any party’s input).

Protocol description. We assume the reader is familiar with the cut-and-
choose technique; here we briefly discuss the main technical challenges that result
from a näıve application of cut-and-choose and how we address them.



– Input inconsistency. The use of cut-and-choose produces multiple garbled
circuits to be evaluated by P3. The idea with this attack is that a given
party (either P1 or P2 in the three-party case) can give inconsistent sub-keys
in each of these circuits such that P3 ends up evaluating different inputs
for P1/P2 instead of consistent inputs across all garbled circuits. This is a
well-known attack, and there are multiple solutions in the two-party setting.
Here, we use the Diffie-Hellman pseudorandom synthesizer trick [30, 28] and
adapt it in a straightforward manner to the three-party setting.

– Selective failure. This attack arises when the parties execute OT to send
the sub-keys for P3’s input. Note that if the sender in the OT inputs one
valid label and one invalid label, he can learn a bit of P3’s input by learn-
ing whether the garbled-circuit evaluation fails or not. We circumvent this
problem by directly applying the “XOR-tree” approach [27].

We now give a high-level description of our protocol.

1. The parties first replace the input circuit C0 with a circuit C, where the only
difference is each of P3’s input wires is replaced by an XOR of s new input
wires, preventing either party P1 or P2 from launching a selective failure
attack on P3’s input choices.

2. P1 and P2 generate the required commitments needed for input consistency,
as is done in the protocol of Lindell and Pinkas [28].

3. P1 and P2 construct s garbled circuits using Π ′GC and the input sub-keys
generated as in the protocol of Lindell and Pinkas [28].

4. P1 and P2 compute authenticated sharings (between each other; P3 is not
involved here) of their input bits.

5. P1 and P2 both run (separately) an OT protocol with P3 for each of P3’s
input wires, where P1/P2 input their sub-keys and P3 chooses based on his
input. (Note that any cheating by P1/P2 here will be caught with high-
probability by the cut-and-choose step below.) Thus, P3 now has keys for
each of his input bits.

6. P1 and P2 send the (distributed) garbled circuits, along with the input con-
sistency commitments, to P3.

7. All three parties run a coin-tossing protocol to determine which circuits for
P3 to open and which to evaluate.

8. For the evaluation circuits, P1 and P2 send the sub-keys and selector bits for
their inputs to P3. Note that we need to be careful in this step, as we need
to enforce that, for example, P1 uses the same input as was shared in Step 2
above. This is accomplished as follows. Recall that P1 and P2 have sharings
of each other’s inputs and mask bits, all of which are authenticated. Thus,
P1 can send the (authenticated) share of her masked input to P2, who can
verify its authenticity, and thus reconstruct the masked input bit using his
own share (and likewise for P2). This allows an honest P2 to send the correct
sub-key (correct in the sense that it corresponds to P1’s input shared in Step
2) to P3, even with a malicious P1.

9. For the check circuits, P1 and P2 send the required information for P3 to
decrypt the check circuits and verify correctness. If any of these check circuits



are incorrectly constructed, P3 aborts; otherwise, he has high confidence that
the majority of the evaluation circuits are correctly constructed.

10. For the evaluation circuits, P3 checks for input consistency against the sub-
keys sent by P1 and P2 in Step 8 using a zero-knowledge proof-of-knowledge
protocol [28], aborting on any inconsistency.

11. Finally, P3 evaluates the evaluation circuits, outputting the majority over
the circuits’ output.

See below for the full protocol description.

Protocol Πm
3PC(P1, P2, P3)

Auxiliary Inputs: Security parameter k, statistical security parameter s, cir-
cuit C0, cyclic group G with (prime) order q and generator g, and randomness
extractor H.

Inputs: For w ∈ {1, . . . , n1}, P1 has inputs bw; for w ∈ {n1 + 1, . . . , n2}, P1 has
inputs bw; for w ∈ {n2 + 1, . . . , n}, P3 has inputs bw.

1. Each party replaces C0 with a circuit C where each of P3’s input wires is
replaced by an exclusive-or of s new input wires. We let (n,m, q, L,R,G)← C,
and denote P3’s new inputs by b̂w.

2. For w ∈ {1, . . . , n1}: P1 sets a1w,0, a
1
w,1

$← Zq and constructs{
(w, 0, ga

1
w,0), (w, 1, ga

1
w,1)

}
.

For w ∈ {n1 + 1, . . . , n2}: P2 sets a2w,0, a
2
w,1

$← Zq and constructs{
(w, 0, ga

2
w,0), (w, 1, ga

2
w,1)

}
.

For j ∈ {1, . . . , s}: Pi, for i ∈ {1, 2}, sets rij
$← Zq and constructs

{
(j, gr

i
j )
}

.

For j ∈ {1, . . . , s}: P1 and P2 run up to Step 2 (“Generate sub-keys”) of
Π3

GC(P1, P2), where the parties do the following in the jth iteration:

– For w ∈ {1, . . . , n1}: P1 sets s1w,b⊕λw,j ,j ← H(ga
1
w,b·r

1
j ) for b ∈ {0, 1}.

– For w ∈ {n1 + 1, . . . , n2}: P2 sets s2w,b⊕λw,j ,j ← H(ga
2
w,b·r

2
j ) for b ∈ {0, 1}.

– All other sub-keys are generated in the normal fashion.
3. For j ∈ {1, . . . , s}: P1 and P2 continue their executions of Π3

GC(P1, P2), pro-
ducing garbled circuit GCj .

4. For w ∈ {1, . . . , n1}: P1 and P2 compute 〈bw〉 ← F1
ss(bw).

For w ∈ {n1 + 1, . . . , n2}: P1 and P2 compute 〈bw〉 ← F2
ss(bw).

5. For j ∈ {1, . . . , s} and w ∈ {n2 + 1, . . . , n}: P1 and P2 exchange 〈λw,j〉 with
each other, reconstructing λw,j locally. Both P1 and P2 send λw,j to P3.
For w ∈ {n2+1, . . . , n}: Pi, for i ∈ {1, 2}, and P3 run Fot, with Pi as the sender

inputting

({
siw,λw,j ,j

}
j∈{1,...,s}

,
{
siw,λw,j⊕1,j

}
j∈{1,...,s}

)
and P3 as the re-

ceiver inputting b̂w.
6. Pi, for i ∈ {1, 2}, sends the sets from Step 2, along with

{
GCij

}s
i=1

, to P3.
7. The parties set ρ← Fcf . Let CC = {i : ρi = 1}, and EC = {1, . . . , s} \ CC.
8. For j ∈ EC:



– For w ∈ {1, . . . , n1}: P1 sends 〈bw〉(1) ⊕ 〈λw,j〉(1) to P2, who reconstructs
bw ⊕ λw,j locally. P1 sends (s1w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends

(s2w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3.

– For w ∈ {n1+1, . . . , n}: P2 sends 〈bw〉(2)⊕〈λw,j〉(2) to P1, who reconstructs
bw ⊕ λw,j locally. P1 sends (s1w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3, and P2 sends

(s2w,bw⊕λw,j ,j , bw ⊕ λw,j) to P3.
9. For j ∈ CC:

– Pi, for i ∈ {1, 2}, does the following:
• Sends rij to P3, and P3 checks that these values are consistent with

the pairs
{

(j, gr
i
j )
}

sent before.

• For w ∈ {1, . . . , n}: Sends sub-keys siw,0,j and siw,1,j , mask bit share

λ
(i)
w,j , and the keys to the authenticated bits to P3.

– Given the above information, P3 reconstructs all input labels and verifies
they match with those labels sent previously. Also, using said labels, P3

verifies that the garbled circuit is correctly constructed.
10. For j ∈ EC:

– For w ∈ {1, . . . , n1}: P1 sends ga
1
w,bw

·r1j to P3, who sets s1w,bw⊕λw,j ,j ←
H(ga

1
w,bw

·r1j ).

– For w ∈ {n1+1, . . . , n2}: P2 sends ga
2
w,bw

·r2j to P3, who sets s2w,bw⊕λw,j ,j ←
H(ga

2
w,bw

·r2j ).
For w ∈ {1, . . . , n1}: P1 and P3 run Fzkpok, with P1 acting as
the prover inputting a1w,bw and P3 acting as the verifier inputting(
g, ga

1
w,0 , ga

1
w,1 ,

{
(gr

1
j , ga

1
w,bw

·r1j )
}
j∈EC

)
.

For w ∈ {n1 + 1, . . . , n2}: P2 and P3 run Fzkpok, with P2 acting
as the prover inputting a2w,bw and P3 acting as the verifier inputting(
g, ga

2
w,0 , ga

2
w,1 ,

{
(gr

2
j , ga

2
w,bw

·r2j )
}
j∈EC

)
.

11. For j ∈ EC:
– P3 evaluatesGCj using

{
(s1w,bw⊕λw,j ,j , s

2
w,bw⊕λw,j ,j , bw ⊕ λw,j)

}
w∈{1,...,n}

as inputs.
P3 outputs the majority output over the evaluated circuits.

In the full version [9] we prove the following.

Theorem 1. Let C be an arbitrary polynomial-size circuit and let G be a cyclic
group with prime order. Given access to ideal functionalities Fconst, Fgate,
Foshare, Fot, Frand, and Fss, and assuming that the decisional Diffie-Hellman
problem is hard in G, then Πm

3PC(P1, P2, P3) securely computes the circuit C in
the presence of an adversary corrupting an arbitrary number of parties.



4.3 Efficiency

We now argue why our 3PC protocol is roughly eight times as expensive in terms
of computation as the underlying 2PC protocol we utilize, and roughly sixteen
times as expensive in terms of communication. Both protocols are very similar
to the underlying 2PC protocol they are based on; the major changes in terms of
computational cost are that (1) the cost of encrypting a single row increases due
to the use of the distributed encryption scheme, and (2) P3 needs to do twice the
work (due to communicating with both P1 and P2) as compared to the evaluator
in the underlying 2PC protocol. Indeed, it takes about eight PRF calls (where
one PRF call equals outputting k bits) to encrypt a single row of the garbled
circuit, and thus the cost and size of a garbled circuit increases by a factor of
eight. The cost for P1 and P2 to distributively garble a circuit is a small number
of OTs per gate, and this can be amortized using OT extension techniques [21].

In terms of communication cost, both P1 and P2 need to send their half
of the distributed garbled circuit to P3, and the communication cost of actu-
ally constructing a distributed garbled circuit is roughly the cost of a standard
garbled circuit. Since each garbled circuit is eight times larger than in the un-
derlying 2PC protocol, we find that the overall communication size increases my
approximately sixteen.

Comparison with SPDZ. We compare our three-party protocol with the
SPDZ protocol [4, 12–14, 23], an efficient protocol over arithmetic circuits that
works for n parties and arbitrary corruptions, and uses the preprocessing
paradigm. SPDZ represents the state-of-the-art in terms of efficiency in the
multi-party setting. Here we focus on the differences between both SPDZ and
our protocol, and discuss their strengths and weaknesses. Due to the different
characteristics of each protocol (e.g., arithmetic versus boolean, linear versus
constant round, etc.), these protocols are somewhat “incomparable”. However,
we hope to give a general idea of the efficiency trade-offs of both protocols.

There are several key differences between the SPDZ protocol and our own.
For one, SPDZ works over arithmetic circuits, whereas our protocol works over
boolean circuits. In terms of communication, the SPDZ protocol requires rounds
linear in the depth of the circuit, whereas our protocol is constant-round. While
it is difficult to compare the impact of this without an implementation and ex-
periments, it seems intuitive that as the latency between machines increases, the
cost of each additional communication round increases as well; this intuition has
been backed up by experiments in the semi-honest setting [35]. And while SPDZ
works in the standard model, the most efficient instantiation of our protocol
requires the random oracle model.

Finally, we consider the start-to-finish execution time (i.e., including the cost
of preprocessing) for running an AES circuit. The preprocessing in our protocol
is basically that found in the TinyOT protocol [32], and, using the numbers
presented there, is fairly efficient (around 1 minute [32, Figure 21]). Efficiency
comes from the fact that the preprocessing is only between two parties, namely,
the circuit generators. The on-line running time is conjectured to be around
that of maliciously secure two-party protocols using cut-and-choose. The SPDZ



protocol, on the other hand, has a very efficient (information-theoretic) online
phase but a much costlier offline phase (around 17 minutes for three parties [12,
Table 2]). In addition, it has a one-time setup phase which is very costly: the
parties need to execute an MPC protocol for a circuit which generates a key pair
with the secret key secret-shared among the parties. Executing this on its own
would likely eclipse the running time of our protocol.5 Thus, given preprocessing,
it seems likely that SPDZ would out-perform our protocol; however, in the setting
of executing the protocol from start to finish, we conjecture that our protocol
would be more efficient.
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