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Abstract. Non-interactive zero-knowledge proofs of knowledge for general NP
statements are a powerful cryptographic primitive, both in theory and in practical
applications. Recently, much research has focused on achieving an additional
property, succinctness, requiring the proof to be very short and easy to verify. Such
proof systems are known as zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARKs), and are desired when communication is expensive, or
the verifier is computationally weak.
Existing zk-SNARK implementations have severe scalability limitations, in terms
of space complexity as a function of the size of the computation being proved
(e.g., running time of the NP statement’s decision program). First, the size of the
proving key is quasilinear in the upper bound on the computation size. Second,
producing a proof requires “writing down” all intermediate values of the entire
computation, and then conducting global operations such as FFTs.
The bootstrapping technique of Bitansky et al. (STOC ’13), following Valiant
(TCC ’08), offers an approach to scalability, by recursively composing proofs:
proving statements about acceptance of the proof system’s own verifier (and
correctness of the program’s latest step). Alas, recursive composition of known
zk-SNARKs has never been realized in practice, due to enormous computational
cost.
Using new elliptic-curve cryptographic techniques, and methods for exploiting
the proof systems’ field structure and nondeterminism, we achieve the first zk-
SNARK implementation that practically achieves recursive proof composition. Our
zk-SNARK implementation runs random-access machine programs and produces
proofs of their correct execution, on today’s hardware, for any program running
time. It takes constant time to generate the keys that support all computation sizes.
Subsequently, the proving process only incurs a constant multiplicative overhead
compared to the original computation’s time, and an essentially-constant additive
overhead in memory. Thus, our zk-SNARK implementation is the first to have a
well-defined, albeit low, clock rate of “verified instructions per second”.
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elliptic curves



1 Introduction

Non-interactive zero-knowledge proofs of knowledge [BFM88, NY90, BDSMP91]
are a powerful tool, studied extensively both in theoretical and applied cryptography.
Recently, much research has focused on achieving an additional property, succinctness,
that requires the proof to be very short and easy to verify. A proof system with this
additional property is called a zero-knowledge Succinct Non-interactive ARgument
of Knowledge (zk-SNARK). Because succinctness is a desirable, sometimes critical,
property in numerous security applications, prior work has investigated zk-SNARK
implementations. Unfortunately, all implementations to date suffer from severe scalability
limitations, due to high space complexity, as we now explain.

1.1 Scalability limitations of prior zk-SNARK implementations

Expensive preprocessing. As in any non-interactive zero-knowledge proof, a zk-SNARK
requires a one-time trusted setup of public parameters: a key generator samples a proving
key (used to generate proofs) and a verification key (used to check proofs); the key pair
is then published as the proof system’s parameters.

Most zk-SNARK constructions [Gro10, Lip12, BCI+13, GGPR13, PGHR13, BCG+13a,
Lip13, BCTV14b], including all published implementations [PGHR13, BCG+13a,
BCTV14b], require expensive preprocessing during key generation. Namely, the key
generator takes as input an upper bound on the computation size, e.g., in the form of an
explicit NP decision circuit C output by a circuit generator; then, the key generator’s
space complexity, as well as the size of the output proving key, depends at least linearly
on this upper bound. Essentially, the circuit C is explicitly laid out and encoded so as to
produce the proof system’s parameters.

One way to mitigate the costs of expensive preprocessing is to make C universal, i.e.,
design C so that it can handle more than one choice of program [BCTV14b]. Yet, C still
depends on upper bounds on the program size and number of execution steps. Moreover,
even if key generation is carried out only once per circuit C, the resulting large proving
key must be stored, and accessed, each time a proof is generated. Prior implementations
of zk-SNARKs quickly become space-bound already for modest computation sizes, e.g.,
with proving keys of over 4GB for circuits of only 16 million gates [BCTV14b].4

Thus, expensive preprocessing severely limits scalability of a zk-SNARK.
Space-intensive proof generation. Related in part to the aforementioned expensive
preprocessing, the prover in all published zk-SNARK implementations has large space
complexity. Essentially, the proving process requires writing down the entire computation
(e.g., the evaluation of the circuit C) all at once, and then conduct a global computation
(such as Fast Fourier transforms, or multi-exponentiations) based on it. In particular, if
C expresses the execution of a program, then proving requires writing down the full
trace of intermediate states throughout the program execution.

4 Even worse, the reported numbers are for “data at rest”: the proving key consists of a list of
elliptic-curve points, which are compressed when not in use. However, when the prover uses
the proving key to produce a proof, the points are uncompressed (and represented via projective
or Jacobian coordinates), and take about three times as much space in memory.
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Tradeoffs are possible, using block-wise versions of the global algorithms, and
repeating the computation to reproduce segments of the trace. These decrease the
prover’s space complexity but significantly increase its time complexity, and thus do not
adequately address scalability.

Remark 1. Even when relaxing the goal (by allowing interaction, “theorem batching”,
or non-zero-knowledge proofs), all published implementations of proof systems for
outsourcing NP computations [SBW11, SMBW12, SVP+12, SBV+13, BFR+13] also
suffer from both of the above scalability limitations.5

1.2 What we know from theory

Ideally, we would like to implement a zk-SNARK that does not suffer from either of the
scalability limitations mentioned in the previous section, i.e., a zk-SNARK where:
– Key generation is cheap (i.e., its running time only depends on the security parameter)

and suffices for all computations (of polynomial size). Such a zk-SNARK is called
fully succinct.

– Proof generation is carried out incrementally, alongside the original computation,
by updating, at each step, a proof of correctness of the computation so far. Such a
zk-SNARK is called incrementally computable.

Work in cryptography tells us that the above properties can be achieved in theoretical
zk-SNARK constructions. Namely, building on the work of Valiant on incrementally-
verifiable computation [Val08] and the work of Chiesa and Tromer on proof-carrying
data [CT10, CT12], Bitansky et al. [BCCT13] showed how to construct zk-SNARKs
that are fully-succinct and incrementally-computable.

Concretely, the approach of [BCCT13] consists of a transformation that takes as input
a preprocessing zk-SNARK (such as one from existing implementations), and bootstraps
it, via recursive proof composition, into a new zk-SNARK that is fully-succinct and
incrementally-computable. In recursive proof composition, a prover produces a proof
about an NP statement that, among other checks, also ensures the accepting computation
of the proof system’s own verifier. In a zk-SNARK, proof verification is asymptotically
cheaper than merely verifying the corresponding NP statement; so recursive proof
composition is viable, in theory. In practice, however, this step introduces concretely
enormous costs: even if zk-SNARK verifiers can be executed in just a few milliseconds
on a modern desktop [PGHR13, BCTV14b], zk-SNARK verifiers still take millions of
machine cycles to execute. Hence, known zk-SNARK implementations cannot achieve
even one step of recursive proof composition in practical time. Thus, whether recursive
proof composition can be realized in practice, with any reasonable efficiency, has so far
remained an intriguing open question.

Remark 2 (PCPs). Suitably instantiating Micali’s “computationally-sound proofs” [Mic00]
yields fully-succinct zk-SNARKs. However, it is not known how to also achieve incre-
mental computation with this approach (without also invoking the aforementioned

5 In contrast, when outsourcing P computations, there are implementations without expensive
preprocessing: [CMT12, TRMP12, Tha13] consider low-depth circuits, and [CRR11] consider
outsourcing to multiple provers at least one of which is honest.
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approach of Bitansky et al. [BCCT13]). Indeed, [Mic00] requires probabilistically-
checkable proofs (PCPs) [BFLS91], where one can achieve a prover that runs in
quasilinear-time [BCGT13b], but only by requiring space-intensive computations —
again due to the need to write down the entire computation and conducting global
operations on it.

1.3 Contributions

We present the first prototype implementation that practically achieves recursive compo-
sition of zk-SNARKs. This enables us to achieve the following results:

(i) Scalable zk-SNARKs. We present the first implementation of a zk-SNARK that is
fully succinct and incrementally computable. Our implementation follows the approach
of Bitansky et al. [BCCT13].

Our zk-SNARK works for proving/verifying computations on a general notion of
random-access machine. The key generator takes as input a machine specification, con-
sisting of settings for random-access memory (number of addresses and number of
bits at each address) and a CPU circuit, defining the machine’s behavior. The keys
sampled by the key generator support proving/verifying computations, of any polyno-
mial length, on this machine. Thus, our zk-SNARK implementation directly supports
many architectures (e.g., floating-point processors, SIMD-based processors, etc.) —
one only needs to specify memory settings and a CPU circuit.

Compared to the original machine computation, our zk-SNARK only imposes a
constant multiplicative overhead in time and an essentially-constant additive overhead
in space. Indeed, the proving process steps through the machine’s computation, each
time producing a new proof that the computation is correct so far, by relying on the prior
proof; each proof asserts the satisfiability of a constant-size circuit, and requires few
resources in time and space to produce. Our zk-SNARK scales, on today’s hardware,
to any computation size.

(ii) Proof-carrying data. The main tool in [BCCT13]’s approach is proof-carrying
data (PCD) [CT10, CT12], a cryptographic primitive that encapsulates the security
guarantees provided by recursive proof composition. Thus, as a stepping stone towards
the aforementioned zk-SNARK implementation, we also achieve the first implementation
of PCD, for arithmetic circuits.

(iii) Evaluation on vnTinyRAM. We evaluate our zk-SNARK on a specific choice of
random-access machine: vnTinyRAM, a simple RISC von Neumann architecture that
is supported by the most recent preprocessing zk-SNARK implementation [BCTV14b].
The evaluation confirms our expectations that our approach is slower for small computa-
tions but achieves scalability to large computations.

We evaluated our prototype on 16-bit and 32-bit vnTinyRAM with 16 registers
(as in [BCTV14b]). For instance, for 32-bit vnTinyRAM, our prototype incrementally
proves correct program execution at the cost of 35.5 seconds per program step, using
a 64.4MB proving key and 1,008MB of additional memory. In contrast, for a T -step
program, the system of [BCTV14b] requires roughly 0.05 · T seconds, provided that
roughly 3.1 · T MB of main memory is available. Thus for T > 326 our system is
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more space-efficient, and the savings in space continue to grow as T increases. (These
numbers are for an 80-bit security level.)
The road ahead. Obtaining scalable zk-SNARKs is but one application of PCD. More
generally, PCD enables efficient “distributed theorem proving”, which has applications
ranging from securing the IT supply chain, to information flow control, and to distributed
programming-language semantics [CT10, CT12, CTV13]. Now that a first prototype of
PCD has been achieved, these applications are waiting to be explored in practice.

1.4 Summary of challenges and techniques

As we recall in Section 2, bootstrapping zk-SNARKs involves two main ingredients: a
collision-resistant hash function and a preprocessing zk-SNARK. Practical implemen-
tations of both ingredients exist. So one may conclude that “practical bootstrapping”
is merely a matter of stitching together implementations of these two ingredients. As
we now explain, this conclusion is mistaken, because bootstrapping a zk-SNARK in
practice poses several challenges that must be tackled in order to obtain any reasonable
efficiency.
Common theme: leverage field structure. The techniques that we employ to over-
come efficiency barriers leverage the fact that the “native” NP language whose member-
ship is proved/verified by the zk-SNARK is the satisfiability of F-arithmetic circuits, for
a certain finite field F. While any NP statement can be reduced to F-arithmetic circuits,
the proof system is most efficient for statements expressible as F-arithmetic circuits of
small size. Prior work only partially leveraged this fact, by using circuits that conduct
large-integer arithmetic or “pack” bits into field elements for non-bitwise checks (e.g.,
equality) [PGHR13, BCG+13a, BFR+13, BCTV14b]. In this paper, we go further and,
for improved efficiency, use circuits that conduct field operations.

Challenge: how to efficiently “close the loop”? By far the most prominent challenge is
efficiently “closing the loop”. In the bootstrapping approach, each step requires proving
a statement that (i) verifies the validity of previous zk-SNARK proofs; and (ii) checks
another execution step. For recursive composition, this statement needs to be expressed
as an F-arithmetic circuit Cpcd, so that it can be proved using the very same zk-SNARK.
In particular, we need to implement the verifier V as an F-arithmetic circuit CV (a
subcircuit of Cpcd).

In principle, constructing CV is possible, because circuits are a universal model of
computation. In fact, not just in principle: much research has been devoted to improve
the efficiency and functionality of circuit generators in practice [SVP+12, BCGT13a,
SBV+13, PGHR13, BCG+13a, BCTV14b]. Hence, a reasonable approach to construct
CV is to apply a suitable circuit generator to a suitable software implementation of V .

However, such an approach is likely to be inefficient. Circuit generators strive to
support complex program computations, by providing ways to efficiently handle data-
dependent control flow, memory accesses, and so on. Instead, verifiers in preprocessing
zk-SNARK constructions are “circuit-like” programs, consisting of few pairing-based
arithmetic checks that do not use complex data-dependent control flow or memory
accesses.
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Thus, we want to avoid circuit generators, and somehow directly constructCV so that
its size is not huge. As we shall explain (see Section 3), this is not merely a programmatic
difficulty, but there are mathematical obstructions to constructing CV efficiently.
Main technique: PCD-friendly cycles of elliptic curves. In our underlying prepro-
cessing zk-SNARK, the verifier V consists mainly of operations in an elliptic curve
over a field F′, and is thus expressed, most efficiently, as a F′-arithmetic circuit. We
observe that if this field F′ is the same as the aforementioned native field F of the
zk-SNARK’s statement, then recursive composition can be orders of magnitude more
efficient than otherwise. Unfortunately, as we shall explain, the “field matching” F = F′
is mathematically impossible.

In contrast, we show how to circumvent this obstruction by using multiple, suitably-
chosen elliptic curves, that lie on a PCD-friendly cycle. For example, a PCD-friendly
2-cycle consists of two curves such that the (prime) size of the base field of one curve
equals the group order of the other curve, and vice versa. Our implementation uses a
PCD-friendly cycle of elliptic curves (found at a great computational expense) to attain
zk-SNARKs that are tailored for recursive proof composition.
Additional technique: nondeterministic verification of pairings. The zk-SNARK
verifier involves, more specifically, several pairing-based checks over its elliptic curve.
Yet, each pairing evaluation is very expensive, if not carefully performed. To further
improve efficiency, we exploit the fact that the zk-SNARK supports NP statements,
and provide a hand-optimized circuit implementation of the zk-SNARK verifier that
leverages nondeterminism for improved efficiency. For instance, in our construction, we
make heavy use of affine coordinates for both curve arithmetic and divisor evaluations
[LMN10], because these are particularly efficient to verify (as opposed to computing, for
which projective or Jacobian coordinates are known to be faster).

Challenge: how to efficiently verify collision-resistant hashing? Bootstrapping
zk-SNARKs uses, at multiple places, a collision-resistant hash function H and an arith-
metic circuit CH for verifying computations of H . If not performed efficiently, this
would be another bottleneck.

For instance, the aforementioned circuit Cpcd, besides verifying prior zk-SNARK
proofs, is also tasked with verifying one step of machine execution. This involves not
only checking the CPU execution but also the validity of loads and stores to random-
access memory, done via memory-checking techniques based on Merkle trees [BEG+91,
BCGT13a]. ThusCpcd also needs to have a subcircuit to check Merkle-tree authentication
paths. Constructing such circuits is straightforward, given a circuit CH for verifying
computations of H . But the main question here is how to pick H so that CH can be
small. Indeed, if random-access memory consists of A addresses, then checking an
authentication path requires at least dlogAe · |CH | gates. If CH is large, this subcircuit
dwarfs the CPU, and “wastes” most of the size of Cpcd for a single load/store.

Merely picking some standard choice of hash function H (e.g., SHA-256 or Kec-
cak) yields CH with tens of thousands of gates [PGHR13, BCG+14], making hash
verifications very expensive. Is this inherent?
Additional technique: field-specific hashes. We select a hash H that is tailored to
efficient verification in the field F. In our setting, F has prime order p, so its additive
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group is isomorphic to Zp. Thus, a natural approach is to let H be a modular subset-sum
function over Zp. For suitable parameter choices and for random coefficients, subset-
sum functions are collision-resistant [Ajt96, GGH96]. In this paper we base all of our
collision-resistant hashing on suitable subset sums, and thereby greatly reduce the burden
of hashing.6

1.5 Roadmap

The rest of this paper is organized as follows. In Section 2 we recall the main ideas
of [BCCT13]’s approach. In Section 3, we discuss our construction of preprocessing
zk-SNARKs that are tailored for efficient recursive composition of proofs; due to space
constraints, we leave the other discussions (construction of proof-carrying data and
scalable zk-SNARK) to the full version of this paper [BCTV14a]. In Section 4, we
evaluate our system on the random-access machine vnTinyRAM.

2 Preliminaries

2.1 Preprocessing zk-SNARKs for arithmetic circuits

Given a field F, the circuit satisfaction problem of an F-arithmetic circuit C : Fn×Fh →
Fl is defined by the relationRC = {(x, a) ∈ Fn × Fh : C(x, a) = 0l}; its language is
LC = {x ∈ Fn : ∃ a ∈ Fh, C(x, a) = 0l}.

A preprocessing zk-SNARK for F-arithmetic circuit satisfiability (see, e.g., [BCI+13])
is a triple of polynomial-time algorithms (G,P, V ), called key generator, prover, and
verifier. The key generator G, given a security parameter λ and an F-arithmetic circuit
C : Fn×Fh → Fl, samples a proving key pk and a verification key vk; these are the proof
system’s public parameters, which need to be generated only once per circuit. After that,
anyone can use pk to generate non-interactive proofs for the language LC , and anyone
can use the vk to check these proofs. Namely, given pk and any (x, a) ∈ RC , the honest
prover P (pk, x, a) produces a proof π attesting that x ∈ LC ; the verifier V (vk, x, π)
checks that π is a valid proof for x ∈ LC . A proof π is a proof of knowledge, as well
as a (statistical) zero-knowledge proof. The succinctness property requires that π has
length Oλ(1) and V runs in time Oλ(|x|), where Oλ hides a (fixed) polynomial in λ.

See the full version of this paper for details [BCTV14a].

2.2 Proof-carrying data

Proof-carrying data (PCD) [CT10, CT12] is a cryptographic primitive that encapsulates
the security guarantees obtainable via recursive composition of proofs. Since recursive
proof composition naturally involves multiple (physical or virtual) parties, PCD is
phrased in the language of a dynamically-evolving distributed computation among
mutually-untrusting computing nodes, who perform local computations, based on local

6 We note that subset-sum functions were also used in [BFR+13], but, crucially, they were not
tailored to the field. This is a key difference in usage and efficiency. (E.g., our hash function
can be verified in ≤ 300 gates, while [BFR+13] report 13,000.)
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data and previous messages, and then produce output messages. Given a compliance
predicate Π to express local checks, the goal of PCD is to ensure that any given message
z in the distributed computation isΠ-compliant, i.e., is consistent with a history in which
each node’s local computation satisfies Π . This formulation includes as special cases
incrementally-verifiable computation [Val08] and targeted malleability [BSW12].

Concretely, a proof-carrying data (PCD) system is a triple of polynomial-time algo-
rithms (G,P,V), called key generator, prover, and verifier. The key generator G is given
as input a predicate Π (specified as an arithmetic circuit), and outputs a proving key pk
and a verification key vk; these keys allow anyone to prove/verify that a piece of data z is
Π-compliant. This is achieved by attaching a short and easy-to-verify proof to each piece
of data. Namely, given pk, received messages zin with proofs πin, local data zloc, and
a claimed outgoing message z, P computes a new proof π to attach to z, which attests
that z is Π-compliant; the verifier V(vk, z, π) verifies that z is Π-compliant. A proof π
is a proof of knowledge, as well as a (statistical) zero-knowledge proof; succinctness
requires that π has length Oλ(1) and V runs in time Oλ(|z|).

Finally, note that since Π is expressed as an F-arithmetic circuit for a given field F,
the size of messages and local data are fixed; we denote these sizes by nmsg, nloc ∈ N.
Similarly, the number of input messages is also fixed; we call this the arity, and denote
it by s ∈ N. Moreover, for convenience, Π also takes as input a flag bbase ∈ {0,1}
denoting whether the node has no predecessors (i.e., bbase is a “base-case” flag). Overall,
Π takes an input (z, zloc, zin, bbase) ∈ Fnmsg × Fnloc × Fs·nmsg × F.

See the full version of this paper for details [BCTV14a].

2.3 The bootstrapping approach

Our implementation follows [BCCT13], which we now review. The approach consists of
a transformation that, on input a preprocessing zk-SNARK and a collision-resistant hash
function, outputs a scalable zk-SNARK. Thus, the input zk-SNARK is bootstrapped
into one with improved scalability properties.

So fix a preprocessing zk-SNARK (G,P, V ) and collision-resistant function H . The
goal is to construct a fully-succinct incrementally-computable zk-SNARK (G?, P ?,
V ?) for proving/verifying the correct execution on a given random-access machine M.
Informally, we describe the transformation in four steps.
Step 1: from zk-SNARKs to PCD. The first step, independent of M, is to construct a
PCD system (G,P,V), by using the zk-SNARK (G,P, V ). This step involves recursive
composition of zk-SNARK proofs.
Step 2: delegate the machine’s memory. The second step is to reduce the footprint
of the machine M, by delegating its random-access memory to an untrusted storage, via
standard memory-checking techniques based on Merkle trees [BEG+91, BCGT13a]. We
thus modify M so that its “CPU” receives values loaded from memory as nondetermin-
istic guesses, along with corresponding authentication paths that are checked against the
root of a Merkle tree based on the hash function H . Thus, M’s state only consists of a
(short) CPU state, and a (short) root of the Merkle tree that “summarizes” memory.7

7 Similarly to [BCCT13] and our realization thereof, Braun et al. [BFR+13] leverage memory-
checking techniques based on Merkle trees [BEG+91] for enabling a circuit to “securely” load
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Step 3: design a predicate ΠM,H for step-wise verification. The third step is to
design a compliance predicate ΠM,H that ensures that the only ΠM,H -compliant mes-
sages z are the ones that result from the correct execution of the (modified) machine M,
one step at a time; this is analogous to the notion of incremental computation [Val08].
Crucially, because ΠM,H is only asked to verify one step of execution at a time, we can
implement ΠM,H ’s requisite checks with a circuit of merely constant size.

Step 4: construct new proof system. The new zk-SNARK (G?, P ?, V ?) is con-
structed as follows. The new key generator G? is set to the PCD generator G invoked on
ΠM,H . The new prover P ? uses the PCD prover P to prove correct execution of M, one
step at a time and conducting the incremental distributed computation “in his head”. The
new verifier V ? simply uses the PCD verifier V to verify ΠM,H -compliance. In sum,
since ΠM,H is small and suffices for all computations, the new zk-SNARK is scalable:
it is fully succinct; moreover, because the new prover computes a proof for each new
step based on the previous one, it is also incrementally computable. (See the full version
of this paper for definitions of these properties [BCTV14a].)

Our goal is to realize the above approach in a practical implementation.

Security of recursive proof composition. Security in [BCCT13] is proved by using the
proof-of-knowledge property of zk-SNARKs; we refer the interested reader to [BCCT13]
for details. One aspect that must be addressed from a theoretical standpoint is the depth of
composition. Depending on assumption strength, one may have to recursively compose
proofs in “proof trees above the message chain”, rather than along the chain. From a
practical perspective we make the heuristic assumption that depth of composition does
not affect security of the zk-SNARK, because no evidence suggests otherwise for the
constructions that we use.

3 PCD-friendly preprocessing zk-SNARKs

We first construct preprocessing zk-SNARKs that are tailored for efficient recursive
composition of proofs.

3.1 PCD-friendly cycles of elliptic curves

Let F be a finite field, and (G,P, V ) a preprocessing zk-SNARK for F-arithmetic
satisfiability. The idea of recursive proof composition is to prove/verify satisfiability of
an F-arithmetic circuit Cpcd that checks the validity of previous proofs (among other
things). Thus, we need to implement the verifier V as an F-arithmetic circuit CV , to be
used as a sub-circuit of Cpcd.

How to write CV depends on the algorithm of V , which in turn depends on which
elliptic curve is used to instantiate the pairing-based zk-SNARK. For prime r, in order
to prove statements about Fr-arithmetic circuit satisfiability, one instantiates (G,P, V )
using an elliptic curve E defined over some finite field Fq, where the group E(Fq) of

from and store to an untrusted storage. However, the systems’ goals (batched verification of
MapReduce computations in a 2-move protocol) and techniques are different (cf. Footnote 6).
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Fq-rational points has order r = #E(Fq) (or, more generally, r divides #E(Fq)). Then,
all of V ’s arithmetic computations are over Fq , or extensions of Fq up to degree k, where
k is the embedding degree of E with respect to r (i.e., the smallest integer k such that r
divides qk − 1). We motivate our approach by first describing two “failed attempts”.

Attempt #1: pick curve with q = r. Ideally, we would like to select a curve E with
q = r, so that V ’s arithmetic is over the same field for which V ’s native NP language is
defined. Unfortunately, this cannot happen: the condition that E has embedding degree
k with respect to r implies that r divides qk − 1, which implies that q 6= r. The same
implication holds even if E(Fq) has a non-prime order n and the prime r (with respect
to which k is defined) only divides n. So, while appealing, this idea cannot even be
instantiated.

Attempt #2: long arithmetic. Since we are stuck with q 6= r, we may consider doing
“long arithmetic”: simulating Fq operations via Fr operations, by working with bit chunks
to perform integer arithmetic, and modding out by q when needed. Alas, having to work
at the “bit level” implies a blowup on the order of log q compared to native arithmetic.
So, while this approach can at least be instantiated, it is very expensive.

Our approach: cycle through multiple curves. We formulate, and instantiate, a new
property for elliptic curves that enables us to completely circumvent long arithmetic,
even with q 6= r. In short, our idea is to base recursive proof composition, not on a single
zk-SNARK, but on multiple zk-SNARKs, each instantiated on a different elliptic curve,
that jointly satisfy a special property.

For the simplest case, suppose we have two primes qα and qβ , and elliptic curves
Eα/Fqα and Eβ/Fqβ such that qα = #Eβ(Fqβ ) and qβ = #Eα(Fqα), i.e., the size
of the base field of one curve equals the group order of the other curve, and vice
versa. We then construct two preprocessing zk-SNARKs (Gα, Pα, Vα) and (Gβ , Pβ ,
Vβ), respectively instantiated on the two curves Eα/Fqα and Eβ/Fqβ .

Now note that (Gα, Pα, Vα) works for Fqβ -arithmetic circuit satisfiability, but all
of Vα’s arithmetic computations are over Fqα (or extensions thereof); while (Gβ , Pβ ,
Vβ) works for Fqα-arithmetic circuits, but Vβ’s arithmetic computations are over Fqβ
(or extensions thereof). Instead of having each zk-SNARK handle statements about its
own verifier, as in the prior attempts (i.e., writing Vα as a Fqβ -arithmetic circuit, or Vβ
as a Fqα -arithmetic circuit), we instead let each zk-SNARK handle statements about the
verifier of the other zk-SNARK. That is, we write Vα as a Fqα-arithmetic circuit CVα ,
and Vβ as a Fqβ -arithmetic circuit CVβ .

We can then perform recursive proof composition by alternating between the two
proof systems. Roughly, one can use Pα to prove successful verification of a proof by
CVβ and, conversely, Pβ to prove successful verification of a proof by CVα . Doing so in
alternation ensures that fields “match up”, and no long arithmetic is needed. (This sketch
omits key technical details; see the full version of this paper [BCTV14a].)

Since Eα and Eβ facilitate constructing PCD, we say that (Eα, Eβ) is a PCD-
friendly 2-cycle of elliptic curves. More generally, the idea extends to cycling through `
curves satisfying this definition:

Definition 1. Let E0, . . . , E`−1 be elliptic curves, respectively defined over finite fields
Fq0 , . . . ,Fq`−1

, with each qi a prime. We say that (E0, . . . , E`−1) is a PCD-friendly
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cycle of length ` if each Ei is pairing friendly and, moreover, ∀ i ∈ {0, . . . , `− 1}, qi =
#Ei+1 mod `(Fqi+1 mod `

) .

To our knowledge this notion has not been explicitly sought before. Though, fortunately,
a family that satisfies this notion is already known, as discussed in the next subsection.

3.2 Two-cycles based on MNT curves

We construct pairs of elliptic curves, E4 and E6, that form PCD-friendly 2-cycles
(E4, E6). These are MNT curves [MNT01] of embedding degrees 4 and 6. Our construc-
tion also ensures that E4 and E6 are sufficiently 2-adic (see below), a desirable property
for efficient implementations of preprocessing zk-SNARKs.

MNT curves and the KT correspondence. Miyaji, Nakabayashi, and Takano [MNT01]
characterized prime-order elliptic curves with embedding degrees k = 3,4,6; such curves
are now known as MNT curves. Given an elliptic curve E defined over a prime field Fq ,
they gave necessary and sufficient conditions on the pair (q, t), where t is the trace of E
over Fq, for E to have embedding degree k = 3,4,6. We refer to an MNT curve with
embedding degree k as an MNTk curve. Karabina and Teske [KT08] proved an explicit
1-to-1 correspondence between MNT4 and MNT6 curves:

Theorem 1 ([KT08]). Let n, q > 64 be primes. Then the following two conditions are
equivalent: (i) n and q represent an elliptic curve E4/Fq with embedding degree k = 4
and n = #E(Fq); (ii) n and q represent an elliptic curveE6/Fn with embedding degree
k = 6 and q = #E(Fn).

PCD-friendly 2-cycles on MNT curves. The above theorem implies that:
Each MNT6 curve lies on a PCD-friendly 2-cycle with the corresponding MNT4
curve (and vice versa).

Thus, a PCD-friendly 2-cycle can be obtained by constructing an MNT4 curve and its
corresponding MNT6 curve. Next, we explain at high level how this can be done.

Constructing PCD-friendly 2-cycles. First, we recall the only known method to
construct MNTk curves [MNT01]. It consists of two steps:
– Step I: curve discovery. Find suitable (q, t) ∈ N2 such that there exists an ordinary

elliptic curve E/Fq of prime order n := q + 1− t and embedding degree k.
– Step II: curve construction. Starting from (q, t), use the Complex-Multiplication

method (CM method) [AM93] to compute the equation of E over Fq .
The complexity of Step II depends on the discriminant D of E, which is the square-free
part of 4q − t2. At present, the CM method is feasible for discriminants D up to size
1016 [Sut12]. Thus, Step I is conducted in a way that results in candidate parameters (q, t)
inducing relatively-small discriminants, to aid Step II. (Instead, “most” (q, t) induce a
discriminant D of size

√
q, which is too large to handle.) Concretely, [MNT01] derived,

for k ∈ {3,4,6} and discriminant D, Pell-type equations whose solutions yield candidate
parameters (q, t) for MNTk curves E/Fq of trace t and discriminant D. So Step I
can be performed by iteratively solving the MNTk Pell-type equation, for increasing
discriminant size, until a suitable (q, t) is found.
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The above strategy can be extended, in a straightforward way, to construct PCD-
friendly 2-cycles. First perform Step I to obtain suitable parameters (q4, t4) for an MNT4
curve E4/Fq4 ; the parameters (q6, t6) for the corresponding MNT6 curve E6/Fq6 are
q6 := q4 + 1 − t4 and t6 := 2 − t4. Then perform Step II for (q4, t4) to compute the
equation of E4, and then also for (q6, t6) to compute that of E6. The complexity in both
cases is the same: one can verify that E4 and E6 have the same discriminant. The two
curves E4 and E6 form a PCD-friendly 2-cycle (E4, E6).
Suitable cycle parameters. We now explain what “suitable (q4, t4)” means in our
context, by specifying a list of additional properties that we wish a PCD-friendly cycle
to satisfy.

– Bit lengths. In a 2-cycle (E4, E6), the curve E4 is “less secure” than E6, because
E4 has embedding degree 4 while E6 has embedding degree 6. Thus, we use E4

to set lower bounds on bit lengths. Since we aim at a security level of 80 bits, we
need r4 ≥ 2160 and q4 ≥ 2240 (so that

√
r4 ≥ 280 and q44 ≥ 2960 [FST10]). Since

log r4 ≈ log q4 for MNT4 curves, we only need to ensure that q4 has 240 bits.8

– Towering friendliness. We restrict our focus to moduli q4 and q6 that are towering
friendly (i.e., congruent to 1 modulo 6) [BS10]; this improves the efficiency of arith-
metic in F4

q4 and F6
q6 (and their subfields).

– 2-adicity. As discussed in [BCG+13a, BCTV14b], if a pairing-based preprocessing
zk-SNARK (G,P, V ) is instantiated with an elliptic curve E/Fq of prime order r (or
with #E(Fq) divisible by a prime r), it is important, for efficiency reasons, that r − 1
is divisible by a large power of 2, i.e., ν2(r− 1) is large. (Recall that ν2(n), the 2-adic
order of n, is the largest power of 2 dividing n.) Concretely, if G is invoked on an
Fr-arithmetic circuit C, it is important that ν2(r − 1) ≥ dlog |C|e. We call ν2(r − 1)
the 2-adic order of E, or the 2-adicity of E.
So let `4 and `6 be the target values for ν2(r4 − 1) and ν2(r6 − 1). One can verify
that, for any MNT-based PCD-friendly 2-cycle (E4, E6), it holds that ν2(r4 − 1) =
2 · ν2(r6 − 1); in other words, E4 is always “twice as 2-adic” as E6. Thus, to achieve
the target 2-adic orders, it suffices to ensure that ν2(r4 − 1) ≥ max{`4,2`6} (where,
as before, r4 := q4 + 1− t4). As we shall see it will suffice to take ν2(r4 − 1) ≥ 34.

Of the above properties, the most restrictive one is 2-adicity, because it requires seeing
enough curves until, “by sheer statistics”, one finds (q4, t4) with a high-enough value for
ν2(r4 − 1). Collecting enough samples is costly because, as discriminant size increases,
the density of MNT curves decreases: empirically, one finds that the number MNT curves
with discriminant D ≤ N is (approximately) less than

√
N [KT08].

An extensive computation for a suitable cycle. Overall, finding and constructing a
suitable cycle required a substantial computational effort.
– Cycle discovery. In order to find suitable parameters for a cycle, we explored a

large space: all discriminants up to 1.1 · 1015, requiring about 610,000 core-hours
on a large cluster of modern x86 servers. Our search algorithm is a modification

8 Alas, since E4 has a low embedding degree, the ECDLP in E(Fq4) and DLP in F4
q4 are

“unbalanced”: the former provides 120 bits of security, while the latter only 80. Moreover, the
same is true for E6: the ECDLP in E(Fq6) provides 120 bits of security, while the DLP in F6

q4

only 80. Finding PCD-friendly cycles without these inefficiencies is an open problem
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of [KT08, Algorithm 3]. Among all the 2-cycles that we found, we selected parameters
(q4, t4) and (q6, t6) for a 2-cycle (E4, E6) of curves such that: (i) q4, q6 each have 298
bits; (ii) q4, q6 are towering friendly; and (iii) ν2(r4 − 1) = 34 and ν2(r6 − 1) = 17.
The bit length of q4, q6 is higher than the lower bound of 240; we entail this cost so to
pick a rare cycle with high 2-adicity, which helps the zk-SNARK’s efficiency more
than the slowdown incurred by the higher bit length.

– Cycle construction. Both E4 and E6 have discriminant 614144978799019, whose
size requires state-of-the-art techniques in the CM method [Sut11, ES10, Sut12] in
order to explicitly construct the curves.9

Below, we report the parameters and equations for the 2-cycle (E4, E6) that we selected.

E4/Fq4 : y2 = x3 +A4x+B4 where
A4 = 2,

B4 = 423894536526684178289416011533888240029318103673896002803341544124054745019340795360841685,

q4 = 475922286169261325753349249653048451545124879242694725395555128576210262817955800483758081.

E6/Fq6 : y2 = x3 +A6x+B6 where
A6 = 11,

B6 = 106700080510851735677967319632585352256454251201367587890185989362936000262606668469523074,

q6 = 475922286169261325753349249653048451545124878552823515553267735739164647307408490559963137.

Security. One may wonder if curves lying on PCD-friendly cycles are weak (e.g.,
in terms of DL hardness). Yet, MNT4 and MNT6 curves of suitable parameters are
widely believed to be secure, and they all fall in PCD-friendly 2-cycles. The additional
requirement of high 2-adicity is not known to cause weakness either.

3.3 A matched pair of preprocessing zk-SNARKs

Based on the cycle (E4, E6), we designed and constructed two preprocessing zk-SNARKs
for arithmetic circuit satisfiability: (G4, P4, V4) based on the curve E4, and (G6, P6,
V6) on E6. The software implementation follows [BCTV14b], the fastest preprocessing
zk-SNARK implementation for circuits at the time of writing. We thus adapt the tech-
niques in [BCTV14b] to our algebraic setting, which consists of the two MNT curves
E4 and E6, and achieve efficient implementations of (G4, P4, V4) and (G6, P6, V6).

The implementation itself entails many algorithmic and engineering details, and we
refer the reader to [BCTV14b] for a discussion of these techniques. We only provide a
high-level efficiency comparison between the preprocessing zk-SNARK of [BCTV14b]
based on Edwards curves (also at 80-bit security), and our implementations of (G4, P4,
V4) and (G6, P6, V6); see the full version of this paper. Our implementation is slower,
because of two main reasons: (i) MNT curves do not enjoy advantageous properties that
Edwards curves do; and (ii) the modulus sizes are larger (298 bits in our case vs. 180
bits in [BCTV14b]). On the other hand, the fact that MNT curves lie on a PCD-friendly
2-cycle is crucial for the PCD construction described next.

9 The authors are grateful to Andrew V. Sutherland for generous help in running the CM method
on such a large discriminant.

13



4 Evaluation on vnTinyRAM

We evaluate our scalable zk-SNARK when the given random-access machine M equals
vnTinyRAM, a simple RISC von Neumann architecture [BCTV14b, BCG+13b]. For
comparison, we also compare [BCTV14b]’s preprocessing zk-SNARK (which also
supports vnTinyRAM) with our scalable zk-SNARK.

We ran our experiments on a desktop PC with a 3.40 GHz Intel Core i7-4770 CPU
and 16 GB of RAM available. Unless otherwise specified, all times are in single-thread
mode; as for our multi-core experiments, we enabled one thread for each of the CPU’s 4
cores (for a total of 4 threads).

Recalling vnTinyRAM. The architecture vnTinyRAM is parametrized by the word size,
denoted w, and the number of registers, denoted k. In terms of instructions, vnTinyRAM
includes load and store instructions for accessing random-access memory (in byte or word
blocks), as well as simple integer, shift, logical, compare, move, and jump instructions.
Thus, vnTinyRAM can efficiently implement control flow, loops, subroutines, recursion,
and so on. Complex instructions (e.g., floating-point arithmetic) are not directly supported
and can be implemented “in software”. See the full version of this paper for how
vnTinyRAM can be expressed in our random-access machine formalism (i.e., given w, k,
how to construct M to express w-bit vnTinyRAM with k registers).

Costs on vnTinyRAM. The performance of our zk-SNARK (G?, P ?, V ?) on vnTinyRAM
is easy to characterize, because it is determined by few quantities. For the key generator
G?, the relevant quantities are:
– the constant time and space complexity of G?, when given as input a description of

vnTinyRAM; and
– the constant sizes of the generated proving key pk and verification key vk.
For the proving algorithm P ?, which proceeds step by step alongside the original
computation, they are:
– the constant time necessary to incrementally compute the new (constant-size) proof at

each step; and
– the constant space needed to compute the new proof (on top of the space needed by

the original program).10

Finally, the verifier V ? takes as input a program P and a time bound T , and runs in time
O(|P| + log T ); in our implementation, we fix T ≤ 2300 (plenty enough), so that V ?

runs in time O(|P|).
In Figure 1, we report our measurements for two settings of vnTinyRAM: (w, k) =

(16,16) and (w, k) = (32,16), i.e., 16-bit and 32-bit vnTinyRAM with 16 registers. (The
same settings as in [BCTV14b].)

Comparison with [BCTV14b]. In Figure 2, we compare the efficiency of [BCTV14b]’s
preprocessing zk-SNARK and our scalable zk-SNARK, for a (random) program P of
104 instructions, as a function of T (the number of vnTinyRAM computation steps).

10 The prover also needs to store the Merkle tree’s intermediate hashes, which incurs a linear
overhead in the program’s space complexity. Since this overhead is small, and can even be
reduced by saving only the high levels of the Merkle tree (and recomputing, “on demand”, the
local neighborhood of accessed leaves), we focus on the additive overhead needed for proving.
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16-bit vnTinyRAM 32-bit vnTinyRAM

(w, k) = (16,16) (w, k) = (32,16)

key generatorG?

TIME
1 thread 4 threads 1 thread 4 threads

total 44.5 s 15.9 s 53.8 s 19.4 s
SPACE

memory 1.0GB 1.2GB 1.1GB 1.4GB
pk size 51.5MB 64.4MB
vk size 1.3 kB 1.3 kB

prover P?

TIME
1 thread 4 threads 1 thread 4 threads

per step 33.1 s 11.5 s 35.5 s 12.1 s
SPACE

memory 0.9GB 1.2GB 1.1GB 1.3GB
proof 374 B 374 B

verifier V ?

TIME
|P| = 10 23.6ms 24.3ms
|P| = 102 24.1ms 24.9ms
|P| = 103 30.1ms 31.1ms
|P| = 104 91.0ms 94.1ms
in general ≈ (23.48 + 0.00674|P|) ms ≈ (24.17 + 0.00698|P|) ms

Fig. 1: Performance of our scalable zk-SNARK on 16-bit and 32-bit vnTinyRAM.

The (approximate) asymptotic efficiency for [BCTV14b] was obtained by linearly
interpolating [BCTV14b]’s measurements (which were collected on a machine with
similar characteristics as our benchmarking machine). As for our measurements, we use
the relevant numbers from Figure 1.

key generator key sizes prover verifier
TIME SPACE |pk| |vk| TIME SPACE TIME

16-bit vnTinyRAM [BCTV14b] 0.09 · T s 1.8 · T MB 0.3 · T MB 40.4 kB 0.04 · T s 1.9 · T MB 24.2ms
(w, k) = (16,16) this work 44.5 s 933 MB 51.5MB 1.3 kB 33.1 · T s 873MB 91.0ms

32-bit vnTinyRAM [BCTV14b] 0.14 · T s 3.0 · T MB 0.4 · T MB 80.3 kB 0.05 · T s 3.1 · T MB 41.0ms
(w, k) = (32,16) this work 53.8 s 1,082 MB 64.4MB 1.3 kB 35.5 · T s 1,008MB 94.1ms

Fig. 2: Comparison between [BCTV14b]’s preprocessing zk-SNARK and our scalable zk-SNARK.

Conclusion. Our experiments demonstrate that, as expected, our approach is slower
for small computations but, on the other hand, offers scalability to large computations by
avoiding any space-intensive computations.

Indeed, [BCTV14b] (as well as other preprocessing zk-SNARK implementations
[PGHR13, BCG+13a]) require space-intensive computations to maintain their efficiency.
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As T grows, such approaches simply run out of memory, and must resort to “computing
in blocks”, sacrificing time complexity.

In contrast, our zk-SNARK, while requiring more time per execution step, merely
requires a constant amount of memory to prove any number of execution steps. In
particular, our zk-SNARK becomes more space-efficient than [BCTV14b]’s zk-SNARK
when T > 460 for 16-bit vnTinyRAM, and when T > 326 for 32-bit vnTinyRAM;
moreover, these savings in space grow unbounded as T increases.

Finally, being scalable, our zk-SNARK implementation is the first to achieve a
well-defined clock rate of verified instructions per second (VIPS). Concretely, for
vnTinyRAM, we obtain the following VIPS values:

16-bit vnTinyRAM 32-bit vnTinyRAM
(w, k) = (16,16) (w, k) = (32,16)

1 thread VIPS = 1
33.1

Hz VIPS = 1
35.5

Hz

4 threads VIPS = 1
11.5

Hz VIPS = 1
12.1

Hz

While perhaps too slow for most applications, our prototype empirically demonstrates the
feasibility of the bootstrapping approach as a way to achieve scalability of zk-SNARKs
and, more generally, to achieve the rich functionality of proof-carrying data.
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