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Abstract. We present a quantum position verification scheme in the ran-
dom oracle model. In contrast to prior work, our scheme does not require
bounded storage/retrieval/entanglement assumptions. We also give an efficient
position-based authentication protocol. This enables secret and authenticated
communication with an entity that is only identified by its position in space.

1 Introduction

What is position verification? Consider the following setting: A device P
wishes to access a location-based service. This service should only be available to
devices in a certain spacial region P, e.g., within a sports stadium. The service
provider wants to be sure no malicious device outside P accesses the service. In
other words, we need a protocol such that a prover P can prove to a verifier V
that P is at certain location. Such a protocol is called a position verification (PV)
scheme. A special case of position verification is distance bounding : P proves that
he is within a distance δ of V . In its simplest form, this is done by V sending
a random message r to P , and P has to send it back immediately. If r comes
back to V in time t, P must be within distance tc/2 where c is the speed of light.
In general, however, it may not be practical to require a device V in the middle
of a spherical region P. (E.g., P might be a rectangular room.) In general PV,
thus, we assume several verifier devices V1, . . . , Vn, and a prover P somewhere
in the convex hull of V1, . . . , Vn. The verifiers should then interact with P in
such a way that based on the response times of P , they can make sure that P
is at the claimed location (a kind of triangulation). Unfortunately, [5] showed
that position verification based on classical cryptography cannot be secure, even
when using computational assumptions, if the prover has several devices at
different locations (collusion). [4] showed impossibility in the quantum setting,
but only for information-theoretically secure protocols. Whether a protocol in
the computational setting exists was left open.1 In this work, we close this gap
and give a simple protocol in the random oracle model.

Applications. The simplest application of PV is just for a device to prove that it
is at a particular location to access a service. In a more advanced setting, location
can be used for authentication: a prover can send a message which is guaranteed to
have originated within a particular region (position-based authentication, PBA).
1 But both [5,4] give positive results assuming bounded retrieval/entanglement, see
“related work” below.
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Fig. 1: Message flow in [4,11]. Secu-
rity is only guaranteed if no entan-
glement is created before the shaded
region. The scheme can be attacked
if P ∗2 sends EPR pairs to P ∗1 , P ∗3 who
then can execute the attack from [8,
Section I].

Finally, when combining PBA with quan-
tum key distribution (QKD), an encrypted
message can be sent in such a way that only
a recipient at a certain location can decrypt
it. (E.g., think of sending a message to an
embassy – you can make sure that it will be
received only in the embassy, even if you do
not know the embassy’s public key.) More
applications are position-based multi-party
computation and position-based PKIs, see
[5].

Our contribution. We present the first
PV and PBA schemes secure against
colluding provers that do not need
bounded storage/retrieval/entanglement as-
sumptions. (Cf. “related work” below.) Our
protocols use quantum cryptography and are proven secure in the (quantum)
random oracle model, and they work in the 3D setting. (Actually, in any number
of dimensions, as well as in curved spacetime.2) Using [4], this also immediately
implies position-based QKD. (And we even get everlasting security , i.e., if the
adversary breaks the hash function after the protocol run, he cannot break the
secrecy of the protocol.)

We also introduce a methodology for analyzing quantum circuits in spacetime
which we believe simplifies the rigorous analysis of protocols that are based on
the speed of light (such as, e.g., PV or relativistic commitments [7,6]). And for
the first time (to our knowledge), a security analysis uses adaptive programming
of the quantum random oracle (in our PBA security proof).3

Related work. [5] showed a general impossibility of computationally secure PV
in the classical setting; [4] showed the impossibility of information-theoretically
secure PV in the quantum setting. [5] proposed computationally secure protocols
for PV and position-based key exchange in the bounded retrieval model. Their
model assumes that a party can only retrieve part of a large message reaching
it. In particular, a party cannot forward a message (“reflection attacks” in the
language of [5]); this may be difficult to ensure in practice because a mirror
might be such a forwarding device. [4,11] provide a quantum protocol that is
secure if the adversary can have no/limited entanglement before receiving the
verifiers’ messages. (I.e., in the message flow diagram Figure 1, only in the shaded
areas.) In particular, using the message flow drawn in Figure 1, the attack from

2 At the first glance, taking curvature of spacetime into account might seem like overkill.
But for example GPS needs to take general relativity into account to ensure precise
positioning (see, e.g., [1]). There is no reason to assume that this would not be the
case for long-distance PV.

3 The semi-constant distribution technique from [13] programs the random oracle before
the first adversary invocation, i.e., only non-adaptive programming is possible.
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Fig. 2: One-dimensional PV protocol.
Dotted lines indicate additional message
flows of the adversary P ∗1 , P ∗2 .

[8, Section I] can be applied, even though
no entanglement is created before the
protocol start (t = 0) and no entangle-
ment needs to be stored. This makes the
assumption difficult to justify. Our pro-
tocol is an extension of theirs, essentially
adding one hash function application. [4]
also gives a generic transformation from
PV to PBA; however, their construction
is considerably less efficient than our spe-
cialized one and does not achieve con-
current security (see the discussion after
Definition 7 below). Furthermore, the
protocols from [4,11] only work in the
one-dimensional setting. ([4] has a con-
struction for the 3D case, but their proof
seems incorrect, see the full version [12]
for a discussion.)

Organization. In Section 2 we first explain our scheme in the 1D case. In
Section 3.1 we explain the difficulties occurring in the 3D case which we solve in
Sections 3.2 and 3.3. In Section 4 we present our PBA scheme. Full proofs and
further discussion are deferred to the full version [12].

1.1 Preliminaries

ω(x) denotes the Hamming weight of x. h(p) = −p log p − (1 − p) log(1 − p)
denotes the binary entropy. |x| denotes the absolute value or cardinality of x.
‖x‖ denotes the Euclidean norm. x $←M means x is uniformly random from M ,
and x←A() means x is chosen by algorithm A.

For a background in quantum mechanics, see [9]. But large parts of this paper
should be comprehensible without detailed knowledge on quantum mechanics. For
x ∈ {0, 1}n, |x〉 denotes the quantum state x encoded in the computational basis,
and |Ψ〉 denotes arbitrary quantum states (not necessarily in the computational
basis). 〈Ψ | is the conjugate transpose of |Ψ〉. For B ∈ {0, 1}n, |x〉B denotes x en-
coded in the bases specified by B, more precisely |x〉B = HB1 |x1〉⊗· · ·⊗HBn |xn〉
where H is the Hadamard matrix. An EPR pair has state 1√

2
|00〉 + 1√

2
|11〉.

TD(ρ, ρ′) denotes the trace distance between states ρ, ρ′. Given a (quantum)
oracle algorithm A and a function H, AH() means that A has oracle access to
H and can query H on different inputs in superposition. This is important for
modeling the quantum random oracle correctly [3].

2 1D position verification

In this section, we consider the case of one-dimensional PV only. That is, all
verifiers and the honest and malicious provers live on a line. Although this is an



unrealistic setting, it allows us to introduce our construction and proof technique
in a simpler setting without having to consider the additional subtleties arising
from the geometry of intersecting light cones. We also suggest the content of this
section for teaching.

We assume the following specific setting: There are two verifiers V1 and V2 at
positions −1 and 1, and an honest prover P at position 0. The verifiers will send
messages at time t = 0 to the prover P , who receives them at time t = 1 (i.e., we
assume units in which the speed of light is c = 1), and his immediate response
reaches the verifiers at time t = 2. In an attack, we assume that the malicious
prover has devices P ∗1 and P ∗2 left and right of position 0, but no device at position
0 where the honest prover is located. See Figure 2 for a depiction of all message
flows in this setting. This setting simplifies notation and is sufficient to show all
techniques needed in the 1D case. The general 1D case (P not exactly in the
middle, more malicious provers, not requiring P ’s responses to be instantaneous)
will be a special case of the higher dimensional theorems in Section 3.3.

In this setting, we use the following PV scheme:

Definition 1 (1D position verification). Let n (number of qubits) and ` (bit
length of classical challenges) be integers, 0 ≤ γ < 1/2 (fraction of allowed errors).
Let H : {0, 1}` → {0, 1}n be a hash function (modeled as a quantum random
oracle).
– Before time t = 0, verifier V1 picks uniform x1, x2 ∈ {0, 1}`, ŷ ∈ {0, 1}n and

forwards x2 to V2 over a secure channel.
– At time t = 0, V1 sends |Ψ〉 and x1 to P . Here B := H(x1⊕x2), |Ψ〉 := |ŷ〉B.
And V2 sends x2 to P .

– At time t = 1, P receives |Ψ〉, x1, x2, computes B := H(x1 ⊕ x2), measures
|Ψ〉 in basis B to obtain outcome y1, and sends y1 to V1 and y2 := y1 to V2.
(We assume all these actions are instantaneous, so P sends y1, y2 at time
t = 1.)

– At time t = 2, V1 and V2 receive y1, y2. Using secure channels, they check
whether y1 = y2 and ω(y1 − ŷ) ≤ γn. If so (and y1, y2 arrived in time), they
accept.

We can now prove security in our simplified setting.

Theorem 2 (1D position verification). Assume P ∗1 and P ∗2 perform at most
q queries to H. Then in an execution of V1, V2, P ∗1 , P ∗2 with V1, V2 following the
protocol from Definition 1, the probability that V1, V2 accept is at most 4

2q2−`/2 +
(
2h(γ)

1 +
√
1/2

2

)n
.

Proof. To prove this theorem, we proceed using a sequence of games. The
first game is the original protocol execution, and in the last game, we will
be able to show that Pr[Accept] is small. Here we abbreviate the event
“y1 = y2 and ω(y1 − ŷ) ≤ γn” as “Accept”.
4 This probability is negligible if γ ≤ 0.037 and n, ` are superlogarithmic.
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Fig. 3: Spacetime diagram depicting various steps
of the proof of Theorem 2.

Game 1 An execution as de-
scribed in Theorem 2.

As a first step, we use EPR
pairs to delay the choice of the
basis B. This is a standard
trick that has been used in
QKD proofs and other settings.
By choosing B sufficiently late,
we will be able to argue below
that B is independent of the
state of P ∗1 and P ∗2 .

Game 2 As in Game 1, ex-
cept that V1 prepares n EPR
pairs, with their first qubits
in register X and their second
qubits in Y . Then V1 sends X
at time t = 0 instead of send-
ing |Ψ〉. At time t = 2, V1 measures Y in basis B := H(x1 ⊕ x2), the outcome
is ŷ.

Note in particular that V1, V2 never query H before time t = 2. (But P ∗1 , P ∗2
might, of course.) It is easy to verify (and well-known) that for any B ∈ {0, 1},
preparing a qubit X := |y〉B for random y ∈ {0, 1} is perfectly indistinguishable
(when given X, y,B) from producing an EPR pair XY , and then measuring Y
in bases B to get outcome y. Thus Pr[Accept : Game 1] = Pr[Accept : Game 2].

The problem now is that, although we have delayed the time when the basis
B is used, the basis is still chosen early: At time t = 0, the values x1, x2 are
chosen, and those determine B via B = H(x1 ⊕ x2). We have that neither P ∗1
nor P ∗2 individually knows B, but that does not necessarily exclude an attack.
(For example, [8, Section I] gives an efficient attack for the case that H is the
identity, even though in this case B would still not be known to P ∗1 nor P ∗2
individually before time t = 1.) We can only hope that H is a sufficiently complex
function such that computationally, B is “as good as unknown” before time t = 1
(where x1 and x2 become known to both P ∗1 , P ∗2 ). The next game transformation
formalizes this:

Game 3 As in Game 1, except that at time t = 1, the value B $←{0, 1}n is
chosen, and the random oracle is reprogrammed to return H(x1 ⊕ x2) = B after
t = 1.

To clarify this, if H0 : {0, 1}` → {0, 1}n denotes a random function chosen
at the very beginning of the execution, then at time t ≤ 1, H(x) = H0(x) for
all x ∈ {0, 1}`, while at time t > 1, H(x0 ⊕ x1) = B and H(x) = H0(x) for all
x 6= x0 ⊕ x1.



Intuitively, the change between Games 2 and 3 cannot be noticed because
before time t = 1, the verifiers never query H(x1 ⊕ x2), and the provers cannot
query H(x1⊕x2) either: before time t, in no spacial location the prover will have
access to both x1 and x2.

This is illustrated in Figure 3: The hatched areas represent where x1 and x2
are known respectively. Note that they do not overlap. The dashed horizontal
line represents where the random oracle is programmed (t = 1).

Purists may object that choosing B and programming the random oracle
to return B at all locations in a single instant in time needs superluminal
communication which in turn is know to violate causality and might thus lead
to inconsistent reasoning. Readers worried about this aspect should wait until
we prove the general case of the PV protocol in Section 3.3, there this issue
will not arise because we first transform the whole protocol execution into a
non-relativistic quantum circuit and perform the programming of the random
oracle in that circuit.

To prove that Games 2 and 3 are indistinguishable, we use the following
lemma shown in the full version.

Lemma 3. Let H : {0, 1}` → {0, 1}n be a random oracle. Let (A1, A2) be oracle
algorithms sharing state between invocations that perform at most q queries to
H. Let C1 be an oracle algorithm that on input (j, x) does the following: Run
AH1 (x) till the j-th query to H, then measure the argument of that query in the
computational basis, and output the measurement outcome. (Or ⊥ if no j-th
query occurs.) Let

P 1
A := Pr[b′ = 1 : H

$←({0, 1}` → {0, 1}n), x←{0, 1}`, AH1 (x), b′←AH2 (x,H(x))]

P 2
A := Pr[b′ = 1 : H

$←({0, 1}` → {0, 1}n), x←{0, 1}`, B $←{0, 1}n,
AH1 (x), H(x) := B, b′←AH2 (x,B)]

PC := Pr[x = x′ : H
$←({0, 1}` → {0, 1}n), x←{0, 1}`, j $←{1, . . . , q}, x′←CH1 (j, x)]

Then |P 1
A − P 2

A| ≤ 2q
√
PC .

In other words, an adversary can only notice that the random oracle is re-
programmed at position x if he can guess x before the reprogramming takes
place.

To apply Lemma 3 to Games 2 and 3, let AH1 (x) be the machine that executes
verifiers and provers from Game 2 until time t = 1 (inclusive). When V1 chooses
x1, x2, AH1 (x) chooses x1

$←{0, 1}` and x2 := x ⊕ x1. And let AH2 (x,B) be the
machine that executes verifiers and provers after time t = 1. When V1 queries
H(x1 ⊕ x2), AH2 uses the value B instead. In the end, AH2 returns 1 iff y1 = y2
and ω(ŷ − y1) ≤ γn. (See Figure 3 for the time intervals handled by AH1 ,AH2 .)
Since V1, V2 make no oracle queries except for H(x1⊕x2), and since P ∗1 , P ∗2 make
at most q oracle queries, we have that AH1 , AH2 perform at most q queries.

By construction, P 1
A = Pr[Accept : Game 2]. And P 2

A = Pr[Accept : Game 3].
And PC = Pr[x′ = x1 ⊕ x2 : Game 4] for the following game:



Game 4 Pick j $←{1, . . . , q}. Then execute Game 2 till time t = 1 (inclusive),
but stop at the j-th query and measure the query register. Call the outcome x′.

Since Game 4 executes only till time t = 1, and since till time t = 1, no gate can
be reached by both x1, x2 (note: at time t = 1, at position 0 both x1, x2 could
be known, but no malicious prover may be at that location), the probability that
x1⊕x2 will be guessed is bounded by 2−`. Hence Pr[x′ = x1⊕x2 : Game 3] ≤ 2−`.
(This argument was a bit nonrigorous; we will be more precise in the proof of the
generic case, in the proof of Theorem 6.)

Thus by Lemma 3, we have∣∣Pr[Accept : Game 2]− Pr[Accept : Game 3]
∣∣ = |P 1

A − P 2
A| ≤ 2q

√
PC

= 2q
√

Pr[x′ = x1 ⊕ x2 : Game 4] ≤ 2q2−`/2. (1)

We continue to modify Game 3.

Game 5 Like Game 3, except that for time t > 1, we install a barrier at position 0
(i.e., where the honest prover P would be) that lets no information through.

The barrier is illustrated in Figure 3 with a thick vertical line.
Time t = 1 is latest time at which information from position 0 could reach

the verifiers V1, V2 at time t ≤ 2. Since we install the barrier only for time
t > 1, whether the barrier is there or not cannot influence the measurements
of V1, V2 at time t = 2. And Accept only depends on these measurements. Thus
Pr[Accept : Game 3] = Pr[Accept : Game 5].

Let ρ be the state of the execution of Game 5 directly after time t = 1 (i.e.,
after the gates at times t ≤ 1 have been executed). Then ρ is a threepartite
state consisting of registers Y , L, R where Y is the register containing the EPR
qubits which will be measured to give ŷ (cf. Game 2), and L and R are the
quantum state left and right of the barrier respectively. Then ŷ is the result
of measuring Y in basis B, and y1 is the result of applying some measurement
M1 to L (consisting of all the gates left of the barrier), and y2 is the result of
applying some measurement M2 to R. Notice that due to the barrier, M1 and
M2 operate only on L and R, respectively, without interaction between those
two. We have thus:

Pr[Accept : Game 5] = Pr[y1 = y2 and ω(ŷ − y1) ≤ γn : B
$←{0, 1}n, Y LR←ρ,

ŷ←MB(Y ), y1←M1(L), y2←M2(R)]

where Y LR←ρ means initializing Y LR with state ρ. And MB is a measurement
in bases B. And ŷ←MB(Y ) means measuring register Y using measurement MB

and assigning the result to ŷ. And y1←M1(L), y2←M2(R) analogously.
The rhs of this equation is a so-called monogamy of entanglement game,

and [11] shows that the rhs is bounded by
(
2h(γ)

1+
√

1/2

2

)n
. Thus Pr[Accept :

Game 5] ≤
(
2h(γ)

1+
√

1/2

2

)n
. And from (1) and the equalities between games, we

have
∣∣Pr[Accept : Game 1]− Pr[Accept : Game 5]

∣∣ ≤ 2q2−`/2.
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Thus altogether Pr[Accept : Game 1] ≤ 2q2−`/2 +
(
2h(γ)

1+
√

1/2

2

)n
. �

3 Position verification in higher dimensions

3.1 Difficulties

Excepting special cases where the honest prover happens to lie on a line between
two verifiers, one-dimensional PV with two verifiers is not very useful. We therefore
need to generalize the approach to three dimensions. It turns out that some
non-trivialities occur here. For n-dimensional PV we need at least n+1 verifiers.5
To illustrate the problems occurring in the higher dimensional case, we sketch
what happens if we try to generalize the protocol and proof from Section 2 to
the 2D case.

In the 2D case we need at least three verifiers V1, V2, V3. Let’s assume that
they are arranged in a equilateral triangle, each at distance 1 from an honest
prover P in the center. (Cf. Figure 4 (a).) V1 sends a quantum state |Ψ〉, and
all Vi send a random xi. At time t = 1, all xi are received by P who computes
B := H(x1 ⊕ x2 ⊕ x3) and measures |Ψ〉 in basis B, yielding the value y to be
sent to V1, V2, V3.

Now as in Section 2 we can argue that before time t = 1, there is no point in
space where all x1, x2, x3 are known. Hence B := H(x1 ⊕ x2 ⊕ x3) will not be
queried before t = 1. Hence by programming the random oracle (using Lemma 3)
5 PV (in Euclidean space) can only work if the prover P is in the convex hull C of the
verifiers. Otherwise, if we project P onto the hypersurface H separating C from P ,
we get a point P ′ that is closer to any point of C than P . Since the convex hull of n
provers can at most be n− 1 dimensional, we need at least n+ 1 provers to get an n
dimensional convex hull.



Fig. 5: The surface S in spacetime at which B is sampled. The dots floating over S
denote when the verifiers need to receive y (i.e., the dots are at time 2 and space
V1, V2, V3). The thick black lines enclose the areas R1, R2, R3 on S from which the
verifiers can be reached in time. (Right: top view. In PDF: click figures for interaction.)

we can assume that the basis B is chosen randomly only at time t = 1. In
Section 2 we then observed that space is partitioned into two disjoint regions:
Region L from which light can reach V1 by time t = 2, and region R from which
light can reach V2 by time t = 2. The results from [11] then imply that the correct
y cannot be obtained from two independent (but possibly entangled) quantum
registers L and R simultaneously. What happens if we apply this reasoning in
the 2D case? Figure 4 (a) depicts the three regions R1, R2, R3 of points that can
reach V1, V2, V3 until time t = 2. These regions are not disjoint! We cannot argue
that measuring y in each of these regions violates the monogamy of entanglement,
y does not result from measuring separate quantum registers.

Can we fix this? The most obvious consequence would be to weaken the
security claim: “A malicious prover which has devices anywhere except at point
P or distance δ from P cannot make the verifiers accept.” Then the time tδ when
the random oracle is programmed is the earliest time at which some point at
distance δ from P has access to all x1, x2, x3. Then R1, R2, R3 are the regions
from which light can travel to V1, V2, V3 within time 2− tδ. We can compute that
they are disjoint iff δ >

√
4−
√
12− 1

2 ≈ 0.23. (Cf. Figure 4 (b).) This means
that the malicious prover is only guaranteed to be within a circle of diameter 2δ,
which is about 46% of the distance between prover and verifier. In the 3D case,
using a numerical calculation, we even get δ ≈ 0.38.

Can we improve on this bound? Indeed, when we said that the B is sampled
at time t = 1, this was not a tight analysis. At time t = 1, the query B =
H(x1 ⊕ x2 ⊕ x3) can only occur at point P . The farther away from P we get,
the later we get all of x1, x2, x3. Thus, if we plot the earliest time of querying B
as a function of space, we get a surface S in 3D spacetime (Figure 5) which is
not a plane. Now, instead of considering the state of the provers at time t = 1,
we consider the state of the prover on S. (I.e., the state of all devices of the
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prover at points in spacetime in S.) We ask the reader to take it on trust for
the moment this is actually a well-defined state. And now we can again ask
whether S decomposes into distinct regions R1, R2, R3 if we consider regions that
can reach the verifiers V1, V2, V3 by time t = 2. (See Figure 5.) This approach
has the potential of giving a much tighter security analysis. However, it is quite
complicated to reason about the geometry of S and R1, R2, R3, and in the 3D
case things will get even more complicated. Therefore in the following section we
will take an approach that abstracts away from the precise geometry of spacetime
and uses a more generic reasoning. This has the twofold advantage that we do not
need to analyze what S actually looks like (although S implicitly occurs in the
proof), and that our result will be much more general: it holds in any number of
dimensions, and it even holds if we consider curved spacetime (general relativity
theory). To state and prove our results, we first need to introduce some (simple)
notation from general relativity theory.

3.2 Circuits in spacetime

Spacetime is the set of all locations in space and time. That is, intuitively
spacetime consists of all tuples (t, x1, . . . , xn) where t is the time and x1, . . . , xn
is the position in space. Such a location in spacetime is called an event. Relativity
theory predicts that there is no natural distinction between the time coordinate
t and the space coordinates x1, . . . , xn. (In a similar way as in “normal” space
there is no reason why three particular directions in space are coordinates.) As it
turns out, for analyzing our PV protocol, we do not need to know the structure
of spacetime, so in the following spacetime will just be some set of events, with
no particular structure.6 However, the reader may of course assume throughout
the paper that spacetime consists of events (t, x1, . . . , xn) with t, x1, . . . , xn ∈ R.
This is called flat spacetime.

The geometry of spacetime (to the extent needed here) is described by a
partial order on the events: We say x causally precedes y (x≺y) iff information
originating from event x can reach event y. Or in other words, if you can get from x
to y traveling at most the speed of light. In flat spacetime, this relation is familiar:
(tx, x1, . . . , xn)≺(ty, y1, . . . , yn) iff tx ≤ ty and ‖(x1, . . . , xn)− (y1, . . . , yn)‖ ≤
ty − tx.

Given this relation, we can define the causal future C+(x) of an event x as
the set of all events reachable from x, C+(x) := {y : x ≺ y}. Similarly, we define
the causal past C−(x) := {y : y ≺ x}.

In the case of flat spacetime, the causal future of x = (t, x1, . . . , xn) is an
infinite cone with its point at x and extending towards the future. Thus it is also
called a future light cone. Similarly the causal past of x is an infinite cone with
its point at x extending into the past.
6 For readers knowledgeable in general relativity: We do assume that spacetime is
a Lorentzian manifold which is time-orientable (otherwise the notions of causal
future/past would not make send) without closed causal curves (at least in the
spacetime region where the protocol is executed; otherwise quantum circuits may
end up having loops).



This language allows us to express quantum computations in space that do
not transfer information faster than light. A spacetime circuit is a quantum circuit
where every gate is at a particular event. There can only be a wire from a gate at
event x to a gate at event y if x causally precedes y (x ≺ y). Note that since ≺ is a
partial order and thus antisymmetric, this ensures that a circuit cannot be cyclic.
Note further that there is no limit to how much computation can be performed
in an instant since ≺ is reflexive. We can model malicious provers that are not
at the location of an honest prover by considering circuits with no gates in P,
where P is a region in spacetime. (This allows for more finegrained specifications
than, e.g., just saying that the malicious prover is not within δ distance of the
honest prover. For example, P might only consist of events within a certain
time interval; this means that the malicious prover is allowed to be at any space
location outside that time interval.) Notice that a spacetime circuit is also just a
normal quantum circuit if we forget where in spacetime gates are located. Thus
transformations on quantum circuits (such as changing the execution order of
commuting gates) can also be applied to spacetime circuits, the result will be a
valid circuit, though possibly not a spacetime circuit any more.

3.3 Achieving higher-dimensional position verification

We can now formulate the definition of secure PV in higher dimensions using the
language from the previous section.

Definition 4 (Sound position verification). Let P be a region in spacetime.
A position verification protocol is sound for P iff for any non-uniform polynomial-
time7 spacetime circuit P ∗ that has no gates in P, the following holds: In an
interaction between the verifiers and P ∗, the probability that the verifiers accept
(the soundness error) is negligible.

The smaller the region P is, the better the protocol localizes the prover. Informally,
we say the protocol has higher precision if P is smaller.

Next, we describe the generalization of the protocol in Section 2. In this
generalization, only two of the verifiers check whether the answers of the prover
are correct. Although we believe that we get higher precision if more verifiers
check the answers, it is an open problem to prove that.

Definition 5 (Position verification protocol). Let P be a prover, and P ◦
an event in spacetime (P ◦ specifies where and when the honest prover performs its
computation). Let V1, . . . , Vr be verifiers. Let V +

1 , . . . , V
+
r be events in spacetime

that causally precede P ◦. (V +
i specifies where and when the verifier Vi sends its

challenge.) Let V −1 , V
−
2 be events in spacetime such that P ◦ causally precedes

V −1 , V
−
2 . (V −i specifies where and when Vi expects the prover’s response.)

7 Non-uniform polynomial-time means that we are actually considering a family of
circuits of polynomial size in the security parameter, consisting only of standard
gates (from some fixed universal set) and oracle query gates. In addition, we assume
that the circuit is given an (arbitrary) initial quantum state that does not need to
be efficiently computable.



Let n (number of qubits) and ` (bit length of classical challenges) be integers,
and 0 ≤ γ < 1

2 (fraction of allowed errors). Let H : {0, 1}` → {0, 1}n be a hash
function (modeled as a quantum random oracle).
– The verifiers choose uniform x1, . . . , xr ∈ {0, 1}`, ŷ ∈ {0, 1}n. (By communi-
cating over secure channels.)

– At some event that causally precedes P ◦, V0 sends |Ψ〉 to P . Here B :=
H(x1 ⊕ · · · ⊕ xr), |Ψ〉 := |ŷ〉B.

– For i = 1, . . . , r: Vr sends xr to P at event V +
r .

– At event P ◦, P will have |Ψ〉, x1, . . . , xr. Then P computes B := H(x1 ⊕
· · · ⊕ xr), measures |Ψ〉 in basis B to obtain outcome y1, and sends y1 to V1
and y2 := y1 to V2.

– At events V −1 , V
−
2 , V1 and V2 receive y1, y2. Using secure channels, the

verifiers check whether y1 = y2 and ω(y1 − ŷ) ≤ γn. If so (and y1, y2 indeed
arrived at V −1 , V

−
2 ), the verifiers accept.

In the protocol description, for simplicity we assume that V1, V2 are the
receiving verifiers. However, there is no reason not to choose other two verifiers,
or even additional verifiers not used for sending. Similarly, |Ψ〉 could be sent by
any verifier, or by an additional verifier. In the analysis, we only use the events
at which different messages are sent/received, not which verifier device sends
which message.

Note that this protocol also allows for realistic provers that cannot perform
instantaneous computations: In this case, one chooses the events V −1 , V

−
2 such

that the prover’s messages can still reach them even if the prover sends y1, y2
with some delay.

We can now state the main security result:

Theorem 6. Assume that γ ≤ 0.037 and n, ` are superlogarithmic.
Then the PV protocol from Definition 5 is sound for P :=

⋂r
i=1 C

+(V +
i ) ∩

C−(V −1 ) ∩ C−(V −2 ). (In words: There is no event in spacetime outside of P at
which one can receive the messages xi from all Vi, and send messages that will
be received in time by V1, V2.)

Concretely, if the malicious prover performs at most q oracle queries, then

the soundness error is at most ν :=
(
2h(γ)

1+
√

1/2

2

)n
+ 2q2−`/2.

Notice that the condition on the locations of the provers is tight: If E ∈⋂r
i=1 C

+(V +
i ) ∩ C−(V −1 ) ∩ C−(V −2 ) \ P 6= ∅, then the protocol could even be

broken by a malicious prover with a single device: P ∗ could be at event E, receive
x1, . . . , xr, compute y1, y2 honestly, and send them to V1, V2 in time. The same
reasoning applies to any protocol where only two verifiers receive. Our protocol
is thus optimal in terms of precision under all such protocols.

Proof of Theorem 6. In the following, we write short C+
i for C+(V +

i ) and C−i
for C−(V −i ). We also write

⋂
instead of

⋂r
i=1. The precondition of the theorem

then becomes:
⋂
C+

i ∩ C−1 ∩ C−2 ⊆ P. Let Ω denote all of spacetime.
We now partition the gates in the spacetime circuit P ∗ into several disjoint

sets of gates (subcircuits), depending on where they are located in spacetime.



For each subcircuit, we also give an rough intuitive meaning; those meanings are
not precisely what the subcircuits do but help to guide the intuition in the proof.

Subcircuit Region in spacetime Intuition
P ∗pre (C−1 ∪ C−2) \

⋂
C+

i Precomputation
P ∗P

⋂
C+

i ∩ C−1 ∩ C−2 Gates in P (empty)
P ∗1

⋂
C+

i ∩ C−1 \ C−2 Computing y1
P ∗2

⋂
C+

i ∩ C−2 \ C−1 Computing y2
P ∗post Ω \ C−1 \ C−2 After protocol end

Note that all those subcircuits are disjoint, and their union is all of Ω. The sub-
circuits have analogues in the proof in the one-dimensional case. P ∗pre corresponds
to the gates below the dashed line in Figure 3; P ∗1 to the gates above the dashed
line and left of the barrier; P ∗2 above the dashed line and right of the barrier;
P ∗post to everything that is above the picture. This correspondance is not exact,
because as discussed in Section 3.1, the dashed line needs to be replaced by a
surface S (Figure 5) which is not flat. In our present notation, S is the border
between P ∗pre and the other subcircuits.

In addition, in some abuse of notation, by V1 we denote the circuit at V −1
that receives y1. Similar for V2.

By definition of spacetime circuits, there can only be a wire from gate G1 to
gate G2 if G1, G2 are at events E1, E2 with E1≺E2 (E1 causally precedes E2).
Thus, by definition of causal futures and the transitivity of ≺, there can be no
wire leaving C+

i. Similarly, there can be no wire entering C−i. These two facts
are sufficient to check the following facts:

P ∗1 , P
∗
2 , P

∗
post9P ∗pre, P ∗19P ∗2 , P ∗29P ∗1 ,

P ∗19V2, P ∗29V1, P ∗post9P ∗1 , P
∗
2 , V1, V2.

(2)

Here A9B means that there is no wire from subcircuit A to subcircuit B.
Given these subcircuits, we can write the execution of the protocol as the

following quantum circuit:

P ∗pre

P ∗1

P ∗2

V1

V2

y1

y2

x

P ∗post

|x〉B

(3)

Here x is short for x1, . . . , xr. And we have omitted wires between subcircuits
that are in the transitive hull of the wires drawn. (E.g., there can be a wire from
P ∗pre to V1, but we did not draw it because we drew wires from P ∗pre to P ∗1 to
V1.) Note that P ∗P does not occur in this circuit, because it contains no gates (it
consists of gates in

⋂
C+

i ∩ C−1 ∩ C−2 = P which by assumption contains no
gates).

From (2) it follows that no wires are missing in (3). In particular, (2) implies
that the quantum circuit is well-defined. If we did not have, e.g., P ∗19P ∗pre, there
might be wires between P ∗1 and P ∗pre in both directions; the result would not be



a quantum circuit. We added arrow heads in (2), these are only to stress that the
wires indeed go in the right directions, below we will follow the usual left-to-right
convention in quantum circuits and omit the arrow heads.

The circuit (3) now encodes all information dependencies that we will need,
we can forget that (3) is a spacetime circuit and treat it as a normal quantum
circuit.

We now proceed to analyze the protocol execution using a sequence of games.
The original execution can be written as follows:

Game 1 (Protocol execution) Pick x1, . . . , xr
$←{0, 1}`, ŷ $←{0, 1}n, H $←Fun

where Fun is the set of functions {0, 1}` → {0, 1}n. Let B := H(x1 ⊕ · · · ⊕ xr).
Execute circuit (3) resulting in y1, y2. Let accept := 1 iff y1 = y2 and ω(y1− ŷ) ≤
γn.

To prove the theorem, we need to show that Pr[accept = 1 : Game 1] ≤ ν.
As in the proof of the 1D case, we now delay the choice of x by using EPR

pairs. And we remove the subcircuit P ∗post which clearly has no effect on the
outputs y1, y2.

Game 2 (Using EPR pairs) Pick x1, . . . , xr
$←{0, 1}`, H $←Fun. Let B :=

H(x1 ⊕ · · · ⊕ xr). Execute circuit (4) resulting in y1, y2.
Let accept := 1 iff y1 = y2 and ω(y1 − ŷ) ≤ γn.

P ∗pre

P ∗1

P ∗2

V1

V2

y1

y2

x

|epr〉

MB ŷ

(4)

Here |epr〉 is the state consisting of n EPR pairs, i.e., |epr〉 = 2−n/2
∑
x∈{0,1}n |x〉⊗

|x〉. The top and bottom wire originating from |epr〉 represent the first and last
n qubits, respectively. And MB is the gate that measures n qubits in bases
B ∈ {0, 1}n. The wiggly line can be ignored for now.

As in the 1D case, we use that preparing a qubit X := |y〉B for random
y ∈ {0, 1} is perfectly indistinguishable (when given X, y,B) from producing an
EPR pair XY , and then measuring Y to get outcome y. Thus Pr[accept = 1 :
Game 1] = Pr[accept = 1 : Game 2].

Again like in the 1D case, we will now reprogram the random oracle. That is,
instead of computing B := H(x1 ⊕ · · · ⊕ xr), we pick B $←{0, 1}n at some point
in the execution and then program the random oracle via H(x1 ⊕ · · · ⊕ xr) := B.
The question is: at which point shall we program the random oracle? In the 1D
case, we used the fact that before time t = 1 (dashed line in Figure 3), there is no
event at which both x1 and x2 are known. An analogous reasoning can be done
in the present setting: since P ∗pre consists only of gates outside

⋂
C+

i, it means
that any gate in P ∗pre is outside some C+

i and thus does not have access to xi.



(We will formally prove this later.) So we expect that left of the wiggly line in
(4), H(x1 ⊕ · · · ⊕ xr) occurs with negligible probability only. In other words, the
wiggly line corresponds to the surface S discussed in Section 3.1. In fact, if we
draw the border between P ∗pre and the remaining gates, we get exactly Figure 5
(in the 2D case at least). However, the approach of decomposing spacetime into
subcircuits removes the necessity of dealing with the exact geometry of S.

Formally, we will need to apply Lemma 3. Given a function H and values
x,B, let Hx 7→B denote the function identical to H, except that Hx 7→B(x) = B.
Let AH1 (x) denote the oracle machine that picks x1, . . . , xr−1

$←{0, 1}` and sets
xr := x ⊕ x1 ⊕ · · · ⊕ xr−1 and prepares the state |epr〉 and then executes P ∗pre.
Let AH2 (x,B) denote the oracle machine that, given the state from AH1 , executes
P ∗1 , P

∗
2 , V1, V2,M

B with oracle access to Hx 7→B instead of H, sets accept := 1 iff
y1 = y2 and ω(y1 − ŷ) ≤ γn, and returns accept. Let C1, P

1
A, P

2
A, PC be defined

as in Lemma 3. Then by construction, P 1
A = Pr[accept = 1 : Game 2] (using the

fact that H = Hx 7→H(x)). And P 2
A = Pr[accept = 1 : Game 3] for the following

game:

Game 3 (Reprogramming H) Pick x1, . . . , xr
$←{0, 1}`, H $←Fun. Execute

circuit (4) until the wiggly line (with oracle access to H). Pick B
$←{0, 1}n.

Execute circuit (4) after the wiggly line (with oracle access to Hx7→B) resulting
in y1, y2, ŷ. Let accept := 1 iff y1 = y2 and ω(y1 − ŷ) ≤ γn.

And finally PC = Pr[x′ = x1 ⊕ · · · ⊕ xr : Game 4] for the following game:

Game 4 (Guessing x1 ⊕ · · · ⊕ xr) Pick x1, . . . , xr
$←{0, 1}`, H

$←Fun, and
j

$←{1, . . . , q}. Prepare |epr〉 and execute circuit P ∗pre until the j-th query to H.
Measure the argument x′ of that query.

By Lemma 3, we have |P 1
A − P 2

A| ≤ 2q
√
PC . Thus, abbreviating x = x1⊕· · ·⊕xr

as guessX, we have∣∣Pr[accept = 1 : Game 2]− Pr[accept = 1 : Game 3]
∣∣

≤ 2q
√
Pr[guessX : Game 4]. (5)

We now focus on Game 3. Let ρY LR denote the state in circuit (4) at the wiggly
line (for random x1, . . . , xr, H). Let L refer to the part of ρY LR that is on the
wires entering P ∗1 , and R refer to the part of ρLR on the wires entering P ∗2 . Let
Y refer to the lowest wire (containing EPR qubits). Notice that we have now
reproduced the situation from the 1D case where space is split into two separate
registers R and L, and the computation of y1, y2 is performed solely on R, L,
respectively. In fact, we have now also identified the regions R1, R2 from the
discussion in Section 3.1 (Figure 5): R1 is the boundary between P ∗pre and P ∗1 ;
analogously R2. (R3 from Figure 5 has no analogue here because V3 does not
receive here.) For given B, let ML(B) be the POVM operating on L consisting of
P ∗1 and V1. (ML can be modeled as a POVM because P ∗1 and V1 together return
only a classical value and thus constitute a measurement.) Let MR(B) be the
POVM operating on R consisting of P ∗2 and V2. Then we can rewrite Game 3 as:



Game 5 (Monogamy game) Prepare ρY LR. Pick B
$←{0, 1}n. Apply measure-

ment ML(B) to L, resulting in y1. Apply measurement MR(B) to R, resulting
in y2. Measure Y in basis B, resulting in ŷ. Let accept := 1 iff y1 = y2 and
ω(y1 − ŷ) ≤ γn.

Then Pr[accept = 1 : Game 3] = Pr[accept = 1 : Game 5]. Furthermore, Game 5
is again a monogamy of entanglement game, and [11] shows that Pr[accept =

1 : Game 5] ≤
(
2h(γ)

1+
√

1/2

2

)n
. We can furthermore show (see the full version

[12]) that Pr[guessX : Game 4] ≤ 2−`. With (5) we get

Pr[accept = 1 : Game 1] ≤
(
2h(γ)

1 +
√
1/2

2

)n
+ 2q2−`/2 = ν.

Numerically, we can verify that for γ ≤ 0.037, we have 2h(γ)
1+
√

1/2

2 < 1 and thus
ν is negligible (for superlogarithmic n, ` and polynomially bounded q). �

In flat spacetime. Theorem 6 tells us where in spacetime a prover can be
that passes verification. (Region P.) However, the theorem is quite general; it is
not immediate what this means in the concrete setting of flat spacetime. In the
full version [12] we derive specialized criteria for flat spacetime and show that
Theorem 6 implies that a prover can be precisely localized by verifiers arranged
as a tetrahedron.

4 Position-based authentication

Position verification is, in itself, a primitive of somewhat limited use. It guarantees
that no prover outside the region P can pass the verification. Yet nothing forbids
a prover to just wait until some other honest party has successfully passed
position verification, and then to impersonate that honest party. To realize the
applications described in the introduction, we need a stronger primitive that
not only proves that a prover is at a specific location, but also allows him
to bind this proof to specific data. (The difference is a bit like that between
identification schemes and message authentication schemes.) Such a primitive
is be position-based authentication. This guarantees that the malicious prover
cannot authenticate a message m unless he is in region P (or some honest party
at location m wishes to authenticate that message).

Definition 7 (Secure position-based authentication). A position-based au-
thentication (PBA) scheme is a PV scheme where provers and verifiers get an
additional argument m, a message to be authenticated.

Let P be a region in spacetime. A position-based authentication (PBA) protocol
is sound for P iff for any non-uniform polynomial-time spacetime circuit P ∗ that
has no gates in P, the probability that the challenge verifiers ( soundness error)
accept is negligible in the following execution:

P ∗ picks a message m∗ and then interacts with honest verifiers (called the
challenge verifiers) on input m∗. Before, during, and after that interaction, P ∗

http://sagecell.sagemath.org/?z=eJxdkU9vnDAQxe98ilESCXvDsuBVmmpV1J4i9RZVvXWbyMAstmQwsU2WFeK71_xJtQon_Px-M_PGJZ5A6YqRnh4C8J9B15lm0kgf5dxixmgQlN4m_nvkCfosSw4f5uRKTT-p62Hbb9Y2W5Jue7qcpr8g-CEbh4YXbm5jhT6_tkbnPJdKugupeF1zyCCJk_0jPQDcwm9zAa6sXrQkfXz4uv_ywPZzxyvWU2yzEUsJChsg6b19M46kO0bpjgUzcAu_fj4RpIDvXHXcoQWEzsqmgnkyrwI30okanSwiWCEZYxyBE-gz2k45kBaqjhvuGSzBacgRCm0MFg66dqUmf-slaaVuoJS2VfyC5bIr3TWlR7N5oKscdL5eKzz7lfporfHDzVKj3VmbCQvD6RU-ynyDFFBZhNA7IFyX4ykQrlbk5kkbuDvOu8mG8Q7OCIK_o9eOz-bPseZO2NMw8KLA1o1jlv71Lcgw0pfmnr2xl2HYHlGpHRsnWMhCTCsYxgYrJSuZK4xv4pM2vtDyApF1hqzT0digj14gCb-HURjHcUijNQmlwT_yocsE


may spawn instances of the honest prover and honest verifiers, running on inputs
m 6= m∗. These instances run concurrently with P ∗ and the challenge verifiers
and P ∗ may arbitrarily interact with them. Note that the honest prover/honest
verifier instances may have gates in P.

PBA was already studied in [4]. They give a generic transformation to convert a
PV protocol into a PBA. The generic solution has two drawbacks, though:
– It needs Ω(`µ) invocations of the PV protocol for
ell-bit messages and 2−µ security level. (Our protocol below will need only
one invocation.)

– It is only secure if a single instance of the honest prover runs concurrently. If
the malicious prover can suitably interleave several instances of the honest
prover, he can authenticate arbitrary messages.

(We do not know whether their solution gives adaptive security, i.e., whether
the adversary can choose m∗ and the honest provers’ inputs m depending on
communication he has seen before.) Although we do not have a generic transfor-
mation from PV to PBA that solves these issues, a small modification of our PV
protocol leads to an efficient PBA secure against concurrent executions of the
honest prover:

Definition 8 (Position-based authentication protocol). The protocol is
the same as in Definition 5, with the following modification only: Whenever in
Definition 5, the verifier or prover queries B := H(x1⊕ · · ·⊕xr), here he queries
B := H(x1 ⊕ · · · ⊕ xr‖m) instead. (Where m is the message to be authenticated.)
We also require that the verifiers do not start sending the messages xi or expect
y1, y2 before all Vi got m, and that V +

1 6= V +
2 (i.e., V1, V2 do not send x1, x2 from

the same location in space at the same time, a natural assumption).

Theorem 9. Assume that γ ≤ 0.037 and n, ` are superlogarithmic.
Then the PBA protocol from Definition 8 is sound for P :=

⋂r
i=1 C

+(V +
i ) ∩

C−(V −1 ) ∩ C−(V −2 ). (In words: There is no event in spacetime outside of P at
which one can receive the messages xi from all Vi, and send messages that will
be received in time by V1, V2.)

Concretely, if the malicious prover performs at most q oracle queries, then

the soundness error is at most
(
2h(γ)

1+
√

1/2

2

)n
+ 6q2−`/2.

The main difference to Theorem 6 is that now oracle queries are performed
even within P (by the honest provers). We thus need to show that these queries
do not help the adversary. The main technical challenge is that the message m∗
is chosen adaptively by the adversary. The proof is given in the full version [12].

Position-based quantum key distribution. Once we have PBA, we immedi-
ately get position-based quantum key distribution, and thus we can send messages
that can only be decrypted by someone within region P. We refer to [4] who
describe how to do this, their construction applies to arbitrary PBA schemes.
(As long as it has adaptive security, since in the QKD protocol, the adversary
can influence the messages to be authenticated.)
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