
RSA Key Extraction via Low-Bandwidth
Acoustic Cryptanalysis?

Daniel Genkin1, Adi Shamir2, and Eran Tromer3

1 Technion and Tel Aviv University
danielg3@cs.technion.ac.il

2 Weizmann Institute of Science
adi.shamir@weizmann.ac.il

3 Tel Aviv University
tromer@cs.tau.ac.il

Abstract. Many computers emit a high-pitched noise during operation,
due to vibration in some of their electronic components. These acoustic
emanations are more than a nuisance: as we show in this paper, they can
leak the key used in cryptographic operations. This is surprising, since
the acoustic information has very low bandwidth (under 20 kHz using
common microphones, and a few hundred kHz using ultrasound micro-
phones), which is many orders of magnitude below the GHz-scale clock
rates of the attacked computers. We describe a new acoustic cryptanal-
ysis attack which can extract full 4096-bit RSA keys from the popular
GnuPG software, within an hour, using the sound generated by the com-
puter during the decryption of some chosen ciphertexts. We experimen-
tally demonstrate such attacks, using a plain mobile phone placed next
to the computer, or a more sensitive microphone placed 10 meters away.

1 Introduction

1.1 Overview

Cryptanalytic side-channel attacks target implementations of cryptographic al-
gorithms which, while perhaps secure at the mathematical level, inadvertently
leak secret information through indirect channels: variations in power consump-
tion, electromagnetic emanations, timing variations, contention for CPU re-
sources such as caches, and so forth (see [And08] for a survey). Acoustic em-
anations are another potential channel, but so far it was used only in order to
eavesdrop to slow electromechanical components such as keyboards and print-
ers [AA04,ZZT05,BDG+10].

In this paper, we focus on a different source of computer noise: vibration of
electronic components in the computer, sometimes heard as a faint high-pitched
tone or hiss (commonly called “coil whine”, though often generated by capaci-
tors). These acoustic emanations, typically caused by voltage regulation circuits,
are correlated with system activity since CPUs drastically change their power

? The authors thank Lev Pachmanov for programming and experiments support.

mailto:danielg3@cs.technion.ac.il
mailto:adi.shamir@weizmann.ac.il
mailto:tromer@cs.tau.ac.il

draw according to the operations they execute, but in a very coarse way due
to the low bandwidth, which does not enable the attacker to “hear” individual
instructions executed on a multi-GHz computer.4

The first indication that acoustic emanation from electronic computers is of
cryptanalytic interest was by Shamir and Tromer [ST04], observing that different
RSA keys have distinguishable acoustic fingerprints. However, no approach has
been proposed to extract actual key bits from the faint, noisy and low-bandwidth
acoustic information. In fact, a recent survey stated that while “acoustic effects
have been suggested as possible side channel, the quality of the resulting mea-
surements is likely to be low” [KJJR11].

Acoustic cryptanalysis. In this paper we show that despite this skepticism,
full key recovery via pure acoustic cryptanalysis is feasible on common software
and hardware. As a typical case study, we focused on GnuPG (GNU Privacy
Guard) [Gpg], which is a popular cross-platform open-source implementation
of the OpenPGP standard. We first verified that different secret keys can be
distinguished by the spectrum of the sound made when they are used. We then
developed a new key extraction attack which can find the full 4096-bit RSA
secret keys used by GnuPG running on a laptop computer, within an hour, by
analyzing only the sound picked up by either a plain cellular phone placed next
to the computer, or by a sensitive microphone from a distance of 10 meters. In a
nutshell, our attack relies on crafting special chosen RSA ciphertexts that cause
numerical cancellations deep inside GnuPG’s modular exponentiation algorithm.
This causes the special value zero to appear frequently in the innermost loop of
the algorithm, where it affects control flow. A single iteration of that loop is
much too fast for direct acoustic observation. However, in our attack the effect
is repeated and amplified over many thousands of iterations, resulting in a gross
leakage effect that is discernible for hundreds of milliseconds and distinguishable
in the acoustic spectrum. Thus, our attack not only causes key-dependent side-
channel leakage in GnuPG’s RSA implementation, but moreover utilizes the
GnuPG’s own code in order to amplify the aforementioned leakage.

Chosen ciphertexts by e-mail. Our key extraction technique requires the
decryption of multiple ciphertexts which are adaptively chosen by the attacker.
Prior works which used chosen plaintexts or ciphertexts required direct access to
the input of the protected device, or attacked network protocols such as SSL/TLS
or WEP. To break GnuPG, we used a new attack vector based on Enigmail [Eni],
which is a popular plugin to the Thunderbird e-mail client that enables trans-
parent signing and encryption of e-mail messages using GnuPG, following the
OpenPGP and PGP/MIME standards. For “new e-mail” notifications, Enig-
mail automatically decrypts each e-mail as soon as it is received, provided that
the GnuPG passphrase is cached or empty. In this case, an attacker can e-mail
suitably-crafted messages to the victims (backdated, so they go unnoticed), and

4 Above a few hundred kHz, sound propagation in the air has a very short range, due
to non-linear attenuation and distortion effects (viscosity, relaxation and diffusion
at the molecular level). Most microphones are limited to about 20 kHz.

observe the acoustic signature of their automatic decryption, thereby closing the
adaptive attack loop without manual intervention by the recipient.

Applicability. Our observations apply to many laptop computers made by
various vendors and running various operating systems. Signal quality and effec-
tive attack distance vary greatly, and seem to be correlated with the computer’s
age (i.e., older computers tend to emit stronger and more informative sounds).
Our acoustic attacks can be applied in a large variety of situations. For exam-
ple, any electronic device which has an internal microphone can be used to spy
on itself, using an unprivileged application which has access to the microphone
listen to the sounds made by a privileged security application (even when the
two applications run in two different virtual machines). On a cellular phone, the
whole attack can be packaged into a simple software “app” which can close the
adaptive chosen-ciphertext loop in real time, using the phone’s signal processing
capabilities and wireless data connectivity. The phone can then be used to spy
on a nearby laptop computer, for example, during an hour-long face-to-face busi-
ness meeting between two persons who place their gadgets on the same table. In
another scenario, the attacker can place in advance a hidden acoustic bug near
the likely location of the attacked laptop, e.g., in a lecture podium used by a
visiting speaker, or in a hotel desk.

Physical countermeasures. Many of the physical side-channel countermea-
sures used in highly sensitive applications, such as air gaps, Faraday cages, and
power supply filters, provide no protection against acoustic leakage. In particu-
lar, Faraday cages containing computers require ventilation, which is typically
provided by means of vents covered with perforated sheet metal or metal hon-
eycomb. These are very effective at attenuating compromising electromagnetic
radiation (“TEMPEST”), but — as we empirically verified — are nearly trans-
parent to acoustic emanations. This can make the acoustic attack one of the few
remaining options when the target is heavily protected by expensive shielding
that blocks all the standard sources of electronic emanations.

Current status. Our attacks can be applied to all recent versions of the
GnuPG 1.x series (up to the latest, 1.4.15, released on 15 Oct. 2013), including
the side-channel mitigation introduced in GnuPG 1.4.14 (which ironically helps
our attack by amplifying the aforementioned effect of the zero value in the inner-
most loop). After disclosing our detailed attack to the GnuPG developers and
main distributors, we suggested several suitable countermeasures, and verified
that the new versions of GnuPG 1.x and of libgcrypt (which underlies GnuPG
2.x), released concurrently with this paper’s first public posting, correctly im-
plement our countermeasures and resist the current key-extraction attack.

1.2 Related work

Auditory eavesdropping on human conversations is a common practice, first
published several millenia ago [Gen]. Analysis of sound emanations from me-
chanical devices is a newer affair, with precedents in military context such as

identification of vehicles (e.g., submarines) via the sound signature of their en-
gine or propeller. Wright [Wri87, pp. 103–107] provides an account of MI5 and
GCHQ using a phone tap to eavesdrop on an electromechanical Hagelin ci-
pher machine, by counting the clicks during the rotors’ secret-setting procedure.
Keystroke timing patterns (which can be acquired acoustically) are known to be
a way to identify users, and more recently, also to leak information about the
typed text (see [SWT01] and the references therein). Later work by Asonov and
Agrawal [AA04], improved by Zhuang et al. [ZZT05], Berger et al. [BWY06],
and by Halevi and Saxena [HS10], shows that keys can also be distinguished
individually by their sound, due to minute differences in mechanical properties
such as their position on a slightly vibrating printed circuit board. Backes et
al. [BDG+10] show that the sound produced by dot matrix printers can be used
to recover printed English text.

NSA’s partially-declassified “TEMPEST Fundamentals” [Nat82] mentions
acoustic emanations, but defines them narrowly as “emanations in the form of
free-space acoustical energy produced by the operation of a [sic] purely mechan-
ical or electromechanical device equipment”. Other official publications, such as
the latest FIPS 140-3 draft [Nat09], describe a large variety of side channel at-
tacks, but do not mention acoustic emanations. One is thus led to conclude that
this attack vector was not believed to pose a threat to nonmechanical systems.

2 Observing acoustic leakage

In this section we show that it is possible, using acoustic emanations, to glean
information about the CPU operations of various laptop computers. We show
that it is possible for an attacker to learn the instructions executed by the target
computer, solely by observing its acoustic emanations using a microphone. More-
over, we show a rudimentary cryptographic side channel, namely distinguishing
GnuPG RSA keys (which will be further developed in the subsequent sections).

Lab-grade experimental setup. For the experiments in this section, meant to
best characterize the emitted signal, we used carefully-optimized lab-grade equip-
ment with very high sensitivity and frequency range. Specifically, we measured
the acoustic emanations using a Brüel&Kjær 4190 and 4939 microphone cap-
sules, connected to a Brüel&Kjær 2669 pre-amplifier, powered by a Brüel&Kjær
2804 microphone power supply. The signal is low-pass filtered at 1.9 MHz, ampli-
fied using a (customized) Mini-Circuits ZPUL-30P amplifier, and then high-pass
filtered at 10 kHz. The result is digitized using an National Instruments PXIe
6356. For further details, see the extended version of this paper [GST13].

Culprit components. The exploited acoustic emanations are clearly not
caused by fan rotation, hard disk activity, or audio speakers — as readily verified
by disabling these. Rather, they are caused by vibrations of electrical compo-
nents in the power supply circuitry, familiar to many as the faint high-pitched
whine produced by some devices and power adapters (commonly called “coil
whine”, though not always emanating from coils). The physical source of the
relevant emanations is difficult to characterize precisely, since it varies between

Fig. 1. Portable measurement setup recording a laptop through an EMI-shielded vent
panel (1/2”-thick cross-cell double-honeycomb mesh, Holland Shielding Systems Hon-
eycomb Ventilation 9500).

target machines, and is typically located in the hard-to-reach innards. Still, ex-
perimentation with the microphone placement invariably located the strongest
useful signals in the vicinity of the on-board voltage regulation circuit supporting
the CPU. Indeed, modern CPUs change their power consumption dramatically
depending on software load, and we conjecture that this affects, and modulates,
the dynamics of the pulse-width-modulation-based voltage regulator. More re-
mote stages of the power supply (e.g., laptops’ external AC-DC “power brick”
adapter) sometimes exhibit software-dependent acoustic leakage as well.

Microphone placement. The placement of the microphone relative to the
laptop body has a great influence on the obtained signal. Ideally, we would
like to measure acoustic emanations as close as possible to the CPU’s on-board
power supply located on the laptop’s motherboard, but without intrusion or
disassembly. Luckily, laptop computers have a substantial cooling system for
heat dissipation, with a fan that requires large exhaust holes. In addition, there
are numerous holes and gaps for ports such as USB, Express Card slot, and
Ethernet port. Each of the above ports has proven useful on some computers.

Acoustic or EM? To ascertain that the obtained signal is truly acoustic rather
than electromagnetic interference picked up by the microphone, we placed a sheet
of non-conductive sound-absorbing material (e.g., cork or thick cloth) in front
of the microphone. This always resulted in a severe attenuation of the recorded
signals. Thus, we conclude that the measured signals are indeed acoustic.

EM shielding. As discussed in Section 1.1, standard TEMPEST electro-
magnetic shielding, such as metal meshes and perforated metal, can be nearly-
transparent to acoustic emanations, as we verified on a professionally-produced
EMI mesh shield (see Figure 1, and note that as before, covering the mesh with
cardboard severely attenuated the signal).

Fig. 2. Acoustic measurement frequency spectrogram of a recording of different CPU
operations using the Brüel&Kjær 4939 microphone capsule. The horizontal axis is
frequency (0–350 kHz), the vertical axis is time (1.7 sec), and intensity is proportional
to the instantaneous energy in that frequency band.

2.1 Distinguishing various CPU operations

We begin our analysis of acoustic leakage by attempting to distinguish various
operations performed by the CPU of the target computer. For this purpose we
wrote a simple program that executes (partially unrolled) loops containing one of
the following x86 instructions: HLT (CPU sleep), MUL (integer multiplication),
FMUL (floating-point multiplication), main memory access (forcing L1 and L2
cache misses), and REP NOP (short-term idle). While it was possible to distin-
guish between some CPU operations on almost all the machines we tested, some
machines have a particularly rich leakage spectrum. Figure 2 shows a recording
of the Evo N200 laptop while executing our program using the Brüel&Kjær 4939
high frequency microphone capsule. As can be seen in Figure 2, the leakage of the
Evo N200 is present all over the 0–350 kHz spectrum. Moreover, different types
of operations can be easily distinguished. Similar types of leakage (although less
prominent) was detected on numerous other machines as well.

2.2 GnuPG key distinguishability

The results in Section 2.1 demonstrate that it is possible, even when using a very
low-bandwidth measurement of 35 kHz, to obtain information about the code
executed by the target machine. While this is certainly some form of leakage, it
is not clear how to use this information to form a real key extraction attack on
the target machine. In this section, we show that some useful information about
a secret key used by the target machine can be obtained from the acoustic
information, even though it is still unclear how to use it to derive the full key. In
particular, we demonstrate that the acoustic information obtained during a single
RSA secret operation (such as ciphertext decryption or signature generation)
suffices in order to determine which of several randomly generated keys was used
by the target machine during that operation. Throughout this paper, we target

a standard and commonly used RSA implementation, GnuPG (GNU Privacy
Guard) [Gpg], a popular open source implementation of the OpenPGP standard
available on all major operating systems.5

The sound of a single RSA secret key. Figure 3 depicts the spectrogram
of five RSA signing operations in sequence, using the same message and five ran-
domly generated 4096-bit keys. Each signing operation is preceded by a short
delay, during which the CPU is in a sleep state. Figure 3 contains several interest-
ing effects. The delays are manifested as bright horizontal strips. Between these
strips, the five signing operations can be clearly distinguished. Halfway through
each signing operation there is a transition at several frequency bands (marked
by yellow arrows), corresponding to the transition between exponentiation mod-
ulo the secret p to exponentiation modulo the secret q, in the RSA decryption
implementation of GnuPG, which uses the Chinese Remainder Theorem.

Distinguishing between RSA secret keys. Having observed that the acous-
tic signature of modular integer exponentiation depends on the modulus in-
volved. Thus, one may expect different keys to cause different sounds. This
is indeed the case, as demonstrated in Figure 3. It is readily observed that
each signature (and in fact, each exponentiation using modulus p or q) has a
unique spectral signature. This ability to distinguish keys is of interest in traffic-
analysis applications.6 It is likewise possible to distinguish between algorithms,
between different implementations of an algorithm, and between different com-
puters (even of the same model) running the same algorithm. Again, this effect
is consistent and reproducible (in various frequency ranges) on various machines
and manufacturers. Finally, for the case of ElGamal decryption, various secret
keys can also be acoustically distinguished.

3 Overview of GnuPG RSA key extraction

In this section, we present our acoustic RSA key extraction attack, and discuss
its performance (e.g., extracting a whole RSA key within about one hour using
just the acoustic emanations from the target machine). For concreteness, in the
following we consider GnuPG 1.4.14 and key size of 4096 bit (i.e., 2048 bit primes
p, q), which should be secure beyond the year 2031 [BBB+12].

3.1 GnuPG’s modular exponentiation routine

GnuPG’s mathematical library. Algebraic operations on large integers
(which are much larger than the machine’s word size) are implemented using

5 We focus on the GnuPG 1.x series and its internal cryptographic library (including
the side-channel countermeasures recently added in GnuPG 1.4.14 following the
work of [YF13]). The effects presented in the paper were observed on a variety of
operating systems (Windows 2000 through 7, Fedora Core 2 through 19), GnuPG
versions 1.2.4 through 1.4.15, and many target machines.

6 For example, observing that an embassy has now decrypted a message using a rarely-
used key, heard before only in specific diplomatic circumstances, can be valuable.

Fig. 3. Acoustic signature (1.4 sec, 0–40 kHz) of five GnuPG RSA signatures executed
on a Lenovo ThinkPad T61. Recorded using the lab-grade setup and the Brüel&Kjær
4190 microphone capsule. The transitions between p and q are marked by yellow arrows.

software routines. GnuPG uses an internal mathematical library called MPI,
which is based on the GMP library [Gmp], to store and perform mathematical
operations on large integers. MPI stores each large integer in an array of limbs,
each consisting of a 32-bit word (on the x86 architecture used in our tests).

We now review the modular exponentiation used in GnuPG’s implementation
of RSA (as introduced in GnuPG v1.4.14). GnuPG uses a side-channel protected
variant of the square-and-multiply modular exponentiation algorithm, processing
the bits of the exponent d from most significant bit to the least significant one.
Algorithm 1 is a pseudocode of the modular exponentiation algorithm used in
GnuPG. The operation size in limbs(x) returns the number of limbs in the
t-bit number x, namely dt/32e. Understanding this top-level exponentiation
routine suffices for the high-level description of our attack. For details about
GnuPG’s underlying multiplication routines, necessary for understanding the
attack’s success, see Section 4.

Since GnuPG represents large numbers in arrays of 32 bit limbs, GnuPG
optimizes the number of modulo reductions by always checking (at the end of
every multiplication and squaring) whether the number of limbs in the partially
computed result exceeds the number of limbs in the modulus. If so, a modular
reduction operation is performed. If not, reduction will not decrease the limb
count, and thus is not performed. This measurement of size in terms of limbs,
as opposed to bits, slightly complicates our attack. Note that due to a recently
introduced side-channel mitigation technique (following the work of [YF13]), this
code always performs the multiplications, regardless of the bits of d.

3.2 The attack algorithm

Our attack is an adaptive chosen-ciphertext attack, which exposes the secret
factor q one bit at a time, from MSB to LSB (similarly to Boneh and Brumley’s

Algorithm 1 GnuPG’s modular exponentiation (see function mpi powm in
mpi/mpi-pow.c).

Input: Three integers c, d and q in binary representation such that d = dn · · · d1.
Output: m = cd mod q.
1: procedure modular exponentiation(c, d, q)
2: if size in limbs(c) > size in limbs(q) then
3: c← c mod q

4: m← 1
5: for i← n downto 1 do
6: m← m2 . Karatsuba or grade-school squaring
7: if size in limbs(m) > size in limbs(q) then
8: m← m mod q

9: t← m · c . Karatsuba or grade-school multiplication
10: if size in limbs(t) > size in limbs(q) then
11: t← t mod q

12: if di = 1 then
13: m← t
14: return m
15: end procedure

timing attack [BB05]). For each bit qi of q, starting from the most significant
bit position (i = 2048), we assume that key bits q2048 · · · qi+1 were correctly
recovered, and check the two hypotheses about qi. Eventually, we learn all of q
and thus recover the factorization of n. Note that after recovering the top half
the bits of q, it is possible to use Coppersmith’s attack [Cop97] (following Rivest
and Shamir [RS85]) to recover the remaining bits, or to continue extracting them
using the side channel.7

Ciphertext choice for modified GnuPG. Let us first consider a modified
version of GnuPG’s modular exponentiation routine (Algorithm 1), where the
size comparisons done in line 2 are removed and line 3 is always executed.

GnuPG always generates RSA keys such that the most significant bit of q
is set, i.e., q2048 = 1. Assume that we have already recovered the topmost i− 1
bits of q, and let gi,1 be the 2048 bit ciphertext whose topmost i − 1 bits are
the same as those recovered from q, whose i-th bit is 0, and whose remaining
(low) bits are 1. Consider the RSA decryption of gi,1. Two cases are possible,
depending on qi.

– qi = 1. Then gi,1 < q. The ciphertext gi,1 is passed as the variable c to
Algorithm 1, in which (with the modification introduced earlier) the modular
reduction of c in line 3 returns c (since c = gi,1 < q). Thus, the structure of c
(a 2048 bit number whose i− 1 lowest bits are set to 1) is preserved, and it is
passed to the multiplication routine in line 9.

7 The same technique applies to p. However, on many machines we noticed that the
second modular exponentiation (modulo q) exhibits a better signal-to-noise ratio,
possibly because the target’s power circuitry has by then stabilized.

– qi = 0. Then q ≤ gi,1. Thus, when gi,1 is passed as the variable c to
Algorithm 1, the modular reduction of c in line 3 changes the value of c.
Since c and q share the same topmost 2048 − i bits, the reduction amounts
to computing c← c− q, which is a random-looking number of size i− 1 bits.
This is then passed to the multiplication routine in line 9.

Thus, depending on qi, the second operand to the multiplication routine will
be either full-size and repetitive or shorter and random-looking. We may hope
that the multiplication routine’s implementation will behave differently in these
two cases, and thus result in key-dependent side-channel leakage. Note that the
multiplication is performed 2048 times with that same second operand, which
will hopefully amplify the difference and create a distinct leakage pattern that
persists for the duration of the exponentiation. As we shall see, there is indeed
a difference, which lasts for hundreds of milliseconds and can thus be detected
even by very low bandwidth leakage channels such as our acoustic technique.8

Ciphertext choice for unmodified GnuPG. Unfortunately, line 2 in Al-
gorithm 1 makes its reduction decision on the basis of the limb count of c. This
poses a problem for the above attack, since even if gi,1 ≥ q, both gi,1 and q have
the same number of limbs (64 limbs each). Thus, the branch in line 2 of Algo-
rithm 1 is never taken, so c is never reduced modulo q, and the multiplication
routine always gets a long and repetitive second operand.

This can be solved in either of two ways. First, GnuPG’s binary format
parsing algorithm is willing to allocate space for leading zeros. Thus, one may
just ask for a decryption of gi,1 with additional limbs of leading zeros. GnuPG will
pass on this suboptimal representation to the modular exponentiation routine,
causing the branch in line 2 of Algorithm 1 to be always taken and the reduction
to always take place, allowing us to perform the attack.

While the above observation can be easily remedied by changing the parsing
algorithm to not allocate leading zero limbs, there is another way (which is
harder to fix) to ensure that the branch in line 2 of Algorithm 1 is always taken.
Note that the attacker has access to the public RSA modulus n = pq, which is
128 limbs (4096 bits) long. Moreover, by definition it holds that n = 0 mod q.
Thus, by requesting the decryption of the 128 limb number gi,1 +n, the attacker
can still ensure that the branch in line 2 of Algorithm 1 will be always taken
and proceed with the attack.

3.3 Acoustic leakage of the bits of q

In this section we present empirical results on acoustic leakage of the bits of
q using our attack. As argued in Section 3.2, we expect that during the entire
modular exponentiation operation using the prime q, the acoustic leakage will
depend on the value of the single bit being attacked.

8 Ironically, the latest GnuPG implementations use the side-channel mitigation tech-
nique of always multiplying the intermediate results by the input, but this only helps
our attack, since it doubles the number of multiplications and replaces their random
timing with a repetitive pattern that is easier to record and analyze.

(a) attacked bit is zero (b) attacked bit is one

 0
 1
 2
 3
 4
 5

 34 35 36 37 38 39P
ow

er
 D

en
si

ty

(n
V

2 /H
z)

Frequency (kHz)

Attacked bit is 1
Attacked bit is 0

(c) Frequency spectra of the second modular exponentiation

Fig. 4. Acoustic emanations of RSA decryption for various values of the attacked bit
(q2039 = 1 and q2038 = 0).

Figure 4(a) shows a typical recording of RSA decryption when the value of
the attacked bit of q is 0 and Figure 4(b) shows a recording of RSA decryption
when the value of the attacked bit of q is 1. Several effects are shown in the
figures. Recall that GnuPG first performs modular exponentiation using the
secret prime p and then performs another modular exponentiation using the
secret prime q. As in figure 3, the transition between p and q is clearly visible in
Figures 4(a) and 4(b). Note, then, that the acoustic signatures of the modular
exponentiation using the prime q (the second exponentiation) are quite different
in Figures 4(a) and 4(b). This is the effect utilized to extract the bits of q.

The spectral signatures in Figure 4(c) were computed from the acoustic sig-
natures of the second modular exponentiation in Figures 4(a) and 4(b). For each
signature, we computed the median frequency spectrum (i.e., the median value
in each frequency bin over the sliding-window FFT spectra). Again, the differ-
ences in the frequency spectra between a 0-valued bit and a 1-valued bit are
clearly visible and can be used to extract the bits of q.

Unfortunately, the differences in acoustic leakage between 0-valued bits and
1-valued bits as presented in this section become less prominent as the attack
progresses. Thus, in order to extract the entire 2048 bit prime q, additional
analysis and improvements to the basic attack algorithm are needed (see the
extended version [GST13] for details).

3.4 Overall attack performance

We conducted our attack in a variety of measurement setups, on various tar-
get machines and software configurations. The attack’s success, and its running

Fig. 5. Photograph of our portable setup. In this photograph (A) is a Lenovo ThinkPad
T61 target, (B) is a Brüel&Kjær 4190 microphone capsule mounted on a Brüel&Kjær
2669 preamplifier held by a flexible arm, (C) is a Brüel&Kjær 5935 microphone power
supply and amplifier, (D) is a National Instruments MyDAQ device with a 10 kHz
RC high-pass filter cascaded with a 150 kHz RC low-pass filter on its A2D input, and
(E) is a laptop computer performing the attack. Full key extraction is possible in this
configuration, from a distance of 1 meter (see Section 3.4).

time (due to repeated measurements and backtracking), depend on many phys-
ical parameters. These include the machine model and age, the signal acquisi-
tion hardware, the microphone positioning, ambient noise, room acoustics, and
temperature (affecting fan activity). The following are examples of successful
key-extraction experiments.

Ultrasound-frequency attack. Extracting the topmost 1024 bits of q (and
thereby, the whole key) from GnuPG 1.4.14, running on a Lenovo ThinkPad
T61 laptop, in a typical office environment, takes approximately 1 hour. Since
this laptop’s useful signal is at approximately 35 kHz, there is no need to use
the full capabilities of the lab-grade setup (see Section 2), and instead we used
a portable (briefcase-sized) setup consisting of a Brüel&Kjær 4190 microphone
capsule connected (via a Brüel&Kjær 2669 pre-amplifier) to a Brüel&Kjær 5935
amplifier and microphone power supply, filtered, and digitized using a National
Instruments MyDAQ device. Figure 5 depicts this portable setup.

Audible-frequency attack. Low frequency sound propagates in the air, and
through obstacles, better than high frequency sound. Moreover, larger capsule
diaphragms allow better sensitivity but reduce the frequency range. Indeed, some
machines, such as the Lenovo ThinkPad X300 and ThinkPad T23, exhibit useful
leakage at lower leakage frequency, 15–22 kHz (i.e., within audible range). This
allows us to use the very sensitive Brüel&Kjær 4145 microphone capsule and
extract the key from some machines at the range of around 1 meter. Moreover, by
placing the Brüel&Kjær 4190 microphone in a parabolic reflector, we were able
to extract all the bits automatically from the range of 4 meters. (See Figure 6 for
a similar setup.) With human-assisted signal processing, we extended the range
up to 10 meters.

(a) Parabolic microphone (b) Distant attack

Fig. 6. (a) Brüel&Kjær 4145 microphone capsule and 2669 preamplifier, attached to
a transparent parabolic reflector (56 cm diameter), on a tripod. (b) same, connected to
the portable measurement setup, attacking a target laptop from a distance of 4 meters.

Fig. 7. Physical setup of a key recovery attack. A mobile phone (Samsung Note II) is
placed 30 cm from a target laptop. The phone’s internal microphone points towards the
laptop’s fan vents. Full key extraction is possible with this configuration and distance.

Mobile-phone attack. Lowering the leakage frequency also allows us to use
lower quality microphones such as the ones in smartphones. We used several
Android phones, with similar results: HTC Sensation, Samsung Galaxy S II
and Samsung Galaxy Note II. Recorded using a custom Android app, accessing
the internal microphone. Due to the lower signal-to-noise ratio and frequency
response of the phone’s internal microphone, our attack is limited in frequency
(about 24 kHz) and in range (about 30 cm). However, it is still possible to perform
it on certain target computers, simply by placing the phone’s microphone near to
and directed towards the fan exhaust vent of the target while running the attack
(see Figure 7). Unlike previous setups, all that is required from the attacker in
order to actually mount the attack is to download a suitable application to the
phone, and place it appropriately near the target computer.

4 Analyzing the code of GnuPG RSA

In this section we analyze how our attack affects the code of GnuPG’s multi-
plication routine and causes the differences presented in Section 3.3. We begin

Algorithm 2 GnuPG’s basic multiplication code (see functions mul n basecase
and mpihelp mul in mpi/mpih-mul.c).

Input: Two numbers a = ak · · · a1 and b = bn · · · b1 of size k and n limbs respectively.
Output: a · b.
1: procedure mul basecase(a, b)
2: if b1 ≤ 1 then
3: if b1 = 1 then
4: p← a
5: else
6: p← 0

7: else
8: p← mul by single limb(a, b1) . p← a · b1
9: for i← 2 to n do

10: if bi ≤ 1 then
11: if bi = 1 then . (and if bi = 0 do nothing)
12: p← add with offset(p, a, i) . p← p + a · 232·i

13: else
14: p← mul and add with offset(p, a, bi, i) . p← p + a · bi · 232·i

15: return p
16: end procedure

by describing the multiplication algorithms used by GnuPG (Section 4.1) and
then proceed (Sections 4.2 and 4.3) to describe the effects of our attack on the
internal values computed during the execution of these algorithms.

4.1 GnuPG’s multiplication routine

GnuPG’s large-integer multiplication routine combines two multiplication algo-
rithms: a basic grade-school multiplication routine, and a variant of a recursive
Karatsuba multiplication algorithm [KO62]. The chosen combination of algo-
rithms is based on the size of the operands, measured in whole limbs. Our
attack (usually) utilizes the specific implementation of the Karatsuba multi-
plication routine in order to make an easily-observable connection between the
control flow inside the grade-school multiplication routine and the current bit of
q. This lets us leak q one bit at a time.

GnuPG’s basic multiplication routine. The side-channel weakness we ex-
ploit in GnuPG’s code resides inside the basic multiplication routines. Both of the
basic multiplication routines used by GnuPG are almost identical implementa-
tions of the simple, quadratic-complexity grade-school multiplication algorithm,
with optimizations for multiplication by limbs equal to 0 or 1 (see Algorithm 2).

Note how mul basecase handles zero limbs of b. In particular, when a
zero limb of b is encountered, none of the operations mul by single limb,
add with offset and mul and add with offset are performed and the loop
in line 9 continues to the next limb of b. This particular optimization is critical

for our attack. Specifically, our chosen ciphertext will cause the private key bit
qi to affect the number of zero limbs of b given to mul basecase, thus affecting
the control flow in lines 3 and 11, and thereby the side-channel emanations.

GnuPG’s Karatsuba multiplication routine. The basic multiplication rou-
tine described above is invoked by both the modular exponentiation routine de-
scribed in Section 3.1 and by the Karatsuba multiplication routine implementing
a variant of the Karatsuba multiplication algorithm with some optimizations.
GnuPG’s variant of the Karatsuba multiplication algorithm relies on

uv = (22n + 2n)uHvH + 2n(uH − uL)(vL − vH) + (2n + 1)vLuL , (1)

where uH, vH are the most significant halves of u and v respectively and uL, vL are
the least significant halves of u and v respectively. Note the subtraction vL − vH
in Equation 1. Recall that in Section 3 we created a connection between the
bits of q and specific values of c. Concretely, for the case where qi = 1, then c
is a 2048 bit number such that its first 2048 − i bits are the same as q, its i-th
bit is zero, and the rest of its bits are ones. Conversely, for the case where the
qi = 0, we have that c consists of i− 1 random-looking bits.

The code of GnuPG passes c (with some whole-limb truncations) directly
to the Karatsuba multiplication routine as the second operand v. Thus, this
structure of c has the property that the result of computing vL − vH will have
almost all of its limbs equal to zero when the current bit of q is 1 and have all
of its limbs be random-looking when the current bit of q is 0. Thus, when the
recursion eventually reaches its base case, mul basecase, it will be the case
that if the current bit of q is 1, the values of the second operand b supplied
to mul basecase (in some branches of the recursion) will have almost all of
its limbs equal to zero, and when the current bit of q is 0, the values of the
second operand b supplied to mul basecase in all branches of the recursion will
be random-looking. Next, by (indirectly) measuring the number of operations
performed by mul basecase, we shall be able to deduce the number of zero
limbs in c and thus whether the correct bit of q is 0 or 1.

4.2 Attacking the most significant limb of q

In this section we analyze the effects of our attack on mul basecase (Algo-
rithm 2). Note that in this case, the cipher text c used in the main loop of the
modular exponentiation routine (Algorithm 1) always contains at least 2017 bits
(64 limbs), meaning that mul is used for multiplication.

Since in this case both c and m are of the same length and since the constant
KARATSUBA THRESHOLD is defined to be 16, the Karatsuba multiplication
routine generates a depth-4 recursion tree where each node has 3 children before
using the basic multiplication code (mul basecase) on 8-limb (256 bit) numbers
located on the leaves of the tree. Combining this observation with the case
analysis in Section 3.2, we see that for each bit i of q:

– If qi = 1, then the second operand b of mul mainly consists of limbs having
all their bits set to 1.

Thus, during the first call to the Karatsuba multiplication routine, the result
of vL − vH contains mostly zero limbs, causing the second operand of all the
calls to mul basecase resulting from the recursive call for computing (uH −
uL) · (vL − vH) to contain mostly zero limbs.

– If qi = 0, then the second operand b of mul consists of random-looking limbs.
Thus, during the first call to the Karatsuba multiplication routine, result of
vL − vH contains very few (if any) zero limbs, causing the second operand of
all the calls to mul basecase to consist of mostly non-zero limbs.

Next, recall that the control flow in mul basecase depends on the number of
non-zero limbs present in its second operand. The drastic change in the number
of zero limbs in the second is detectable by our side-channel measurements. Thus,
we are able to leak the bits of q, one bit at a time, by creating the connection
between the current bit of q and the number of zero limbs in the second operand
of mul basecase using our carefully chosen cipher texts.

Finally, note that the Karatsuba multiplication algorithm is (indirectly) called
during the main loop of the modular exponentiation routine (Algorithm 1) once
per bit of dq as computed by the RSA decryption operation. Since dq is a 2048
bit number, we get that the leakage generated by line 11 in mul basecase (Al-
gorithm 2) is repeated once for every zero limb of b for a total of 7 times during
an execution of mul basecase, which is in turn repeated once for every leaf
resulting from the first computation of (uH−uL) · (vL− vH) for a total of 9 times
in each of the 2048 multiplications in that loop. Thus, we get that leakage gen-
erated by line 11 in mul basecase is repeated 2048 · 9 · 7 = 129024 times. This
repetition is what allows the leakage generated by line 11 in mul basecase to
be detected using only low bandwidth measurements.

4.3 The remaining bits of q

Unfortunately, the analysis in Section 4.2 does not precisely hold for the re-
maining bits of q. Recall that by our choice of ciphertexts, at the beginning of
modular exponentiation both c − n and q always agree on some prefix of
their bits and this prefix becomes longer as the attack progresses and more bits
of q are extracted. Thus, since c − n < 2q, the reduction of c modulo q always
returns c− q − n for the case of c− n ≥ q and c− n otherwise.

In particular, after the first limb of q has been successfully extracted, for
the case where qi = 0, the value of c after the modular reduction in line 2 of
modular exponentiation (Algorithm 1) is shorter than 64 limbs. Since in
line 9, while m remains a 64 limb number, the part of the multiplication routine
responsible for handling operands of different sizes is used. Thus, instead of a
single call to the Karatsuba multiplication routine, might make several recursive
calls to itself as well as several calls to the Karatsuba multiplication routine.

Nonetheless, there is still a connection between the secret bits of q and the
structure of the value of c passed to multiplication routine by the modular ex-
ponentiation routine (Algorithm 1), as follows. For any 1 ≤ i ≤ 2048, one of
the following two cases holds. If qi = 1, then c is a 2048 bit number such that

the first 2048− i bits are the same as q, the i-th bit is zero, and the rest of the
bits are ones. If qi = 0, then c consists of i− 1 random-looking bits. While the
analysis in this case is not as precise as in Section 4.2, the number of zero limbs
in the second operand of mul basecase still allows us to extract the bits of q.

The acoustic distinguishability of the two cases does vary with bit index, and
in particular is harder for the range q1850, . . . , q1750. Using additional techniques
(discussed in the extended version of this paper [GST13]), we recover these
problematic bits and continue our attack.

5 Conclusion

In this paper we developed a new side channel attack, exploiting low-bandwidth
computation-dependent acoustic emanations which easily escape computers’ chas-
sis (and even expensive Faraday cages). We demonstrated extraction of full RSA
keys within a reasonable amount of time using commonly available and easily
concealed components. Some algorithmic countermeasures, such as ciphertext
normalization and randomization, are effective against our key-extraction at-
tack (and thus implemented in GnuPG consequentially to our results’ disclo-
sure), though not against acoustic key-distinguishing, and are discussed in the
extended version of this paper [GST13].

Acknowledgments. Lev Pachmanov wrote much of the software setup used
in our experiments, including custom signal acquisition programs. Avi Shtibel,
Ezra Shaked and Oded Smikt assisted in constructing and configuring the ex-
perimental setup. Assa Naveh assisted in various experiments, and offered valu-
able suggestions. Sharon Kessler provided copious editorial advice. We thank
Werner Koch, lead developer of GnuPG, for the prompt response to our disclo-
sure and the productive collaboration in adding suitable countermeasures. We
are indebted to Pankaj Rohatgi for inspiring the origin of this research; to Nir
Yaniv for audio recording advice and use of the Nir Space Station studio; and
to National Instruments Israel for donating PCI-6052E and MyDAQ hardware.

This work was sponsored by the Check Point Institute for Information Se-
curity; by European Union’s Tenth Framework Programme (FP10/2010-2016)
under grant agreement 259426 ERC-CaC, by the the Leona M. & Harry B. Helm-
sley Charitable Trust; by the Israeli Ministry of Science and Technology; by the
Israeli Centers of Research Excellence I-CORE program (center 4/11); and by
NATO’s Public Diplomacy Division in the Framework of ”Science for Peace”.

References

[AA04] Dmitri Asonov and Rakesh Agrawal. Keyboard acoustic emanations. In
IEEE Symposium on Security and Privacy, pages 3–11, 2004.

[And08] Ross J. Anderson. Security engineering — a guide to building dependable
distributed systems (2nd ed.). Wiley, 2008.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical.
Computer Networks, 48(5):701–716, 2005.

[BBB+12] Elaine Barker, William Barker, William Burr, William Polk, and Miles
Smid. NIST SP 800-57: Recommendation for key management — part 1:
General, 2012.

[BDG+10] Michael Backes, Markus Dürmuth, Sebastian Gerling, Manfred Pinkal, and
Caroline Sporleder. Acoustic side-channel attacks on printers. In USENIX
Security Symposium, pages 307–322, 2010.

[BWY06] Yigael Berger, Avishai Wool, and Arie Yeredor. Dictionary attacks using
keyboard acoustic emanations. In ACM Conference on Computer and
Communications Security, pages 245–254, 2006.

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low ex-
ponent RSA vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

[Eni] The Enigmail Project. Enigmail: A simple interface for OpenPGP email
security. URL: https://www.enigmail.net.

[Gen] Genesis 27:5.
[Gmp] GNU multiple precision arithmetic library. URL: http://gmplib.org/.
[Gpg] The GNU Privacy Guard. URL: http://www.gnupg.org.
[GST13] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-

bandwidth acoustic cryptanalysis (extended version). IACR Cryptology
ePrint Archive, 2013:857, 2013.

[HS10] Tzipora Halevi and Nitesh Saxena. On pairing constrained wireless devices
based on secrecy of auxiliary channels: the case of acoustic eavesdropping.
In ACM Conference on Computer and Communications Security, pages
97–108, 2010.

[KJJR11] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduc-
tion to differential power analysis. Journal of Cryptographic Engineering,
1(1):5–27, 2011.

[KO62] A. Karatsuba and Y. Ofman. Multiplication of Many-Digital Numbers
by Automatic Computers. Proceedings of the USSR Academy of Sciences,
145:293–294, 1962.

[Nat82] National Security Agency. NACSIM 5000: TEMPEST fundamen-
tals, February 1982. URL: http://cryptome.org/jya/nacsim-5000/

nacsim-5000.htm.
[Nat09] National Institute of Standards and Technology. FIPS 140-3: Draft secu-

rity requirements for cryptographic modules (revised draft), 2009.
[RS85] Ronald L. Rivest and Adi Shamir. Efficient factoring based on partial

information. In EUROCRYPT, pages 31–34, 1985.
[ST04] Adi Shamir and Eran Tromer. Acoustic cryptanalysis: on nosy people and

noisy machines, 2004. Eurocryt rump session. URL: http://cs.tau.ac.
il/~tromer/acoustic/ec04rump.

[SWT01] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis
of keystrokes and timing attacks on SSH. In USENIX Security Symposium,
volume 2001, 2001.

[Wri87] Peter Wright. Spycatcher. Viking Penguin, 1987.
[YF13] Yuval Yarom and Katrina E. Falkner. Flush+reload: a high resolution,

low noise, L3 cache side-channel attack. IACR Cryptology ePrint Archive,
2013:448, 2013.

[ZZT05] Li Zhuang, Feng Zhou, and J. D. Tygar. Keyboard acoustic emanations
revisited. In ACM Conference on Computer and Communications Security,
pages 373–382, 2005.

https://www.enigmail.net
http://gmplib.org/
http://www.gnupg.org
http://cryptome.org/jya/nacsim-5000/nacsim-5000.htm
http://cryptome.org/jya/nacsim-5000/nacsim-5000.htm
http://cs.tau.ac.il/~tromer/acoustic/ec04rump
http://cs.tau.ac.il/~tromer/acoustic/ec04rump

	RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis

