
Hard-Core Predicates for a
Diffie-Hellman Problem over Finite Fields

Nelly Fazio1,2, Rosario Gennaro1,2, Irippuge Milinda Perera2, and
William E. Skeith III1,2

1 The City College of CUNY
{fazio,rosario,wes}@cs.ccny.cuny.edu

2 The Graduate Center of CUNY
iperera@gc.cuny.edu

Abstract. A long-standing open problem in cryptography is proving the
existence of (deterministic) hard-core predicates for the Diffie-Hellman
problem defined over finite fields. In this paper, we make progress on
this problem by defining a very natural variation of the Diffie-Hellman
problem over Fp2 and proving the unpredictability of every single bit of
one of the coordinates of the secret DH value.
To achieve our result, we modify an idea presented at CRYPTO’01 by
Boneh and Shparlinski [4] originally developed to prove that the LSB of
the elliptic curve Diffie-Hellman problem is hard. We extend this idea in
two novel ways:
1. We generalize it to the case of finite fields Fp2 ;
2. We prove that any bit, not just the LSB, is hard using the list

decoding techniques of Akavia et al. [1] (FOCS’03) as generalized at
CRYPTO’12 by Duc and Jetchev [6].

In the process, we prove several other interesting results:
• Our result also hold for a larger class of predicates, called segment

predicates in [1];
• We extend the result of Boneh and Shparlinski to prove that every

bit (and every segment predicate) of the elliptic curve Diffie-Hellman
problem is hard-core;

• We define the notion of partial one-way function over finite fields Fp2

and prove that every bit (and every segment predicate) of one of the
input coordinates for these functions is hard-core.

Keywords: Hard-Core Bits, Diffie-Hellman Problem, Finite Fields, El-
liptic Curves.

1 Introduction

A long-standing open problem in cryptography is proving the existence of (deter-
ministic) hard-core predicates for the Diffie-Hellman problem defined over finite
fields. In this paper we make progress on this problem by defining a very natural
extension of the Diffie-Hellman problem over Fp2 and proving that a large class of

2 N. Fazio et al.

predicates (including every single bit of one of the coordinates) are unpredictable
under the assumption that this problem is hard.

In their seminal paper that introduced public-key cryptography [5] Diffie and
Hellman defined the following key exchange protocol, which works in arbitrary
finite cyclic groups. Let G be such a group, generated by g of order n. Two
parties, Alice and Bob, want to establish a secret value. Alice chooses a random
value a ∈ Zn and sends the value A = ga to Bob. Similarly Bob chooses a random
value b ∈ Zn and sends the value B = gb to Alice. At this point they share the
common Diffie-Hellman secret value K = gab = Ab = Ba.

The Computational Diffie-Hellman Assumption (CDH) over the group G
informally states that no efficient algorithm can compute K = gab when given
only g,A = ga, B = gb. The hardness of computing the entire value K, however
does not rule out an efficient way to compute some of the bits of K, or even just
predict them with a probability better than a random guess. This property is
very important because without it, Alice and Bob do not have any guarantee
about the “pseudorandomness” of any bit of the secret value K, and those are
the properties needed by K in order to be used as a secret key in a subsequent
cryptographic scheme. This problem is usually addressed by making a much
stronger assumption on the hardness of the Diffie-Hellman problem: the so-
called Decisional Diffie-Hellman Assumption (DDH) states that the value K is
computationally indistinguishable from a random element of G. While the DDH
guarantees that the entire value of K is pseudorandom, there are groups G where
the DDH is false, even when the CDH is still conjectured to be hard.

Ideally, however, one would like to prove that certain bits (or more generally,
certain predicates) of the value K are unpredictable, when given ga and gb,
simply under the CDH assumption. Such results were established quite early for
other conjectured hard-problems (e.g., Blum and Micali’s result on the hardness
of discrete log bits [3] and Alexi at al. work on the hardness of the RSA input
bits [2]). However for the case of the Diffie-Hellman problem no such result has
been proven (except for the result by Boneh and Shparlinksi [4] in a slightly
different model and which we discuss below). The only hard-core predicates
known for the Diffie-Hellman function are the generic “randomized” predicates
which work over any computationally hard problem (e.g., the Goldreich-Levin
and Näslund hard-core bits [8, 10]).

Hard-Core Predicates. Let π : G→ {±1} be a predicate3 defined over G. To
prove that π is hard-core for the CDH problem one has to construct a reduction
from guessing π better than at random, to solving the CDH problem. More
specifically, assume we have an oracle Ω which on input g, ga, gb outputs the
correct π(gab) with probability (taken over the choice of a, b) substantially better
than4 1/2, then there is an efficient algorithm A which invokes Ω and solves the
CDH problem.
3 For reasons that will become clearer in the technical section of the paper, we adopt
the convention that predicates map a value to ±1 instead of {0, 1}.

4 Let’s assume for now that π is balanced. In the rest of the paper we take into account
the possible bias of π.

Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields 3

Note that a crucial step of this reduction is to “correct” the answers of the
oracle Ω which are guaranteed to be right only slightly more than half of the times.
This step requires randomizing the queries to Ω while still keeping its answers
useful to the solution of the underlying CDH problem. This proves somewhat
difficult, due to the limited random self-reducibility of the Diffie-Hellman problem.
Randomizing the Problem Representation. Boneh and Shparlinksi in [4]
achieved a breakthrough for the elliptic curve Diffie-Hellman problem, i.e., the
CDH problem defined over the group G of points of an elliptic curve. They were
able to prove that the least significant bit of each coordinate of the Diffie-Hellman
secret value K is hard-core, when the probability space of the oracle Ω also
includes a random choice for the representation of the curve.

More specifically: let p be a prime and let E be an elliptic curve defined over
Fp, the finite field with p elements. To represent E we use a short Weierstrass
equationW : y2 = x3+ax+b, with a, b ∈ Fp and 4a3+27b2 6= 0. LetW (E) be the
set of Weierstrass equations representing E. It is well known thatW (E) is defined
by the equationsWλ of the form y2 = x3 +λ4ax+λ6b for λ ∈ F×p . If Q = (Qx, Qy)
is a point satisfyingW then the point Qλ = (Qλ,x = λ2Qx, Qλ,y = λ3Qy) satisfies
Wλ. Furthermore, the points of E form a group under a certain operation, and
the mapping Φλ : E → E defined as Φλ(Q) = Qλ is an isomorphism with
respect to such group operation over E.

Let G be a cyclic subgroup of E generated by a point P . Switching to additive
notation for the group operation, the elliptic curve CDH (EC-CDH) assumption
says that given W,P, aP, bP it is hard to compute abP .

In [4] they prove that if there exists an oracle Ω that works on a random
representation of E, i.e., such that

Pr
λ,a,b

[
Ω(λ, P, aP, bP) = LSB([Φλ(abP)]x)

]
> 1/2 + ε

for a non-negligible value ε, then it is possible to solve EC-CDH on any curve (a
similar result holds for the y-coordinate of abP).

1.1 Our results
Our main technical contribution is to show that the Boneh-Shparlinski idea of
randomizing the representation of the underlying group for the CDH problem
can be also applied to the case of finite fields Fp2 .

For a given prime p, there are many different fields Fp2 , but they are all
isomorphic to each other. Let h(x) = x2 + h1x + h0 be a monic irreducible
polynomial of degree 2 in Fp. It is well known that Fp2 is isomorphic to the field
Fp[x]/(h), and therefore elements of Fp2 can be written as linear polynomials:
if g ∈ Fp2 then g = g0 + g1x and addition and multiplication are performed as
polynomial operations modulo h. In the following, given g ∈ Fp2 we denote with
[g]i the coefficient of the degree-i term.

Let I2(p) be the set of monic irreducible polynomials of degree 2 in Fp. For
h, ĥ ∈ I2(p) we know that there exists an (easily computable) isomorphism

φh,ĥ : Fp[x]/(h)→ Fp[x]/(ĥ).

4 N. Fazio et al.

Finally, denote with g a generator of the multiplicative group of Fp2 which is
known to be cyclic.

Our first attempt was to use the approach from [4] over Fp2 . That is, we
hoped to prove that given an oracle Ω which, on input random values ga, gb
and a random description of Fp2 , outputs LSB

([
gab
]
i

)
, then we can solve the

CDH over Fp2 . Unfortunately there are several technical complications with
directly applying the approach of [4] to the finite field case, one of them being
the fact that representations of an elliptic curve are in bijective correspondence
with Fp allowing them to be represented by a single element of Fp. Conversely
the representations of Fp2 are in bijective correspondence with I2(p) which has
≈ p2/2 elements.

A new Diffie-Hellman Problem. To solve these technical problems we had
to define the following variant of the CDH problem over Fp2 : informally we
say that the Partial-CDH problem is hard in Fp2 if no efficient algorithm given
g,A = ga, B = gb ∈ Fp2 can compute K =

[
gab
]

1 ∈ Fp (i.e., the coefficient of the
degree 1 term of gab).

We note that the Partial-CDH problem is obviously weaker than the regular
CDH problem over Fp2 , but that it still allows Alice and Bob to agree on a
common secret value in Fp, via the traditional Diffie-Hellman protocol.

Our Main Result. Assuming the hardness of the Partial-CDH problem we
prove that for a large class of predicates π (described below – it includes every
individual bit of K), the bit π(K) is unpredictable given ga, gb and a random
representation of Fp2 . More specifically, we prove that if there exists an oracle Ω
such that for any h ∈ I2(p) it holds that

Pr
ĥ,a,b

[
Ω
(
h, ĥ, g, ga, gb

)
= π

([
φh,ĥ

(
gab
)]

1

)]
> 1/2 + ε

for a non-negligible value ε, then it is possible to solve Partial-CDH on Fp[x]/(h).
We may define an analogous problem for the general case of Fpt with any

t > 1. The Partial-CDH problem is defined as outputting the coefficient of the
term of degree t− 1. However our hard-core results hold only for the quadratic
(Fp2) case. See the conclusion (Section 6) for a discussion.

Our Techniques. To achieve our result we divert from the techniques used
in [4] in another fundamental way. To prove that the predicate π is hard-core for
the Partial-CDH problem in Fp2 we use the list-decoding approach pioneered by
Akavia et al. [1] as extended by Duc and Jetchev in [6] to the case of prediction
oracles which also take as input a random representation of the underlying group.

We describe the approach in detail in Section 3. For now we just remind the
reader that as defined originally in [1] this approach allows one to prove the
security of so-called segment predicates which include both the most and least
significant bits of the input. In [9] the technique was extended to work for any
input bit. So the class of predicates P described above includes every individual
bit of the input and also segment predicates as defined in [1].

Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields 5

Additional Results. Since the list-decoding approach works for a larger class
of predicates, we obtain two additional results:

1. In the elliptic curve scenario, we are able to extend the [4] result for EC-CDH
to any predicate π as above, not just the LSB.

2. For the finite field case we prove that the predicates π are hard-core for a
much larger class of conjectured computationally hard problems. Consider
a function f : Fp2 → S for an arbitrary set S. We say that f is a finite
field-based partial one-way function (FFB-POWF) if the following conditions
hold:
• f is “independent” of the representation used for Fp2 (see Section 5.2 for
a precise definition);

• no efficient algorithm, given f(x) can compute [x]1, i.e., the coefficient of
the degree 1 term of x.

Then we can prove that if f is a FFB-POWF then it is hard to predict π([x]1)
better than at random (over a random representation of Fp2) when given
only f(x).

Interpretation of Our Results. One way to interpret our results is to
think of the group representation as part of the input to the computational
hard problem (be it a one-way function, or the CDH problem) being used. This
means that our results do not apply to the case when the Diffie-Hellman key
exchange protocol is performed over a fixed representation of the finite field (or
the elliptic curve). Rather it is necessary for Alice and Bob to choose a random
representation (an irreducible polynomial for Fp2 or a Weierstrass equation for
the curve E) over which to run the protocol.

1.2 Paper Organization

Section 2 reviews some relevant background, particularly the notion of Fourier
transform for codes. In Section 3, we cover the list-decoding approach to prove
hard-core predicates [1] and its generalization to the case of elliptic curves from [6].
Sections 4 and 5 present our original results. First, as a warm-up we prove that
every bit of the EC-CDH problem is hard-core. Then we present our main result
on the bit security of Partial-CDH over finite fields, and its extension to FFB-
POWF. Finally, we conclude in Section 6 with some discussion about our results
and a list of interesting problems left open by our work.

2 Background

2.1 Fourier Transforms

Let Zn denote the additive group of integers modulo n. For any two functions
f, g : Zn → C, their inner product is defined as 〈f, g〉 = 1

n

∑
x∈Zn f(x)g(x).

Let C(Zn) denote the vector space formed by all functions f : Zn → C. The
`2-norm of f on C(Zn) is defined as ‖f‖2 =

√
〈f, f〉. A character of Zn is a

6 N. Fazio et al.

homomorphism χ : Zn → C×, such that ∀x,y∈Znχ(x + y) = χ(x)χ(y). These
characters are defined by χα(x) = ωαxn , where α ∈ Zn and ωn = e2πi/n. The
set of all characters form a group Ẑn. Since the members of Ẑn are orthogonal
and |Ẑn| = |Zn|, they form an orthogonal basis, termed the Fourier basis, for
C(Zn). The Fourier transform f̂ : Ẑn → C of f is defined as f̂(χ) = 〈f, χ〉. The
Fourier expansion of f is written as

∑
χ∈Ẑn

f̂(χ)χ. For Γ ⊂ Ẑn the restriction of
f to Γ is the function f|Γ : Zn → C defined by f|Γ =

∑
χ∈Γ f̂(χ)χ. The Fourier

coefficients of f are the coefficients f̂(χ) in the Fourier basis Ẑn. The weight of a
Fourier coefficient is denoted by |f̂(χ)|2. Definition 2.1 formalizes the notion of
heavy characters with respect to f .

Definition 2.1 (τ-heavy characters). Let τ ∈ R+ be a threshold and f :
Zn → C be an arbitrary function. We say a character χ ∈ Ẑn is τ -heavy if the
weight of its corresponding Fourier coefficient is at least τ . The set of all such
character is denoted by Heavyτ (f), i.e.,

Heavyτ (f) = {χ ∈ Ẑn : |f̂(χ)|2 ≥ τ}.

2.2 Codes and their Properties

In what follows, we report a few useful known definitions [6] and lemmata [1]
about codes over Zn. As in [6], we will regard Zn-codes as associating an element
x ∈ Zn to a Zn-codeword Cx, which we will in turn see interchangeably as a
function Cx : Zn → {±1} or as a length-n sequence of {±1}.

Definition 2.2 (ε-concentrated function).We say a function f : Zn → {±1}
is Fourier ε-concentrated if there exist a size poly(n, 1/ε), ε > 0, set of characters
Γ ⊂ Ẑn such that

∥∥f − f|Γ∥∥2 ≤ ε. We say a function is Fourier concentrated if
it is ε-concentrated for every ε > 0.

Definition 2.3 (ε-concentrated code). We say a code C = {Cx : Zn → {±1}}
is ε-concentrated if all its codewords Cx are Fourier ε-concentrated. We say a
code is Fourier concentrated if it is ε-concentrated for every ε > 0.

Definition 2.4 (Code recoverability). We say a code C = {Cx : Zn → {±1}}
is recoverable if there exists an algorithm that, given as input a threshold τ and
a character χ ∈ Ẑn, produces a list of all elements x associated with codewords
Cx for which χ is a τ -heavy coefficient, that is, {x ∈ Zn : χ ∈ Heavyτ (Cx)}, in
time polynomial in logn and 1/τ .

The following two results appear in [1]. Lemma 2.5 shows that, in a concen-
trated code C, any noisy version C̃x of codeword Cx share at least one heavy
coefficient with Cx. Theorem 2.6 shows that one can efficiently learn all the heavy
characters of any function when given query access to it. Therefore having query
access to C̃x (which in our case is obtained by querying the prediction oracle Ω),
one can learn at least one heavy coefficient of Cx, and that if the code is also
recoverable, then one can recover x.

Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields 7

Lemma 2.5 (Lem. 1 of [1]). Let f, g : Zn → {±1} such that f is Fourier
concentrated and, for some ε > 0,

Pr
x∈Zn

f(x) = g(x) ≥ majf + ε,

where majf denotes the bias of the function f , i.e., majf = max{b=±1} Prx∈Zn
f(x) = b. Then there exist a threshold τ such that 1/τ is polynomial in ε and logn,
and there exists a character χ 6= 0 heavy for f and g: χ ∈ Heavyτ (f)∧Heavyτ (g).

Theorem 2.6 (Thm. 6 of [1]). There exists a randomized learning algorithm
over Zn that, given query access to a function w : Zn → {±1}, τ > 0 and
0 < δ < 1, returns a list of O(1/τ) characters containing Heavyτ (w) with
probability at least 1− δ. The probability is taken over the random coins of the
algorithm, whose running time is

Õ

(
log(n) ln2 (1/δ)

τ5.5

)
.

An overview of the above learning algorithm [1] is provided in Appendix A of
the full version [7].

3 Hard-Core Predicates by List Decoding

In this section, we review the work of Akavia et al. [1] on how to prove that
certain predicates are hard-core for a one-way function f using list decoding of a
particular error-correcting code. We also summarize the extensions by Duc and
Jetchev [6] to the case of elliptic-curve based one-way functions.

Let f : Zn → S be a one-way function and let y = f(x) for x ∈ Zn. Let
also π : Zn → {±1} denote a predicate (with the convention that a 0 bit is
encoded as +1). Finally we denote with βπ the bias of the predicate π, i.e.,
βπ = max{b=±1} Prx[π(x) = b].

The goal is to prove that π is a hard-core predicate for the function f . The
proof goes as usual by contradiction by assuming that there exists an oracle
Ω which, when queried on f(x), returns a bit b which is equal to π(x) with
probability βπ + ε for a non-negligible ε, and then using Ω to invert f , i.e., find
x given y.

To achieve this goal, Akavia et al. in [1] define a multiplication code

C = {Cx : Zn → {±1}}x∈Zn , where Cx(λ) = π(λx).

In order for their proof to work this code needs the following properties:
Accessibility: Given y = f(x), it must be possible to obtain a “noisy” version

C̃x of the codeword Cx, i.e., one that agrees with the correct one with
probability βπ + ε for a non-negligible ε. In [1], this is done by assuming that
the one-way function has some homomorphic property, i.e given y = f(x) and
λ ∈ Zn it is possible to compute yλ = f(λx) (modular exponentiation has
this property). Then, by querying Ω on yλ one gets the desired accessibility
property;

8 N. Fazio et al.

Concentration: Every codeword Cx must be a Fourier concentrated function.
Remember that according to the definition above this means that for every ε
there exists a polynomial (in logn and ε−1) set Γ of Fourier characters, such
that ‖Cx − Cx,Γ ‖ ≤ ε (where Cx,Γ is the restriction of Cx to the Fourier
characters in Γ);

Recoverability: There exists an algorithm that on input a Fourier character χ
and a threshold τ , outputs a list Lχ containing all the values x ∈ Zn such
that χ is τ -heavy for Cx. The algorithm runs in polynomial (in logn and
τ−1) time, which in particular means that the size of Lχ is also “small”.

Concentration and recoverability depends on the choice of the predicate π.
In [1], the notion of segment predicates is defined and shown to be sufficient for
the purpose. Later Morillo and Rafols in [9] prove that any individual input bit
yields a concentrated and recoverable code (we review this in Appendix B of the
full version [7]). We assume π to be one of such predicates in the following.

If the code C has the above properties then it is possible to prove that π is a
hard-core predicate. Assume we have an oracle Ω which when queried on f(x)
returns a bit b which is equal to π(x) with probability βπ + ε where ε = 1/poly(`)
(where ` = |n|). We need to show how to use Ω to invert f .

The inversion works as follows. On input y = f(x), the oracle Ω allows us to
access a “noisy” version C̃x of Cx, i.e., such that Prλ[Cx(λ) = C̃x(λ)] > βπ+ε. By
applying Lemma 2.5 we know that there exists a threshold τ which is polynomial
in ε and at least one Fourier character χ which is τ -heavy for both Cx and
C̃x. Using the learning algorithm described in Theorem 2.6, we obtain a list
containing all the τ -heavy Fourier characters for C̃x; for each such character we
use the recovery property to create a polynomial size list of possible pre-images
for y which because of Lemma 2.5 must necessarily include x. The correct x
can be identified by evaluating the OWF f over all the possible candidates and
comparing with y. Details can be found in [1] (in any case, in Sections 4 and 5
we present the details of this algorithm as it applies to our results).

3.1 Accessibility via Elliptic Curve Isomorphisms

Taking the result of [1] as a starting point, and using techniques first developed
in [4], Duc and Jetchev [6] show how to obtain the accessibility property in a
different way, when the one-way function is defined over the group G of points of
an elliptic curve. Their result does not require the one-way function f to have
some homomorphic property; on the other hand it requires the oracle to work
over a random description of the curve.

Let p be a prime and let E be an elliptic curve defined over Fp. To represent
E we use a short Weirstrass equation W : y2 = x3 + ax+ b, with a, b ∈ (Fp) and
4a3 + 27b2 6= 0. Let W (E) be the set of Weirstrass equations representing E: so
W ∈W (E). It is well known that W (E) is defined by the equations Wλ of the
form y2 = x3 + λ4ax+ λ6b for λ ∈ F×p . If Q = (Qx, Qy) is a point satisfying W
then the point Qλ = (Qλ,x = λ2Qx, Qλ,y = λ3Qy) satisfies Wλ. It is not hard to

Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields 9

see that the mapping Φλ : E → E defined as Φλ(Q) = Qλ is an isomorphism
with respect to the group operation over E.

Boneh and Shparlinski were the first to note that this isomorphism gives raise
to a natural extension of the prediction oracle Ω, by requiring that the input
distribution for Ω also include λ. Following this idea, the oracle in [6] takes as
input f(Q) where f is a one-way function defined over the group E, and also
a value λ (i.e., a representation Wλ of E). The oracle returns a bit b such that
b = π(Qλ,x) with probability βπ + ε (for a non-negligible ε) where the probability
is not only over the choice of Q (and the internal random coins of Ω) but also
over the choice of λ ∈ F×p .

As defined, the prediction oracleΩ gives noisy access to the quadratic codeword
CQ(λ) = π(λ2Qx), which would complicate matters (in particular it makes it
hard to prove concentration and recovery, see [6] for a discussion). To apply the
techniques of [1], we need noisy access to the multiplication code CQ : Fp →
{±1} defined as CQ(λ) = π(λQx).

Following [4] again, Duc and Jetchev defined a modified oracle Ω′ which
queries Ω if λ is a square in F×p , otherwise tosses a βπ-biased coin. It is not hard
to see that if Ω had advantage ε, then Ω′ has advantage ε/2 (see [4]).

Using Ω′, the generic approach on [1] shows that π is a hard-core predicate for
any one-way function f defined over E, provided that the output of f does not
depend on the Weirstrass equation used to describe E (in other words that the
function f is defined over the group of points, irrespective of its representation).
Duc and Jetchev call such a function an elliptic curve-based one-way function
(ECB-OWF) and discuss the application of their result to bilinear pairings defined
over elliptic curves, which are indeed a conjectured example of ECB-OWF.

4 Hard-Core Predicates for the Diffie-Hellman Problem
over Elliptic Curves

In this section, we show our first original result: if the Diffie-Hellman problem
over elliptic curves is hard, then every bit (and every segment predicate) of a
secret Diffie-Hellman value is unpredictable. This generalizes the result of Boneh
and Shparlinski [4] which holds only for the least significant bit.

For a security parameter `, consider an instance generator E which on input
1` outputs E` an elliptic curve defined over Fp` where p` is a `-bit prime, such
that G` is a cyclic subgroup of E` (under the standard group operation defined
over the curve points) generated by a point P`. In the following, we will drop
the suffix ` when it is clear from the context. We also use the additive notation
for the group operation over E, therefore every point Q ∈ G can be written as
Q = aP for some a ∈ {1, . . . , |G|}.

Assumption 4.1. We say that the Diffie-Hellman problem over E is hard if for
every polynomial time machine A, we have that the probability

Pr
[
A(E`, P`, aP`, bP`) = abP` | E` ← E

(
1`
)
; a, b← {1, . . . , |G|}

]
is negligible in `.

10 N. Fazio et al.

For every point Q ∈ E we denote with Qx the x-coordinate of Q. As before
we denote with W (E) the set of short Weirstrass equations describing a curve
E; recall that each W ∈W (E) can be uniquely associated with a λ ∈ F×p which
gives rise to the isomorphism Φλ defined in the previous section.

Let Bk : Fp → {±1} denote the k-th bit predicate and let βk be the bias
of Bk. We now state our first main theorem. Intuitively it says that under
Assumption 4.1, every bit of the binary expansion of the x-coordinate of abP is
unpredictable (e.g., pseudorandom) for a random representation of the curve E.

Theorem 4.2. Under Assumption 4.1, for any polynomial time machine Ω,∣∣Pr
[
Ω(λ, P, aP, bP) = Bk([Φλ(abP)]x) | λ← F×p ; a, b← {1, . . . , |G|}

]
− βk

∣∣
must be negligible.

The intuition of the proof is as follows. The crucial observation is that the
techniques of Duc and Jetchev [6] apply not just to ECB-OWFs but to any
computation which “respects” the isomorphism Φλ defined by a change in the
Weirstrass representation of the curve. The Diffie-Hellman problem is one such
problem since applying the Diffie-Hellman transform to Φλ(aP), Φλ(bP) yields
the value Φλ(abP) – indeed this is at the basis of the result of [4]. Therefore, an
oracle Ω contradicting Theorem 4.2 on input aP, bP and a curve Wλ defined by a
parameter λ ∈ F×p would output a bit equal to Bk

(
λ2[abP]x

)
with non-negligible

advantage. This allows us to construct a multiplication code with the required
properties and apply the framework of [1] to prove that the predicate is hard-core.

Remark 4.3. The extension to segment predicates follow from using the concen-
tration and recoverability arguments for those predicates as presented in [1].

Proof. Assume that there exists an oracle Ω such that the quantity∣∣Pr
[
Ω(λ, P, aP, bP) = Bk([Φλ(abP)]x) | λ← F×p ; a, b← {1, . . . , |G|}

]
− βk

∣∣
is larger than a non-negligible quantity ε.

From this oracle we build a modified oracle Ω′ which queries Ω if λ is a square
in F×p , otherwise tosses a βk-biased coin. It is not hard to see [4] that if Ω had
advantage ε, then Ω′ has advantage ε/2. We now show how to use Ω′ to break
Assumption 4.1.

Let E be an elliptic curve defined by an equation W ∈ W (E) over Fp and
let G be a cyclic subgroup of |E| generated by the point P . Given P, aP, bP we
want to compute Q = abP with non-negligible probability.

Consider the codeword:

CQ : Fp → {±1} defined as CQ(λ) = Bk(λQx).

The following properties hold for CQ.

Accessibility: The oracle Ω′ gives us access to a noisy version C̃Q of this
codeword defined as C̃Q = Ω′(λ, P, aP, bP). Because Ω′ has advantage ε/2
we know that Prλ[CQ(λ) = C̃Q(λ)] > βk + ε/2.

Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields 11

Concentration: The codeword CQ is a Fourier concentrated function. Indeed
for a threshold τ the τ -heavy characters of CQ must belong to the set

ΓQ,τ = {χβ : β = αQx mod p for α ∈ Γτ},

where Γτ is a set of size O(τ−2) containing the τ -heavy coefficients of the
function Bk. We refer the reader to [6, 9] for a proof of this statement and
also the definition of Γτ which shows that the elements of Γτ can be easily
enumerated. See also Appendix B of the full version [7].

Recoverability. Given a Fourier character χβ we want to find a set Lβ contain-
ing all the points Q such that χβ is τ -heavy for CQ. If χβ is τ -heavy for CQ
then χβ ∈ ΓQ,τ and therefore Qx = βα−1 mod p for α ∈ Γτ , therefore

Lβ = {Q : Qx = βα−1 mod p for α ∈ Γτ}.

By applying Lemma 2.5 we know that there exists a threshold τ which is
polynomial in ε and at least one Fourier character χ which is τ -heavy for both
CQ and C̃Q.

We then invoke Theorem 2.6 and use the learning algorithm of [1] to learn a
polynomial-size list LQ of all the τ -heavy Fourier characters for C̃Q. For each
such character χβ ∈ LQ we use the recovery property to create a polynomial size
list Lβ of possible values for Q. Let L = ∪χβ∈LQLβ ; this is a polynomial-size set
and because of Lemma 2.5 it must necessarily include Q.

More specifically, on input E,P, aP, bP and with access to Ω, the following
algorithm produces a polynomial size list of points in E which is guaranteed to
contain Q with probability 1− δ:

1. Let τ be the threshold determined by Lemma 2.5 ; note that τ−1 is polynomial
in ` = |p|, since ε−1 is.

2. Learn the polynomial-size set LQ containing all τ -heavy Fourier characters
of C̃Q, using the learning algorithm in [1], which is correct with probability
1− δ. This algorithms uses oracle Ω′ to obtain the required query access to
C̃x. By applying Lemma 2.5, we know that there exists at least one Fourier
character χ which is τ -heavy for CQ and χ ∈ LQ.

3. Use the recovery algorithm to construct a polynomial-size list of candidates
values for Q. For each χβ ∈ LQ let

Lβ = {R ∈ E : χβ is τ -heavy for CR}
= {R ∈ E : Rx = βα−1 mod p for α ∈ Γ}.

Let L = ∪χβ∈LQLβ . Note that L’s size is polynomial in ` and that Q ∈ L
with probability 1− δ.

The algorithm runs in polynomial time, since the learning algorithm of [1] is
efficient and all the enumerations in the algorithm are over polynomial-size lists.

To contradict Assumption 4.1 at this point, it would be sufficient to choose a
random point in L. The probability to select the correct point Q is 1/|L| and

12 N. Fazio et al.

therefore the algorithm outputs the correct Q with probability (1− δ)/|L| which
is non-negligible since |L| is of polynomial-size.

Another option is to use the above algorithm as a subroutine in Shoup’s
“self-corrector” for the Diffie-Hellman problem (Theorem 7 in [11]). Shoup shows
how an algorithm A that runs in time TA and produces a list of m points, which
contains the correct Diffie-Hellman value with probability > 7/8 can be easily
converted into an algorithm B that output only the correct Diffie-Hellman value
with overwhelming probability and runs in time TA`+ poly(m, `).

5 Hard-Core Predicates for the Diffie-Hellman Problem
over Finite Fields

In this section, we state and prove our main result: after defining a natural
(though weaker) variation of the Diffie-Hellman problem over finite fields Fpt for
t > 1, we prove that in the case of quadratic extensions (t = 2), this problem
admits a large class of hard-core predicates, including every single bit of one of
the coordinates of the secret value.

For a given prime p, there are many different fields Fp2 , but they are all
isomorphic to each other. Let h(x) = x2 + h1x + h0 be a monic irreducible
polynomial of degree 2 in Fp. It is well known that Fp2 is isomorphic to the field
Fp[x]/(h), and therefore elements of Fp2 can be written as linear polynomials:
if g ∈ Fp2 then g = g0 + g1x and addition and multiplication are performed as
polynomial operations modulo h. In the following, given g ∈ Fp2 we denote with
[g]i the coefficient of the degree-i term.

Let I2(p) be the set of monic irreducible polynomials of degree 2 in Fp. For
h, ĥ ∈ I2(p) we know that there exists an (easily computable) isomorphism

φh,ĥ : Fp[x]/(h)→ Fp[x]/(ĥ).

Finally, denote with g a generator of the multiplicative group of Fp2 which is
known to be cyclic.
A new Diffie-Hellman Problem. Denote with g the generator of the mul-
tiplicative group of Fp2 which is known to be cyclic. We define the following
variant of the CDH problem over Fp2 : informally we say that the Partial-CDH
problem is hard in Fp2 if no efficient algorithm given g,A = ga, B = gb ∈ Fp2 can
compute K =

[
gab
]

1 ∈ Fp, for any representation of Fp2 .
More formally, for a security parameter `, consider an instance generator

F which on input 1` outputs p` an `-bit prime. Let g` be a generator of the
multiplicative group of the finite field Fp2

`
. In the following, we will drop the

suffix ` when it is clear from the context.

Assumption 5.1. We say that the Partial Diffie-Hellman problem over F is
hard if for every polynomial time machine A, we have that for all h` ∈ I2(p`) the
following probability is negligible in `:

Pr
[
A
(
p`, h`, g`, g

a
` , g

b
`

)
=
[
gab`
]

1 | p` ← F
(
1`
)
; a, b←

{
1, . . . , p2

` − 1
}]
.

Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields 13

Note that A gets as input a representation h` of the field, and that A’s
advantage must be negligible for all representations.

We now state our second main theorem. We show that, when given an oracle
Ω which predicts the kth bit of the degree-1 coefficient of the Diffie-Hellman
secret with non-negligible advantage (where the probability is taken over the
input pair), as well as the representation of the field, then one can efficiently
solve the Partial Diffie-Hellman problem with non-negligible probability.

Theorem 5.2. Under Assumption 5.1, for any polynomial time machine Ω we
have that the following quantity must be negligible for all h ∈ I2(p):∣∣∣Pr

[
Ω
(
h, ĥ, g, ga, gb

)
= Bk

([
φh,ĥ

(
gab
)]

1

)
| ĥ← I2(p); a, b←

{
1, . . . , p2 − 1

}]
− βk

∣∣∣.
The proof of Theorem 5.2 appears in Section 5.1. Here we give an informal

intuition of the proof.
Our goal is to construct a code similar to that of [6], which must be accessible

by querying Ω over many different representation of the field. For an element
α ∈ Fp2 , and a fixed h ∈ I2(p), a natural definition for a codeword is as follows:

Cα
(
ĥ
)

= Bk
([
φh,ĥ(α)

]
1

)
. (1)

This code is accessible using Ω, however it is defined over I2(p), and it is
not immediately seen to be a multiplication code like the ones used in [1, 6].
Note, however, that the predicate Bk is evaluated only on the first coordinate
of φh,ĥ(α). In this case, it holds that

[
φh,ĥ(α)

]
1 = λ[α]1 for some λ ∈ F×p (see

Lemma 5.5 below).
Consider then the following multiplication code over Fp: for α ∈ Fp2 and for

λ ∈ F×p , set
Cα(λ) = Bk(λ[α]1)

extended with Cα(0) = −1. We stress that in light of Lemma 5.5, the above
code is conceptually the same as equation (1) in that codewords are obtained by
evaluating a predicate over all possible representations of elements. We’ve simply
restricted attention to the degree-1 coordinate. Therefore the multiplication is
accessible via Ω and then the proof follows similarly to the one in [1, 6].

Remark 5.3 (List of candidate solutions). The list-decoding algorithm of [1]
applied to the code above returns a polynomial size list of possible candidates for
[α]1. In our reduction α = gab and therefore it will be sufficient to output a random
element of the list to contradict Assumption 5.1. In contrast to Theorem 4.2,
we will not be able to apply Shoup’s “self-corrector” in this case to identify the
correct solution with high probability, as we have only a single coordinate for gab.

Remark 5.4 (Segment Predicates). While Theorem 5.2 is stated only for the
predicate Bk, it holds for any predicate π such that the corresponding code Cα
can be proven to be concentrated and recoverable; in particular, it holds for the
segment predicates defined in [1].

14 N. Fazio et al.

5.1 Proof of Theorem 5.2

We start with a lemma that gives a simple characterization of the isomorphisms
between two different representations of the field Fp2 . When describing such
maps, it will be convenient for us to view them as matrices in GL2(Fp).

Lemma 5.5. For any h ∈ I2(p) there exists a unique function Lh : Fp × F×p →
I2(p) which takes a pair (a, b) to the polynomial ĥ = Lh(a, b) such that the matrix
(1 a

0 b) defines an isomorphism Fp[x]/(h)→ Fp[x]/(ĥ). Moreover, for any ĥ ∈ I2(p),
L−1
h (ĥ) represents the complete set of isomorphisms from Fp[x]/(h)→ Fp[x]/(ĥ)

using the above matrix identification.

Proof. First note that any isomorphism of fields must send the unit element
to itself (and thus fix the entire base field Fp). Thus, when viewing such an
isomorphism as a linear transformation, the first basis element

(
1
0
)
must be fixed,

which determines the first column of the matrix as
(

1
0
)
. Since clearly we must

have b 6= 0 if the map is to represent an isomorphism, the completeness would
follow immediately, once we establish the existence and uniqueness of the map
Lh. We define Lh as follows. For a, b ∈ Fp with b 6= 0, let Lh(a, b)(x) = h(a+bx)

b2 .
To make the notation less cumbersome, we’ll fix a, b in what follows, and refer to
this polynomial more simply as Lh(x). To see that this definition is as desired,
note that to specify a homomorphism φ from Fp[x]/(h) to another field K of
characteristic p it is both necessary and sufficient to choose φ(x) = x ∈ K such
that h(x) = 0 in K. The matrix corresponding to (a, b) sends x 7→ a+ bx, and
indeed, a + bx is a root of h in the ring Fp[x]/(Lh) by construction. However,
it remains to show that Lh ∈ I2(p), as well as the uniqueness of Lh. Towards
the first goal: it is an elementary fact that since h was irreducible over Fp, so
is h(a + bx), and hence Lh. It is easy to verify additionally that Lh is monic,
and has degree 2, so that Lh ∈ I2(p). Thus, by the above remarks, the mapping
defined by x 7→ a + bx is an isomorphism Fp[x]/(h) → Fp[x]/(Lh) as desired.
The fact that Lh so constructed is unique (within I2(p)) follows easily as well,
since if h(a+ bx), and hence Lh(x), are elements of an ideal (h′) for some other
h′ ∈ I2(p), then Lh, h′ are associates, and thus Lh = h′ since both are monic.

Remark 5.6. We actually know a little more about the distribution; in particular,
we have

∣∣L−1
h (ĥ)

∣∣ = 2 for any ĥ ∈ I2(Fp). This follows at once from the fact
that every isomorphism has a (unique) matrix representation as above, and that
Gal(Fp2/Fp) ∼= Z2 (so that there are precisely two isomorphisms between any
two representations Fp[x]/(h),Fp[x]/(ĥ)).

Proof Sketch (Theorem 5.2). Suppose that the theorem were false, and that an
oracle Ω with an advantage that is not negligible exists. Now consider another
oracle Ω′ that takes as input a base representation h ∈ I2(p), a Diffie-Hellman
triple g, ga, gb as well as an element of λ ∈ Fp (instead of ĥ ∈ I2(p)), which works
as follows. The oracle selects a ← Fp uniformly at random, and constructs an
isomorphism ĥ from the matrix (1 a

0 λ) as described in Lemma 5.5. Ω′ then returns

Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields 15

the output of Ω(h, ĥ, g, ga, gb). One can then show that∣∣∣∣ Pr
λ,a,b

[
Ω′
(
h, λ, g, ga, gb

)
= Bk

(
λ
[
gab
]

1

)]
− βk

∣∣∣∣
is also not a negligible function. At this point, the proof follows closely to that of
Theorem 4.2. To begin, observe that we can, for any element α ∈ Fp2 , construct
the following encoding of [α]1 in its base polynomial representation as an element
of Fp[x]/(h):

Cα : Fp → {±1} defined as Cα(λ) = Bk(λ[α]1),

where [α]1 is taken under the representation determined by h. The fact that
this code is concentrated and recoverable follows immediately from the proof of
Theorem 4.2. The argument for accessibility is the same, but with the added
simplification that we no longer need to restrict to squares in Fp.

As in Theorem 4.2, we will be able to efficiently construct a list of candidates
for

[
gab
]

1. As mentioned, we unfortunately will not be able to apply Shoup’s
“self-corrector” in this case as we have only a single coordinate. Nevertheless, we
still obtain a contradiction by guessing a random element of the list as the value
of
[
gab
]

1, since the list is of polynomial size.

5.2 Finite Field-Based One-Way Functions

The work of [6] introduces “elliptic curve-based one-way functions”, and goes on
to prove interesting hardness results for this entire class of functions. Loosely
speaking, elliptic curve-based OWF’s are one-way functions which are well defined
on isomorphism classes of curves, and do not depend on any specific representation.
Similarly, we consider finite field-based OWF’s, which are those that do not
depend on the isomorphism class. When considering only prime-order fields Fp,
this concept is somewhat trivial, since once one fix a bit representation for integers,
there are no non-trivial isomorphisms. However, the situation becomes far more
interesting when one considers field extensions. Even with a fixed representation
for integers, there are many different representations of even a quadratic extension
(see Lemma 5.5). As demonstrated in [6] for the case of elliptic curves, having a
one-way function which is well defined on many different representations may give
rise to a number of hardness results that apply to the entire class of functions. We
demonstrate similar results, showing that for quadratic extensions, an efficient
oracle that predicts the k-th bit of the input over a random representation of
the field will imply an efficient procedure that can “partially” invert the function
(i.e., if f is the one-way function, given f(α), it computes [α]1).

In order to define a function f on a finite field, we first define the function on
a particular “base” representation F . Then, to define f on any other isomorphic
copy F ′, we wish to simply compute f ◦ ψ, where ψ : F ′ → F is an isomorphism.
The following definition guarantees that f is well defined on isomorphism classes
of finite fields.

16 N. Fazio et al.

Definition 5.7. Let F ∼= Fpt be a concrete representation of a finite field. A
function f : F → Y is said to be finite field-based if for any F ′ ∼= F and any two
isomorphisms ψ,ψ′ : F ′ → F , we have f ◦ ψ = f ◦ ψ′.

Remark 5.8. Note that any function f satisfying Definition 5.7 is actually defined
on a quotient space, F/ ∼, where α ∼ α′ if and only if α, α′ have the same minimal
polynomial over Fp. Furthermore, any function which is well defined on F/ ∼
will satisfy the definition. Thus, an equivalent definition would be to require that
f(α) depends only on the minimal polynomial of α. (This follows from the fact
that the Galois group acts transitively on the roots of irreducible polynomials.)

We now define a natural relaxation of the notion of one-way functions over
finite fields, where it is assumed to be hard to output the maximal degree
coordinate of the input. While this definition makes sense for the general case pt
for t > 1, we only consider the case of quadratic extensions.

Consider the instance generator F which on input a security parameter 1`,
outputs p` (an `-bit prime), and a function f` : Fp2

`
→ S`, where S` is an arbitrary

set. We drop the suffix ` when it is clear from the context.

Definition 5.9. We say that F is partial one-way if for any efficient algorithm
A the following probability is negligible in ` for all h` ∈ I2(p`):

Pr
[
A(h`, f`(α)) = [α]1 | p`, f` ← F

(
1`
)
; α← Fp` [x]/(h`)

]
.

Again, note that A takes as input a representation of the field, but the
probability must be negligible for all representations.

In the case of quadratic extensions, we can obtain results similar to what was
shown in [6] for elliptic-curve based OWF. In particular, the existence of a noisy
oracle which works with non-negligible probability over the point, as well as the
representation of the field, will give rise to an efficient procedure which “partially”
inverts f contradicting Definition 5.9. More formally, we have the following.

Theorem 5.10. Suppose that f is a finite field-based partial one-way function,
and fix a base representation Fp2 = Fp[x]/(h) for some h ∈ I2(p). Then, for any
probabilistic polynomial time machine Ω, it must be that the following quantity
is negligible:∣∣∣Pr

[
Ω
(
h, ĥ, f(α)

)
= Bk

([
φh,ĥ(α)

]
1

)
| ĥ← I2(p); α← Fp[x]/(h)

]
− βk

∣∣∣.
The proof is a combination of the proofs of Theorems 4.2 and 5.2 and will be

presented in the full version [7].

Remark 5.11. We note that the Diffie-Hellman problem does not satisfy the
above definition: apart from the fact that the domain is actually two (or three)
field elements, the value gab is not independent of the representation. However, if
one modifies the usual Diffie-Hellman problem to report the minimal polynomial
of gab instead, then the definition is satisfied (with the caveat regarding the input
coming from a product space). We also remark that the minimal polynomial is

Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields 17

efficiently computable; see for example the work of [12]. Finally, we note that
for Fpt , each of the equivalence classes under ∼ has size t. Since t is usually a
small constant (in our case, it is 2), the aforementioned conversion in which one
“throws away” some information by only considering the minimal polynomial will
not affect the problem’s computational character.

6 Conclusion and Future Work

We presented a relaxed variant of the Diffie-Hellman problem over finite fields of
the form Fpt for t > 1 and proved that for the case of quadratic extensions Fp2 ,
this problem admits several hard-core predicates (including every single bit of
one coordinate of the secret Diffie-Hellman value) over a random representation
of the field. These are the first results known for hard-core predicates for the
CDH problem over finite fields. We extended this result to a larger class of
computationally hard problems (which we called finite field-based partial one-way
functions) over such finite fields.

We also proved that the same class of predicates is hard-core for the elliptic
curve Diffie-Hellman, over a random representation of the underlying elliptic
curve, thereby extending the Boneh-Shparlinski result [4] which worked only for
the least significant bit.

Our results can be interpreted as “augmenting” the input to the computational
hard problem (being it a one-way function, or the CDH problem) with a random
description of the underlying group being used.

Our work leaves several open questions. Perhaps the most natural is to extend
the results to Fpt for t > 2. In the case of t = 2, the isomorphisms from one
representation to another amounted, in some sense, to a linear change of variables:
x 7→ a+ bx. This made the set of isomorphisms between representations easy to
analyze, and enabled us to show that when restricting attention to the coefficient
of x, each of these maps acts by translation for some λ ∈ F×p . For t > 2, this
is not the case, and thus our original techniques must be augmented somehow.
Perhaps one can find a large (enough) number of representations for which the
isomorphisms have the required properties as a linear map.

Other natural questions include the study of the hardness of the Partial-CDH
problem in Fpt for t > 1. While it seems quite a reasonable assumption to make,
the ultimate goal would be to reduce it to the “full” CDH over another platform.
In particular, is it possible to reduce the Partial-CDH over Fpt to the regular CDH
problem over Fp? A related question is if we can use the hardness of Partial-CDH
over, say Fp2 , to prove the unpredictability of a predicate for the traditional CDH
problem over Fp.

Finally it is our hope that the techniques presented in this paper could
eventually lead to the proof that CDH over Fp does have a (deterministic)
hard-core predicate.

18 N. Fazio et al.

Acknowledgments

The authors would like to thank Adi Akavia and Dimitar Jetchev for several
useful discussions and clarifications.
Nelly Fazio’s research is sponsored in part by NSF CAREER award #1253927,
and by PSC-CUNY award 64578-00 42, funded by the Professional Staff Congress
and CUNY. Nelly Fazio and William E. Skeith III are sponsored in part by NSF
award #1117675. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation. Nelly Fazio and Rosario Gennaro
are supported in part by the U.S. Army Research Laboratory and the U.K.
Ministry of Defence under Agreement Number W911NF-06-3-0001. The views
and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K. Governments are authorized
to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

References
1. Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predicates using list

decoding. In: IEEE Symposium on Foundations of Computer Science—FOCS. pp.
146–157 (2003)

2. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.: Rsa and rabin functions: Certain
parts are as hard as the whole. SIAM Journal on Computing 17(2), 194–209 (1988)

3. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseu-
dorandom bits. SIAM Journal on Computing 13(4), 850–864 (1984)

4. Boneh, D., Shparlinski, I.E.: On the unpredictability of bits of the elliptic curve
diffie-hellman scheme. In: Advances in Cryptology—CRYPTO. pp. 201–212 (2001)

5. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22(6), 644–654 (1976)

6. Duc, A., Jetchev, D.: Hardness of computing individual bits for one-way functions
on elliptic curves. In: Advances in Cryptology—CRYPTO. pp. 832–849 (2012)

7. Fazio, N., Gennaro, R., Perera, I.M., Skeith III, W.E.: Hard-core predicates for a
diffie-hellman problem over finite fields. Cryptology ePrint Archive, Report 2013/134
(2013)

8. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
ACM Symposium on Theory of Computing—STOC. pp. 25–32 (1989)

9. Morillo, P., Ràfols, C.: The security of all bits using list decoding. In: Public Key
Cryptography—PKC. pp. 15–33 (2009)

10. Näslund, M.: All bits in ax + b mod p are hard. In: Advances in Cryptology—
CRYPTO. pp. 114–128 (1996)

11. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Advances
in Cryptology—EUROCRYPT. pp. 256–266 (1997)

12. Shoup, V.: Efficient computation of minimal polynomials in algebraic extensions of
finite fields. In: Proceedings of the 1999 international symposium on Symbolic and
algebraic computation. pp. 53–58. ACM (1999)

	Hard-Core Predicates for aDiffie-Hellman Problem over Finite Fields

