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Abstract. In this paper we propose a binary field variant of the Joux-
Lercier medium-sized Function Field Sieve, which results not only in
complexities as low as Lqn(1/3, (4/9)

1/3) for computing arbitrary loga-
rithms, but also in an heuristic polynomial time algorithm for finding the
discrete logarithms of degree one and two elements when the field has a
subfield of an appropriate size. To illustrate the efficiency of the method,
we have successfully solved the DLP in the finite fields with 21971 and
23164 elements, setting a record for binary fields.
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1 Introduction

When it comes to selecting appropriate parameters for public-key cryptosystems,
one invariably observes a trade-off between security and efficiency. At a most
basic level, for example, larger keys usually mean higher security, but worse
performance.

A related rule of thumb which one does well to keep in mind, is that a
specialised parameter which improves efficiency, typically (or potentially) weak-
ens security. Examples abound of such specialisations and consequent attacks:
discrete logarithms modulo Mersenne (or Crandall) primes and the Special Num-
ber Field Sieve [19]; Optimal Extension Fields [2] and Weil descent for elliptic
curves [8]; high-compression algebraic tori [23] and specialised index calculus [10];
quasi-cyclic or dyadic McEliece variants [21] and Gröbner basis attacks [6], and
more recently elliptic curves over binary fields [7], to name just a few. In practice
therefore, one should be wary of any additional structure, which may potentially
weaken a system.
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Grant 06/MI/006. The fourth author was in addition supported by SFI Grant
08/IN.1/I1950.



In this paper we give a fairly extreme example of this principle in the case of
binary (or in general small characteristic) fields which possess a small to medium-
sized intermediate field. In 2006 Joux and Lercier designed a particularly efficient
variation of the Function Field Sieve (FFS) algorithm for computing discrete
logarithms [16], which at the time possessed the fastest asymptotic complexity
of all known discrete logarithm algorithms for appropriately balanced q and n,
namely Lqn(1/3, 3

1/3) ≈ Lqn(1/3, 1.442), where

Lqn(a, c) = exp
(
(c+ o(1)) (log qn)a(log log qn)1−a

)
,

and qn is the cardinality of the finite field.
In 2012, Joux proposed a more efficient method of obtaining relations, dubbed

‘pinpointing’, which applies to a specialisation of the function field setup of [16].
In this approach, each relation found via classical sieving can be amplified into
many more [13], which is advantageous when sieving is the dominant phase,
rather than the linear algebra (or individual logarithm phase). The overall com-
plexity of this technique for solving the DLP can be as low as Lqn(1/3, (8/9)

1/3) ≈
Lqn(1/3, 0.961). To demonstrate the practicality of the approach, Joux solved
the DLP in two cases: in a 1175-bit field and in a 1425-bit field, setting records
for medium-sized base fields, in this case prime fields.

In this work we demonstrate that a basic assumption used in the analysis
of virtually all fast index calculus algorithms can be very wrong indeed; in the
case of binary fields possessing a subfield of an appropriate size, this leads to the
dramatic conclusion that the logarithms of degree one elements over this subfield
can be solved in polynomial time. As far as we are aware, no other algorithm for
the collecting of relations and the linear algebra step has beaten the Lqn(1/3)
barrier. Our fundamental observation is that the splitting probabilities in Joux-
Lercier’s variation of the FFS can be cubic in the reciprocal of the degree –
rather than exponential. The reason for this is the richer structure of binary
extension fields relative to prime fields, which lends weight to the argument that
such fields should be avoided in practice. We also exploit our basic observation
to efficiently compute the logarithms of degree two elements — which until now
were the bottleneck of the individual logarithm descent phase — which for a
range of binary fields results in the fastest Lqn(1/3) algorithm to date, namely
Lqn(1/3, (4/9)

1/3) ≈ Lqn(1/3, 0.763), which is precisely the square root of the
complexity of the ordinary FFS, for which c = (32/9)1/3.

We emphasise that our relation generation method arises purely as a special-
isation of [16], and is thus completely independent of [13]. However, at a high
level, our relation generation method may be viewed as a form of one-sided pin-
pointing, but with two central differences to that of [13]. Firstly, we do not need
to search for an initial splitting polynomial, since we have an explicit description
of all such polynomials, i.e., no sieving need take place. Secondly, as members of
this family of polynomials have arbitrarily high degree, the other ‘random’ side
can be made to have very small degree, which thus splits with very high proba-
bility. These two differences result in our polynomial time relation generation.

The paper is organised as follows. In §2 we recall the Joux-Lercier variant
of the FFS. In §3 we present our specialisation and our analysis of splitting
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probabilities, while in §4 we present our new descent methods and analyse the
complexity of the resulting algorithms. In §5 we present our implementation
results and conclude in §6.

2 The Medium-sized Base Field Function Field Sieve

In this section we briefly recall the 2006 FFS variant of Joux and Lercier [16].
Let Fqn be the finite field in which discrete logarithms are to be solved, where q
is a prime power. In order to represent Fqn , choose two univariate polynomials
g1, g2 ∈ Fq[X] of degrees d1 and d2 respectively. Then whenever X − g1(g2(X))
possesses a degree n irreducible factor F (X) over Fq, one can represent Fqn in
two related ways. In particular, let x ∈ Fqn be a root of F (X) = 0, and let
y := g2(x), so that by construction x = g1(y) as well. These relations give an
explicit isomorphism between Fq(x) and Fq(y), both of which represent Fqn .

In the most basic version of the algorithm (which also leads to the best com-
plexity) one chooses d1 ≈ d2 ≈ √

n, and considers elements of Fqn represented
by:

xy + ay + bx+ c , with a, b, c ∈ Fq .

Substituting x by g1(y), and y by g2(x), we obtain the following equality in Fqn :

xg2(x) + ag2(x) + bx+ c = yg1(y) + ay + bg1(y) + c . (1)

The factor base consists simply of the degree one elements of Fq(x) and Fq(y);
then for every triple (a, b, c) for which both sides of (1) split over Fq — i.e., when
all of its roots are in Fq — in the respective factor bases, one obtains a relation.
Determining such triples can naturally be made faster using sieving techniques.
Once more than 2q such relations have been collected, one performs a linear
algebra elimination to recover the individual logarithms. To compute arbitrary
discrete logarithms, one uses a ‘descent’ method, as we detail in §4.

In order to assess the complexity of this algorithm, throughout the paper
let Q = qn, let q = LQ(1/3, α), and let LQ(1/3, c1) and LQ(1/3, c2) denote
the complexity of the sieving and linear algebra phases respectively. As shown
in [16], heuristically one has

c1 = α+
2

3
√
α

and c2 = 2α .

In order to generate sufficiently many relations, α must satisfy the condition:

2α ≥ 2

3
√
α
.

For such α’s, the complexity of the entire algorithm, including the descent phase,
is minimised for α = 3−2/3, with resulting complexity LQ(1/3, 3

1/3).
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3 Specialisation to Binary Fields

We now present a specialisation of the construction of [16] as presented in the
previous section, and detail some interesting consequences. From now on let Fq

denote the finite field with 2l elements.
All of our improvements and observations arise from a rather innocent-

looking choice for g2, namely y = x2k . Our primary motivation for this was
to automatically eliminate half of the factor base, since any linear polynomial

(y+ a) is equal to (x+ a2
−k

)2
k

, and so log (y + a) = 2k log (x+ a2
−k

). However,
this selection has further serendipitous consequences, the central two being:

• Whenever k | l and l ≥ 3k, the probability of the l.h.s. of (1) splitting over
Fq is approximately 2−3k, instead of the expected 1/(2k+1)!. We show that
for some asymptotic families of binary fields, this leads to a polynomial time
algorithm to find the logarithms of all degree one elements of Fqn .

• As surprising as the above result is, for such families, the individual log-
arithm phase then has complexity Lqn(1/2). Hence one must ensure the
complexity of the stages is balanced. Depending on the form of n, we show
that the bottleneck of the descent changes from degree two to degree three
special-q, since the x-side has the same form of the l.h.s. of (1), and thus en-
joys the same higher splitting probability. This ensures that our claimed new
Lqn(1/3) complexities are achieved across all the phases of the algorithm.

In the remainder of the paper we explain these advantages in more detail.
In addition to the above two observations, for certain extensions which possess
Galois-invariant factor bases, the use of non-prime base fields can induce extra
automorphisms, which reduce its size further, see §5. Other practical speed ups

arise from our choice y = x2k . The matrix-vector multiplications in Lanczos’
algorithm consists of only cyclic rotations, i.e., shifts mod qn − 1, and so no
multiplications need to be performed. Furthermore, in the descent phase, one
ordinarily needs to perform special-q eliminations in both function fields. How-
ever, due to the simple relation between x and y, one is free to map from one
side to the other in order to increase the probability of smoothness. One can
also balance the degrees of both sides by utilising other auxiliary function fields
arising from passing a power of 2 from the x-side to other side; this not only
provides a practical speed up but is core to our new complexity results, see §4.

3.1 Higher Splitting Probabilities

Throughout this section, rather than use the field elements x, y as variables,
we use X,Y to emphasise that the stated results are valid in the univariate
polynomial ring over Fq, which is implicitly either Fq[X] or Fq[Y ], depending on
which side of (1) is involved.

Assume 1 < k < l. When Y = X2k the l.h.s. of (1) becomes

X2k+1 + aX2k + bX + c . (2)
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Assuming c 6= ab and b 6= a2
k

, this polynomial may be transformed (up to a
scalar factor) into the polynomial

fB(X) = X
2k+1

+BX +B , with B =
(b+ a2

k

)2
k+1

(ab+ c)2k
, (3)

via

X =
ab+ c

b+ a2k
X + a .

The polynomial fB is related to PA(X) = X
2k+1

+X +A, which is well-studied
in the literature, having arisen in several contexts including finite geometry,
difference sets, as well as determining cross correlation between m-sequences;
see references in [12] for further details.

We have the following theorem due to Bluher [3] (and refined in the binary
case by Helleseth and Kholosha [12]), which counts the number of B ∈ Fq for
which fB splits over Fq.

Theorem 1. [12, Thm. 1] Let d = gcd (l, k). Then the number of B ∈ F
×
2l

such

that fB(X) has exactly 2d + 1 roots over F2l is





2l−d − 1

22d − 1
if l/d odd,

2l−d − 2d

22d − 1
if l/d even.

Theorem 1 of [12] also states that fB can have no more than 2d + 1 roots
in Fq, and so if gcd (l, k) < k then fB can not split. Hence we must have k | l
for our application. Indeed we must also have l ≥ 3k in order for there to be
at least one such B. Observe that under these two conditions, for B chosen
uniformly at random from Fq, the probability that fB splits completely over Fq

is approximately 1/23k – far higher than the splitting probability 1/(2k +1)! for
a degree 2k + 1 polynomial chosen uniformly at random.

Furthermore, the set SB of all such B can be computed explicitly, without
needing to perform any factorisations or smoothness tests. Indeed, the proof of
Prop. 5 in [12] gives an explicit parameterisation of all such B: for u ∈ G =
F2l \ F22k , we have

SB = Im

(
u −→ (u+ u22k)2

k+1

(u+ u2k)22k+1

)
.

By analysing the form of this map, one can avoid obtaining repeated images.
However, even a naive enumeration of elements of G requires at most Õ(q) Fq-
operations, which is comparable to the complexity of relation generation, as we
now show.
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3.2 Relation Generation

By exploiting the above transformation of (2) to (3) and the list SB of precom-
puted B’s for which (3) splits, one can construct polynomials of the form (2)

which always split completely over Fq. Indeed, for any (a, b) for which b 6= a2
k

,
and for each B ∈ SB , we simply compute via (3) the corresponding unique
c ∈ Fq. This ensures that (2) splits and therefore requires no sieving whatsoever.

In order to obtain a relation, we also require that

Y g1(Y ) + bg1(Y ) + aY + c (4)

splits over Fq, which we assume occurs with probability 1/(d1+1)! for randomly
chosen g1. Since |LB | ≈ q/23k, for each (a, b) we expect to obtain

q

23k (d1 + 1)!

relations. Since we need q relations, we expect to require about 23k (d1 + 1)!
pairs (a, b) to obtain sufficiently many. For each pair (a, b) this costs O(q/23k) 1-
smoothness tests, or Õ(q/23k) Fq-operations. Hence the total cost is Õ(q (d1 + 1)!).
Finally, in order for there to be sufficiently many relations, we must have

q3

23k (d1 + 1)!
> q , or q2 > 23k (d1 + 1)! .

Since we insist that l ≥ 3k, having q > (d1 + 1)! is sufficient. In §4 we consider
the impact of this approach on the full DLP complexity in two cases when
q = Lqn(1/3, α) and n ≈ 2k · d1: firstly for 2k ≈ d1 and secondly for 2k ≫ d1.
However, we now consider the relation generation complexity when the base field
cardinality is polynomially related to the extension degree.

3.3 Polynomial Time Relation Generation

With a view to reducing the complexity of degree one relation generation to a
minimum for some example fields, we choose k as large as possible such that
k | l and l ≥ 3k, and set d1 to be as small as possible, assuming a g1 can be

found with X−g1(X
2k) possessing a degree n irreducible factor. Experimentally

it seems that d1 = 3 (or possibly d1 = 4) is sufficient to produce an irreducible
of any degree n ≤ 2k, for q sufficiently large. Of course, n may be as large as
2k · d1 in this case.

Writing l = k · k′ with k′ ≥ 3 a constant, and n ≈ 2k · d1 with d1 constant,
as l → ∞, the logarithms of the degree one factor base elements of Fqn can be

computed in heuristic polynomial time. In particular, as n ≈ 2k · d1 = 2l/k
′ · d1,

we have
Q = qn ≈ 2l·2

l/k′

·d1 .

As l → ∞, we therefore have

logQ

log logQ
= O(2l/k

′

) .
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The cost of relation generation is Õ(q (d1 + 1)!) = Õ(q) = Õ(2l) = Õ(logk
′

Q),
whereas the cost of sparse linear algebra, using Lanczos’ algorithm [18] for in-
stance, is the product of the row weight and the square of number of variables,
namely

(2l/k
′

+ d1) Õ(q2) = Õ(log2k
′+1 Q) .

For the optimal choice k′ = 3 the complexity is therefore Õ(log7 Q). We sum-
marise this in the following:

Heuristic Result 1. Let q = 2l with l = k ·k′ and k′ ≥ 3 a constant, let d1 ≥ 3
be constant, and assume n ≈ 2k·d1. Assuming that Y g1(Y )+aY +bg1(Y )+c splits
over Fq with probability 1/(d1+1)! over all triples (a, b, c) ∈ (Fq)

3, the logarithms

of all degree one elements of Fqn can be computed in time Õ(log2k
′+1 Q).

Note that the set of degree one elements is always defined relative to a partic-
ular representation of Fqn . As it is easy to switch between any two representations
of a finite field [20], one can always map to our Fq(x) first. Note also that the
statement of Heuristic Result 1 implicitly assumes that the factor base contains
a generator of F×

qn . A result of Chung proves that for all prime powers s and all
r ≥ 1 such that s > (r − 1)2, if Fsr = Fs(x) then {x + a | a ∈ Fs} generates
F
×
sr [4, Thm. 8]. In our context we therefore need qk

′

> (n − 1)2 ≈ q2 · d21 in
order for our DLP algorithm to work, which is satisfied for our q and small d1.
However, the issue of whether there exists a generator in the stated factor base
remains an open problem in general, see for instance [26].

3.4 An Extreme Case: n = 2k ± 1

If n = 2k ± 1 then the degree one relation generation becomes extremely fast. In

particular, if g1(X) = γX∓1 then as g2(X) = X2k , we obtain the polynomials

X2k±1 + γ. Furthermore, if k | l then X2k±1 + γ is irreducible whenever γ has
no root of prime order p | (2k ± 1). In both cases, (4) has degree two and splits
with probability 1/2.

Table 1 contains timing data for relation generation for a family of fields
with q = 23k and n = 2k − 1, which incorporates the factor base reduction tech-
nique arising from quotienting out by the action of the k-th power of Frobenius,
which has order 3n, see §5. We used an AMD Opteron 6128 processor clocked at
2.0GHz. Note that the time is quasi-cubic in the bitlengh, in accordance with
the discussion preceeding Heuristic Result 1.

4 Individual Logarithms and Complexity Analysis

As unexpected as Heuristic Result 1 is, it does not by itself solve the DLP. Using a
descent method à la [16, 5], computing individual logarithms unfortunately then
has complexity Lqn(1/2). Hence one can not allow the extension degree n to
grow as fast as Theorem 1 permits; it must be tempered relative to the base
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Table 1. Relation generation times for q = 23k and n = 2k − 1

k log2(q
n) #vars time

7 2667 5506 2.3s
8 6120 21932 15.0s
9 13797 87554 122s

10 30690 349858 900s

field size. With this in mind, we now consider the complexity of the descent, for
q and n appropriately balanced so that the total complexity is Lqn(1/3).

For a generator g ∈ F
×
qn and a target element h ∈ 〈g〉, the descent proceeds by

first finding an i ∈ N such that z = h gi is m-smooth for a suitable m, i.e., so that
all of the irreducible factors of z have degrees ≤ m. The goal of the descent is to
eliminate every irreducible factor of z, by expressing each as a product of smaller
degree irreducibles recursively, until only degree one elements remain, whose
logarithms are known. We do so using the special-q lattice approach from [16],
as follows.

Let p(x) be a degree d irreducible (considered as an element of Fq[X]) which

we wish to eliminate. Since y = x2k , we have

p(x)2
k

= p(x2k) = p(y) ,

where the coefficients of p are those of p, powered by 2k. Note that we also have

p(y)2
−k

= p(x) ,

and hence we can freely choose to eliminate p using either the x-side or the y-side
of (1). For convenience we focus on the y-side. The corresponding lattice Lp is
defined by:

Lp(Y ) = {(w0(Y ), w1(Y )) ∈ Fq[Y ]2 : w0(Y ) g1(Y ) + w1(Y ) ≡ 0 (mod p(Y ))} .

A basis for this lattice is (0, p(Y )), (1, g1(Y ) (mod p(Y ))), which is clearly un-
balanced. Using the extended Euclidean algorithm, we may construct a balanced
basis (u0(Y ), u1(Y )), (v0(Y ), v1(Y )) for which the degrees are ≈ d/2. Then for
any r(Y ), s(Y ) ∈ Fq[Y ] with r(Y ) monic we have

(w0(Y ), w1(Y )) =
(
r(Y )u0(Y ) + s(Y )v0(Y ) , r(Y )u1(Y ) + s(Y )v1(Y )

)
∈ Lp(Y )

and thus RHS(Y ) ≡ 0 (mod p(Y )), where

RHS(Y ) = w0(Y ) g1(Y ) + w1(Y ) .

When RHS(Y )/p(Y ) is (d − 1)-smooth, we also check whether LHS(X) is also
(d− 1)-smooth, where

LHS(X) = w0(X
2k)X + w1(X

2k) .

8



When both sides are (d − 1)-smooth, we may replace p(Y ) with a product of
irreducibles of degree at most d− 1, and then recurse.

Let Q = qn. As in [16], we assume there is a parameter α such that:

n =
1

α

(
logQ

log logQ

)2/3

, q = exp
(
α

3

√
logQ · log2 logQ

)
. (5)

The three stages to consider are relation generation, linear algebra, and
the descent, whose complexities we denote by LQ(1/3, c1), LQ(1/3, c2) and
LQ(1/3, c3), respectively. The total complexity is therefore LQ(1/3, c), where
c = max{c1, c2, c3}. We next consider degree 2 elimination and then two special
cases of field representation.

4.1 Degree 2 Elimination

We begin with degree 2 elimination as firstly it is the bottleneck in the descent,
and secondly because one can exploit the higher splitting probability of the
polynomials (2) as well. Let p(Y ) be a degree 2 irreducible to be eliminated. A
reduced basis (u0(Y ), u1(Y )), (v0(Y ), v1(Y )) for the lattice Lp(Y ) can be found
with degrees (1, 0), (0, 1). Hence with r normalised to be 1 and s ∈ Fq, we have

(w0(Y ), w1(Y )) =
(
u0(Y ) + s v0(Y ), u1(Y ) + s v1(Y )

)
∈ Lp(Y )

with degrees (1, 1). We have thus

w0(Y ) g1(Y ) + w1(Y ) ≡ 0 (mod p(Y )) ,

and so the remaining factor has degree d1 − 1. The corresponding polynomial
LHS(X) is

w0(X
2k)X + w1(X

2k) , (6)

which is of the form X2k+1+aX2k +bX+c, and as a consequence of Theorem 1,
it splits over Fq with probability approximately 2−3k. However, as with relation
generation, we can also ensure that LHS(X) always splits, with the following
technique. Writing the basis elements explicitly as (Y + u00, u10), (v00, Y + v10),
and with r = 1 and s ∈ Fq the lattice elements are (w0(Y ), w1(Y )) = (Y +u00+
sv00, sY +u10 + sv10). Thus combining (6) and (3), for each B ∈ SB we find the
set of roots s ∈ Fq that satisfy the Fq[S] polynomial

B · (v00S2 + (u00 + v10)S + u10)
2k + (S2k + v00S + u00)

2k+1 = 0 ,

by computing its GCD with Sq + S. This technique extracts all such s alge-
braically for any B, which ensures that LHS(X) automatically splits.

On average one expects there to be one such s ∈ Fq for each B. Then for
each such s we check whether RHS(Y )/p(Y ) splits, which we assume occurs with
probability 1/(d1− 1)!. In general we therefore need sufficiently many B’s in SB

for this to occur with good probability, i.e., that q/23k > (d1 − 1)!.
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4.2 Case 1: n ≈ 2k · d1 and 2k ≈ d1

In this section we will show the following:

Heuristic Result 2 (i). Let q = 2l, let k | l and let n be such that (5) holds.
Then for n ≈ 2k · d1 where 2k ≈ d1, the DLP can be solved with complexity
LQ(1/3, (8/9)

1/3) ≈ LQ(1/3, 0.961).

This is the simplest case we present; however for the sake of completeness
and ease of exposition, we explicitly tailor the derivation presented in §3.2. By
our relation generation method, the l.h.s. polynomial (2) always splits, whereas
the probability of (4) being smooth is approximately 1/

√
n!. Using the standard

approximation log n! ≈ n log n, the logarithm of the probability P of both sides
being smooth is therefore:

logP ≈ −
√
n log

√
n = −1

2

√
n log n .

The size of the sieving space is q3/23k, and since we require q relations we must
have:

q3 P

23k
≥ q , or 2 log q ≥

(3
2
+

√
n

2

)
log n ≈

√
n

2
log n .

Ignoring low order terms, by (5) this is equivalent to

2α ≥ 1

3
√
α
, or α ≥ 6−2/3 . (7)

Given that we require q relations, the expected time to collect these relations is

q

P
= LQ

(
1/3 , α+

1

3
√
α

)
,

and hence c1 = α+ 1
3
√
α
. Since the linear algebra is quadratic in the size of the

factor base, we also have c2 = 2α.
For the descent, as in [16], let the smoothness bound be m = µ

√
n. Then the

probability of finding such an expression is

1 /LQ

(
1/3 ,

1

3µ
√
α

)
.

If the descent is to be no more costly than either the relation generation or the
linear algebra, then we must have

1

3µ
√
α

≤ max
{
α+

1

3
√
α
, 2α

}
. (8)

We also need to ensure three further conditions are satisfied. Firstly, that the cost
of all the special-q eliminations is no more than LQ(1/3,max{c1, c2}). Secondly,
that there are enough (r, s) pairs to ensure a relation is found. And thirdly, that
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during the descent the degrees of the polynomials being tested for smoothness
is really descending.

By the discussion in §4.1, in order to eliminate degree 2 elements we need
q ≥ 23k (d1 − 1)!, or equivalently,

α ≥ 1

3
√
α
, or α ≥ 3−2/3 .

Since for degree 3 special-q LHS(X) will not have the form (2), we need to
check that the smoothness probability does not impose an extra condition on α.
For p(Y ) a degree 3 irreducible to be eliminated, a reduced basis (u0(Y ), u1(Y )),
(v0(Y ), v1(Y )) for the lattice Lp(Y ) can be found with degrees (1, 1), (0, 2). Hence
with r now allowed to be monic of degree one and s ∈ Fq, we have

(w0(Y ), w1(Y )) =
(
(Y + r0)u0(Y ) + s v0(Y ) , (Y + r0)u1(Y ) + s v1(Y )

)
∈ Lp(Y ),

with degrees (2, 2). As before, we have

w0(Y ) g1(Y ) + w1(Y ) ≡ 0 (mod p(Y )) ,

and the corresponding polynomial LHS(X) is

w0(X
2k)X + w1(X

2k) .

Once divided by p(Y ), the degree of the Y -side is d1 − 1 ≈ √
n while the degree

of the X-side is 2k+1 +1 ≈ 2
√
n. The logarithm of the probability that a degree

n polynomial over Fq is m-smooth, for q and n tending to infinity but m fixed,
can be estimated by −(n/m) log (n/m), as shown in [16]. Therefore the log of
the probability P of both sides being 2-smooth is:

logP ≈ −
√
n

2
log

√
n

2
− 2

√
n

2
log

2
√
n

2
≈ −3

2

√
n log

√
n

2
≈ −3

4

√
n log n ,

and therefore P = 1/LQ(1/3,
1

2
√
α
). Since the (r, s) search space has size q2

(which is also the complexity of the linear algebra), we require that

2α ≥ 1

2
√
α

or α ≥ 16−1/3 .

Since 16−1/3 < 3−2/3, this imposes no additional constraint on α. Hence we can
set α = 3−2/3, and one can check that in this case, c1 = c2 = c3 = 2α, giving
complexity

LQ(1/3, (8/9)
1/3) ≈ LQ(1/3, 0.961) ,

which is precisely the complexity Joux obtained using either optimal one-sided,
or advanced pinpointing [13]. Furthermore for this α, (8) implies that µ ≥ 1/2.
For an upper bound, note that for special-q of degree µ

√
n, the degree of RHS(Y )

is about
√
n(1− µ/2), while the degree of LHS(X) is about µn/2, so that µ < 2

ensures that the descent is effective.
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4.3 Case 2: n ≈ 2k · d1 and 2k ≫ d1

In this section we will show the following:

Heuristic Result 2 (ii). Let q = 2l, let k | l and let n be such that (5)
holds. Then for n ≈ 2k · d1 where 2k ≫ d1, the DLP can be solved with
complexity between LQ(1/3, (4/9)

1/3) ≈ LQ(1/3, 0.763) and LQ(1/3, (1/2)
1/3) ≈

LQ(1/3, 0.794).

Observe that interestingly, these two complexities are precisely the square-
roots of the complexities of Coppersmith’ algorithm [5], for which c = (32/9)1/3

and 41/3, the lower of the two being the complexity of the ordinary FFS [1, 14].
For n and q of the form (5), we claim that c1 = α, c2 = 2α, and that there

are sufficiently many relations available. In particular, if we write d1 = nβ with
β < 1/2 and 2k = n1−β , then again by our relation generation method, the l.h.s.
polynomial (2) always splits, and the log of the probability P of both sides being
1-smooth is:

logP ≈ −βnβ log n.

By (5) we have

−βnβ log n ≈ − 2β

3αβ

(
logQ

log logQ

)2β/3

(log logQ)

= − 2β

3αβ
(logQ)2β/3 (log logQ)1−2β/3 .

Hence the expected time of the relation generation is

q

P
= LQ(1/3, α) · LQ

(
2β/3,

2β

3αβ

)
.

For β < 1/2 the second term on the right is absorbed by the o(1) term in the
first term, and hence c1 = α and c2 = 2α. The size of the sieving space is q3/23k,
and since we require q relations we must have:

q3 P

23k
≥ q , or LQ(1/3, 2α) ≥ LQ

(
2β/3,

2β

3αβ

)
,

which holds for any α > 0 when β < 1/2.
For the descent (as for Case 1) the cost of finding the first µ

√
n-smooth rela-

tion is LQ(1/3,
1

3µ
√
α
). And as before, for degree 2 special-q, the X-side has the

same form and the condition on q arising from the search space being sufficiently
large is always satisfied, since

q ≥ 23k (d1 − 1)! = n3(1−β) LQ

(
2β/3,

2β

3αβ

)
,

which holds for any α > 0 when β < 1/2.
Hence degree 3 special-q are the bottleneck. As in the first case, with r allowed

to be monic of degree one and s ∈ Fq, the degree of RHS(Y ) is d1 − 1 while the

12



degree of LHS(X) is 2k+1 + 1. These degrees are clearly unbalanced. However,
we can employ the following tactic to balance them.

Since g1(Y )2
k

+ Y = 0, we let X ′ = g1(Y )2
a

and thus Y = X ′2k−a

. We are
free to choose any 1 < a < k, as an elimination of a special-q using Y and X ′ can
be written in terms of Y and X by powering by a power of 2. With r allowed to
be monic of degree one and s ∈ Fq we have (w0(Y ), w1(Y )) ∈ Lp(Y ) with degrees
(2, 2), and our new expressions become

w0(Y ) g1(Y )2
a

+ w1(Y ) ≡ 0 (mod p(Y )) .

The corresponding polynomial LHS(X ′) is

w0(X
′2k−a

)X ′ + w1(X
′2k−a

) .

Assuming the degrees are (approximately) the same, taking logs we have

k − a+ 1 = log2 (d1) + a , or a = (k + 1− log2 (d1))/2 .

Since a must be an integer, rather than a real variable, we must choose the
nearest integer to this value. In the best case, we can take a to be this exact
value, and consequently both degrees are

√
2d1 2

k/2 =
√
2
√
n. Therefore the log

of the probability P of both sides being 2-smooth is:

logP ≈ −
√
2

2

√
n log

(√2

2

√
n
)
−

√
2

2

√
n log

(√2

2

√
n
)
≈ −

√
2

2

√
n log n ,

and hence P = LQ(1/3,−
√
2

3
√
α
). In order to have a sufficiently large search space

we must therefore have

2α ≥
√
2

3
√
α
, or α ≥ 18−1/3 .

For α = 18−1/3 the descent initiation stipulates that µ ≥ α−3/2/6 = 1/
√
2, and

any µ ∈ [1/
√
2,
√
n) suffices. We therefore have a total complexity of

LQ(1/3, 2α) = LQ(1/3, (4/9)
1/3) ≈ LQ(1/3, 0.763) .

On the other hand when we need to round a to the nearest integer, the
degrees can become unbalanced so that the degree of one side is up to double
the degree of the other. In this case a simple calculation shows that the optimal
α is 16−1/3, giving a complexity of

LQ(1/3, 2α) = LQ(1/3, (1/2)
1/3) ≈ LQ(1/3, 0.794) .

Naturally, for a ratio of degrees in (1/2, 2), we get c-values in between. This
situation is redolent of Coppersmith’s algorithm [5], in which precisely the same
issue arises when forcing a real variable to take integer arguments only.

Note that this degree balancing technique also works for special-q of any
degree, making the descent far more rapid than for Case 1.
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Remark 1. Observe that the best-case complexity with c = (4/9)1/3 is precisely
the complexity of the oracle-assisted Static Diffie-Hellman Problem in finite fields
of small characteristic [17, §3]. Our result may therefore seem unsurprising, since
the complexity of computing the logarithms of the factor base elements is never
more than the complexity of the descent, and is thus effectively free. However,
this reasoning overlooks the fact that we are working with a medium-sized base
field, as opposed to the traditional FFS setting with a very small base field.
In contrast to the result in [17, §3], our complexities depend crucially on our
degree two elimination method, in addition to the fast computation of degree
one logarithms.

5 Application to the DLP in F21971 and F23164

In this section we provide details of our implementation for discrete logarithm
computations in the finite fields with 21971 (as announced in [9]) and 23164 ele-
ments, respectively.

5.1 Discrete Logarithms in F21971

In order to represent the finite field with 21971 elements we first defined Fq = F227

by F2[T ]/(T
27+T 5+T 2+T +1). Denoting by t a root of this irreducible in F227

we defined F21971 = Fq73 by Fq[X]/(X73 + t). For x a root of X73 + t in Fq73 , we
defined y by y := x8, and we therefore also have x = t/y9.

Since we use a Kummer extension, the elements of the factor base are related
via the generator of the Galois group of Fq73/Fq [16, 13], and one can therefore
quotient out by the action of this automorphism to reduce the number of vari-
ables from 227 to ≈ 227/73. As stated in §3, we can take this idea even further.

In fact, x29 = c x for c = t7 ∈ Fq, so the map σ : a → a2
9

is an additional auto-
morphism which preserves the set of degree one factor base elements. The map
σ3 equals the Frobenius a → aq (of order 73) and hence σ generates a group G
of order 219. Considering the orbits of G acting on the factor base elements, we
find 612 864 orbits of full size 219, seven of size 73, and one of size 1, resulting
in N = 612 872 orbits, which gives the number of factor base variables.

Since the degrees of the polynomials relating x and y are nearly balanced,
the complexity of our relation generation falls into Case 1 in §4.2, which matches
Joux’s optimal one-sided, or advanced pinpointing for Kummer extensions. How-
ever, for Kummer extensions for which the degrees are balanced — as opposed
to being very skewed as in §3.4 where 2k ≫ d1 — the advanced pinpointing is
faster in practice, and so we used it for relation generation. We computed approx-
imately 10N relations in about 14 core-hours computation time. For simplicity,
we keep only those relations with distinct factors; this ensures that each entry
of the relation matrix is a power of two, and hence all element multiplications
in the matrix-vector products consist of cyclic rotations modulo 21971 − 1.

After relation generation, we performed structured Gaussian elimination
(SGE) (in a version based on [15]) to reduce the number of variables and thus to
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decrease the cost for the subsequent linear algebra step. During our experiments
we made the observation that additional equations are indeed useful for reduc-
ing the number of variables. However, the benefit of SGE is unclear as the row
weight is being increased. We therefore stopped the SGE at this point, which
resulted in a 528 812 × 527 766 matrix of constant row weight 19. The running
time here was about 10 minutes on a single core.

We obtained the following partial factorisation of 21971 − 1:

7 · 732 · 439 · 3943 · 262657 · 2298041 · 10178663167 · 27265714183 · 9361973132609

· 1406791071629857 · 5271393791658529 · 671165898617413417 · 2762194134676763431

· 4815314615204347717321 · 42185927552983763147431373719

· 22068362846714807160397927912339216441

· 781335393705318202869110024684359759405179097 · C338 ,

where C338 is a 338-digit composite. We took as our modulus for the linear
algebra step the product of C338 and the six largest prime factors of the cofactor,
which has 507 digits. We applied a parallel version of Lanczos’ algorithm (see
[18]) using OpenMP on an SGI Altix ICE 8200EX cluster using Intel (Westmere)
Xeon E5650 hex-core processors and GNU Multi-Precision library [11], taking
2220 core-hours in total.

For the DLP we took as (a presumed) generator g = x+ 1 ∈ F
×
21971 and the

target element was set as usual to be

xπ =
72∑

i=0

τ(⌊π · qi+1⌋ mod q)xi ,

where τ takes the binary representation of an integer and maps to Fq via 2i 7→ ti.
We first solved the target logarithm in the subgroups of order the first 11 terms
in the factorisation using either linear search or Pollard’s rho [22].

The descent proceeded by first finding an i ∈ N such that

xπ g
i = z1/z2 ,

where both z1 and z2 were 7-smooth. We implemented the descent in such a way
that at the early phase of the algorithm the expected subsequent costs are as
small as possible. This means that we try to find factorisations which consist of
as many small degree factors as possible. We used about 40 core-hours to find
an exponent i with favourable factorisation patterns and found i = 47 147 576
to be a good choice. We then spent about 3 hours to perform the descent down
to degree 3. As stated in §3 and §4, at each stage during the descent, we can
eliminate a given special-q on either the x-side or on the y-side, one of which
may be much faster. Computing the elimination probabilities we found that
eliminating on the y-side is always faster. Indeed, for degree 2 special-q we must
perform this on the y-side, as it is not possible to do so on the x-side, due to the
factorisation patterns of (2).

At this point we were left with 103 special-q of degree 3, as opposed to the
≈ 500 expected with a random 7-smooth split of xπ g

i. The expected cost of
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eliminating each of these is 225.1 2-smoothness tests. These special-q elements
were resolved on the same SGI Altix ICE 8200EX cluster in about 850 core-
hours, using Shoup’s Number Theory Library [24], resulting in 1140 special-q
elements of degree 2. Using the technique of §4.1, we reduced the cost of the
elimination of each of these by a factor of 29 = 23k, and all their logarithms were
computed in 5 core-hours, completing the descent.

Thus the running time for solving an instance of the discrete logarithm prob-
lem completely in the finite field F21971 sums to 14+2220+898 = 3132 core-hours
in total. Finally, we found that logg(xπ) equals

119929842153541068660911463719888558451868527554471633523689590076090219879

574578400818114877593394465603830519782541742360236535889937362200771117361

678269423101163403135355522280804113903215273555905901082282248240021928787

820730402856528057309658868827900441683510034408596191242700060128986433752

110002214380289887546061125224587971197872750805846519623140437645739362938

235417361611681082562778045965789270956115892417357940067473968434606299268

294291957378226451182620783745349502502960139927453196489740065244795489583

279208278827683324409073424466439410976702162039539513377673115483439 .

5.2 Discrete Logarithms in F23164

For this case we defined Fq = F228 = F2[T ]/(T
28+T +1). We denote by t a root

of this irreducible in F228 . Furthermore, let Fq113 = Fq[X]/(X113+ t) and denote
by x a root of X113+ t in F23164 . We defined y by y = x16, and we therefore also
have x = t/y7.

As in the previous section we use the Kummer extension idea of [16, 13] to
reduce the size of the factor base. Again we can use a larger group than just the
Galois group of Fq113/Fq, since x214 = c x for c = t9 + t8 + t5 + t4 ∈ Fq and thus

the map σ : a → a2
14

is an additional factor base preserving automorphism. The
map σ2 equals the Frobenius a → aq and hence σ generates a group G of order
226. Considering the orbits of G acting on the factor base elements, we find
N = 1187 841 orbits in total, which gives the number of factor base variables.

For relation generation, since 16 > 7 the degrees are unbalanced and hence
more favourable toward the use of our relation generation method as given
in §3.2. It produces one relation in just under a second, so that more than N
relations can be found in about 350 core-hours. However, thanks to our choice
of g2, Joux’s pinpointing methods also benefit from the higher splitting proba-
bility as explained by Theorem 1, and so for this Kummer extension, it is still
preferable to use Joux’s advanced pinpointing method, which generates about
10N relations in approximately 2 hours on a single-core.

With the structured Gaussian elimination step in mind we computed approx-
imately 10N relations and performed SGE on this matrix to reduce the number
of variables, where we stopped again at the point when the row weight is being
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increased. The result was a 1 066 010× 1 064 991 matrix of constant row weight
25, which constitutes a reduction of 10.3% in the number of variables.

The full factorisation of 23164−1 (obtained from the Cunningham tables [25])
is:

3 · 5 · 29 · 43 · 1132 · 127 · 227 · 1583 · 3391 · 6329 · 23279 · 48817 · 58309 · 65993 · 85429

· 1868569 · 2362153 · 116163097 · 636190001 · 7920714887 · 54112378027

· 1066818132868207 · 94395483835364237 · 362648335437701461 · 491003369344660409

· 15079116213901326178369 · 10384593717069655112945804582584321

· 1621080768750408973059704415815994507256956989913429764153

· 2549280727345379556480596752292189634269829765250993670402549042422649

· 4785290367491952770979444950472742768748481440405231269246278905154317

· 9473269157079395685675919841491177973411952441563539679986494109833096556

0269355785101434237

· 3089373243567970615946973825901451962366657227182021958407434474458178967

78913944687997002267023826460611132581755004799

· 3324813819582203465990827109237712556609800137361416392155020337627510135

82088798815990776059210975124107935798363184741320908696967121 · P190 ,

where P190 is a 190-digit prime.
We then ran a parallel version of the Lanczos’ algorithm on several nodes

of the SGI Altix ICE 8200EX cluster, using MPI and OpenMP parallelisation
techniques on 144 cores and again the GNU Multi-Precision library [11], taking
85488 core-hours in total. Note that since the nodes we used for the computation
were not very “well-connected,” the total running time would have been reduced
to around 30000 core-hours if we had run our algorithm on 12 cores.

For the DLP we took as our (proven) generator g = x+ t+ 1 ∈ F
×
23164 and a

target element set as usual to be xπ =
∑113

i=0 τ(⌊π · qi+1⌋ mod q)xi.
As before the descent proceeded by first finding an i ∈ N such that xπ g

i =
z1/z2, where both z1 and z2 were here 16-smooth. At each stage, we choose to
sieve for the special-q on the y-side.

In this case we put even more effort in analysing and optimising the descent in
the earlier stages so that the expected subsequent costs will be minimised. In fact
we associated a cost kd to each factor of degree d arising in the factorisation of the
l.h.s. and r.h.s. polynomials, which we estimated by considering the distribution
of factorisation pattern.

We used about 70 core-hours to find the 16-smooth initial fraction z1/z2, then
spent 210 core-hours for the descent down to degree 4, and used 340 core-hours
for processing the degree 4 polynomials. At this point we had 71 polynomials
of degree 3, which needed an expected number of 234.1 2-smoothness tests to be
resolved. These special-q elements have been processed by the same SGI Altix
ICE 8200EX cluster in about 20972 core-hours, using Shoup’s Number Theory
Library [24], and resulted in 1239 special-q elements of degree 2. Finally, using
the technique in §4.1, these elements were eliminated in about 10 core-hours,
completing the descent.
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The running time for solving an instance of the discrete logarithm problem
completely in the finite field F23164 sums to 350+85488+20972+210+340+10 =
107092 core-hours (as already indicated, this figure would be reduced to around
52000 core-hours if Lanczos’ algorithm was run on 12 cores). Finally, we found
that logg(xπ) equals

241095867208470377990120207726164220907051431328878753338580871702487845657

126883120634910367653233575538571774779776654573178495647701688094481773173

140524389502529386852264636049383546885561763318178634174789337030959840258

271899626361867369755406779988551274283201239012948389915300241739340043916

105822834002897204293036197694065337903255793451858773664350130030722091666

253172541070447948299781221019342860701064036544430331967753114646806335063

300203074234861067471668411998204544319176832353801982221924995804295426167

112306970795960798988644631100037393291558580412406942004555116148790387654

960490008429769544400790081908807239407134157724166048246419405503557398035

897999852593196954031439629768776850999887720870561741913055531864041654707

840433795403753200520891617150254756586728215941551355064840779765682398993

156390000024249110739956919350069293033670423070299581557636664993721204536

86303873671488016409635578117870889230278649164378133 .

Observe that this computation also breaks the elliptic curve DLP for super-
singular curves defined over F2791 , with embedding degree 4. However, since 791
is not prime, even before this break, such curves would not have been recom-
mended, due to the potential applicability of Weil descent attacks [8].

6 Conclusion

We have presented and analysed new variants of the medium-sized base field
FFS, for binary fields, which have complexities as low as Lqn(1/3, (4/9)

1/3) for
computing arbitrary logarithms. Furthermore, for fields possessing a subfield of
an appropriate size, we have provided the first ever heuristic polynomial time
algorithm for finding the discrete logarithms of degree one and two elements,
which have both been verified experimentally. To illustrate the efficiency of the
methods, we have successfully solved the DLP in the finite fields F21971 and
F23164 , setting a record for binary fields.

It would be interesting to know whether there are more general theorems on
splitting behaviours for other polynomials arising during the descent, and also
to what extent the known theorems apply to other characteristics.
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