
SNARKs for C :
Verifying Program Executions

Succinctly and in Zero Knowledge

Eli Ben-Sasson1, Alessandro Chiesa2, Daniel Genkin2, Eran Tromer3, and Madars
Virza2

1 Technion, {eli,danielg3}@cs.technion.ac.il
2 MIT, {alexch,madars}@csail.mit.edu
3 Tel Aviv University, tromer@cs.tau.ac.il

Abstract. An argument system for NP is a proof system that allows efficient ver-
ification of NP statements, given proofs produced by an untrusted yet computationally-
bounded prover. Such a system is non-interactive and publicly-verifiable if, after
a trusted party publishes a proving key and a verification key, anyone can use the
proving key to generate non-interactive proofs for adaptively-chosen NP state-
ments, and proofs can be verified by anyone by using the verification key.
We present an implementation of a publicly-verifiable non-interactive argument
system for NP. The system, moreover, is a zero-knowledge proof-of-knowledge.
It directly proves correct executions of programs on TinyRAM, a nondetermin-
istic random-access machine tailored for efficient verification. Given a program
P and time bound T , the system allows for proving correct execution of P , on
any input x, for up to T steps, after a one-time setup requiring Õ(|P | · T ) cryp-
tographic operations. An honest prover requires Õ(|P | · T ) cryptographic oper-
ations to generate such a proof, while proof verification can be performed with
only O(|x|) cryptographic operations. This system can be used to prove the cor-
rect execution of C programs, using our TinyRAM port of the GCC compiler.
This yields a zero-knowledge Succinct Non-interactive ARgument of Knowledge
(zk-SNARK) for program executions, in the preprocessing model — a powerful
solution for delegating NP computations, with several features not achieved by
previously-implemented primitives.
Our approach builds on recent theoretical progress in the area. We present effi-
ciency improvements and implementations of two main ingredients:
1. Given a C program, we produce a circuit whose satisfiability encodes the cor-

rectness of execution of the program. Leveraging nondeterminism, the gen-
erated circuit’s size is merely quasilinear in the size of the computation. In
particular, we efficiently handle arbitrary and data-dependent loops, control
flow, and memory accesses. This is in contrast with existing “circuit genera-
tors”, which in the general case produce circuits of quadratic size.

2. Given a linear PCP for verifying satisfiability of circuits, we produce a cor-
responding SNARK. We construct such a linear PCP (which, moreover, is
zero-knowledge and very efficient) by building and improving on recent work
on quadratic arithmetic programs.

Keywords: computationally-sound proofs, succinct arguments, zero-knowledge,
delegation of computation
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1 Introduction

Proof systems for NP let an untrusted prover convince a verifier that “x ∈ L” where L
is some fixed NP-complete language. Proof systems for NP that satisfy the zero knowl-
edge and proof of knowledge properties are a powerful tool that enables a party to prove
that he or she “knows” a secret satisfying certain properties, without revealing any-
thing about the secret itself. Such proofs are important building blocks of many cryp-
tographic tools, including secure computation [GMW87,BGW88], group signatures
[BW06,Gro06], malleable proof systems [CKLM12], anonymous credentials [BCKL08],
delegatable credentials [BCC+09], electronic voting [KMO01,Gro05,Lip11], and many
others. Known constructions of zero-knowledge proofs of knowledge are practical only
when proving statements of special form that avoid generic NP reductions (e.g., proving
pairing-product equations [Gro06]). Obtaining implementations that are both generic
and efficient in practice is a long-standing goal in cryptography [BBK+09,ABB+12].

Due to differences in computational power among parties, many applications also
require succinct verification: the verifier is able to check a nondeterministic polynomial-
time computation in time that is much shorter than the time required to run the compu-
tation when given a valid NP witness. For instance, this is the case when a weak client
wishes to outsource (or delegate) a computation to an untrusted worker. The additional
requirement of succinct verification has still not been achieved in practice in its full
generality, despite recent theoretical and practical progress.

Furthermore, a difficulty that arises when studying the efficiency of proofs for ar-
bitrary NP statements is the problem of representation. Proof systems are typically
designed for inconvenient NP-complete languages such as circuit satisfiability or al-
gebraic constraint satisfaction problems, while in practice, many of the problem state-
ments we are interested in proving are easiest to express via algorithms written in some
high-level programming language. Modern compilers can efficiently transform these
algorithms into a program to be executed on a random-access machine (RAM). There-
fore, we seek proof systems that efficiently support NP statements expressed as the
correct execution of a RAM program.

1.1 Succinct Verification in the Preprocessing Model

There has been a lot of work on the problem of how to enable a verifier to succinctly
verify long computations. Depending on the model, the functionality, and the security
notion, different constructions are known. See the extended version of this paper for a
brief summary of prior theoretical work in this area.

Many constructions achieving some form of succinct verification are only computa-
tionally sound: their security is based on cryptographic assumptions, and therefore are
secure only against bounded-size provers. Yet, computational soundness seems inher-
ent in many of these cases [BHZ87,GH98,GVW02,Wee05]. Proofs (interactive or non)
that are only computationally sound are also known as arguments [BCC88].

In this work we are interested in non-interactive succinct verification in the prepro-
cessing model: we investigate efficient implementations of succinct non-interactive ar-
guments (SNARGs) in the preprocessing model. Also, we focus on the publicly-verifiable
case, where a non-interactive proof can be (succinctly) verified by anyone. For simplic-
ity, we start by introducing this cryptographic primitive for circuit satisfiability: the
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circuit satisfaction problem of a circuit C : {0, 1}n × {0, 1}h → {0, 1} is the relation
RC = {(x, a) ∈ {0, 1}n × {0, 1}h : C(x, a) = 1}; its language is LC = {x ∈
{0, 1}n : ∃ a ∈ {0, 1}h, C(x, a) = 1}.

A publicly-verifiable preprocessing SNARG (or, for brevity in this paper, simply
SNARG) is a triple of algorithms (G,P, V ), respectively called key generator, prover,
and verifier, working as follows. The (probabilistic) key generatorG, on input a security
parameter λ and circuit C : {0, 1}n × {0, 1}h → {0, 1}, outputs a proving key σ and a
verification key τ ; these are the system’s public parameters, which need to be generated
only once per circuit. After that, anyone can use the proving key σ to generate non-
interactive proofs for the language LC , and anyone can use the verification key τ to
check these proofs. Namely, given σ and any (x, a) ∈ RC , the honest prover P (σ, x, a)
produces a proof π attesting that x ∈ LC ; the verifier V (τ, x, π) checks that π is a valid
proof for x ∈ LC .

The efficiency requirements are as follows:
– running the generator G on input (1λ, C) requires poly(|C|) cryptographic opera-

tions;
– running the prover P on input (σ, x, a) also requires poly(|C|) cryptographic opera-

tions; but
– running the verifier V on input (τ, x, π) only requires poly(|x|) cryptographic oper-

ations; and
– an honestly-generated (publicly-verifiable non-interactive) proof has size poly(λ).

We require (adaptive) computational soundness: for every polynomial-size prover
P ∗, constant c > 0, large enough security parameter λ ∈ N, and circuit C : {0, 1}n ×
{0, 1}h → {0, 1} of size λc, letting (σ, τ)← G(1λ, C), ifP ∗(σ, τ) outputs an adaptively-
chosen (x, π) such that there is no a for which (x, a) ∈ RC then V (τ, x, π) rejects
(except with negligible probability over G’s randomness).

Furthermore, if a SNARG satisfies a certain natural proof-of-knowledge property,
we call it a SNARK. If it additionally satisfies a certain natural zero-knowledge property,
we call it a zero-knowledge SNARK (zk-SNARK). See the extended version of this paper
for definitions.

1.2 Motivation

It would be wonderful to have efficient and generic implementations of SNARGs with-
out any expensive preprocessing. (That is, running the generatorG only requires poly(λ)
time instead of poly(|C|) cryptographic operations.) The two known approaches to
constructing such SNARGs are Micali’s “computationally-sound proofs” [Mic00], and
the bootstrapping techniques of Bitansky et al. [BCCT13]. Algorithmically, both are
complex (and, thus far, expensive) constructions: the former requires probabilistically-
checkable proofs (PCPs) [BFLS91] and the latter the use of recursive proof-composition.

Thus, even in light of recent advances in the computational efficiency of PCPs
[BS08,Din07,MR08,BCGT13b], it seems wise to first investigate efficient implementa-
tions of SNARGs in the preprocessing model, which is a less demanding model because
it allowsG to conduct a one-time expensive computation “as a setup phase”. Despite the
expensive preprocessing, this model is potentially useful for many applications: while
the generator G does require a lot of work to set up the system’s public parameters
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(which only depend on the given circuit C but not the input to C), this work can be sub-
sequently amortized over many succinct proof verifications (where each proof is with
respect to a new, adaptively-chosen, input to C).

In this work we focus on the preprocessing model, due to the simpler and tighter
constructions known in it. Recent works [Gro10,Lip12,GGPR13,BCI+13] constructed
zk-SNARKs based on knowledge-of-exponent assumptions [Dam92,HT98,BP04] in bi-
linear groups, and all of these constructions achieved the attractive feature of having
proofs consisting of only O(1) group elements and of having verification via simple
arithmetic circuits that are linear in the size of the input for the circuit.

In this vein, Bitansky et al. [BCI+13] gave a general technique for constructing
zk-SNARKs. First, they define a linear PCP to be one where the honest proof oracle
is a linear function (over an underlying field), and soundness is required to hold only
for linear proof oracles. Then, they show a transformation (also based on knowledge-
of-exponent assumptions) from any linear PCP with a low-degree verifier to a SNARK;
also, if the linear PCP is honest-verifier zero-knowledge (HVZK), then the resulting
SNARK is zero knowledge.

When combining with other works the transformation of Bitansky et al. from lin-
ear PCPs, one obtains a theoretically simple and attractive route for the construction of
zk-SNARKs. Specifically, the work on quadratic-span programs (QSPs) and quadratic
arithmetic programs (QAPs) of Gennaro et al. [GGPR13] implies efficient construc-
tions of (HVZK) linear PCPs with low-degree verifiers for circuit satisfiability, and the
work on fast reductions of Ben-Sasson et al. [BCGT13a] implies that random-access
machine computations can be efficiently reduced to circuit satisfiability.

In this paper, we study the tantalizing question of whether the aforementioned the-
oretical progress can be translated into efficient implementations of zk-SNARKs. As
always, bringing theory to practice requires significant additional insights and improve-
ments, and tackling these is the goal of our work.

1.3 Contributions

In this work we present an implementation of a zk-SNARK (i.e., a non-interactive ar-
gument system for NP with the properties of zero knowledge, proof of knowledge, and
succinct verification in the preprocessing model). Moreover, our implementation effi-
ciently supports NP statements expressed as the correct execution of a program on a
nondeterministic random-access machine or (via a compiler we wrote) expressed as the
correct execution of a C program. Our contributions can be summarized as follows:

1) Verifying circuit satisfiability via linear PCPs. We obtain an implementation of
zk-SNARKs for (arithmetic) circuit satisfiability with excellent asymptotic efficiency:
linear-time generator, quasilinear-time prover, and linear-time verifier. Moreover, proofs
consist of only 12 group elements (a total of 780 bytes), independently of the circuit C
or the input x to C. A proof provides 128 bits of security.

Our approach consists of two steps. First, we significantly optimized and imple-
mented the transformation of Bitansky et al. [BCI+13]; our optimizations rely on multi-
exponentiation algorithms (see [Ber02] and references therein) and parallelism. Second,
by building on the work on quadratic arithmetic programs (QAPs) of Gennaro et al.
[GGPR13] and by leveraging algebraic structure of a carefully-chosen field, we give
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an efficient implementation of a linear PCP with a low-degree verifier. When verifying
that x ∈ LC , our linear PCP has 5 queries of 2|C| field elements each; each query can
be generated in linear time; the prover can compute the linear proof oracle via an arith-
metic circuit of size O(|C| log |C|) and depth O(log |C|); the answers to the 5 queries
can be verified with O(|x|) field operations.
2) From correctness of program execution to circuit satisfiability. The SNARKs
generated by the previous transformation are for proving the satisfiability of a given
(arithmetic) circuit. However, programs are easier to write using high-level program-
ming languages, like C, and it is often not realistic to require an arbitrary application to
already provide a circuit encoding the NP statement of interest. We address this prob-
lem by providing a “circuit generator” that differs significantly and qualitatively from
all previous implementations of circuit generators (e.g., Fairplay [MNPS04,BDNP08]):
it leverages nondeterminism to reduce the size of the output circuit. Specifically, pre-
vious circuit generators produce circuits of O(T 2) size for T -step computations in the
worst case, whereas our generator produces circuits of only O(T log T ) size. In more
detail, our solution to the circuit generation problem is as follows:

(i) We design a minimalistic nondeterministic random-access machine, called TinyRAM.
(ii) We obtain a transformation, significantly more efficient than the one in [BCGT13a],

that takes as input a TinyRAM program P and a time bound T and outputs a cir-
cuit whose satisfiability encodes the correct execution of P for up to T steps. Our
efficiency improvements are achieved by leveraging field operations and nondeter-
minism in order to verify several types of crucial (boolean) computations via smaller
arithmetic circuits. We implemented our transformation.

(iii) We complement the above transformation with a GCC backend, for compiling pro-
grams written in a subset of C into TinyRAM assembly. This compiler provides a
convenient way to obtain TinyRAM programs for problems of interest. Crucially,
we can efficiently support arbitrary and data-dependent loops, control flow, and
memory accesses.

Our choice of architecture for TinyRAM strikes a balance between the ability to effi-
ciently compile programs into TinyRAM assembly code, and the need to design small
circuits for the transition function of TinyRAM.
Delegation for NP programs. Together, our contributions yield a system to verify
program executions succinctly and in zero knowledge.

In particular, our contributions provide a solution for non-interactively delegating
arbitrary NP computations, also in a way that does not compromise the privacy of any
input that the untrusted worker contributes to the computation. Previous implementation
work did not achieve many of the features enjoyed by our implementation. (See the
extended version of this paper for a comparison with prior implementation work.)

2 From Correctness of Program Execution to Circuit Satisfiability

As summarized in Section 1.3, we implemented an efficient transformation that reduces
correctness of program execution to circuit satisfiabiliy. The following gives further de-
sign and performance details about this transformation. Concretely, in Section 2.1 we



6 Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza

motivate and discuss our choice of architecture, TinyRAM. Then, in Section 2.2, we dis-
cuss implementation and performance of our compiler from C to TinyRAM assembly.
Finally, in Section 2.3, we discuss implementation and performance of our reduction
from the correctness of TinyRAM assembly to circuit satisfiability.

2.1 The TinyRAM Architecture

To reason about correctness of program executions, we first need to fix a specific
random-access machine. An attractive choice is to pick the instruction set architec-
ture (ISA) of some existing, well-supported family of CPUs (e.g., x86 or ARM). We
could then reuse existing tools and software written for those CPUs. This is possible in
principle.

However, the design of CPUs typically focuses on efficient ways of getting data and
code, at the right time, to the different executions units of the CPU, with the goal of
maximizing utilization of these units. This is achieved by complex mechanisms whose
size can dwarf the functional core circuitry (execution units, register file, instruction
decoding, and so on). Thus, modern CPUs afford, and employ, large and rich instruction
sets. As explained next, the efficiency considerations are very different in our context.

Executing vs. verifying. CPUs and their ISAs are optimized for fast execution of
programs. However, we are interested in fast verification of (alleged) past executions.
In our setting, the computation has already been executed and we possess a trace of
this execution, giving the state of the processor (registers and flags) at every time step.
Our goal is to efficiently verify the correctness of the trace: that every state in the trace
follows from the preceding one.

This means that values that are expensive to produce during the execution become
readily available for verification in the trace. For example, in real CPUs, reading from
external memory is relatively slow and a large fraction of the circuitry is dedicated to
caching data. However, in the trace, the result of a load from memory is readily seen in
the processor state at the end of the computation step; thus the need for caches is moot.
Similarly, modern CPUs use complicated speculative-execution and branch-prediction
mechanisms to keep their execution pipelines full; but a trace verifier going down the
trace can “peek into the future” and readily observe control flow.

The elimination of the above mechanisms, and many others, affects the ISA. In
particular, it means that the aforementioned functional core circuitry dominates cost.
This leads to the next consideration.

Transition function complexity. We are ultimately interested in carrying out the
verification of a trace via a circuit, so we wish to optimize the circuit complexity of the
transition function of the ISA: the size of the smallest circuit that, given two adjacent
states in the trace, verifies that the transition between the two indeed respects the ISA
specification.4

We thus seek an ISA that strikes a balance between two opposing requirements:
(1) the need for a transition function of small circuit complexity and (2) the need to
produce small and fast machine code, in particular when compiling from high-level

4 This does not include the task of checking the correctness of values loaded from random-access
memory. Memory consistency is efficiently handled separately. See Section 2.3.
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programming languages. Rich architectures allow for smaller code and shorter execu-
tion trace but have transition functions of higher circuit complexity, while minimalistic
architectures require longer machine code and longer execution traces, but enjoy tran-
sition functions with smaller circuit complexity.

Modern ISAs designed for general purpose CPUs (such as x86) are complex in-
struction set computer (CISC) machines: they support many elaborate instructions (e.g.,
a round of AES [Gue12]) and addressing modes. Less rich ISAs are reduced instruc-
tion set computer (RISC) machines designed for devices like smartphones (ARM) and
embedded microcontrollers (Atmel AVR).

In sum, we seek a minimal ISA that enables us to design a transition function with
small circuit complexity, and yet allows reasonable overheads in code size and execu-
tion time (relative to richer ISAs).

A custom ISA. In light of the above, we designed an instruction set architecture,
named TinyRAM, that is tailored for our setting. TinyRAM is a minimalistic RISC
random-access machine with a Harvard architecture and word-addressable random-
access memory. It has two parameters: the word size, denoted W , and the number of
registers, denoted K. The global state of the machine at any time consists of:

– the program counter, denoted pc; it consists of W bits;
– K general-purpose registers, denoted r0,r1, . . . ,r(K − 1), each with of W bits;
– the (condition) flag, denoted flag; it consists of a single bit; and
– memory, which is a linear array of 2W words of W bits each.

In addition, the machine has two input tapes, each containing a string of W -bit words.
Each tape can be read sequentially in one direction only. The first input tape is for the
primary input, denoted x; the second input tape is for the auxiliary input, denoted w.
We treat the primary input as given, and the auxiliary input as nondeterministic advice.
(See Definition 1 below.)

We carefully selected the instructions of TinyRAM so to support relatively effi-
cient compilation from high-level programming languages (like C), as discussed in Sec-
tion 2.2, and, furthermore, allow for small circuits implementing its transition function
(and other checks), as discussed in Section 2.3. Briefly, the instruction set of TinyRAM
includes simple load and store instructions for accessing random-access memory, as
well as simple integer, shift, logical, compare, move, and jump instructions. TinyRAM
can efficiently implement complex control flow, loops, subroutines, recursion, and so
on. Complicated instructions, such as floating-point arithmetic, are not directly sup-
ported and can be implemented “in software” by TinyRAM programs. Supporting only
fairly simple load and store operations is important for efficiently verifying consistency
of random-access memory; see Section 2.3.

In keeping with the setting of verifiying computation, the only input to TinyRAM
programs is via its two input tapes, and the only output is via an accept instruction,
which also terminates execution.5

So far we have only informally discussed “correctness of TinyRAM program exe-
cution”. This notion is formalized by defining a TinyRAM universal language.

5 For ease of development, the TinyRAM simulator also supports debugging instructions that
produce additional outputs. These are excluded from the execution trace and not verified.
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Definition 1. Fix the word size W and number of registers K. Let P be a TinyRAM
program, let x and w be strings of W -bit words. We say that P(x,w) accepts in T
steps if P, with x on its first input tape and w on the second, executes the instruction
accept in step T .
The TinyRAM universal language consists of the triples (P, x, T ) where P is a TinyRAM
program, x is a string of W -bit words, and T is a time bound, such that there exists a
string w of W -bit words for which P(x,w) accepts in T steps.

A specification for the TinyRAM architecture can be found in [BCG+13].

2.2 A Compiler from C to TinyRAM

The GCC compiler is a versatile framework supporting many source languages (e.g.,
C and Java) and many target languages (e.g., x86 and ARM assembly). Internally, the
GCC compiler is partitioned into two main modules [StGDC13]. The frontend is re-
sponsible for converting a program written in a high-level programming language like
C or Java into an intermediate representation language called Register Transfer Lan-
guage (RTL). The backend is responsible for optimizing and converting RTL code into
corresponding assembly code for a given architecture.

In order to automatically generate TinyRAM assembly for problems of interest, we
have implemented a prototype of a GCC backend for converting RTL code to TinyRAM
assembly code. Our prototype backend works with the C frontend, and can be extended
to other programming languages by combining it with suitable GCC frontends (and
providing the requisite standard libraries). Concretely, we have a prototype that can
compile a subset of C to TinyRAM, with word size W ∈ {8, 16} and number of regis-
ters K ≥ 15.

Because TinyRAM’s instruction set is quite minimal, any operation not directly
supported by TinyRAM “hardware” needs to be implemented in “software”. This incurs
overheads in both the code size (the number of lines in an assembly code) and execution
time (the number of machine steps required to execute a piece of code). By running ex-
periments, we established that both of these overheads are not large, as discussed next.

Code size overhead. We first evaluate the code size produced when compiling C code
examplesinto TinyRAM assembly using our GCC port, compared to the code produced
by standard GCC for some common architectures: x86, ARM and AVR. (We used the
−O1 optimization flag in all cases.) Our results show that, compared to the RISC ar-
chitectures (ARM and AVR), the resulting TinyRAM code is at most twice larger than
ARM and significantly smaller than AVR. Compared to x86, which is a very rich CISC
architecture, TinyRAM code is up to three times bigger. We deduce that, at least for the
program styles represented by these examples, the TinyRAM architecture allows for
compilation into compact programs. See the extended version of this paper for details.

Execution time overhead. The circuits ultimately produced by our reduction have size
O(T log T ), where T is the execution time (measured in machine steps). This execution
time depends on the choice of architecture, and we wish to ensure that TinyRAM does
not necessitate very long execution times due to deficiencies in the instruction set.

To evaluate this, we compiled examples of C code into both TinyRAM machine
code and x86 machine code. Our results show that in terms of execution time measured
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in machine steps (i.e., clock cycles), TinyRAM is slower than x86 by a factor of merely
2 to 6, for examples that represent some realistic computations. This is despite x86 being
a very rich CISC architecture that is heavily optimized for minimizing clock cycles,
which is typically implemented using many millions of gates. (Recall the difference of
executing vs. verifying, discussed in Section 2.1.) See the extended version for details.

These small overheads are more than compensated by the fact that TinyRAM has
a very compact transition function circuit. For instance, for a wordsize W = 16 and
number of registers K = 16, and for a program with 100 instructions, the transition
function consists of only 708 gates.

In summary, our experiments show that, even when working with a minimalistic
architecture such as TinyRAM, we do not incur large overheads in code size or exe-
cution time. In Section 2.3, we discuss the circuit complexity of TinyRAM’s transition
function and how to efficiently verify TinyRAM traces.

2.3 An Efficient Reduction from TinyRAM to Circuit Satisfiability

The following describes our efficient reduction from correctness of TinyRAM execu-
tions to F-arithmetic circuit satisfiability, for any prime field F of sufficiently large size.

The reduction notion In our setting, a (circuit) reduction is a triple of functions
(circ,wit,wit−1) working as follows. The circuit generator function, circ, maps a TinyRAM
program P, time bound T , and primary input size n to a corresponding F-arithmetic cir-
cuit C that encodes the correct computation of P for at most T steps on primary inputs
of n words. The witness map function, wit, maps a pair of primary and auxiliary inputs
(x,w) that make P accept in T steps, to a satisfying assignment a for C(x, ·). The
inverse witness map function, wit−1, maps a satisfying assignment a for C(x, ·) to w
with the property that (x,w) makes P accept in T steps.

Definition 2. A reduction from TinyRAM (for a word size W and number of registers
K) to F-arithmetic circuit satisfiability is a triple of functions (circ,wit,wit−1) such
that, for every TinyRAM program P, time bound T , and primary input size n, the
following hold:

– C := circ(P, T, n) is an F-arithmetic circuit from FW ·n × Fh to F` for some h, `;
C’s gates are bilinear;6

– for every (x,w) such that P(x,w) accepts in T steps, C
(
x,wit(P, T, x, w)

)
= 0`;

– for every (x, a) such thatC(x, a) = 0`, P
(
x,wit−1(P, T, x, a)

)
accepts in T steps.

The work on fast reductions of Ben-Sasson et al. [BCGT13a] implies a reduction (circ,wit,wit−1)
where |C| := O(T (log T )2) and circ,wit,wit−1 all run in O(T (log T )2) time.7 In our
work, we optimize and implement a reduction that builds on the theoretical approach of

6 A gate with inputs x1, . . . , xn is bilinear if the output is 〈a, (1, x1, . . . , xn)〉 ·
〈b, (1, x1, . . . , xn)〉 for some a,b ∈ Fn+1.

7 Given a space bound S on the computation of P on (x,w), Ben-Sasson et al. also present a
reduction where |C| is only O(T log T logS). We have so far not considered this additional,
significantly more complex, optimization.
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[BCGT13a]. We shall focus our attention only on the efficiency of the circuit and wit-
ness maps (i.e., circ and wit), because these actually need to be run in practice. Before
discussing our work, however, we briefly review the approach of [BCGT13a].

The reduction in [BCGT13a] We begin with necessary basic definitions.
– A (local) state of TinyRAM, denoted S, is a string of (W +KW +1) bits, encoding

the values of the program counter, K registers, and condition flag at a given step.
– The transition function of TinyRAM, denoted ΠTF, is the predicate that, given a

TinyRAM program P and two states S and S′, outputs 1 if and only if the machine
in state S can transition (for some choice of values in random-access memory) to the
state S′ in the next step, according to the program P.8

– An execution trace9 for a TinyRAM program P, time bound T , and primary input
x is a sequence of states tr = (S1, . . . , ST ). An execution trace tr is valid if there
exists an auxiliary input w such that the sequence of states induced by P running
with input tapes (x,w) is tr.

The goal is to design an F-arithmetic circuit C for verifying that tr is valid that is as
small as possible. This is done in three steps, as follows.

Step 1: code consistency. Let CTF be a circuit that implements the transition function
ΠTF of TinyRAM: namely, CTF(P, S, S

′) = 1 if and only if ΠTF(P, S, S
′) = 1. By

invoking CTF on each pair of successive states of tr, we can verify every state transition
in the trace tr, i.e., ensure that ΠTF(P, Si, Si+1) = 1 for i = 1, . . . , T − 1. Doing so
gives rise to a sub-circuit of C, consisting of T copies of CTF, that, when given as input
tr, checks that tr is code-consistent.

Step 2: memory consistency. The global state of a random-access machine, however,
also includes memory. In particular, in order to verify that tr is valid, we also need to
verify that tr is memory-consistent: namely, that every load operation from an address
in memory actually retrieves the value of the last store to that address.

But the accesses to memory of a program P depend on the inputs x and w. Hence,
in general, at each time step i any of the addresses in memory could be accessed by
the program. The naive solution of designing the verification circuit C to maintain a
snapshot of memory for each time step is not efficient: such a circuit has size that
is Ω(T 2). (All previous circuit generators either adopt the naive solution or restrict a
program’s memory accesses to be known at compile time.)

Ben-Sasson et al. [BCGT13a] do not adopt the naive solution (or restrict a program’s
memory accesses), but instead take an approach that is more efficient; the approach
builds on classical results on quasilinear-time nondeterministic reductions [Sch78,GS89,Rob91].
The high-level idea in [BCGT13a] is that memory consistency would be easier to verify
if the circuit C were to also have, as additional input, the same trace tr but sorted ac-
cording to accessed memory addresses (and breaking ties via timestamps); let us denote
this sorted trace by MemSort(tr). Concretely, one can define another “local” predicate

8 Traditionally, the transition function is the function that, given the global state of a machine as
input, outputs the next state. We abuse this terminology, and use it for the function that, given
two local states S, S′, decides whether the second can follow the first.

9 An execution trace is also at times known as a computation transcript [BCGT13a].
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ΠMC such that, if ΠMC is satisfied by each pair of adjacent states in MemSort(tr) (and,
in addition, tr is code-consistent) then tr is valid. We can then augment C with T copies
of a sub-circuit CMC that verifies the predicate ΠMC on MemSort(tr). The circuit C is
thus left to verify that the auxiliary input MemSort(tr) is the result of sorting tr.
Step 3: routing network. The circuitC can efficiently perform this check if it is given
yet another additional input: (alleged) routing decisions for a routing network which
permutes tr into MemSort(tr). A T -packet routing network is a directed graph with T
sources, T sinks, and inner nodes (switches) such that, for any permutation π : [T ] →
[T ], there are routing decisions for the switches that cause T packets at the sources to
travel to the T sinks, according to the permutation π, and without using a switch twice
(i.e., with no congestion). One such a network is the Beneš network [Ben65], which has
O(log T ) layers of T nodes each, and each node in a layer is connected to two nodes
in the next layer. The idea is to interpret the switch settings in a routing network as
a coloring on the routing network. Crucially, verifying that the given switch settings
(i.e., a coloring of the network) implement some permutation from the input nodes to
the output nodes can be done via simple and local routing constraints; furthermore,
given that the switches implement some permutation, verifying that they implement the
sorting permutation is easy to verify too. Overall we obtain a certain graph-coloring
problem all of whose constraints can be evaluated by a circuit of size T · O((log T )2),
which we add to C.
In sum. The approach from [BCGT13a] described in the above paragraphs yields a
circuit C of size T ·

(
|CTF|+ |CMC|+O((log T )2)

)
for verifying a T -step trace.

Our optimized reduction As mentioned, in our work we optimize and implement the
theoretical approach of Ben-Sasson et al. [BCGT13a]. Despite the excellent asymptotic
efficiency of the approach, getting to the point in which the verification circuit C has a
manageable size in practice proved quite challenging, both theoretically and program-
matically. For instance: while (as discussed in Section 2.1) we devised TinyRAM to
facilitate the design of a small circuit CTF for the transition function ΠTF, how small of
a circuit can we actually design? And how well does its size scale with, say, the word
size W , number of registers K, and program size |P|?
Our circuit generator. At high level, our main technical contribution is leveraging
(1) “native” arithmetic in the field F (which for us is a prime field ) and
(2) nondeterministic advice
so to achieve highly-optimized implementations of CTF, CMC, and routing constraints,
and ultimately obtain drastic improvements in the size of the verification circuit C out-
put by our circuit generator circ.

To illustrate the use of (1) and (2), consider the basic task of multiplexing bit vectors,
used numerous times in C. Given n vectors a1, . . . ,an of ` bits each and a dlog ne-bit
index i, we seek a small F-arithmetic circuit that computes the vector selected by the
index. The naive multiplexer circuit requiresO(n(`+log n)) bilinear gates. In contrast,
by relying on (1) and (2), we design a multiplexer circuit that needs only O(nd `|F|e)
bilinear gates. The efficiency improvement is significant because we ultimately need to
work with cryptographically-large fields; for instance, in our setting, if n = ` = 16, the
naive implementation uses 320 gates while we only use 51.



12 Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza

The idea of our multiplexer construction is as follows. Suppose, first, that every in-
put vector, as well as the index, were represented as integers, and we only had to design
a Z-arithmetic circuit to output the integer representing the selected bit vector. In this
case, we could easily construct a nondeterministic Z-arithmetic circuit of size O(n)
(with bilinear gates of unbounded fan-in). However, the vectors are only given to us
as strings of bits, and we need to work with F-arithmetic circuits. This gap motivates
two fundamental operations: packing and unpacking of bit vectors. Packing denotes
mapping a bit vector to a sequence of field elements efficiently storing these bits, and
unpacking denotes the inverse operation. The packing operation is very efficient: in the
prime field Fp with p ≥ 2`, a single gate suffices to compute

∑`
i=1 2

i−1ai from the in-
put a1, . . . , a`. The inverse operation is much more expensive to compute directly, but
we can nondeterministically guess the answer and verify it using a single gate. In gen-
eral, p ≥ 2` need not hold, so we use d `|F|e field elements to store an `-bit vector. Given
the aforementioned efficient packing operations, our multiplexer construction works as
follows: it guesses the selected `-bit vector, then computes the integers corresponding
to the input `-bit vectors as well as the index, and then verifies the guess by selecting
the correct integer according to the (integer) index.

More generally, we have found that, throughout our circuit generator, it is often
advantageous to maintain, alongside certain vectors a, also the corresponding integer∑
i 2
i−1ai. We believe that packing and unpacking operations will be crucial for dras-

tically decreasing the size of circuits used in future circuit generators.
With these techniques in mind, we proceed to describe the circuit generator.

– Designing the transition function circuit CTF. The circuit CTF is the most complex
sub-circuit of C. The size of CTF is dominated by the size of sub-circuits for multi-
plexing bit strings (for instruction fetch, register fetch, and so on) and of the arith-
metic logic unit (ALU), which executes the architecture’s non-memory operations.
To obtain an efficient implementation of the ALU, we again make use of field arith-
metic and nondeterministic advice. Since we work over a prime field of large char-
acteristic, field arithmetic looks like integer arithmetic whenever there is no “wrap
around”. Thus, after fetching the arguments to an operation, we derive from each
argument’s binary representation also the corresponding integer. Then, each opera-
tion in the ALU computes on the integer representation, instead of the binary one,
when it is more efficient to do so. For instance, we use this idea to compute result
and overflow information for addition, subtraction, and multiplication with only 2W ,
2W , and 3W bilinear gates, respectively; as for division, we guess the result and
verify it with a multiplication. In each case, the integer output by an operation can be
“unpacked” into its binary representation, via nondeterministic advice. By carefully
implementing each operation, we obtain an ALU that, e.g., when W = 16 only has
296 gates.
Given efficient implementations of multiplexing and ALU, it is not difficult to obtain
an efficient implementation of CTF. Table 1 shows the number of gates in our imple-
mentation of CTF for |P| ∈ {10, 102, 103}, W ∈ {8, 16, 32} and K ∈ {8, 16, 32}.

– Designing the memory consistency circuit CMC. The predicate ΠMC is not as com-
plex as the transition function ΠTF, but it is still important to design a small circuit
CMC for it. The bottleneck in the computation of ΠMC is again multiplexing, this
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|P| = 10/100/1000 W = 8 W = 16 W = 32

K = 8 416 / 506 / 1406 520 / 610 / 1510 728 / 818 / 1718
K = 16 514 / 604 / 1504 618 / 708 / 1608 826 / 916 / 1816
K = 32 708 / 798 / 1698 812 / 902 / 1802 1020 / 1110 / 2010

Table 1: Number of gates in CTF as a function of |P|,W,K.

time for fetching the two arguments of a memory operation. Thus, the natural ap-
proach here would be to use additional copies of our efficient multiplexer circuit.
Instead, we show how to avoid additional multiplexing altogether by “stealing” cer-
tain intermediate computations from CTF. We thereby obtain a circuit for CMC that
only contains two integer comparisons and few other logical operations. For instance,
when W = 16, CMC only costs us 60 additional gates.

– Checking routing constraints. Asymptotically, the routing constraints on the routing
network are the most expensive sub-circuit of C. It is thus crucial to compute these
constraints as efficiently as possible. A first concern is to minimize the size of a
packet routed through the network. Instead of setting a packet to be a local state of
the machine, which consists of (W + KW + 1) bits, we show that it only suffices
to send a much smaller packet, consisting of about 2W bits, obtained from inter-
mediate computations of CTF. This optimization in fact leads to another important
one: now that a packet is as small as only about 2W bits, we can “pack” all the bits
on a single field element (in our setting, F has size at least 2W ); then, because the
packets consist of single field elements, computing the routing constraints becomes
particularly simple: only one bilinear gate per vertex. Concretely, the gate at a given
vertex checks whether the vertex’s packet is equal to at least one of the packets at
the two neighbor vertices in the next layer. Overall, when T is a power of 2, all the
routing constraints can be verified with only 2 · T · log T gates. (We thus also obtain
an asymptotic improvement, by a log T factor, over the circuit size in [BCGT13a],
where routing constraints required O(T (log T )2) gates. )

Of course, there are numerous additional details that go into our final construction of
the verification circuit C. Overall, say that for concreteness we fix W = 16, K = 16,
and |P| = 100, then we get

|C| = A · T · log T +B · T + C ,where A = 4, B = 1116 and C = 307.

In particular, for log T < 20, every cycle of TinyRAM computation costs ≈ 1200
gates. Note that, while the gate count per cycle increases as T increases (as the number
of routing constraints grows as O(T log T )), the growth rate is slow: doubling T costs
only 4 + o(1) additional gates per cycle.

Our witness map. Thus far, we have focused on achieving soundness: verifying the
validity of an execution trace of a TinyRAM program P by using the circuit C :=
circ(P, T, n) output by the circuit generator circ. The circuit generator is run by the
key generator when computing the public parameters. For completeness, we need to
implement a witness map wit(P, T, x, w) that computes a satisfying assignment a for
C(x, ·), whenever P(x,w) accepts in T steps. The witness map is executed by the
prover when generating a proof. See the extended version for details on this map.
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3 Verifying Circuit Satisfiability via Linear PCPs

As summarized in Section 1.3, we have implemented a zk-SNARK for circuit satisfia-
bility; see Section 1.1 for an informal definition of this cryptographic primitive, or the
extended version of this paper for a formal one. In this section we describe the design
and performance of this part of our system.

3.1 A Transformation from Any Linear PCP

We begin by discussing efficiency aspects of the transformation from a linear PCP to a
corresponding SNARK. To do so, we first recall (at high level) the transformation itself.
Constructing a SNARK from a linear PCP. The transformation of Bitansky et al.
[BCI+13] consists of an information-theoretic step followed by cryptographic step.

– Step 1 (information-theoretic): compile the linear PCP into a 2-message linear inter-
active proof (linear IP), i.e., one where the prover is restricted to only apply linear
functions to the verifier’s message.
This is achieved by adding a consistency-check query, which is a random linear com-
bination of the linear PCP queries. In more detail, if the linear PCP has k queries
each with m elements from a field F, in the resulting linear IP the verifier sends
to the prover a single message q consisting of m′ = (k + 1)m elements in F; the
message q is the concatenation of the k linear PCP queries and the consistency-
check query. A (potentially malicious) prover is restricted to only apply linear func-
tions to q, i.e., reply with a vector a∗ ∈ Fk+1 such that a∗ = Π∗q + b∗ for
some Π∗ ∈ F(k+1)×m′

and b∗ ∈ Fk+1. The honest prover simply returns the vector
a = (a1, . . . , ak+1) where ai = 〈π, qi〉, qi is the i-th m-element block of q, and π
is the linear PCP. A prover’s message a∗ is verified by checking consistency of a∗k+1

with a∗1, . . . , a
∗
k and then invoking the linear PCP decision predicate on a∗1, . . . , a

∗
k;

the consistency check ensures that a∗i = 〈π∗, qi〉 for some linear PCP π∗.
– Step 2 (cryptographic): compile the linear IP into a SNARK, by forcing any polynomial-

size malicious prover to act as if it were a linear function.
This is achieved using a cryptographic encoding Enc(·) with the following properties.
(i) It allows public testing of quadratic predicates on encoded elements.

(ii) It provides a certain notion of one-way security to encoded elements.
(iii) It ensures that any polynomial-size prover can only perform linear operations on

the encoded elements, “up to” information leaked by the encoding.10

Given Enc(·), the compilation is then conceptually simple. The SNARK genera-
tor G(1λ, C) samples a verifier message q ∈ Fm′

(which depends on the circuit
C but not its input) for the linear IP, and outputs, as a proving key, the encoding
Enc(q) = (Enc(qi))

m′

i=1. (We omit here the discussion of how the short verifica-
tion key is generated.) Starting from Enc(q) and a linear PCP π, the honest SNARK
prover P homomorphically evaluates the inner products 〈π, qi〉 and returns as a proof
the resulting encoded answers. The SNARK verifier checks a proof by running the
linear IP decision predicate on the encoded answers.

10 Since the encoding cannot provide semantic security (due to the functionality requirement
of allowing for evaluation of quadratic predicates on encoded elements) but only a notion of
one-way security, a limited amount of information is necessarily leaked.
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For precise definitions and details, see [BCI+13].
Computational overheads. The transformation from a linear PCP to a SNARK in-
troduces several computational overheads. In Step 1, the only overhead is due to the
consistency-check query, and is minor. However, the cryptographic overheads in Step 2
are significant, and require optimizations for practical use.

Specifically, after sampling q ∈ Fm′
, the SNARK generator G must compute

Enc(q) = (Enc(qi))
m′

i=1. In other words G needs to compute the encoding of m′ field
elements, where m′ is on the order of the size of the circuit C. Furthermore, after com-
puting a linear proof oracle π ∈ Fm, the honest SNARK prover P needs to homomor-
phically evaluate, for i = 1, . . . , k+1, the inner product 〈π, qi〉 to obtain Enc(〈π, qi〉).

In our case, the encoding is Enc(γ) = (gγ , hγ) where g ∈ G1, h ∈ G2 and G1, G2

are prime-order groups; the linear homomorphism is Enc(aγ + bδ) = Enc(γ)aEnc(δ)b

with coordinate-wise multiplication and exponentiation. Therefore, both G and P need
to compute a large number of cryptographic exponentiations. These operations greatly
affect the complexity of G and P , and must be performed efficiently.
Efficiency optimizations. We address the cryptographic bottleneck by using multi-
exponentiation algorithms and parallelization. See the extended version of this paper
for the impact of these optimizations.

3.2 An Efficient Linear PCP

In the previous section we discussed how to ensure that the transformation from a linear
PCP to a SNARK adds as little computational overhead as possible. In this section, we
discuss the problem of implementing a linear PCP (to give as input to the transforma-
tion) that is as efficient as possible.
Our linear PCP. Our starting point is the work on quadratic-span programs (QSPs)
and quadratic-arithmetic programs (QAPs) of Gennaro et al. [GGPR13]. Indeed, Bi-
tansky et al. [BCI+13] observed that any QSP for a relation R yields a corresponding
3-query linear PCP for R, and any QAP for a relation R yields a corresponding 4-
query linear PCP for R. By following the QAP approach of [GGPR13], we design a
linear PCP that trades an increased number of 5 queries for a linear PCP that, while
keeping essentially optimal asymptotics, enjoys excellent efficiency in practice.

Concretely, for checking membership in the language LC for a circuit C, our linear
PCP has only 5 queries of 2|C| field elements each (and sampling the 5 queries needs
only a single random field element); generating the queries can be done in linear time.
The 5 answers of the queries can be verified via 2 quadratic polynomials using only
2n + 9 field operations, where n is the input size. The soundness error is 2|C|/|F|.
Through a suitable use of FFTs, the honest prover can compute the linear proof oracle
via an arithmetic circuit of sizeO(|C| log |C|) and depthO(log |C|) only. (In particular,
the prover is highly parallelizable.)
Efficiency optimizations. In practice, tailored FFT algorithms are more efficient than
“generic” ones (i.e., ones that work over any finite field). To leverage the efficiency of
tailored FFT algorithms, we further specialize our choice of elliptic curve so to ensure
that G1, G2 are groups of a prime order p with p − 1 = 2`h for a large integer `. This
means that, in our linear PCP, we can choose the finite field F = Fp. In such a field,
there is a primitive 2`-th root of unity, and multi-point evaluation/interpolation over
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domains consisting of roots of unity (or their multiplicative cosets) can be performed
via very simple and efficient FFT algorithms. Furthermore, the choice F = Fp also
simplifies the linear-time algorithm for sampling queries.

Zero knowledge. The transformation from a linear PCP to a SNARK is such that
if the linear PCP is honest-verifier zero-knowledge (HVZK) then the SNARK is zero
knowledge. (See the extended version of this paper for a definition of HVZK.) Thus, we
need to ensure that our linear PCP is HVZK. Bitansky et al. [BCI+13] showed a general
transformation from a linear PCP to a HVZK linear PCP of similar efficiency. We do
not rely on their general transformation. Instead, our linear PCP can be made HVZK
with essentially no computational overhead, via a simple modification analogous to the
one used in [GGPR13] to achieve zero knowledge. With this modification, we ensure
that the SNARK obtained from our linear PCP has (statistical) zero knowledge.

For more details on our linear PCP construction, see the extended version of this paper.

3.3 Performance

Plugging our linear PCP for arithmetic circuits (Section 3.2) into the transformation
(Section 3.1), we thus obtain an implementation of zk-SNARKs for arithmetic circuit
satisfiability with excellent asymptotic efficiency: linear-time key generator, quasilinear-
time prover, and linear-time verifier. Next, we discuss concrete performance.

Our algebraic setup is as follows: we work over E(Fq) where E is the elliptic curve
y2 = x3 + x and q is a prime of 512 bits; the order of the group is divisible by p =
2159 + 2107 + 1. This curve gives 128 bits of security. Our experiments are run on a
machine with eight 2.4 GHz AMD Opteron 8431 6-core processors and 16 GB of RAM.

Performance of key generation. Given an arithmetic circuit C : Fn × Fh → F as
input, the SNARK key generatorG outputs: a proving key σ of (12|C|+2n+40) group
elements and a verification key τ of (n+8) group elements. Each group element (when
compressed) is 65 bytes. Only 8 random field elements need to be sampled for this
computation. A small set of public parameters provides information, to both the prover
and verifier, about the choice of elliptic curve; storing these public parameters only
requires 310 bytes. The extended version of this paper includes performance graphs of
G(C) as a function of |C|. For instance, when |C| ≈ 2 · 106, G performs ≈ 4.2 · 109
field operations in less than 20 minutes.

Performance of proving. Given σ and (x, a) in the relation RC , the SNARK prover
outputs a proof consisting of 12 group elements. As before, each group element (when
compressed) is 65 bytes, so the proof length in bytes is 780. The extended version
of this paper includes graphs of P (σ, x, a) as a function of |C|. For instance, when
|C| ≈ 2 · 106, P performs ≈ 3.3 · 109 field operations in less than 15 minutes.

Performance of verifying. Given τ , an input x, and a proof π, the SNARK verifier
computes the decision bit. To do so, the verifier evaluates 21 pairings and solves a
multi-exponentiation problem of size |x|.The extended version of the paper includes
performance graphs of V (τ, x, π) as a function of |x|. For instance:

– when |x| ≤ 26, V performs≈ 2.2·105 field operations in less than 50 milliseconds;
– when |x| ≤ 217, V performs ≈ 1.3 · 107 field operations in less than 20 seconds.

We emphasize that the above performance holds no matter how large is the circuit C.
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