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Abstract. The learning with rounding (LWR) problem, introduced by
Banerjee, Peikert and Rosen at EUROCRYPT ’12, is a variant of learn-
ing with errors (LWE), where one replaces random errors with deter-
ministic rounding. The LWR problem was shown to be as hard as LWE
for a setting of parameters where the modulus and modulus-to-error
ratio are super-polynomial. In this work we resolve the main open prob-
lem and give a new reduction that works for a larger range of parame-
ters, allowing for a polynomial modulus and modulus-to-error ratio. In
particular, a smaller modulus gives us greater efficiency, and a smaller
modulus-to-error ratio gives us greater security, which now follows from
the worst-case hardness of GapSVP with polynomial (rather than super-
polynomial) approximation factors.

As a tool in the reduction, we show that there is a “lossy mode” for the
LWR problem, in which LWR samples only reveal partial information
about the secret. This property gives us several interesting new applica-
tions, including a proof that LWR remains secure with weakly random
secrets of sufficient min-entropy, and very simple constructions of deter-
ministic encryption, lossy trapdoor functions and reusable extractors.

Our approach is inspired by a technique of Goldwasser et al. from ICS ’10,
which implicitly showed the existence of a “lossy mode” for LWE. By
refining this technique, we also improve on the parameters of that work
to only requiring a polynomial (instead of super-polynomial) modulus
and modulus-to-error ratio.

Keywords: Learning with Errors, Learning with Rounding, Lossy Trap-
door Functions, Deterministic Encryption.
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1 Introduction

Learning With Errors. The Learning with Errors (LWE) assumption states
that “noisy” inner products of a secret vector with random public vectors,
look pseudorandom. In the last years many cryptosystems have been proven
secure under LWE, including (identity-based, leakage-resilient, fully homomor-
phic, functional) encryption [2–9], pseudorandom functions [10], (blind) signa-
ture schemes [3, 11–13], hash functions [14,15], oblivious transfer [16], etc..

The LWE assumption with parameters n,m, q ∈ N and a “small” error distri-

bution χ over Z states that for uniformly random A
$← Zm×nq , s

$← Znq , u
$← Zmq

and an error vector e← χm

(A,A · s + e) is computationally indistinguishable from (A,u).

Sometimes it will be convenient to think of this distribution as consisting of m
“LWE samples” of the form (ai, 〈ai, s〉+ei) ∈ Zn+1

q . One of the main advantages
of the LWE problem is that, for some settings of parameters, we can prove its
security under certain worst-case hardness assumptions over lattices, cf. [2, 17].

One important parameter is the “size” of the error terms e
$← χ which we

denote by β.5 As long as β exceeds some minimum threshold ≈
√
n, the concrete

hardness of the LWE problem mainly depends on the dimension n and on the
ratio of the modulus q to the error-size β. Therefore, we will often be unspecific
about the exact distribution χ, and only focus on the error-size β.

Learning With Rounding. The Learning with Rounding (LWR) problem was
introduced in [10]. Instead of adding a small random error to a sample 〈a, s〉 ∈ Zq
to hide its exact value, we release a deterministically rounded version of 〈a, s〉.
That is, for some p < q, we divide up the elements of Zq into p contiguous
intervals of roughly q/p elements each and define the rounding function b·cp :
Zq → Zp that maps x ∈ Zq into the index of the interval that x belongs to. For
example if q, p are both powers of 2, than this could correspond to outputting
the log(p) most significant bits of x. We can extend the rounding function to
vectors by applying it component-wise. The LWR assumption states that:

(A, bA · scp) is computationally indistinguishable from (A, bucp).

Note that if p divides q, then bucp is itself uniform over Zmp .
The main advantage of LWR is that one does not need to sample any addi-

tional “errors”, therefore requiring fewer random bits. The assumption has been
used to construct simple and efficient pseudorandom generators and functions
in [10], and deterministic encryption in [18].

Banerjee et al. [10] show a beautifully simple reduction proving the hardness
of the LWR problem under the LWE assumption for some range of parameters.
They observe that if the error size β is sufficiently small and the ratio q/p is
sufficiently big, then b〈a, s〉cp = b〈a, s〉+ecp with overwhelming probability over

5 We will be informal for now; we can think of β as the the standard deviation or the
expected/largest absolute value of the errors.
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random a
$← Zq and e

$← χ. In particular, the only way that the two values
differ is if 〈a, s〉 ends up within a distance of |e| from a boundary between two
different intervals; but since the intervals are of size q/p and the ball around
the boundary is only of size 2|e| this is unlikely to happen when q/p is super-
polynomially bigger than 2|e|. Therefore, one can show that:

(A, bA · scp)
stat
≈ (A, bA · s + ecp)

comp
≈ (A, bucp)

where the first modification is statistically close and the second follows immedi-
ately from the hardness of LWE.

Unfortunately, the argument only goes through, when (q/p) is bigger than the
error size β by a super-polynomial factor. In fact, if we want statistical distance
2−λ we would need to set q ≥ 2λβp, where λ is a security parameter. This has
three important consequences: (1) the modulus q has to be super-polynomial,
which makes all of the computations less efficient, (2) the modulus-to-error ratio
q/β is super-polynomial which makes the LWE problem easier and only gives
us a reduction if we assume the hardness of the lattice problem GapSVP with
super-polynomial approximation factors (a stronger assumption), (3) the ratio
of the input-to-output modulus q/p is super-polynomial, meaning that we must
“throw away” a lot of information when rounding and therefore get fewer bits of
output per LWR sample. The work of [10] conjectured that the LWR problem
should be hard even for a polynomial modulus q, but left it as the main open
problem to give a reduction. The conjecture is especially interesting in light of
the recent results of [19] which give the first classical reduction from LWE with
small parameters to GapSVP.

1.1 The New Reduction and Properties of LWR

LWR with Polynomial Modulus. In this work, we resolve the open problem
of [10] and give a new reduction showing the hardness of LWR from that of
LWE for a more general setting of parameters, including when the modulus q
is only polynomial. In particular, instead of requiring q ≥ 2λβp, where λ is a
security parameter as in [10], we only require q ≥ nmβp, where we recall that
n is the dimension of the secret, and m is the number of LWR samples that we
output, β is the size of the LWE errors, and p is the new modulus we round
to. In particular, as long as the number of LWR samples m is fixed a-priori by
some polynomial, we can allow the modulus q (and therefore also the modulus-
to-error ratio q/β, and the input-to-output ratio q/p) to all be polynomial. As
mentioned, this setting provides greater efficiency (computation with smaller q)
and greater security (smaller ratio q/β) allowing for a reduction from the worst-
case hardness of the lattice problem GapSVP with polynomial approximation
factors. In particular, the above efficiency and security improvements for LWR
directly translate into improvements of the PRG and PRF constructions of [10].

To be even more precise, our reduction shows the hardness of LWR with
parameters n,m, q, p assuming the hardness of LWE with parameters n′,m, q, β
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(note: different dimension n′ vs. n) as long as:

n ≥ log(q)

log(2γ)
· n′ and q ≥ γ(nmβp) (1)

for some flexible parameter γ ≥ 1. For example, setting γ = 1 allows for the
smallest modulus q ≈ nmβp, but requires a larger dimension n ≈ n′ log(q) in
the LWR problem than the dimension n′ of the underlying LWE assumption.
On the other hand, setting γ = qδ for some constant δ ∈ (0, 1) gives a bigger
polynomial modulus q ≈ (nmβp)1/(1−δ) but allow us to set the LWR dimension
n ≈ (1/δ)n′ = O(n′) to be closer to that of the underlying LWE assumption.

It remains as an open problem to improve the reduction further, and espe-
cially to remove the dependence between the modulus q and the number of LWR
samples m that we give out.

LWR with Weak and Leaky Secrets. Another advantage of our reduction
is that we prove the security of the LWR problem even when the secret s is not
necessarily uniform over Znq . Indeed, our proof also works when s is uniform over

a smaller integer interval s
$← {−γ, . . . , γ}n ⊆ Znq , where the relation of γ ≥ 1

to the other parameters is given by equation (1). Moreover, our reduction works
when the secret s is not even truly uniform over this interval (say, because the
attacker observed some leakage on s, or s was sampled using a weak random
source) as long as s retains some sufficiently high amount of min-entropy k ≈
n′ log(q), where n′ is the dimension of the underlying LWE assumption. Notice
that, no matter how small the entropy k is, we can still prove some level of
security under an LWE assumption with correspondingly smaller dimension n′.

The work of Goldwasser et al. [20] shows similar results for the hardness
of LWE with a weak and leaky secret, at least as long as the modulus q and
the modulus-to-error ratio q/β are super-polynomial. Indeed, we will use a re-
finement of the technique from their work as the basis of our LWE to LWR
reduction. Our refinement will also allow us to improve the parameters of [20],
and show the hardness of LWE with a weak and leaky secret when the modulus
q and the ratio q/β are polynomial.

The Reduction. As discussed above, the original reduction of [10] required us
to choose parameters so that rounding samples with and without error is almost
always identical: Pr[b〈a, s〉cp 6= b〈a, s〉+ ecp] ≤ negl. Therefore LWR outputs do
not provide any more information than LWE outputs. In contrast, in our setting
of parameters, when q is polynomial, there is a noticeable probability that the
two values are different. We therefore need a completely different proof strategy.

Surprisingly, our strategy does not directly convert an LWE instance with
secret s into an LWR instance with secret s. Instead, we rely on the LWE problem
to change the distribution of the coefficient matrix A. In particular, we show

that there is a “lossy” method of sampling a matrix Ã
$← Lossy() such that:

(a) Under the LWE assumption, Ã
$← Lossy() is computationally indistinguish-

able from A
$← Zm×nq .
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(b) When Ã
$← Lossy(), the values Ã, bÃ·scp do not reveal too much information

about s. In particular, s maintains a large fraction of its statistical entropy
given Ã, bÃ · scp.

Before we describe how the Lossy() sampler works in the next paragraph, let
us show that the above two properties allow us to prove the hardness of LWR
problem. We can do so via a hybrid argument where, given many LWR samples,
we replace one sample at a time from being an LWR sample to being uniformly
random. In particular, assume we have m+ 1 LWR samples and let the matrix

A
$← Zm×nq denote the coefficient vectors of the first m samples, and let a

$← Znq
be the coefficient vector of the last sample. Then we can show:

([
A
a

]
,

[
bA · scp
b〈a, s〉cp

])
comp
≈

([
Ã
a

]
,

[
bÃ · scp
b〈a, s〉cp

])
stat
≈([

Ã
a

]
,

[
bÃ · scp
bucp

])
comp
≈

([
A
a

]
,

[
bA · scp
bucp

])
In the first step, we use the LWE assumption to replace a uniformly random A

by a lossy matrix Ã
$← Lossy(), but still choose the last row a

$← Znq at random.
In the second step, we use the fact that inner product is a strong extractor,
where we think of the secret s as the source and the vector a as a seed. In
particular, by the properties of the lossy sampler, we know that s maintains
entropy conditioned on seeing Ã, bÃ · scp and therefore the “extracted value”

〈a, s〉 is statistically close to a uniformly random and independent u
$← Zq. In the

last step, we simply replace the lossy matrix Ã
$← Lossy() back by a uniformly

random A. This shows that, given the first m LWR samples the last one looks
uniform and independent. We can then repeat the above steps m more times to
replace each of the remaining LWR samples (rows) by uniform, one-by-one.

The Lossy Sampler. The basic idea of our Lossy sampler is taken from the
work of Goldwasser et al. [20]. We sample the lossy matrix Ã ∈ Zm×nq as

Ã
def
= BC + F where B

$← Zm×n
′

q , C
$← Zn

′×n
q , F

$← χm×n

where n′ < n is some parameter and χ is a “small” LWE error distribution. We
now need to show that this satisfies the properties (a) and (b) described above.

It is easy to see that Ã is computationally indistinguishable from a uniformly
random matrix under the LWE assumption with parameters n′,m, q, χ. In par-
ticular, each column i of the matrix Ã can be thought of as an LWE distribution
B · ci + fi with coefficient matrix B, secret ci which is the ith column of the
matrix C, and error vector fi which is the ith column of F. Therefore, using n
hybrid arguments, we can replace each column i of Ã by a uniformly random
and independent one. This part of the argument is the same as in [20].

Next, we need to show that the secret s retains entropy even conditioned on

seeing Ã, bÃ·scp. Let us first prove this property in the case when s
$← {−1, 0, 1}n
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is itself a random “short” vector.6 All of the information that we give out about
s can be reconstructed from:

– The matrices B,C,F which define Ã and are independent of s on their own.
– The value C · s whose bit-length is n′ log(q).
– A set Z consisting of all pairs (i, vi) ∈ [m] × Zp such that b(BC · s)icp 6=
b(Ã · s)icp along with the value vi = b(Ã · s)icp. The subscript i denotes the
ith component of a vector.

Given the three pieces of information above, we can reconstruct Ã, bÃ · scp by

setting b(Ã·s)icp := b(BC·s)icp for every index i not contained in Z, and setting

b(Ã · s)icp := vi for every i which is in Z. Therefore, we just need to show that
the three pieces of information above do not reveal too much about s. First, we
show that the set Z is small with overwhelming probability. In particular, an
index i is contained in Z if and only if

b(BC · s)icp 6= b(BC · s)i + (F · s)icp. (2)

Assume that the entries of the error matrix F are all bounded by β in absolute
value with overwhelming probability, and therefore (F · s)i is bounded by nβ
in absolute value.7 Then the event (2) can only occur if the value (BC · s)i
falls within distance nβ of a boundary between two different intervals. Since
each interval is of size ≈ q/p and the ball around each boundary is of size 2nβ,
this happens with (noticeable but small) probability ≤ 2nβp/q ≤ 1/m, when
q ≥ 2nmβp (which gives us the bound of (1)). Therefore, the probability of
any index i being in Z is at most 1/m, the expected size of Z is at most 1,
and because these probabilities are independent, we can use Chernoff to bound
|Z| ≤ n′ with overwhelming probability 1−2−n

′
. So in total, Z can be described

by |Z|(logm + log p) ≤ n′ log q bits with overwhelming probability. Therefore,
together, Z,Cs reveal only O(n′ log q) bits of information about s, even given
B,C,F. We can summarize the above as:

H∞(s|Ã, bÃscp) ≥ H∞(s|B,C,F,C · s, Z)

≥ H∞(s|B,C,F)−O(n′ log q) ≥ n−O(n′ log q).

Hence, if n is sufficiently larger than some O(n′ log q), the LWR secret maintains
a large amount of entropy given the LWR samples with a lossy Ã. The above
analysis also extends to the case where s is not uniformly random, but only has
a sufficient amount of entropy.

We can also extend the above analysis to the case where s
$← Znq is uniformly

random over the entire space (and not short), by thinking of s = s1 + s2 where

s1
$← Znq is uniformly random and s2

$← {−1, 0, 1}n is random and short. Using

the same argument as above, we can show that, even given s1, Ã and bÃ · scp,
the value s2 (and therefore also s) maintains entropy.

6 This proof generalizes to larger intervals {−γ, . . . , γ} and corresponds to the param-
eter γ in equation (1). Here we set γ = 1.

7 Our actual proof is more refined and only requires us to bound the expected absolute
value of the entries.
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Our analysis of lossiness as described above is inspired by [20] but differs from
it significantly. In particular that work considered LWE (not LWR) samples with
the matrix Ã, did not explicitly analyze lossiness, and required super-polynomial
modulus and modulus-to-error ratio. Indeed, in the full version [1] we use the
ideas from the above analysis to also improve the parameters of that work,
showing the robustness of the LWE problem to weak and leaky secrets for a
polynomial modulus and modulus-to-error ratio.

1.2 Applications

Reusable Computational Extractors. By the leftover-hash lemma, the func-
tion Ext(s; a) := 〈s,a〉 is a good randomness extractor taking a secret source

s ∈ Znq of min-entropy k ≥ log(q)+2 log(1/ε) and a random public seed a
$← Znq ,

and its output will be ε-close to the uniform over Zq. But assume we want to
extract many different mutually (pseudo-)random values from the source s with-
out keeping any long term state: each time we want to extract a new output we
choose a fresh seed and apply the extractor. It is easy to see that the above
inner-product extractor is completely insecure after at most n applications, and
each successive output is easy to predict from the previous ones. The work of [21]
introduced the notion of a reusable computational extractor that remains secure
even after m applications, where m can be an arbitrary polynomial, and gave a
construction under a non-standard “learning-subspaces with noise” assumption.
Our results immediately give us a new simple construction of reusable extractors
defined by Ext(s; a) := b〈a, s〉cp. That is, we just round the output of the stan-
dard inner product extractor! We show that, as long as the LWE assumption
holds with some parameters n′,m, q, β, the source s is distributed over {0, 1}n
and has entropy k ≥ O(n′ log(q)), and the modulus satisfies q ≥ 2βnmp, the
above extractor is secure for m uses. In particular, we can have m� n� k.

Lossy Trapdoor Functions. Lossy trapdoor functions (LTDFs) [22, 23] are a
family of functions fpk(·) keyed by some public key pk, which can be sampled
in one of two indistinguishable modes: injective and lossy. In the injective

mode the function fpk(·) is an injective function and we can even sample pk
along with a secret trapdoor key sk that allows us to invert it efficiently. In
the lossy mode, the function fpk(·) is “many-to-one” and fpk(s) statistically
loses information about the input s. LTDFs have many amazing applications in
cryptography, such as allowing us to output many hardcore bits, construct CCA-
2 public-key encryption [23,24], and deterministic encryption [25]. We construct
very simple and efficient LTDFs using the LWR problem: the public key is a
matrix pk = A and the function is defined as fA(s) = bA · scp. We can sample
an injective A with a trapdoor using the techniques of Ajtai [26] or subsequent
improvements [27, 28], and one can sample a lossy A using our lossy sampler.
Although prior constructions of LTDFs based on LWE are known [23, 29], our
construction is extremely simple and has the advantage that our lossy mode
loses “almost all” of the information contained in s.
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Deterministic Encryption. Deterministic public-key encryption [25,30–33] is
intended to guarantee security as long as the messages have sufficient entropy.
Although there are black-box constructions of deterministic encryption using
LTDFs [32], we get a very simple direct construction from the LWR problem:
the public key is a matrix pk = A ∈ Zm×nq , and to encrypt a message s ∈ {0, 1}n,
we simply output bA · scp. We can sample A with a decryption trapdoor using
the standard techniques [26–28] mentioned previously. Our analysis here is es-
sentially the same as for our reusable extractor – we simply note that whenever
s has sufficient entropy, the output bA · scp is pseudorandom. We note that
the same construction was proposed by Xie et al. [18], but because the analy-
sis there was similar to [10, 20], they required a super-polynomial modulus and
modulus-to-error ratio. The main advantage of this scheme over other deter-
ministic encryption schemes is that we do not need any fixed threshold on the
entropy of the message s: no matter how low it is we can still prove security
under an LWE assumption with correspondingly degraded parameters.

1.3 Recent Concurrent Work

The work of [34] studies the security of LWE in the case where the error dis-
tribution is uniformly random over a small interval. In appendix B of the full
version [1], we derive a very similar result. As a tool, both works rely on study-
ing a ”lossy mode” of LWE, but the construction and analysis are somewhat
different. The work of [35] also studies LWE in a setting with extremely small
errors uniform over {0, 1} also crucially using the notion of lossiness.

2 Preliminaries

Notation. Throughout, we let λ denote the security parameter. We use bold
lower-case letters (e.g., s, e) to denote vectors, and bold upper-case letters (e.g.,
A,B) to denote matrices. If X is a distribution or a random variable, we write

x
$← X to denote the process of sampling x according to X. If X is a set, we

write x
$← X to denote the process of sampling x uniformly at random over X.

For two distribution ensembles X = {Xλ}, Y = {Yλ}, we write X
comp
≈ Y if for

all probabilistic polynomial time (PPT) distinguishers D there is a negligible
function negl(·) such that: |Pr[D(1λ, Xλ) = 1]− Pr[D(1λ, Yλ)] = 1| ≤ negl(λ).

Bounded Distribution. A distribution χ over R is called β-bounded if E[|χ|] ≤
β.

Probabilistic Notions. We assume that the reader is familiar with some ba-
sic notions from probability, such as statistical distance ∆, (conditional) min
entropy, and the Chernoff bound. We will further rely on the following less stan-
dard definition of smooth min-entropy, which was first introduced by Renner
and Wolf [36]. Intuitively, a random variable has high smooth min-entropy, if it
is statistically close to a random variable with high min-entropy.



Learning with Rounding, Revisited 9

Definition 2.1 (Smooth Entropy). We say that a random variable X has ε-
smooth min-entropy at least k, denoted by Hε

∞(X) ≥ k, if there exists some vari-
able X ′ such that ∆(X,X ′) ≤ ε and H∞(X ′) ≥ k. Similarly, we say that the ε-
smooth conditional min-entropy of X given Y is at least k, denoted Hε

∞(X|Y ) ≥
k if there exist some variables (X ′, Y ′) such that ∆((X,Y ), (X ′, Y ′)) ≤ ε and
H∞(X ′|Y ′) ≥ k.

We will write Hsmooth
∞ (·) to denote Hε

∞(·) for some (unspecified) negligible ε.

2.1 Learning with Errors and Learning with Rounding

Learning With Errors. The decisional learning with errors (LWE ) problem
was first introduced by Regev [2]. Informally, the problem asks to distinguish
slightly perturbed random linear equations from truly random ones.

Definition 2.2 (LWE Assumption [2]). Let λ be the security parameter, n =
n(λ),m = m(λ), q = q(λ) be integers and let χ = χ(λ) be a distribution over

Zq. The LWEn,m,q,χ assumption says that for A
$← Zm×nq , s

$← Znq , e ← χm,

u
$← Zmq the following distributions are computationally indistinguishable:

(A,A · s + e)
comp
≈ (A,u).

It has been shown that the LWE-assumption holds for certain error distributions
χ, assuming the worst-case hardness of certain lattice problems. In particular,
this is the case if χ is a discrete Gaussian distribution with appropriate variance,
see, e.g., [2, 17,35] for precise statements.

Learning with Rounding. The learning with rounding (LWR) problem was in-
troduced by Banerjee et al. [10]. It can, in some sense, be seen as a de-randomized
version of the LWE-problem. The idea is to compute the error terms determin-
istically: instead of perturbing the answer by adding a small error, we simply
round the answer – in both cases we are intuitively hiding the low order bits.

More formally, the LWR-problem is defined via the following rounding func-
tion for integers q ≥ p ≥ 2:

b·cp : Zq → Zp : x 7→ b(p/q) · xc,
where we naturally identify elements of Zk with the integers in the interval
{0, . . . , k − 1}.8 More intuitively, b.cp partitions Zq into intervals of length ≈ q

p
which it maps to the same image. We naturally extend the rounding function to
vectors over Zq by applying it component-wise.

In the presentation of our results we will make use that the probability that
a random element in Zq is close to a step in the rounding function is small. We
therefore define, for any integer τ > 0:

borderp,q(τ)
def
= {x ∈ Zq : ∃y ∈ Z, |y| ≤ τ, bxcp 6= bx+ ycp} .

8 The choice of the floor function rather than ceiling or nearest integer is arbitrary
and unimportant.
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We can easily bound the probability of a random element being on the border.
As for the rest of this document, we omit a proof and refer to the full version [1].

Lemma 2.3. For every p, q, τ it holds that Pr
x

$←Zq
[x ∈ borderp,q(τ)] ≤ 2τp

q .

The learning with rounding problem is now defined as follows:

Definition 2.4 (LWR [10]). Let λ be the security parameter, n = n(λ),m =
m(λ), q = q(λ), p = p(λ) be integers. The LWRn,m,q,p problem states that for

A
$← Zm×nq , s

$← Znq , u
$← Zmq the following distributions are computationally

indistinguishable: (A, bA · scp)
comp
≈ (A, bucp).

Notice that when p divides q, the distribution bucp : u
$← Zq is just the uniform

over Zp. Otherwise, the distribution is slightly skewed with some values in Zp
having probability bq/pcq and others dq/peq . However, it is easy to deterministically
extract random bits from such independent samples with an asymptotic rate
of O(log(p)) bits per sample. Therefore, independent samples from the skewed
distribution are often “good enough” in practice.

We also define a variant of the LWR assumption where the secret s can come
from some weak source of entropy and the attacker may observe some partial
leakage about s.

Definition 2.5 (LWR with Weak and Leaky Secrets). Let λ be the security
parameter and n,m, q, p be integer parameters as in Definition 2.4. Let γ =
γ(λ) ∈ (0, q/2) be an integer and k = k(λ) be a real. The LWRWL(γ,k)

n,m,q,p problem
says that for any efficiently samplable correlated random variables (s, aux), where
the support of s is the integer interval [−γ, γ]n and H∞(s|aux) ≥ k, the following
distributions are computationally indistinguishable:

(aux,A, bA · scp)
comp
≈ (aux,A, bucp)

where A
$← Zm×nq , u

$← Zmq are chosen randomly and independently of s, aux.

3 Lossy Mode for LWR

We now show that, under the LWE assumption, the LWR problem has a ‘lossy
mode’: we can sample a matrix Ã which is computationally indistinguishable
from a uniformly random A such that the tuple (Ã, bÃscp) does not reveal too
much information about the secret s.

Definition 3.1 (Lossy Sampler). Let χ = χ(λ) be an efficiently samplable
distribution over Zq. The efficient lossy sampler Lossy() is given by:

Lossy(1n, 1m, 1`, q, χ): Sample B
$← Zm×`q ,C

$← Z`×nq ,F
$← χm×n and output

Ã = B ·C + F.
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Although the matrix Ã computed by the Lossy algorithm is statistically far from
a uniformly random matrix, it is easy to show that it is computationally indis-
tinguishable from one under the LWE`,m,q,χ assumption, where the dimension
of the secret is now ` instead of n. In particular, we can think of each column
of C as an LWE secrets, the matrix B as the coefficients, and each column of
Ã as the corresponding LWE output. Therefore, the following lemma from [20]
follows by a simple hybrid argument.

Lemma 3.2 ( [20]). Let A
$← Zm×nq , and let Ã

$← Lossy(1n, 1m, 1`, q, χ). Then,
under the LWE`,m,q,χ assumption, the following two distributions are computa-

tionally indistinguishable: A
comp
≈ Ã.

The following lemma now states that for appropriate parameters, the secret
s maintains high smooth min-entropy (see Definition 2.1) given Ã and bÃ · scp.

Lemma 3.3. Let n,m, `, p, γ be positive integers, χ be some β-bounded distri-
bution (i.e., E[|χ|] ≤ β), and q ≥ 2βγnmp be a prime. Then the following holds:

(i) (Uniform Secret) For Ã
$← Lossy(1n, 1m, 1`, q, χ) , s

$← Znq we have, for

ε = 2−λ + q−`:

Hε
∞(s|Ã, bÃscp) ≥ n log(2γ)− (`+ λ) log(q).

(ii) (High-Entropy Secret) Let (s, aux) be correlated random variables with s ∈
[−γ, γ]n ⊆ Zn, and let Ã

$← Lossy(1n, 1m, 1`, q, χ) be chosen independently.
Then, for ε = 2−λ + q−` and any ε′ > 0 we have:

Hε′+ε
∞ (s|Ã, bÃscp, aux) ≥ Hε′

∞(s|aux)− (`+ λ) log(q).

Both parts above also holds when q is not prime, as long as the largest prime
divisor of q, denoted pmax, satisfies GCD(q, q/pmax) = 1, pmax ≥ 2βγnmp. In
this case we get ε = (2−λ + (pmax)−` + Pr[s = 0n mod pmax]).

The proof is sketched in Section 1.1, and a full proof is given in [1].

4 New “LWR from LWE” Reduction

In the following section we present the main result of this paper, namely sufficient
conditions under which the LWR-assumption holds. As discussed earlier: on the
positive side, we show that the LWR-assumption also holds if one drops a small
fraction of the bits in the rounding function. On the negative side, the size of the
modulus depends on the number of LWR-samples one needs to output, i.e., on
the dimension of the matrix A, and thus this number must be known in advance.
However, as we will show in the subsequent sections, this is not a restriction for
many interesting applications.

Theorem 4.1. Let k, `, n,m, p, γ be positive integers and q be a prime. Further,
let χ be a β-bounded distribution for some β ∈ R (all parameters are functions
of λ) such that q ≥ 2βγnmp. Under the LWE`,m,q,χ assumption we then get:
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(i) If n ≥ (`+ λ+ 1) log(q)
log(2γ) + 2λ, then the LWRn,m,q,p-assumption holds.

(ii) If k ≥ (` + λ + 1) log(q) + 2λ, then the weak and leaky LWRWL(γ,k)
n,m,q,p -

assumption holds.

For exact security, if the above LWE assumption is (t, ε)-secure and ` ≥ λ,
then in both cases the corresponding LWR-problem is (t′, ε′)-secure, where t′ =
t− poly(λ), ε′ = m(2 · nε+ 3 · 2−λ) = poly(λ)(ε+ 2−λ). Both parts of the above
theorem also hold if q is not prime as long as the largest prime divisor of q,
denoted pmax, satisfies GCD(q, q/pmax) = 1, pmax ≥ 2βγnmp. In this case we
still get t′ = t− poly(λ), ε′ = poly(λ)(ε+ 2−λ).

The proof is sketched in Section 1.1, and a full proof can be found in [1].

Remark on β-bounded distributions. In the theorem, we require that the
distribution χ is β-bounded meaning that E[|χ|] ≤ β. A different definition,
which also would have been sufficient for us, would be to require that Pr

x
$←χ

[|x| >
β] ≤ negl(λ). The latter notion of boundedness is used in the work of Banerjee
et al. [10]. Although the two notions are technically incomparable (one does not
imply the other) for natural distributions, such as the discrete Gaussian, it is
easier to satisfy out notion. In particular, the discrete Gaussian distribution Ψσ
with standard deviation σ satisfies E[|Ψσ|] ≤ σ but we can only get the weaker
bound Pr

x
$←Ψσ

[|x| >
√
ω(log(λ))σ] ≤ negl(λ). Therefore, we find it advantageous

to work with our definition.

Remark on Parameters. Notice that in the above theorem, the parameter γ
offers a tradeoff between the size of the modulus q and the secret vector length
n: for a bigger γ we need a bigger modulus q but can allow smaller secret length
n. The following corollary summarizes two extreme cases of small and large γ.

Corollary 4.2. Let Ψσ denote a discrete Gaussian distribution over Zq with
standard deviation σ, and assume that the LWE`,m,q,Ψσ -assumption holds. Then
the LWRn,m,q,p-assumption holds in either of the following cases:

– (Minimize Modulus/Error Ratio.) If q ≥ 2σnmp is a prime, and n ≥ (` +
λ+ 1) log(q) + 2λ. By setting p = O(1), we can get a modulus-to-error ratio
as small as q/σ = O(m · n).

– (Maximize Efficiency.) If q ≥ (2σnm)3 is a prime, p = 3
√
q and n ≥ 3` +

5λ + 3. The efficiency of LWR is now similar to the LWE assumption with
n = O(`) and log(p) = O(log q).

5 Reusable Extractors

The notion of a ‘computational reusable extractor’ was defined by Dodis et
al. [21]. Intuitively, this is a tool that allows us to take some weak secret s that
has a sufficient amount of entropy, and to use it to repeatedly extract fresh pseu-
dorandomness Ext(s; ai) using multiple public random seeds ai. Each extracted
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output should look random and independent.9 The work of [21] constructed
such reusable extractors under a new assumption called “Learning Subspaces
with Noise (LSN)”. Reusable extractors were also implicitly constructed based
on the DDH assumption in the work of Naor and Segev [37].10 Here we give a
new construction based on the LWR problem, with a security reduction from
the LWE assumption.

Definition 5.1 (Reusable Extractor). Let S,D,U be some domains, para-
metrized by the security parameter λ. A function Ext : S ×D → U is a (k,m)-
reusable-extractor if for any efficiently samplable correlated random variables
s, aux such that the support of s is S and H∞(s|aux) ≥ k, we have:

(aux,a1, . . . ,am,Ext(s; a1), . . . ,Ext(s; am))
comp
≈ (aux,a1, . . . ,am, u1, . . . , um)

where the values {aj
$← D}, {uj

$← U} are sampled independently.

Theorem 5.2. Let n, p, γ be integers, p′ be a prime, and define q = p ·p′. Then,
assuming that the LWE`,m,q,χ assumption holds for some β-bounded distribution
χ such that p′ > 2βγnmp and k ≥ (`+ λ+ 1) log(q) + 2λ, the function

Ext : [−γ, γ]n × Znq → Zp defined by Ext(s; a)
def
= b〈a, s〉cp

is a (k,m)-reusable extractor.

Notice that one nice property of the above reusable extractor is that it has
a graceful degradation of security as the min-entropy k of the source drops.
In particular, there is no hard threshold on the entropy k determined by the
parameters that define the scheme: γ, n, q, p. Instead, as the entropy k drops
we can still reduce security from a correspondingly less secure LWE assumption
with smaller secret size `. In other words, the scheme designer does not need to
know the actual entropy k of the secret - but the scheme gets gradually less/more
secure as the entropy of the secret shrinks/grows. A similar notion of graceful
security degradation was noted in the work of Goldwasser et al. [20].

6 Lossy Trapdoor Functions

Lossy trapdoor functions (LTDFs) [22,23], are a family of functions fpk(·) keyed
by some public key pk, which can be sampled in one of two indistinguishable
modes: injective and lossy. In the injective mode the function fpk(·) is
injective and we can even sample pk along with a secret trapdoor key sk that
allows us to invert it efficiently. In the lossy mode, the function fpk(·) is “many-
to-one” and fpk(s) statistically loses information about the input s. LTDFs have
many interesting applications in cryptography, such as allowing us to output

9 Equivalently, we can think of a reusable extractor as a weak PRF fs(·) for which
security holds for a bounded number of inputs even using a high entropy key s.

10 The function Ext(s;a) =
∏

asi
i is a reusable extractor if s ∈ Zn

q , and the a ∈ Gn for
some DDH group of prime order q.
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many hardcore bits, construct CCA-2 public-key encryption [23, 24], and deter-
ministic encryption [25]. In this section, we construct very simple and efficient
LTDFs using the LWR problem, with security based on standard LWE. Our
LTDF function is unusually simple: the public key is a matrix pk = A and the
function is defined as fA(s) = bA · scp. As we will describe, one can sample
an injective A with a trapdoor using the techniques of Ajtai [26] or subse-
quent improvements [27,28], and one can sample a lossy A using the techniques
we developed in Section 3. Although prior constructions of LTDFs from LWE
are known [23, 29], our construction here has several advantages. Firstly, our
scheme is extremely simple to describe and implement. Secondly, in contrast to
both [22, 29], our lossy mode loses “almost all” of the information contained in
s. In fact, the amount of “lossiness” in our LTDF construction is flexible and
not determined by the parameters of the scheme itself. Even after we fix the
parameters that allow us to sample the injective mode, we have an additional
free parameter that allows us to make the lossy mode progressively more lossy
under under a progressively stronger variant of the LWE assumption.

6.1 Entropic LTDFs

Our notion differs somewhat from that of [23] in how we define the “lossy”
property. Instead of requiring that, for a lossy pk, the range of fpk(·) is small, we
require that very little entropy is lost from observing fpk(·). To the best of our
knowledge, our version can be used interchangeably in all of the applications of
LTDFs to date. To avoid confusion, we call our notion entropic LTDF (eLTDF).

Definition 6.1 (eLTDF). A family of l(λ)-entropic lossy trapdoor functions
(eLTDF) with security parameter λ and domain Dλ consists of a PPT sampling
algorithms Gen and two deterministic PPT algorithms F, F−1 such that:

Injective Functions: For any (pk, sk) in the support of Gen(1λ, injective),
any s ∈ Dλ we require that F−1(sk, F (pk, s)) = s.

Lossy Functions: When pk
$← Gen(1λ, lossy), the function F (pk, ·) is lossy.

In particular, for any mutually correlated random variables (s, aux) where the

domain of s is Dλ and for an independently sampled pk
$← Gen(1λ, lossy),

we have: Hsmooth
∞ (s|pk, F (pk, s), aux) ≥ Hsmooth

∞ (s|aux) − l(λ). We call the
parameter l = l(λ) the residual leakage of the LTDF.

Indistinguishability: The distributions of pk as sampled by Gen(1λ, lossy)
and Gen(1λ, injective) are computationally indistinguishable.

We now show how to construct eLTDFs from LWR (and so also from LWE).

Tools. As a tool in our construction, we will rely on the fact that we can sample
a random LWE matrix A along with an inversion trapdoor that allows us to
recover s, e given an LWE sample As + e where the error e is “sufficiently”
short. The first example of such algorithms was given by Ajtai in [26], and
was subsequently improved in [27]. More recently [28] significantly improved the
efficiency of these results, by using a “qualitatively” different type of trapdoor.
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We describe the properties that we need abstractly, and can use any of the
above algorithms in a black-box manner. In particular we need the following
PPT algorithms for some range of parameters (m,n, q, β):

GenTrap(1n, 1m, q): An algorithm which on input positive integers n, q and suf-
ficiently large m samples a matrix A ∈ Zm×nq and trapdoor T such that A
is statistically close to uniform (in n log q).

Invert(T,A, c): An algorithm which receives as input (A, T ) in the support of
GenTrap(1n, 1m, q) and some value c ∈ Zmq such that c = As + e for some
s ∈ Znq and some error satisfying ||e||2 ≤ β. The algorithm outputs s.

LWRInvert(T,A, c) Takes as input (A, T ) in the support of GenTrap(1n, 1m, q)
and some value c ∈ Zmp such that c = bAscp for some s ∈ Znq and outputs s.

For example [28] shows that there are algorithms (GenTrap, Invert) which work
for n ≥ 1, q ≥ 2, sufficiently large m = O(n log q) and sufficiently small β <
q/O(

√
n log q). Since we can convert LWR samples bAscp into samples A · s + e

for some short error ||e||2 ≤
√
mq/p, this also implies the following.

Lemma 6.2 (Trapdoors for LWR). For n ≥ 1, q ≥ 2, sufficiently large m ≥
O(n log q) and p ≥ O(

√
mn log q), there exist (GenTrap, LWRInvert) as above.

The Construction. We will rely on the algorithms GenTrap and LWRInvert
described above. We also rely on the lossy sampling algorithm Lossy and its
properties developed in Section 3. The construction is parametrized by integers
n,m, q, p (all functions of the security parameter λ). Furthermore, there will be
two additional parameters ` and χ which are only needed by the lossy sampler.

Gen(1λ, injective): Sample (A, T )
$← GenTrap(1n, 1m, q). Output pk = A and

trapdoor sk = (A, T ).

Gen(1λ, lossy): Sample A
$← Lossy(1n, 1m, 1`, q, χ). Output pk = A.

F (pk, s): On input s ∈ {0, 1}n and matrix pk = A ∈ Zm×nq output bAscp.
F−1(sk, c): On input c ∈ Zmp and sk = (A, T ) output LWRInvert(T,A, c).

The following theorem summarizes the properties of this construction.

Theorem 6.3. Let χ be an efficiently samplable β-bounded distribution and λ
be the security parameter. For any positive integers n ≥ λ, sufficiently large
m ≥ O(n log q), p ≥ O(

√
mn log q) and a prime q ≥ 2βnmp, if the LWE`,m,q,χ

assumption holds then the above construction is an l-LTDF with l = (`+λ) log q.

We refer the interested reader to the full version [1], where we additionally
show how to construct efficient all-but-one trapdoor functions, and how to obtain
CCA-2 secure encryption schemes therefrom.

7 Deterministic Encryption

Deterministic public-key encryption [25,30–33] is intended to guarantee security
as long as the messages have sufficient entropy. Although there are black-box
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constructions of deterministic encryption using LTDFs [32], here we present
a very simple direct construction from the LWR problem. There are several
definitions of deterministic encryption which can be proven equivalent; see [31,
32]. Here, we will use one such simple definition based on indistinguishability of
encrypting messages from two different distributions.

Definition 7.1 (Deterministic Encryption). A triple of PPT algorithms
(Gen,Enc,Dec), where Enc,Dec are deterministic, is a deterministic encryption
scheme with message length n = n(λ), if it satisfies the following properties.

First, it is correct, i.e., for all (pk, sk)
$← Gen(1λ) and all messages s ∈ {0, 1}n,

we have Decsk(Encpk(s)) = s. We further say that the scheme is secure for

all k(λ)-sources if for any two distribution ensembles {S(0)
λ }λ∈N, {S

(1)
λ }λ∈N over

{0, 1}n(λ) which are efficiently samplable in poly(λ)-times and have sufficient en-

tropy H∞(S0
λ) ≥ k, H∞(S1

λ) ≥ k, we have (pk,Encpk(s0))
comp
≈ (pk,Encpk(s1)),

where s0
$← S

(0)
λ and s1

$← S
(1)
λ and (pk, sk)

$← Gen(1λ).

Construction. We give a very simple construction of deterministic encryption
based on the LWR assumption. This construction is the same as one given by
Xie et al. [18], except for the setting of parameters. Whereas they required a
super-polynomial modulus and modulus to error ratio by relying on variants of
the analysis of [10,20] we use our improved analysis from Section 4. We will rely
on the LWR trapdoor generation and inversion algorithms GenTrap, LWRInvert
described in Section 6.1 and Lemma 6.2. Our scheme is parametrized by some
n,m, q, p, all functions of the security parameter λ, and has message length n.

Gen(1λ): Choose (A, T )
$← GenTrap(1n, 1m, q). Output pk = A, sk = T .

Encpk(s): For a message s ∈ {0, 1}n, output bA · scp.
Decsk(c): For a ciphertext c ∈ Zmp , output LWRInvert(T,A, c).

Theorem 7.2. Let λ be the security parameter, n ≥ λ, `,m, p be an integers,
q be a prime, and χ be an efficiently samplable β-bounded distribution (all pa-
rameters are functions of λ) such that m ≥ O(n log q), p ≥ O(

√
mn log q) are

sufficiently large and q ≥ 2βnmp. If the LWE`,m,q,χ assumption holds then the
above construction with parameters n,m, q, p is a deterministic encryptions se-
cure for all k sources where k ≥ (`+Ω(λ)) log(q).

One big advantage of our scheme is that the parameters n,m, q, p do not deter-
mine the minimal entropy k. Instead for any k, we can prove security under a
corresponding LWE assumption with dimension ` < k.

8 Open Problems

We conclude with two interesting open problems. Firstly, is it possible to improve
the reduction and remove the dependence between the modulus q and the number
of samples m? And secondly, is there a related reduction for Ring LWR from
Ring LWE? This does not seem to follow in a straight-forward manner.
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