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Abstract. Randomized encodings of functions can be used to replace
a “complex” function f(z) by a “simpler” randomized mapping f(x;r)
whose output distribution on an input = encodes the value of f(z) and
hides any other information about x. One desirable feature of random-
ized encodings is low online complexity. That is, the goal is to obtain
a randomized encoding f of f in which most of the output can be pre-
computed and published before seeing the input z. When the input x
is available, it remains to publish only a short string &, where the on-
line complexity of computing Z is independent of (and is typically much
smaller than) the complexity of computing f. Yao’s garbled circuit con-
struction gives rise to such randomized encodings in which the online
part & consists of n encryption keys of length x each, where n = |z| and
k is a security parameter. Thus, the online rate |Z|/|x| of this encoding
is proportional to the security parameter k.

In this paper, we show that the online rate can be dramatically improved.
Specifically, we show how to encode any polynomial-time computable
function f : {0,1}" — {0,1}™™ with online rate of 1 + o(1) and with
nearly linear online computation. More concretely, the online part & con-
sists of an n-bit string and a single encryption key. These constructions
can be based on the decisional Diffie-Hellman assumption (DDH), the
Learning with Errors assumption (LWE), or the RSA assumption. We
also present a variant of this result which applies to arithmetic formulas,
where the encoding only makes use of arithmetic operations, as well as
several negative results which complement our positive results.

Our positive results can lead to efficiency improvements in most contexts
where randomized encodings of functions are used. We demonstrate this
by presenting several concrete applications. These include protocols for
secure multiparty computation and for non-interactive verifiable com-
putation in the preprocessing model which achieve, for the first time,
an optimal online communication complexity, as well as non-interactive
zero-knowledge proofs which simultaneously minimize the online com-
munication and the prover’s online computation.

* A preliminary full version is available at [6].



1 Introduction

Suppose that we want to perform some cryptographic task which involves com-
putation and communication on n-bit data. In many scenarios, it is beneficial to
minimize the online complexity (i.e., the resources spent after seeing the data)
and shift the expensive computation and communication to an offline phase. This
setting has been extensively studied in many contexts including signatures [17,
40], verifiable computation (delegation) [19,4,14], and secure computation [8,
32,11, 15, 31]. The goal of the present paper is to further explore the question of
minimizing the online complexity of cryptography.

Let us first consider the following concrete example from [5]. Imagine a sce-
nario of sending a weak device U to the field in order to perform some expensive
computation f on sensitive data x. The computation is too complex for U to
quickly perform it on its own and, since the input z is sensitive, U cannot just
send the entire input out. Ideally, we would like to have a non-interactive solu-
tion of the following form: In an offline phase, before sent to the field, U picks a
short random secret key sk and publishes a (potentially long) related public key
pk. Once it observes the input x, the device U applies some cheap computation
to sk and = and sends out the result Z, a short “encrypted” version of x. The
rest of the world should be able, at this point, to recover f(z) and nothing else.

Abstracting the above, the computation of U can be described as a random-
ized function f : (x;sk) — (pk,#) that encodes the value f(z) in the sense that
(pk, &) reveals f(z) but nothing else. Using the terminology of [3], the function
f is referred to as a randomized encoding (RE) of f. The general motivation for
using REs is the hope to make f in some sense “simpler” than f, where different
applications dictate different notions of simplicity. The earliest uses of REs in
cryptography were in the area of secure computation [42, 34, 18,30]. Along the
years, REs have found a diverse range of other applications to problems such
as computing on encrypted data [39,13], parallel cryptography [3,2], verifiable
computation [19, 4], software protection [25, 27, 9], functional encryption [38, 26],
key-dependent message security [7, 1, 10], and others. We refer the reader to [10]
for a finer-grained treatment of REs under the term “garbling schemes”.

In the online/offline setting considered here, we would like to minimize the
online computation and communication resources required for computing and
distributing z. That is, we would like the online time complexity of computing
Z to be much smaller than the time required for computing f, and the length of
Z to be not much bigger than that of x.

The best known general constructions of online-efficient REs are based on
Yao’s garbled circuit technique [42]. In this case, the output of f(z) is encoded
by an offline part pk which consists of a big “garbled circuit” and an online
part & which consists of n keys Ki,..., K, of size k each, where n is the bit-
length of z and « is a security parameter. (Under a standard asymptotic security
convention in which n serves both as an input length parameter and a security
parameter, x can be thought of as n®, for some small constant ¢ > 0.) Each
key K; is selected from a pair of keys (K, K; 1) according to the i-th input
bit x;. Hence, the online computation and communication complexity are both



O(nk). An appealing feature is that the online computation complexity is nearly
linear in the input length, independently of the complexity of f. However, an
undesirable feature is that the online rate of the construction — i.e., the ratio
between the bit-length of & and the bit length of x — grows linearly with the
security parameter x. Hence, we ask:

Is it possible to obtain a constant online rate or even rate of 14+0(1) (e.g.,
|Z] = n + poly(x)) while keeping the online computation independent of
the complexity of f?

1.1 Owur Contribution

We answer the above question in the affirmative by constructing, under a variety
of standard intractability assumptions, an online-efficient RE with rate 1 4 o(1)
for every polynomial-time computable function.

Theorem 1. (Informal) Under the Decisional Diffie-Hellman Assumption (DDH),
the RSA Assumption, or the Learning-with-Errors Assumption (LWE), every
polynomial-time computable function f : {0,1}" — {0,1}"™) admits an RE
with online rate 1 + o(1) and with O(n**¢) online computation, for any ¢ > 0.

In more concrete terms, our constructions efficiently compile any boolean
circuit C into a corresponding RE with succinct and efficiently computable online
part. These constructions can be viewed as analogues of the garbled circuit
construction in which the n keys determined by x are compressed into a shorter
string  whose length is very close to that of x. This comes at the cost of a slight
increase in the online computation complexity, which still remains nearly linear
in n. An additional (related) difference is that in contrast to the standard garbled
circuit construction, where each bit of & depends only on a single bit of z, in
our constructions there are bits of & which depend on many bits of z. We prove
that this is inherent for REs with constant or even logarithmic online rate. In
particular, it is impossible to obtain a direct generalization of the garbled circuit
construction in which each input bit z; selects between a pair of keys (K o, K; 1)
which have constant size.

The DDH and LWE based constructions are affine in the sense that after the
private randomness is fixed in the offline phase, the remaining computation can
be described as an affine function of the inputs = (over some ring R, e.g., R =17,
where p is the size of a DDH group). This captures a strong form of algebraic
simplicity which is useful for some of the motivating applications (e.g., secure
computation).

Motivated by the concrete efficiency of encoding arithmetic computations, we
also present an LWE-based arithmetic variant of the above result that applies to
arithmetic formulas (i.e., circuits of fan-out 1) over large finite fields, where the
encoding is restricted to applying arithmetic operations to the inputs. Specifi-
cally, we obtain an affine randomized encoding (ARE, for short) with optimal
online rate (i.e., 14+0(1)) for arithmetic mod-p formulas, assuming that elements
of Z, can be viewed as elements of Z, for some ¢ > p. If we insist on working



in the more restricted model of [5], where the encoding should be affine over the
integers, then we get a constant-rate encoding.

It should be mentioned that the online computational overhead of our con-
structions is still polynomial in the security parameter. Whether this overhead
can be improved remains an interesting open question.

Lower bounds. We further explore the complexity of REs in the online/offline
setting by proving several lower bounds on the online and offline rate of REs
which complement our positive results. Among other results, we study the min-
imal achievable online rate. The online rate is clearly lower-bounded by 1 for
some functions with long outputs (this is the case, for instance, for the identity
function). This leaves open the possibility of achieving a strictly better rate for
boolean functions. We show that even in the case of boolean functions, the online
rate of affine REs (satisfying the algebraic simplicity condition discussed above)
cannot generally be smaller than 1. Thus, achieving rate 1 + o(1) is essentially
optimal for affine REs. While we cannot unconditionally prove a similar result for
non-affine REs with, say, quadratic online computation, such a negative result
follows from the conjecture that for any ¢ > ¢/, an input for a time-(n¢) compu-
tation cannot generally be “compressed” by a time—(nc/) algorithm into a shorter
string which contains sufficient information to recover the output. See [29,16)
for related conjectures.

Adaptive security. Informally, an offline/online RE is adaptively secure if f (z;7) =
(pk, &) remains private even if the online input « is adaptively chosen based on
the offline part of the encoding, pk. Similarly to all other known implementa-
tions of garbled circuits with short keys, our constructions cannot be proved to
satisfy this stronger notion of security unless analyzed in the (programmable)
random oracle model. We prove that this is inherent to some extent: in any RE
whose adaptive security holds in the plain model, the length of the online part
& should grow with the output length of f. (This negative result is similar in
spirit to negative results for non-committing encryption [37] or functional en-
cryption [12].) In contrast, our constructions in the non-adaptive setting (or the
adaptive setting with random oracles) have online rate of 140(1), independently
of the output length of f. Adaptive security of garbled circuits has recently been
considered in the work of Bellare et al. [9]. The above negative result partially
settles a question left open by [9].

On concrete efficiency. In concrete terms, our offline/online REs reduce the
online communication of Yao’s garbled circuit construction by a factor of k & 100
at the expense of introducing “public-key” computations. This is not always a
good tradeoff in practice. For instance, communicating 100 bits is typically less
expensive than a single modular exponentiation. Luckily, our REs are also very
cheap in online computation. For instance, the online encoding in the DDH-
based construction involves at most one mod-p addition per input bit, where
p is the order of the DDH group. Since a mod-p addition is typically much
cheaper than the amortized cost of communicating a bit (let alone 100 bits),



we improve the overall concrete online complexity by roughly a factor of 100.
This is contrasted with most applications of public-key cryptography towards
improving communication complexity, where the additional computational cost
outweighs the savings in communication (cf. [41]). While our REs do increase the
complexity of the offline encoding and online decoding, the additional overhead is
insignificant when the circuit complexity of f is much bigger than its input size.
Thus, our offline/online REs seem to have a true practical potential in secure
computation or delegation scenarios in which a weak client (who performs the
offline and online encoding) interacts with a powerful server (who performs the
online decoding).

1.2 Applications

Our positive results can lead to efficiency improvements in most contexts in
which randomized encodings of functions are used. We focus on three represen-
tative applications.

Secure Multiparty Computation (MPC). In the online/offline model (or pre-
processing model) for MPC, there are ¢ players who wish to securely compute
some fixed public function f. In the offline phase, before the inputs “arrive”, the
parties are allowed to invoke some (relatively expensive) protocol; later, in the
online phase, the parties get their inputs and apply an online (hopefully cheap)
protocol. The close connection of REs to MPC [30] allows to translate our results
into highly efficient MPC protocols in the offline/online setting. In Section 5, we
further extend and optimize these reductions (exploiting the affinity property
and the information-theoretic techniques from [11]). This leads to general MPC
protocols in which the online phase only requires each party to broadcast a mes-
sage of the same length as its input along with a message of size poly(k), where
K is a security parameter. Again, this is information-theoretic optimal, and it
beats, in terms of online communication complexity, all previously known results
even in the simplest case of two semi-honest parties. We note, however, that our
protocols do not offer provable security against malicious parties which adap-
tively choose their inputs based on the information they receive in the offline
phase, except in the random oracle model or under nonstandard assumptions.
See full version for further discussion.

It is instructive to compare the efficiency of our RE-based protocols to pro-
tocols which are based on fully homomorphic encryption (FHE). The following
discussion is restricted to the preprocessing model, which does not seem to signif-
icantly improve the complexity of FHE-based protocols. In FHE based protocols
(as well as all other general MPC protocols from the literature) the communi-
cation complexity grows at least linearly with the total input and output length
n~+m. In contrast, the online communication complexity of our protocol does not
depend on the output length. This is particularly useful when securely comput-
ing functionalities that have a short online secret input (say, shares of a signature
key) and a long output (say, signatures on many predetermined messages using
the shared signature key). Furthermore, our protocols can be made completely



non-interactive in certain scenarios, e.g., when part of the secret input is known
offline and the online part is known in its entirety to one of the parties. This is
impossible to get using FHE.# On the other hand, our protocols are incompara-
ble to FHE-based protocols in terms of their online computational complexity.
In the case of computing a complex function f which takes inputs from Alice and
Bob and delivers an output to Alice, our approach yields two-message protocols
in which Bob’s online computation is very efficient (nearly linear in its input),
whereas FHE provides similar protocols in which Alice’s computation is very
efficient (quasilinear in the input and output). From a concrete efficiency point
of view, the online phase of our protocols is much “lighter” (e.g., Bob only needs
to add a subset of Z, elements corresponding to its input) and they can also be
based on a wider variety of assumptions.

Verifiable Computation. In an online/offline protocol for verifiable computation
(VC), a computationally weak client with an input = delegates a complex com-
putation f to an untrusted server in a two phase manner. In the offline phase the
client sends to the server a possibly long and computationally expensive message
pk, and at the online phase (when the input x arrives) the client sends a message
Z to the server, and receives back the result of the computation y together with a
certificate for correctness. This setting was studied in several works (e.g., [36, 25,
33,19, 14,4, 9]). Specifically, in [19] Yao’s garbled circuit technique was used to
achieve efficient VC in the online/offline model. (The security of the construction
follows from standard assumptions only when the input x is picked by the client
independently of pk [9].) This connection was generalized and optimized in [4].
By plugging our encodings in these protocols, we get communication optimal
VC protocols, where the bit-length of the up-stream (online) message from the
client to the server is n+  and the bit-length of the down-stream message (from
server to client) is m+ k, where n is the input length, m is the output length and
k is the security parameter. Information-theoretically, n + m bits are necessary
even if the server is fully trusted. To the best of our knowledge, all previous pro-
tocols, including ones which are based on fully homomorphic encryption, have a
multiplicative overhead of k, either with respect to n or to m.

Non-Interactive Zero-Knowledge (NIZK). The complexity of NIZK has received
much attention. The length of traditional NIZK proofs for NP grows linearly
with the size of a circuit R(x,w) which verifies that w is a legal witness for the
statement © € L. Using FHE, these traditional NIZKs can be converted into ones
whose length is only |w| 4+ poly(x) bits [20,28]. The proof consists of an FHE
encryption ¢ of w, along with a traditional NIZK proving that the ciphertext
resulting from evaluating the verification algorithm on ¢ encrypts the result of
a correct verification. Thus, the prover’s computation grows linearly with the
time required for verifying R(x, w), which can be an arbitrary polynomial in |w|.
Moreover, there seems to be no obvious way to reduce this computational cost

4 Similarly, FHE does not yield a non-interactive solution to the motivating problem
described in the beginning of the introduction.



using offline preprocessing. Our results yield offline/online NIZK proofs with
online proof length of |w| + poly (k) bits as before, but where the prover’s online
computation is nearly linear in |w| + |z|. This is done as follows. The common
reference string of the NIZK defines a function f which maps w (along with a
short seed which generates the prover’s secret randomness) into a NIZK proof
7. Applying our offline/online REs to this f yields the desired result. We note
that while the length of NIZK arguments can be made sublinear in |w| (under
nonstandard but plausible assumptions), breaking this barrier in the case of
proofs seems highly unlikely [22].

1.3 Techniques

We briefly sketch some of the ideas used to prove Theorem 1. Our starting point
is a standard garbled-circuit based encoding, such as the one from [2]. In the
offline phase of this encoding, we garble the circuit f and prepare, for each input
i, a pair of random secret keys (K?, K}). In the online phase, for each i, we use
the 4-th bit of z to select a key K" and output the selected keys. In order to
reduce the online complexity of the encoding, we would like to have a compact
way to reveal the selected keys. Let us consider the following “riddle” which is a
slightly simpler version of this problem. In the offline phase, Alice has n vectors
My, ..., M, € {0,1}*. She is allowed to send Bob a long encrypted version of
these vectors. Later, in the online phase, she receives a bit vector z € {0,1}". Her
goal is to let Bob learn only the vectors which are indexed by =z, i.e., {M;};,, _;
while sending only a single message of length O(n) bits (or even n + & bits).’

Before solving the riddle, let us further reduce it to an algebraic version in
which Alice wants to reveal a 0-1 linear combination of the vectors which are
indexed by z. Observe that if we can solve the new riddle with respect to nk-bit
vectors T' = (T1,...,T},), then we can solve the original riddle with k-bit vectors
(M, ..., M,). This is done by placing the M;’s in the diagonal of T, i.e., T; is
partitioned to k-size blocks with M; in the i-th block and zero elsewhere. In this
case, T'z simply “packs” the vectors {M;}; . _;.

It turns out that the linear version of the riddle can be efficiently solved
via the use of a symmetric-key encryption scheme with some (additive) homo-
morphic properties. Specifically, let (E,D) be a symmetric encryption scheme
with both key homomorphism and message homomorphism as follows: A pair
of ciphertexts Ex(x) and Eg/ (z’) can be mapped (without any knowledge of the
secret keys) to a new cipheretxt of the form Ej /(2 +2'). Given such a primitive
the answer to the riddle is easy: Alice encrypts each vector under a fresh key
K; and publishes the ciphertexts C;. At the online phase Alice sends the sum
of keys K, =Y K;x; together with the indicator vector x. Now Bob can easily
construct C' = Ex_ (Mx) by combining the ciphertexts indexed by x and, since
K, is known, Bob can decrypt the result. Intuitively, Bob learns nothing about

® The main difference between the riddle and the garbled-circuit problem is that in the
latter case, the vector x itself should remain hidden; this gap is bridged by permuting
the pairs and randomizing the vector x; see Section 4.



a column M; which is not indexed by z as the online key K, is independent of
the j-th key. Our DDH and LWE based solutions are based on (approximate)
implementations of this primitive. (A somewhat different approach is used in the
RSA-based construction.)

The arithmetic setting is more challenging. Here, instead of computing the
selection function, we should compute an affine function Mz + v over the inte-
gers or over Z,, for some large integer p (not necessarily a prime). While it is
possible to solve this via a similar encryption scheme with (stronger) additive
homomorphism, there are several technical problems. Typically, all (or most)
of the coordinates of x are non-zero and so we should argue that given K, the
secrecy of the key K; was not compromised, despite the fact that K; may par-
ticipate in the linear combination K. This translates to some form of security
under Related-Key attacks. In addition, it is harder to achieve homomorphism
for integers or over Z, directly, and so one should somehow embed this domain
in a larger, less “friendly”, message space. Still, it turns out that a variant of
this gadget can be implemented based on the LWE assumption. Specifically, we
use the following variant of the key-shrinking gadget of [5] (which was originally
introduced as a tool for garbling arithmetic circuits). Intuitively, we create a
noisy version M and © of the matrix M and the vector v, and then plant them
in a random linear space W of a low dimension k over Z, (where ¢ > p). The
space W is made public. Now every linear combination of M and % lies in W,
and so it can be succinctly described by its coefficients with respect to W. In
particular, to reveal the output Mz + v, it suffices for the encoding to reveal the
coefficients of its representation Mx + 9. The security of the construction follows
from the LWE assumption.

Concurrent and subsequent works. The recent works [24, 23] gives the first reusable
construction of garbled circuits. This implies REs in which a single offline com-
putation can support an arbitrary polynomial number of efficient online compu-
tations. The question of optimizing the online rate of reusable garbled circuits
remains open. On a different front, improvements in the size of garbled circuits
for uniform Turing Machine or RAM computations were recently given in [35,
23]. These lead to REs with succinct offline outputs. Our construction can be
applied on top of these constructions, yielding REs with an online output of
size n+ o(n), nearly linear online computation, and offline outputs that are only
longer by an additive term of O(n® - T') than those in [35,23], where T is the
online computational complexity of the original constructions.

Organization. Section 2 gives the necessary background on randomized encod-
ings. In Section 3, we present several constructions of succinct randomized en-
codings for a concrete boolean function called the subset function (SF). Later,
in Section 4, we use these encodings as a building block and obtain succinct en-
codings for general boolean functions. In Section 5, we sketch the application of
succinct randomized encodings to secure multiparty computation (MPC). Appli-
cations related to non-interactive zero-knowledge proofs (NIZK), and verifiable
computation (VC) in the preprocessing model are deferred to the full version [6],



which also contains the construction of succinct encoding for arithmetic formu-
las, some lower bounds and a detailed treatment of the issue of adaptivity.

2 Randomized Encoding of Functions

Intuitively, a randomized encoding of a function f(x) is a randomized mapping
f (z;7) whose output distribution depends only on the output of f. We for-
malize this intuition via the notion of computationally-private perfectly-correct
randomized encoding (in short RE) from [2]. In the following, we assume that f

is defined over Z; for some integer p (by default p = 2), and allow the encoding

f be defined over a possibly larger alphabet Zy for p < ¢ under the convention
that a vector z € Z;; can be naturally identified with a vector z € Zj.

Definition 1 (Randomized Encoding (RE)). Let p = p(n),q = q(n) where
p(n) < g(n) < 2PN and ¢ = £(n),m = m(n),s = s(n) = poly(n) be integer
valued functions. We naturally view Z;, as a subset of Zq. Let [ : Z; — Zf) be
an efficiently computable function. We say that an efficiently computable ran-
domized function f : Zy x {0,1}™ — Z3 is a perfectly-correct computationally-
private randomized encoding of f (in short, RE), if there exist an efficient de-
coder algorithm Dec and an efficient simulator Sim that satisfy the following
conditions:

— Perfect correctness. For every x € Zy, Pr,[Dec(1™, f(z;7)) # f(z)] = 0.
— (t,e) privacy. For every sequence {z,,},,, where v, € Zy, and every t(n)-size
circuit A

PrlA(f(zn;7)) = 1] = PrlASIm(1", f(2n))) = 1]| < (n).

By default, t = n*1) and e = n=*W), i.e., the distributions are computation-
ally indistinguishable (denoted by E) The encoding is statistically secure if t is
unbounded and perfectly secure if, in addition, € = 0.

Remarks.

— (Security parameter.) The above definition uses n both as an input length
parameter and as a cryptographic “security parameter” quantifying compu-
tational privacy. When describing our constructions, it will be convenient to
use a separate parameter k for the latter, where computational privacy will
be guaranteed as long as k > n® for some constant € > 0.

— (Collections) Let F be a collection of functions with an associated represen-
tation (by default, a boolean or arithmetic circuit). We say that a class of
randomized functions F is an RE of F if there exists an efficient algorithm
(compiler) which gets as an input a function f € F and outputs (in time
polynomial in the representation length | f|) three circuits (f € F, Dec, Sim)
which form a (t = n*1) ¢ = n=*W)-RE of f.



2.1 Efficiency Measures

So far the notion of RE can be trivially satisfied by taking f = f and letting
the simulator and decoder be the identity functions. To make the definition
non-trivial, we should impose some efficiency constraint. In this work, our main
measure of efficiency is online complexity.

Online/Offline Complezity. We would like to measure separately the complexity
of the outputs of f which depend solely on r (offline part) from the ones which
depend both on x and r (online part). Without loss of generality, we assume that
f can be written as f(z;7) = (forf (1), fon(;7)), where fos(r) does not depend on
x at all. The online communication complezity (resp., online computational com-
plexity) of f is the bit-length (resp., the time complexity) of fon(a;7). Similarly,
the offtine communication complexity (resp., offline computational complexity)
of f is the bit-length (resp., the time complexity) of fog(r). The rate of f is
p if the online communication complexity is at most p-times larger than the
bit-length nlogp of the input of the encoded function f.

Efficient online encodings. Let F be an encoding of the collection F. We say
that F is online-efficient if for every function f € F, the online computational
complexity of the encoding f is independent of the computational complexity
(i.e., circuit size) of the encoded function f (but grows with the bit-length of the
input of f). The encoding is online-succinct (or simply succinct) if, in addition
to being online efficient, every f € F is encoded by a 1 + o(1)-rate encoding.

Remark 1 (Online inputs). In some applications, it is natural to think of the
encoded function f as having online inputs x,, and offline inputs x.¢. In this
case, we measure the online commuincation/computational complexity of the
encoding f with respect to the outputs that depend on z,. By default, we
simply assume that all the input z is an online input and there is no offline part.

Some of the applications of REs further require some form of algebraic sim-
plicity; this is captured by the notion of affinity.

Affine RE. We say that an encoding f : Zy x {0,1}™ — Zg is an affine ran-
domized encoding (ARE) if, for every fixing of the randomness r, the online
part of the encoding fon(z;7) becomes an affine function over the ring Zg, ie.,
fon(z;r) = M, - + v, where M, (resp., v,) is a matrix (resp., vector) that
depends on the randomness r. It will sometimes be the case that certain outputs
of f are restricted to an interval [0, ¢'] in Z,. Each such entry will only contribute
[log, ¢'] towards computing the rate.

Remark 2 (ARFE vs. DARE). Previous works considered a stronger form of
affinity called decomposable affine randomized encoding (DARE).S Decompos-
ability requires that each output of f depends on a single deterministic in-
put x;. Hence, a decomposable affine randomized encoding can be written as

5 In fact, in the conference version of [5] the term ARE was used to denote DARE.



fx;r) = (forr (r), fr(z1:7), ..., faln;r)) where each function f; is affine with
respect to x;. It is known how to convert an ARE to DARE, however, the known
transformation introduces a non-constant (O(n)) multiplicative blow-up in the
online communication complexity. In the full version, we show that this is inher-
ent and decomposability cannot be achieved with constant rate.

Remark 3 (On Adaptive Security). In the online/offline model, it is natural
to ask if the encoding can be adaptively secure, namely, if security holds when
the online input x is chosen based on the offline part of the encoding. In the full
version, we show that, in the standard model, adaptively secure REs cannot be
online-efficient, let alone have constant rate (assuming the existence of one-way
functions). On the other hand, it turns out that this barrier can be bypassed via
the use of a (programmable) random oracle.

3 Succinct AREs for the Subset Function

In order to succinctly encode boolean circuits, we will need a succinct encoding
for the following concrete function g, called the Subset Function. It has length
parameter n and message size k and is defined by

g(M7 l‘) = ((Ml)lEla .13),

where M = (My,...,M,) € ({0,1}%)™ is a vector of n “messages”, and x €
{0,1}" is a selection vector which is viewed as the set {i : 2; = 1}. (The latter
convention will be implicit through the whole section.) Our goal is to encode
g by an RE of the form g(M,z;r) = (Gosr(M;7), 2, K(x;r)) where K(x;r) is
of bit-length ¢ for some universal constant c. Security will hold as long as n is
bounded by some arbitrary polynomial in K whose degree may be independent of
the constant c. We will construct such an encoding based on several assumptions.
Specifically, we will show that such an encoding can be based on a special form
of symmetric-key encryption with additive homomorphism which, in turn, can
be constructed under the DDH assumption or the LWE assumption. In the full
version, we also present a direct encoding (which does not go through the additive
homomorphism) under the RSA assumption.

3.1 Encoding the Subset Function via Additive Homomorphism

Definition 2 (Additive Homomorphic Encryption (AHE)). An additive
homomorphic Encryption is a triple of efficient algorithms (Setup, E, D) for which
the following hold:

— Syntax: The randomized algorithm Setup takes a length parameter 1% and
outputs a string param which specifies four (additive) groups: key-space K,
message-space M, ciphertext-space C and public randomness space W. We
assume that k-bit strings can be efficiently embedded in M and denote the
identity element of M by 0. The input to the encryption and decryption



algorithms consist of a message/ciphertext, a key K, some private random-

ness, and some public randomness W E W which is selected during the
encryption. Both algorithms also depend on the string param. (We make this
dependency implicit to simplify notation.)

— Semantic security: Let param = (K, M,C,W) s Setup(1%). For every
n = poly(k) and every n-tuple of messages My, ..., M, € M, we have that

(param, (W, EK(Mi;Wi))ie[n]) = (param (W;, Ex(0; W)),e[n])

where W; ¥id W, K ¥id K, and indistinguishability is parameterized by k.

— Additive Homomorphism: For every n = poly(k) and every n-tuple of
keys K1,..., K, € K, n-tuple of messages My,..., M, € M, and public
randomness W € W, we have that

Dy &, <ZEK M;; W); ) ZM“

where sums are computed over the corresponding groups. In fact, it suffices
to have a relaxed form of additive homomorphism which holds in the special
case where all messages, except for one, equal to 0 € M.

The definition implies that the key size is independent of the homomorphism
parameter n. This will be crucial for our applications. As a concrete example of
AHE consider the following symmetric-key version of ElGamal encryption. Let
M = C =W equal to a cyclic group G of prime order p and let K = Z,. Using the
standard multiplicative notation, encryption is defined by Ex (M; W) = WEX. M
and decryption by Dx (C; W) = C/W¥_ It is not hard to show that if the DDH
assumption holds in G then the scheme is an AHE with relaxed homomorphism.
(More details about this implementation, as well as a description of an analogous
implementation under LWE appear in the full version.) We show how to encode
the subset function g(M, z) with length n and message size k based on AHE.

Lemma 1. Assume that AHE exists. Then the Subset Function g(M, x), where
M e ({0,1}%)", 2 € {0,1}™, has an encoding

G(M, ;1) = (Gore (M), 22, Ki(r)

1€Ex

where goff outputs O(n?) ciphertexts in C, the functions K; output an element in
IC, and the sum is computed over the key-space K.

Proof. At the offline phase, we invoke Setup(1*) and obtain a specification param
of K, M, C and W. We encode each entry of the offline input M = (M, ..., M,)
by an element of M, and from now on identify M; with its encoding. We de-
fine a diagonal n x n matrix {M; ;} whose diagonal equals to the message
vector M, ie., M;; = M;,Vi € [n] and M;; = 0,Vi # j. Next, we select a



tuple of public random elements W = (Wy,...,W,,) vid W™, a tuple of ran-

dom keys K = (Ky,...,K,) & Kr and compute a matrix of “ciphertexts”
C = (C;;) € C™", where C;; = Eg,(M;;;W;). The output of Jof con-
sists of the tuple (param,W,C) and the online part go, consists of the pair
(z, Ky = Zzé'r K;).

Decoding. Given (param, W, C, z, K, ), we decode (M;);c, by exploiting the
homomorphism property of the above encryption. Namely, for each j € x we
compute

Y; =) Cij= Ex,(M;;W;),

1ET iET

and output the value Dk, (Y;; W;).
Simulation. For ¢ = 0,...,n define the hybrid H,(M,x) exactly as in §
except that
M;; =

s

M; ifi<florice€ur,
0  otherwise
The first hybrid Hy can be sampled based on ((M;)ic., ), and so it is be-
ing used as the simulator. The last hybrid H, corresponds to the distribu-
tion of the encoding §. Hence, by a standard argument, it suffices to show
that each pair of neighboring hybrids is computationally indistinguishable. As-
sume, towards a contradiction, that A distinguishes the hybrid H,_; from H,
with non-negligible advantage 6. Observe that in this case zy = 0, as other-
wise the two hybrids are identically distributed. We construct a new adver-
sary B that breaks the semantic security of the scheme. Given a challenge
(param,w, ¢) where param ¥id Setup(1®) and w = (wy,...,wy,) & W™, the
adversary B distinguishes between ¢ ¥id (Ex(0;wq),...,Ex(0;w,)) and ¢ ¥id
(Ex(0;w1), ..., Ex(Mp;wy),...,Ex(0;w,))) as follows. Use param to compute
the hybrid Hy_; where the public randomness W7, ..., W,, is set to w, and the
{-th row of the ciphertext matrix C' takes the value c. It is not hard to verify that

the resulting distribution is identical to Hy_1 if ¢ & (Ex(0;w1), ..., Ex(0;wy)),

and to Hy if ¢ ¥id (Ex(0;w1), ..., Ex(Mp;wy),...,Ex(0;w,))), and the claim
follows. 0

Complexity. To encode the online part, one has to compute n additions (over the
key space) and send x together with a single key element. The cost of the offline
part is n? encryptions/ciphertexts. One can obtain a smooth tradeoff between
the offline part and the online part by partitioning the inputs to blocks (see full
version). Also note that decoding costs n? additions over the key space (which
can be reduced via the previous optimization) and n decryption operations.
Finally, we mention that in our RSA-based solution the offline complexity is
only linear in n but quadratic in . (The latter can be improved assuming sub-
exponential hardness of RSA.)



4 Succinct AREs for Boolean Circuits

In this section, we will encode any efficiently computable function via a succinct
encoding. We begin by showing that if F': {0,1}" — {0, 1} has a decomposable
affine randomized encoding (DARE) then it also has a succinct encoding. In the
following, let xk be a security parameter which is polynomially related to n, i.e.,
k =n? for some fixed § > 0. We will employ a succinct encoding for the subset
function g(M, &) with length N = 2n and message size k. We will also make use
of the following simple observation: if a xk x 2n matrix M is composed of n pairs
of columns (May;—1|Ms;) = (v9,v})ie[n), then for any x € {0,1}" the sub-matrix
(vi")iem) can be written as (M;);cpad(z), Where pad(z) maps an n-bit vector x
to the 2n-bit vector (1 — x1,21,...,1 — 2,,2,), and ¢ € pad(z) if pad(z); = 1.

Lemma 2. Let F : {0,1}" — {0,1} be an efficiently computable function
having a decomposable ARE f(x;p) = (fort(p), f1(x1;p0),s- .., fn(xn;p)), where
the output length of each f; is k bits. Also, assume that the subset function
g(M, &) with length 2n and message size k has an RE of the form g(M,&;r) =
(ot (M;7), 2, K(&;7)). Then, F is encoded by the randomized function

F(x;p, 87T) = (foff(p)’gofF(M;r)7x D S,K(pad(x@ 8);7‘)),

where

M = (fi(si;p)f1(s1 ® L p)| -« | fu(sn; p) | fr(sn ® 1;p)) € {0, 1}1{X2n'

Proof. Tt will be useful to start by encoding the n-wise one-out-of-two selection
function H which maps an online input x € {0,1}" and an offline matrix of
pairs V = (vf]vf] ... |[vp|v}) € {0,1}%%2™ to the tuple (v );c[n). Observe that the
output of H is essentially the value of the subset function g applied to the matrix
V and the vector pad(z) € {0,1}?", except that H hides z whereas g reveals it.
Nevertheless one can easily randomize x and then employ the subset function.

Specifically, select a random mask s & {0,1}", let & € {0,1}" be the vector
pad(z @ s), and construct the & x 2n matrix M = (v [P oSS ©1). Tt
is not hard to show that the randomized mapping h(V,x;s) — g(M, ) is an
encoding of H. Indeed, the output distribution of g(M, &) consists of the matrix
(M;)ics and the vector & — the former simply equals to (v;*);c[n) and the latter
is just a sequence of n pairs of a random bit and its complement.

Next, let us view h as a deterministic function of V,x and s. Since h can be
written as g(My,s, £2,5), we can encode h by the mapping §(My. s, T4 s;7). It is
not hard to show that the latter encoding also encodes H. Overall, our encoding
for H(V,x) is defined as follows:

(V,x;s,7) = (ot (My.s;7), pad(z @ s), K (pad(z @ s);7)).

To improve the online complexity, we replace the redundant value pad(x @ s),
which is sent in the clear, with x ® s.



We can now prove the lemma. Let us view p as a deterministic input and
encode the deterministic function f(x, p). Since f is decomposable, we can write
it as

(fore(p); H(Vp,z)), where V,, = (f1(0;0)] ... [ fn(0; p) | f1 (15 0)] - - - [fu(15p))

and H is the n-wise one-out-of-two selection function. Using appropriate sub-
stitution and concatenation lemmas (see full version), it can be shown that f is
encoded by (fo(p), B(V, x; 5, 7)), where h encodes H. Plugging in our (improved)
encoding of H, we obtain an encoding of the form

f(@,pis,r) = (fort (p), Gort(Ms p37), & @ s, K (pad(z @ s);7)).

Finally, a similar (composition) argument shows that the function f (z;p,s,7)
encodes F'(z) and the lemma follows. O

It follows that F' has an encoding with online complexity of n + Len(K), on-
line computational complexity of O(n + Comp(K)), and offline computational
complexity of Comp(fofr) + Comp(gofr), where Comp(-) and Len(:) measure the
computational complexity (circuit size), and the output length (in bits) of a
given function. Furthermore, observe that for every fixed randomness s each bit
of the term pad(z @ s) can be written as z; or as 1 —z; and so if K (&;r) is affine
(over some ring) then so is Fyp.

In [2] it is shown that, assuming the existence of one-way functions, any
efficiently computable function F'(x) can be encoded by a decomposable ARE
F(@30) = (fost(p): F1(@13p); -, ful@ni p)), where the output length of the f;'s
is k bits, and the computational complexity of fof is k- Comp(f). Combining
this with Lemma 2 and our encodings for the Subset Function, we derive suc-
cinct encodings for general boolean functions. By using an optimized version of
Lemma 1 (which encodes the subset function in blocks), we can do this while
keeping the online computational complexity asymptotically “almost linear”, as
in the following theorem whose proof is deferred to the full version.

Theorem 2 (Theorem 1 restated). Assume that the DDH assumption, or
LWE assumption or the RSA assumption holds. Let € > 0 be an arbitrary con-
stant. Then, every efficiently computable function F : {0,1}" — {0,1}*(") has
an encoding ' with online communication of n + o(n), online computational
complexity of O(n'*¢), and offline computational/communication complexity of
O(n®Comp(F)). Furthermore, in the case of LWE and DDH the encoding is
affine.

5 MPC with Optimal Online Communication

In this section, we sketch the application of succinct randomized encodings to se-
cure multiparty computation (MPC) in the preprocessing model. We start with
the two-party case, and later generalize to the multiparty case. For concrete-
ness, we focus on distributing the DDH-based encoding obtained by combining



Lemmas 1 and 2 with the DDH-based AHE. Similar protocols can be obtained
based on any succinct Affine RE. We do not know how to get similar results
from general (non-affine) succinct REs.

Let F be a deterministic two-party functionality which takes an input a €
{0,1}" from Alice and an input b € {0,1}"™ from Bob, and delivers an output
¢ to Alice.” The DDH-based encoding of F' can be written as

Na ng
Fla,b; R) = (Fo(R), a@r®, b1’ Y Kf\ oo+ Y K o0 mod p),
=1 i=1

where the “masks” ¢ € {0,1}", r* € {0,1}", and the “keys” K, KP, € Z,
are random and independent of a,b (these values are given as part of R).

In the semi-honest model, the protocol is straightforward. In the offline phase,
a trusted party samples R and sends the value Fofr(R) together with the mask
r® to Alice, and the mask 7 along with the 2n, + 2n; keys K{‘}a, ng to Bob.
(Of course, in the real world, this step is implemented via the use of any off-
the-shelf secure two-party protocol.) In the online phase, Alice sends to Bob

a @& r* and Bob replies with b & r® and Y1) K72 oo + 31" KiBb'EBrE.’ mod p.

Alice computes the output using the decoder of F'. Note that the view of Bob is
completely random, whereas the view of Alice contains the output of F which
can be simulated given F'(a,b). This proves the following:

Theorem 3. Suppose that the DDH assumption holds in a prime order group of
size p = p(k). Let F(a,b) be a polynomial-time computable functionality which
delivers its output to Alice. Assume trusted preprocessing which does not depend
on the inputs. Then, F' can be securely realized in the semi-honest model by a
protocol in which Alice sends a message of length |a| and Bob sends a message
of length |b| + [log p], independently of the length of the output or the complexity
of F.

In the full version [6], we describe an efficient extension of this protocol
to the malicious model and to the multiparty model, and discuss the issue of
adaptive security. Applications related to NIZKs and verifiable computation are
also deferred to the full version.
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