
Time-Optimal Interactive Proofs for Circuit Evaluation

Justin Thaler?

Harvard University, School of Engineering and Applied Sciences.

Abstract. Several research teams have recently been working toward the devel-
opment of practical general-purpose protocols for verifiable computation. These
protocols enable a computationally weak verifier to offload computations to a
powerful but untrusted prover, while providing the verifier with a guarantee that
the prover performed the requested computations correctly. Despite substantial
progress, existing implementations require further improvements before they be-
come practical for most settings. The main bottleneck is typically the extra effort
required by the prover to return an answer with a guarantee of correctness, com-
pared to returning an answer with no guarantee.
We describe a refinement of a powerful interactive proof protocol due to Gold-
wasser, Kalai, and Rothblum [20]. Cormode, Mitzenmacher, and Thaler [14]
show how to implement the prover in this protocol in time O(S logS), where S
is the size of an arithmetic circuit computing the function of interest. Our re-
finements apply to circuits with sufficiently “regular” wiring patterns; for these
circuits, we bring the runtime of the prover down to O(S). That is, our prover can
evaluate the circuit with a guarantee of correctness, with only a constant-factor
blowup in work compared to evaluating the circuit with no guarantee.
We argue that our refinements capture a large class of circuits, and we comple-
ment our theoretical results with experiments on problems such as matrix multi-
plication and determining the number of distinct elements in a data stream. Ex-
perimentally, our refinements yield a 200x speedup for the prover over the imple-
mentation of Cormode et al., and our prover is less than 10x slower than a C++
program that simply evaluates the circuit. Along the way, we describe a special-
purpose protocol for matrix multiplication that is of interest in its own right.
Our final contribution is the design of an interactive proof protocol targeted at
general data parallel computation. Compared to prior work, this protocol can
more efficiently verify complicated computations as long as that computation is
applied independently to many different pieces of data.

1 Introduction
Protocols for verifiable computation enable a computationally weak verifier V to of-
fload computations to a powerful but untrusted prover P . These protocols aim to pro-
vide the verifier with a guarantee that the prover performed the requested computations
correctly, without requiring V to perform the computations herself.

Surprisingly powerful protocols for verifiable computation were discovered within
the computer science theory community several decades ago, in the form of interac-
tive proofs (IPs) and their brethren, interactive arguments (IAs) and probabilistically
checkable proofs (PCPs). In these protocols, the prover P solves a problem using her

? Supported by an NSF Graduate Research Fellowship and NSF grants CNS-1011840 and CCF-
0915922.



(possibly vast) computational resources, and tells V the answer. P and V then engage
in a randomized protocol involving the exchange of one or more messages. During this
exchange, P’s goal is to convince V that the answer is correct.

Results quantifying the power of IPs, IAs, and PCPs are some of the most celebrated
in all of computational complexity theory, but until recently they were mainly of theo-
retical interest, far too inefficient for actual deployment. In fact, the main applications
of these results have traditionally been in negative applications – showing that many
problems are just as hard to approximate as they are to solve exactly.

However, the surging popularity of cloud computing has brought renewed interest
in positive applications of protocols for verifiable computation. A typical motivating
scenario is as follows. A business processes billions or trillions of transactions a day.
The volume is sufficiently high that the business cannot or will not store and process
the transactions on its own. Instead, it offloads the processing to a commercial cloud
computing service. The offloading of any computation raises issues of trust: the busi-
ness may be concerned about relatively benign events like dropped transactions, buggy
algorithms, or uncorrected hardware faults, or the business may be more paranoid and
fear that the cloud operator is deliberately deceptive or has been externally compro-
mised. Either way, each time the business poses a query to the cloud, the business may
demand that the cloud also provide a guarantee that the returned answer is correct.

This is precisely what protocols for verifiable computation accomplish, with the
cloud acting as the prover in the protocol, and the business acting as the verifier. In this
paper, we describe a refinement of an existing general-purpose protocol originally due
to Goldwasser, Kalai, and Rothblum [14,20]. When they are applicable, our techniques
achieve asymptotically optimal runtime for the prover, and we demonstrate that they
yield protocols that are significantly closer to practicality than prior work.

We also make progress toward addressing another issue of existing interactive proof
implementations: their applicability. The protocol of Goldwasser et al. (henceforth the
GKR protocol) applies in principle to any problem computed by a small-depth arith-
metic circuit, but this is not the case when more fine-grained considerations of prover
and verifier efficiency are taken into account. In brief, existing implementations of inter-
active proof protocols for circuit evaluation require that the circuit have a highly regular
wiring pattern [14, 37]. If this is not the case, then these implementations require the
verifier to perform an expensive (though data-independent) preprocessing phase to pull
out information about the wiring of the circuit, and they require a substantial factor
blowup (logarithmic in the circuit size) in runtime for the prover relative to evaluating
the circuit without a guarantee of correctness. Developing a protocol that avoids these
pitfalls and applies to more general computations remains an important open question.

Our approach is the following. We do not have a magic bullet for dealing with
irregular wiring patterns: if we want to avoid an expensive pre-processing phase for
the verifier and minimize the blowup in runtime for the prover, we do need to make
an assumption about the structure of the circuit we are verifying. Acknowledging this,
we ask whether there is some general structure in real-world computations that we can
leverage for efficiency gains.

To this end, we design a protocol that is highly efficient for data parallel computa-
tion. By data parallel computation, we mean any setting in which one applies the same



computation independently to many pieces of data. Many outsourced computations are
data parallel, with Amazon Elastic MapReduce1 being one prominent example of a
cloud computing service targeted specifically at data parallel computations. Crucially,
we do not want to make significant assumptions on the sub-computation that is being
applied, and in particular we want to handle sub-computations computed by circuits
with highly irregular wiring patterns.

The verifier in our protocol still has to perform an offline phase to pull out informa-
tion about the wiring of the circuit, but the cost of this phase is proportional to the size
of a single instance of the sub-computation, avoiding any dependence on the number of
pieces of data to which the sub-computation is applied. Similarly, the blowup in runtime
suffered by the prover is the same as it would be if the prover had run the basic GKR
protocol on a single instance of the sub-computation.

Our final contribution is to describe a new protocol specific to matrix multiplication
that is of interest in its own right. It avoids circuit evaluation entirely, and reduces the
overhead of the prover (relative to running any unverifiable algorithm) to an additive
low-order term. A major message of our results is that the more structure that exists in
a computation, the more efficiently it can be verified, and that this structure exists in
many real-world computations.

1.1 Prior Work

Work on Interactive Proofs. Goldwasser, Kalai, and Rothblum described a powerful
general-purpose interactive proof protocol in [20]. This protocol is framed in the context
of circuit evaluation. Given a layered arithmetic circuit C of depth d, size S(n), and fan-
in 2, the GKR protocol allows a prover to evaluate C with a guarantee of correctness in
time poly(S(n)), while the verifier runs in time Õ(n+d logS(n)), where n is the length
of the input and the Õ notation hides polylogarithmic factors in n.

Cormode, Mitzenmacher, and Thaler showed how to bring the runtime of the prover
in the GKR protocol down from poly(S(n)) to O(S(n) logS(n)) [14]. They also built a
full implementation of the protocol and ran it on benchmark problems. These results
demonstrated that the protocol does indeed save the verifier significant time in practice
(relative to evaluating the circuit locally); they also demonstrated surprising scalability
for the prover, although the prover’s runtime remained a major bottleneck. With the
implementation of [14] as a baseline, Thaler et al. [35] described a parallel implemen-
tation of the GKR protocol that achieved 40x-100x speedups for the prover and 100x
speedups for the (already fast) implementation of the verifier.

Vu, Setty, Blumberg, and Walfish [37] further refine and extend the implementation
of Cormode et al. [14]. In particular, they combine the GKR protocol with a compiler
from a high-level programming language so that programmers do not have to explicitly
express computation in the form of arithmetic circuits as was the case in the implemen-
tation of [14]. This substantially extends the reach of the implementation, but it should
be noted that their approach generates circuits with irregular wiring patterns, and hence
only works in a batching model, where the cost of a fairly expensive offline setup phase
is amortized by verifying many instances of a single computation in batch. They also

1 http://aws.amazon.com/elasticmapreduce/



build a hybrid system that statically evaluates whether it is better to use the GKR proto-
col or a different, cryptography-based argument system called Zaatar (see Section 1.1),
and runs the more efficient of the two protocols in an automated fashion.

A growing line of work studies protocols for verifiable computation in the context of
data streaming. In this context, the goal is not just to save the verifier time (compared
to doing the computation without a prover), but also to save the verifier space. The
protocols developed in this line of work allow the client to make a single streaming
pass over the input (which can occur, for example, while the client is uploading data to
the cloud), keeping only a very small summary of the data set. The interactive version of
this model was introduced by Cormode, Thaler, and Yi [15], who observed that many
protocols from the interactive proofs literature, including the GKR protocol, can be
made to work in this restrictive setting. The observations of [15] imply that all of our
protocols also work with streaming verifiers. Non-interactive variants of the streaming
interactive proofs model have also been studied in detail [12, 13, 22, 25].

Work on Argument Systems. There has been a lot of work on the development of
efficient interactive arguments, which are essentially interactive proofs that are secure
only against dishonest provers that run in polynomial time. A substantial body of work
in this area has focused on the development of protocols targeted at specific problems
(e.g. [2, 5, 16]). Other works have focused on the development of general-purpose ar-
gument systems. Several papers in this direction (e.g. [8, 10, 11, 18]) have used fully
homomorphic encryption, which unfortunately remains impractical despite substantial
recent progress. Work in this category by Chung et al. [10] focuses on streaming set-
tings, and is therefore particularly relevant.

Several research teams have been pursuing the development of general-purpose
argument systems that might be suitable for practical use. Theoretical work by Ben-
Sasson et al. [4] focuses on the development of short PCPs that might be suitable for use
in practice – such PCPs can be compiled into efficient interactive arguments. As short
PCPs are often a bottleneck in the development of efficient argument systems, other
works have focused on avoiding their use [3, 6, 7, 19]. In particular, Gennaro et al. [19]
and Bitansky et al. [9] develop argument systems with a clear focus on implementa-
tion potential. Very recent work by Parno et al. [28] describes a near-practical general-
purpose implementation, called Pinocchio, of an argument system based on [19]. Pinoc-
chio is additionally non-interactive and achieves public verifiability.

Another line of implementation work focusing on general-purpose interactive ar-
gument systems is due to Setty et al. [31–33]. This line of work begins with a base
argument system due to Ishai et al. [23], and substantially refines the theory to achieve
an implementation that approaches practicality. The most recent system in this line of
work is called Zaatar [33], and is also based on the work of Gennaro et al. [19]. An em-
pirical comparison of the GKR-based approach and Zaatar performed by Vu et al. [37]
finds the GKR approach to be significantly more efficient for quasi-straight-line compu-
tations (e.g. programs with relatively simple control flow), while Zaatar is appropriate
for programs with more complicated control flow.

1.2 Our Contributions
Our primary contributions are three-fold. Our first contribution addresses one of the
biggest remaining obstacles to achieving a truly practical implementation of the GKR



protocol: the logarithmic factor overhead for the prover. That is, Cormode et al. show
how to implement the prover in time O(S(n) logS(n)), where S(n) is the size of the
arithmetic circuit to which the GKR protocol is applied, down from the Ω(S(n)3) time
required for a naive implementation. The hidden constant in the Big-Oh notation is
at least 3, and the logS(n) factor translates to well over an order of magnitude, even
for circuits with a few million gates. We remove this logarithmic factor, bringing P’s
runtime down to O(S(n)) for a large class of circuits. Informally, our results apply to
any circuit whose wiring pattern is sufficiently “regular”. We formalize the class of
circuits to which our results apply in Theorem 1.

We experimentally demonstrate the generality and effectiveness of Theorem 1 via
two case studies. Specifically, we apply an implementation of the protocol of Theo-
rem 1 to a circuit computing matrix multiplication (MATMULT), as well as to a circuit
computing the number of distinct items in a data stream (DISTINCT). Experimentally,
our refinements yield a 200x speedup for the prover over the state of the art implemen-
tation of Cormode et al. [14]. A serial implementation of our prover is less than 10x
slower than a C++ program that simply evaluates the circuit sequentially, a slowdown
that is likely tolerable in realistic outsourcing scenarios where cycles are plentiful for
the prover.

Our second contribution is to specify a highly efficient protocol for verifiably out-
sourcing arbitrary data parallel computation. Compared to prior work, this protocol can
more efficiently verify complicated computations, as long as that computation is ap-
plied independently to many different pieces of data. We formalize this protocol and its
efficiency guarantees in Theorem 2.

Our third contribution is to describe a new protocol specific to matrix multiplication
that we believe to be of interest in its own right. This protocol is formalized in Theorem
3. Given any unverifiable algorithm for n× n matrix multiplication that requires time
T (n) using space s(n), Theorem 3 allows the prover to run in time T (n)+O(n2) using
space s(n) + o(n2). Note that Theorem 3, which is specific to matrix multiplication,
is much less general than Theorem 1, which applies to any circuit with a sufficiently
regular wiring pattern. However, Theorem 3 achieves optimal runtime and space usage
for the prover up to leading constants, assuming there is no O(n2) time algorithm for
matrix multiplication. While these properties are also satisfied by a classic protocol due
to Freivalds [17], the protocol of Theorem 3 is significantly more amenable for use as a
primitive when verifying computations that repeatedly invoke matrix multiplication. We
complement Theorem 3 with experimental results demonstrating its extreme efficiency.

Do to space constraints, full proofs of are omitted from this extended abstract, and
can be found in the full version of the paper.

2 Preliminaries
We begin by defining a valid interactive proof protocol for a function f .

Definition 1. Consider a prover P and verifier V who wish to compute a function f :
{0,1}n→R for some setR. After the input is observed, P and V exchange a sequence
of messages. Denote the output of V on input x, given prover P and V’s random bits
R, by out(V,x,R,P). V can output ⊥ if V is not convinced that P’s claim is valid. We
say P is a valid prover with respect to V if for all inputs x, PrR[out(V,x,R,P)= f (x)]=



1. The property that there is at least one valid prover P with respect to V is called
completeness. We say V is a valid verifier for f with soundness probability δ if there
is at least one valid prover P with respect to V , and for all provers P ′ and inputs x,
Pr[out(V,A,R,P ′) /∈ { f (x),⊥}]≤ δ . A prover-verifier pair (P,V) is a valid interactive
proof protocol for f if V is a valid verifier for f with soundness probability 1/3, and P
is a valid prover with respect to V . If P and V exchange r messages, we say the protocol
has dr/2e rounds.

Informally, the completeness property guarantees that an honest prover will con-
vince the verifier that the claimed answer is correct, while the soundness property en-
sures that a dishonest prover will be caught with high probability. An interactive argu-
ment is an interactive proof where the soundness property holds only against polynomial-
time provers P ′. We remark that the constant 1/3 used for the soundness probability in
Definition 1 is chosen for consistency with the interactive proofs literature, where 1/3
is used by convention. In our actual implementation, the soundness probability will
always be less than 2−45.

Cost Model. Whenever we work over a finite field F, we assume that a single field
operation can be computed in a single machine operation. For example, when we say
that the prover P in our interactive protocols requires time O(S(n)), we mean that P
must perform O(S(n)) additions and multiplications within the finite field over which
the protocol is defined.

Input Representation. Following prior work [12, 14, 15], all of the protocols we con-
sider can handle inputs specified in a general data stream form. Each element of the
stream is a tuple (i,δ ), where i ∈ [n] and δ is an integer. The δ values may be negative,
thereby modeling deletions. The data stream implicitly defines a frequency vector a,
where ai is the sum of all δ values associated with i in the stream. When checking the
evaluation of a circuit C, we consider the inputs to C to be the entries of the frequency
vector a. We emphasize that in all of our protocols, V only needs to see the raw stream
and not the aggregated frequency vector a. Notice that we may interpret the frequency
vector a as an object other than a vector, such as a matrix or a string. For example, in
MATMULT, the data stream defines two matrices to be multiplied.

When we refer to a streaming verifier with space usage s(n), we mean that the
verifier can make a single pass over the stream of tuples defining the input, regardless
of their ordering, while storing at most s(n) elements in the finite field over which the
protocol is defined.

Problem Definitions. To focus our discussion, we give special attention to two prob-
lems also considered in prior work [14,28,31–33,35,37]. In the MATMULT problem, the
input consists of two n×n matrices A,B ∈ Zn×n, and the goal is to compute the matrix
product A ·B. In the DISTINCT problem, the input is a data steam consisting of m tuples
(i,δ ) from a universe of size n. The stream defines a frequency vector a, and the goal is
to compute |{i : ai 6= 0}|, the number of items with non-zero frequency.

Additional Notation. Let F be a field. For any d-variate polynomial p(x1, . . . ,xd) :
Fd → F, we use degi(p) to denote the degree of p in variable i. A d-variate polynomial
p is said to be multilinear if degi(p) = 1 for all i ∈ [d]. Given a function V : {0,1}d →



{0,1}whose domain is the d-dimensional Boolean hypercube, the multilinear extension
(MLE) of V over F, denoted Ṽ , is the unique multilinear polynomial Fd→ F that agrees
with V on all Boolean-valued inputs, i.e., Ṽ (x) =V (x) for all x ∈ {0,1}d .

3 Time-Optimal Protocols for Circuit Evaluation
3.1 Technical Background
Sum-Check Protocol. Our main technical tool is the well-known sum-check protocol
of Lund et al. [27], and we briefly describe this protocol and summarize the properties
that are most important in our analysis. Suppose we are given a v-variate polynomial g
defined over a finite field F, such that degi(g) = O(1) for all i ∈ {1, . . . ,v}. The purpose
of the sum-check protocol is to compute the sum:

H := ∑
b1∈{0,1}

∑
b2∈{0,1}

· · · ∑
bv∈{0,1}

g(b1, . . . ,bv).

The protocol proceeds in v rounds as follows. In the first round, the prover sends a
polynomial g1(X1), and claims that g1(X1) = ∑x2,...,xv∈{0,1}v−1 g(X1,x2, . . . ,xv). Observe
that if g1 is as claimed, then H = g1(0)+g1(1). Also observe that the polynomial g1(X1)
has degree deg1(g) = O(1). Hence g1 can be specified by sending the evaluation of g at
each point in the O(1)-sized set {0,1, . . . ,deg1(g)}.

Then, in round j > 1, V chooses a value r j−1 uniformly at random from F and sends
r j−1 to P . We refer to this step by saying that variable j−1 gets bound to value r j−1.
In return, the prover sends a polynomial g j(X j), and claims that

g j(X j) = ∑
(x j+1,...,xv)∈{0,1}v− j

g(r1, . . . ,r j−1,X j,x j+1, . . . ,xv). (1)

The verifier then checks that g j−1(r j−1) = g j(0)+g j(1), rejecting otherwise.
In the final round, the prover has sent gv(Xv) which is claimed to be g(r1, . . . ,rv−1,Xv).

V now checks that gv(rv) = g(r1, . . . ,rv). Notice that in order to perform this check, the
verifier needs to be able to evaluate g(r1, . . . ,rv) without assistance from the prover. If
this test succeeds, and so do all previous tests, then the verifier accepts, and is convinced
that H = g1(0)+g1(1).
Discussion of costs. For our purposes, the key cost of the sum-check protocol is the
prover’s runtime. Notice that the number of terms defining the value g j(i) in Equation
(1) falls geometrically with j: in the jth message, there are only 2v− j terms. The total
number of terms that must be evaluated over the course of the protocol is therefore
O
(

∑
v
j=1 2v− j

)
= O(2v). Consequently, if P is given oracle access to (evaluations of)

the polynomial g, then P will require O(2v) time. Unfortunately, in our applications P
will not have oracle access to g. The key to our results is to show that in our applications
P can nonetheless evaluate g at the necessary points in O(2v) total time.

The GKR Protocol at a Glance. In the GKR protocol, P and V first agree on an
arithmetic circuit C of fan-in 2 over a finite field F computing the function of interest (C
may have multiple outputs). Each gate of C performs an addition or multiplication over
F. C is assumed to be in layered form, meaning that the circuit can be decomposed into
layers, and wires only connect gates in adjacent layers. Suppose the circuit has depth



d; we will number the layers from 1 to d with layer d referring to the input layer, and
layer 1 referring to the output layer.

In the first message, P tells V the (claimed) output of the circuit. The protocol then
works its way in iterations towards the input layer, with one iteration devoted to each
layer. The purpose of iteration i is to reduce a claim about the values of the gates at layer
i to a claim about the values of the gates at layer i+1, in the sense that it is safe for V
to assume that the first claim is true as long as the second claim is true. This reduction
is accomplished by applying the sum-check protocol to a certain polynomial f (i).

More concretely, the GKR protocol starts with a claim about the values of the output
gates of the circuit, but V cannot check this claim without evaluating the circuit herself,
which is precisely what we want to avoid. So the first iteration uses a sum-check pro-
tocol to reduce this claim about the outputs to a claim about the gate values at layer 2
(more specifically, to a claim about an evaluation of the multilinear extension (MLE) of
the gate values at layer 2). Once again, V cannot check this claim herself, so the second
iteration uses another sum-check protocol to reduce the latter claim to a claim about the
gate values at layer 3, and so on. Eventually, V is left with a claim about the inputs to
the circuit, and V can check this claim on her own.

In summary, the GKR protocol uses a sum-check protocol at each level of the circuit
to enable V to go from verifying a randomly chosen evaluation of the MLE of the gate
values at layer i to verifying a (different) evaluation of the MLE of the gate values at
layer i+1. Importantly, apart from the input layer and output layer, V does not ever see
all of the gate values at a layer. Instead, V relies on P to do the hard work of actually
evaluating the circuit, and uses the power of the sum-check protocol to force P to be
consistent and truthful over the course of the protocol.
Further Details. Suppose we are given a layered arithmetic circuit C of depth d and
fan-in two. Let Si denote the number of gates at layer i of the circuit C. Assume Si is a
power of 2 and let Si = 2si . To explain how each iteration of the GKR protocol proceeds,
we must introduce several functions, each of which encodes certain information about
the circuit. Number the gates at layer i from 0 to Si−1, and let Vi : {0,1}si → F denote
the function that takes as input a binary gate label, and outputs the corresponding gate’s
value at layer i. The GKR protocol makes use of the multilinear extension Ṽi of the
function Vi.

The GKR protocol also makes use of the notion of a “wiring predicate” that encodes
which pairs of wires from layer i+ 1 are connected to a given gate at layer i in C. We
define two functions, addi and multi mapping {0,1}si+2si+1 to {0,1}, which together
constitute the wiring predicate of layer i of C. Specifically, these functions take as input
three gate labels ( j1, j2, j3), and return 1 if gate j1 at layer i is the addition (respec-
tively, multiplication) of gates j2 and j3 at layer i+1, and return 0 otherwise. Let ˜addi
and ˜multi denote the multilinear extensions of addi and multi respectively. Finally, let
βsi(z, p) denote the function βsi(z, p) = ∏

si
j=1 ((1− z j)(1− p j)+ z j p j) . It can be shown

that for any z ∈ Fsi ,

Ṽi(z) = ∑
(p,ω1,ω2)∈{0,1}si+2si+1

f (i)(p,ω1,ω2),where

f (i)(p,ω1,ω2)= βsi(z, p)·
( ˜addi(p,ω1,ω2)(Ṽi+1(ω1)+Ṽi+1(ω2))+ ˜multi(p,ω1,ω2)Ṽi+1(ω1) ·Ṽi+1(ω2)

)
.



Iteration i begins with a claim by P about the value of Ṽi(z) for some z ∈ Fsi . In order
to verify this claim, the sum-check protocol is applied to the polynomial f (i). However,
V can only execute her part of the sum-check protocol if she can evaluate the polyno-
mial f (i) at a random point f (i)(r1, . . . ,rsi+2si+1). In particular, this requires evaluating
Ṽi+1(ω

∗
2 ), and Ṽi+1(ω

∗
1 ), but V cannot perform these evaluations on her own without

evaluating the circuit. At a high level, V instead asks P to simply tell her these two val-
ues, and uses iteration i+1 to verify that these values are as claimed. The full version
of the paper spells out the remaining details.

3.2 Achieving Optimal Prover Runtime for Regular Circuits

In Theorem 1 below, we describe a protocol for circuit evaluation that brings P’s run-
time down to O(S(n)) for a large class of circuits, while maintaining the same verifier
runtime as in prior implementations of the GKR protocol. Informally, Theorem 1 ap-
plies to any circuit whose wiring pattern is sufficiently “regular”.

Our protocol follows the same outline as the GKR protocol, in that we proceed
in iterations from the output layer of the circuit to the input layer, using a sum-check
protocol at iteration i to reduce a claim about the gate values at layer i to a claim about
the gate values at layer i + 1. However, at each iteration i we apply the sum-check
protocol to a carefully chosen polynomial that differs from the ones used in prior work
[14, 20]. In each round j of the sum-check protocol, our choice of polynomial allows
P to reuse work from prior rounds in order to compute the prescribed message for
round j, allowing us to shave a logS(n) factor from the runtime of P relative to the
O(S(n) logS(n))-time implementation due to Cormode et al. [14].

Specifically, at iteration i, the polynomial f (i) that is used in the GKR protocol is
defined over logSi +2logSi+1 variables, where Si is the number of gates at layer i. The
“truth table” of f (i) is sparse on the Boolean hypercube, in the sense that f (i)(x) is non-
zero for at most Si of the Si ·S2

i+1 inputs x ∈ {0,1}logSi+2logSi+1 . Cormode et al. leverage
this sparsity to bring the runtime of P in iteration i down to O(Si logSi) from a naive
bound of Ω(Si ·S2

i+1). However, this same sparsity prevents P from reusing work from
prior iterations as we seek to do.

In contrast, we use a polynomial g(i) defined over only logSi variables rather than
logSi + 2logSi+1 variables. Moreover, the truth table of g(i) is dense on the Boolean
hypercube, in the sense that g(i)(x) may be non-zero for all of the Si Boolean inputs
x ∈ {0,1}logSi . This density allows P to reuse work from prior iterations in order to
speed up her computation in round i of the sum-check protocol.

In more detail, in each round j of the sum-check protocol, the prover’s prescribed
message is defined via a sum over a large number of terms, where the number of terms
falls geometrically fast with the round number j. Moreover, it can be shown that in
each round j, each gate at layer i+ 1 contributes to exactly one term of this sum [14].
Essentially, what we do is group the gates at layer i+1 by the term of the sum to which
they contribute. Each such group can be treated as a single unit, ensuring that in any
round of the sum-check protocol, the amount of work P needs to do is proportional to
the number of terms in the sum rather than the number of gates Si at layer i.

Formal Statement. Our protocol makes use of the following functions that capture the
wiring structure of an arithmetic circuit C.



Definition 2. Let C be a layered arithmetic circuit of depth d(n) and size S(n) over
finite field F. For every i ∈ {1, . . . ,d − 1}, let in(i)1 : {0,1}si → {0,1}si+1 and in(i)2 :
{0,1}si →{0,1}si+1 denote the functions that take as input the binary label p of a gate
at layer i of C, and output the binary label of the first and second in-neighbor of gate
p respectively. Similarly, let type(i) : {0,1}si → {0,1} denote the function that takes as
input the binary label p of a gate at layer i of C, and outputs 0 if p is an addition gate,
and 1 if p is a multiplication gate.

Intuitively, the following two definitions capture functions whose outputs are simple
bit-wise transformations of their inputs.

Definition 3. Let f be a function mapping {0,1}v to {0,1}v′ . Number the v input bits
from 1 to v, and the v′ output bits from 1 to v′. We say that f is regular if f can be
evaluated on any input in constant time, and there is a subset of input bits S ⊆ [v] with
|S|= O(1) such that:

1. Each input bit in [v] \ S affects O(1) of the output bits of f . Moreover, for any
j ∈ [v]\S, the set S j of output bits affected by the jth input bit can be enumerated
in constant time.

2. Each output bit of f depends on at most one input bit.

Definition 4. We say that in(i)1 and in(i)2 are similar if there is a set of output bits T ⊆
[si+1] with |T |= O(1) such that for all inputs x, the jth output bit of in(i)1 equals the jth

output bit of in(i)2 for all j ∈ [si+1]\T .

Theorem 1. Let C be an arithmetic circuit, and suppose that for all layers i of C,
in(i)1 , in(i)2 , and type(i) are regular. Suppose moreover that in(i)1 is similar to in(i)2 for
all but O(1) layers i of C. Then there is a valid interactive proof protocol (P,V) for
the function computed by C, with the following costs. The total communication cost is
|O|+O(d(n) logS(n)) field elements, where |O| is the number of outputs of C. The time
cost to V is O(n logn+d(n) logS(n)), and V can make a single streaming pass over the
input, storing O(log(S(n))) field elements. The time cost to P is O(S(n)).

The asymptotic costs of the protocol whose existence is guaranteed by Theorem 1
are identical to those of the implementation of the GKR protocol due to Cormode et al.
in [14], except that in Theorem 1 P runs in time O(S(n)) rather than O(S(n) logS(n)).
While the conditions of Theorem 1 may appear unnatural, our techniques in fact capture
a large class of circuits. Theorem 1 applies for example to circuits computing naive
n× n matrix multiplication (MATMULT), computing the number of distinct items in a
data stream (DISTINCT), pattern matching (which is useful, e.g., for searching email
data stored in the cloud), and FFTs. To the best of our our knowledge Theorem 1 yields
the fastest known prover among all interactive proof protocols for DISTINCT and for
pattern matching with sublinear space and communication costs. More importantly, we
will leverage the techniques underlying Theorem 1 to achieve our improved protocol
for data parallel computation described in Theorem 2.

Experimental Results. We implemented the protocols implied by Theorem 1 as applied
to circuits computing MATMULT and DISTINCT. The circuits are over the field Fq with



q = 261−1. The soundness probability in all cases is less than 2−45 (this probability is
proportional to d(n) logS(n)

q ). These experiments serve as case studies to demonstrate the
feasibility of Theorem 1 in practice, and to quantify the improvements over prior imple-
mentations. While Section 5 describes a specialized protocol for MATMULT that is more
efficient than the protocol implied by Theorem 1, MATMULT serves as an important case
study for the costs of the more general protocol described in Theorem 1, and allows for
direct comparison with prior implementation work that also evaluated general-purpose
protocols via their performance on the MATMULT problem [14, 28, 32, 33, 35, 37].

The main takeaways of our experiments are as follows. When Theorem 1 is appli-
cable, the prover in the resulting protocol is 200x-250x faster than the previous state of
the art implementation of the GKR protocol, and is just 5x-10x times slower than a C++
program that simply evaluates the circuit with no correctness guarantee. The communi-
cation costs and the number of rounds required by our protocols are also 2x-3x smaller
than the previous state of the art. The verifier in our implementation takes essentially
the same amount of time as in prior implementations of the GKR protocol; this time is
much smaller than the time to perform the computation locally without a prover. See
Table 1 for detailed results – in this table, our comparison point is the implementation
of Cormode et al. [14], with some of the refinements of Vu et al. [37] included.

Most of the 200x speedup can be attributed directly to our improvements in pro-
tocol design over prior work: the circuit for 512x512 matrix multiplication is of size
228, and hence our logS(n) factor improvement the runtime of P likely accounts for at
least a 28x speedup. The 3x reduction in the number of rounds accounts for another 3x
speedup. The remaining speedup factor of roughly 2x may be due to a more streamlined
implementation relative to prior work, rather than improved protocol design per se.

Problem Implementation Problem P V Rounds Total Circuit
Size Time Time Communication Eval Time

MATMULT Previous state of the art 512 x 512 9759 s 0.10 s 767 17.97 KBs 6.07 s
MATMULT Theorem 1 512 x 512 37.85 s 0.10 s 236 5.48 KBs 6.07 s
DISTINCT Previous state of the art n = 220 3400 s 0.20 s 3916 91.3 KBs 1.88 s
DISTINCT Theorem 1 n = 220 17.28 s 0.20 s 1361 40.76 KBs 1.88 s

Table 1. Experimental results for Theorem 1. For the MATMULT problem, the Total Communica-
tion column does not count the communication required to specify the answer.

4 Verifying General Data Parallel Computations
Theorem 1 only applies to circuits with regular wiring patterns, as do other existing im-
plementations of interactive proof protocols for circuit evaluation [14, 37]. For circuits
with irregular wiring patterns, these implementations require the verifier to perform an
expensive preprocessing phase (requiring time proportional to the size of the circuit) to
pull out information about the wiring of the circuit, and they require a substantial factor
blowup (logarithmic in the circuit size) in runtime for the prover relative to evaluating
the circuit without a guarantee of correctness.

To address these bottlenecks, we do need to make an assumption about the structure
of the circuit we are verifying. Ideally our assumption will be satisfied by many real-
world computations. To this end, Theorem 2 below describes a protocol that is highly



efficient for any data parallel computation, by which we mean any setting in which the
same sub-computation is applied independently to many pieces of data, before possibly
aggregating the results. We do not want to make significant assumptions on the sub-
computation that is being applied (in particular, we want to handle sub-computations
computed by circuits with irregular wiring patterns), but we are willing to assume that
the sub-computation is applied to many pieces of data.

For example, Theorem 2 applies to arbitrary counting queries on a database. In a
counting query, one applies some function independently to each row of the database
and sums the results. For instance, one may ask “How many people in the database sat-
isfy Property P?” Our protocol allows one to verifiably outsource such a counting query
with overhead that depends minimally on the size of the database, but that necessarily
depends on the complexity of the property P.

Overview of the Protocol. Let C be a circuit of size S with an arbitrary wiring pattern,
and let C∗ be a “super-circuit” that applies C independently to B different inputs before
possibly aggregating the results in some fashion. For example, in the case of a counting
query, the aggregation phase simply sums the results of the data parallel phase. We
assume that the aggregation step is sufficiently simple that the aggregation itself can
be verified using existing techniques such as the basic GKR protocol or Theorem 1,
and we focus on verifying the data parallel part of the computation. For instance, in
the case of a counting query, the aggregation phase simply sums the outputs, and this
is easily handled via Theorem 1. We stress that our protocol applies even if there is no
aggregation phase; in this case P will begin the protocol by sending V all outputs of
C∗, and the protocol can then be used to prove the validity of those outputs.

If we naively apply the GKR protocol to the super-circuit C∗, V might have to
perform an expensive pre-processing phase to evaluate the wiring predicate of C∗ at
the necessary locations – this would require time Ω(B · S). Moreover, when applying
the basic GKR protocol to C∗, P would require time Θ (B ·S · log(B ·S)). A different
approach was taken by Vu et al [37], who applied the GKR protocol B independent
times, once for each copy of C. This causes both the communication cost and V’s online
check time to grow linearly with B, the number of sub-computations.

In contrast, our protocol achieves the best of both prior approaches. We observe that
although each sub-computation C can have a very complicated wiring pattern, the super-
circuit C∗ is maximally regular between sub-computations, as the sub-computations do
not interact at all. Therefore, each time the basic GKR protocol would apply the sum-
check protocol to a polynomial derived from the wiring predicate of C∗, we instead
use a simpler polynomial derived only from the wiring predicate of C. By itself, this
is enough to ensure that V’s pre-processing phase requires time only O(S), rather than
O(B · S) as in a naive application of the GKR protocol to C∗. That is, the cost of V’s
pre-processing phase in our protocol is proportional to the cost of applying the basic
GKR protocol only to C, not to C∗.

Furthermore, by combining this observation with the ideas underlying Theorem 1,
we can bring the runtime of P down to O(B · S · logS). That is, the blowup in runtime
suffered by the prover, relative to performing the computation without a guarantee of
correctness, is just a factor of logS – the same as it would be if the prover had run the
basic GKR protocol on a single instance of the sub-computation.



Notation. Let C be an arithmetic circuit over F of depth d and size S with an arbitrary
wiring pattern, and let C∗ be the circuit of depth d and size B · S obtained by laying B
copies of C side-by-side, where B = 2b. We will use the same notation as in Section 3.1,
using ∗’s to denote quantities referring to C∗. For example, layer i of C has size Si = 2si

and gate values specified by the function Vi, while layer i of C∗ has size S∗i = 2s∗i and
gate values specified by the function V ∗i . We denote the length of the input to C∗ by n∗.

We assume at the start of our protocol that P has made a claim about Ṽ ∗1 (z) for
some z ∈ Fs∗1 , in the sense that it is safe for V to believe P has followed the prescribed
protocol as long as Ṽ ∗1 (z) is as claimed. Such a claim about Ṽ ∗1 (z) would be obtained
by first applying existing verification techniques such as Theorem 1 to the aggregation
phase of the data parallel computation.

Theorem 2. For any point z ∈ Fs∗1 , there is a valid interactive proof protocol for com-
puting Ṽ ∗1 (z) with the following costs. V spends O(S) time in a pre-processing phase,
and O(n∗ logn∗+d · log(B ·S)) time in an online verification phase. P runs in total time
O(S ·B · logS). The total communication is O(d · log(B ·S)) field elements.

Proof sketch: Consider layer i of C∗. Let p = (p1, p2) ∈ {0,1}si ×{0,1}b be the binary
label of a gate at layer i of C∗, where p2 specifies which “copy” of C the gate is in,
while p1 designates the label of the gate within the copy. Similarly, let ω = (ω1,ω2) ∈
{0,1}si+1 ×{0,1}b and γ = (γ1,γ2) ∈ {0,1}si+1 ×{0,1}b be the labels of two gates at
layer i+1. It is straightforward to check that for all (p1, p2) ∈ {0,1}si ×{0,1}b,

V ∗i (p1, p2)= ∑
ω1∈{0,1}si+1

∑
γ1∈{0,1}si+1

g(i)(p1, p2,ω1,γ1),where g(i)(p1, p2,ω1,γ1) is defined as:

βs∗i
(z,(p1, p2))·

( ˜addi(p1,ω1,γ1)
(
Ṽ ∗i+1(ω1, p2)+Ṽ ∗i+1(γ1, p2)

)
+ ˜multi(p1,ω1,γ1)

(
Ṽ ∗i+1(ω1, p2) ·Ṽ ∗i+1(γ1, p2)

))
Essentially, the above says that a gate p = (p1, p2)∈ {0,1}si+b is connected to gates

ω = (ω1,ω2) ∈ {0,1}si+1+b and γ = (γ1,γ2) ∈ {0,1}si+1+b if and only if p,ω, and γ are
all in the same copy of C, and p is connected to ω and γ within the copy. The above
derivation can be shown to imply that for any z ∈ Fs∗i ,

Ṽ ∗i (z) = ∑
(p1,p2,ω1,γ1)∈{0,1}si×{0,1}b×{0,1}si+1×{0,1}si+1

g(i)(p1, p2,ω1,γ1).

Thus, in iteration i of our protocol, we apply the sum-check protocol to g(i). This reduces
P’s claim about Ṽ ∗i (z) to a claim about Ṽ ∗i+1(z

′) for some z′ ∈ Fs∗i+1 , exactly as in the ith
iteration of the GKR protocol.

Costs for V . The bottleneck in V’s runtime is that, in the last round of the sum-check
protocol, V must evaluate g(i) at a single point. This requires evaluating βs∗i

, ˜addi, ˜multi,
and Ṽ ∗i+1 at a constant number of points. The Ṽ ∗i+1 evaluations are provided by P in
all iterations i of the protocol except the last. The bottleneck in the evaluation is the

˜addi and ˜multi computations. These can be done in pre-processing in time O(Si) by
enumerating the in-neighbors of each of the Si gates at layer i [14, 37]. Adding up the



pre-processing time across all iterations i of our protocol, V’s pre-processing time is
O(∑i Si) = O(S) as claimed.

Costs for P . Notice g(i) is a polynomial in v := si + 2si+1 + b variables. We order
the sum in this sum-check protocol so that the si + 2si+1 variables in p1, ω1, and γ1
are bound first in arbitrary order, followed by the variables of p2. P can compute the
prescribed messages in the first si + 2si+1 = O(logS) rounds exactly as in the imple-
mentation of Cormode et al. [14], who show that each gate at layers i and i+ 1 of C∗

contributes to exactly one term in the sum defining P’s message in any given round of
the sum-check protocol. Hence the total time required by P to handle these rounds is
O(B · (Si +Si+1) · logS).

It remains to show howP can compute the prescribed messages in the final b rounds
of the sum-check protocol while investing O((Si +Si+1) ·B) across all rounds of the
protocol. The idea is that once the variables of p1, ω1, and γ1 are bound, the truth table
of g(i), viewed as a function of the unbound variables, is dense on the Boolean hyper-
cube, in the sense of Section 3.2. We therefore exploit the reuse-of-work techniques
underlying Theorem 1 to achieve the desired runtime for the prover.

5 Optimal Space and Time Costs for MATMULT
In Theorem 3 below, we describe a special-purpose protocol for n× n MATMULT in
Theorem 3. The idea behind this protocol is as follows. The GKR protocol, as well
the protocols of Theorems 1 and 2, only make use of the multilinear extension Ṽi of
the function Vi mapping gate labels at layer i of the circuit to their values. In some
cases, there is something to be gained by using a higher-degree extension of Vi. This
is precisely what we exploit here. In more detail, our special-purpose protocol can be
viewed as an extension of our circuit-checking techniques applied to a circuit C per-
forming naive matrix multiplication, but using a quadratic extension of the gate values
in this circuit. This allows us to verify the computation using a single invocation of the
sum-check protocol. More importantly, P can evaluate this higher-degree extension at
the necessary points without explicitly materializing all of the gate values of C, which
would not be possible if we had used the multilinear extension of the gate values of C.

In the protocol of Theorem 3, P just needs to compute the correct output (possibly
using an algorithm that is much more sophisticated than naive matrix multiplication),
and then perform O(n2) additional work to prove the output is correct. We obtain the
O(n2) bound on the extra work required byP by exploiting the reuse-of-work technique
underlying Theorems 1 and 2.

Since P does not have to evaluate C in full, this protocol is perhaps best viewed
outside the lens of circuit evaluation. Still, the idea underlying Theorem 3 extends those
underlying our circuit evaluation protocols, and we believe similar ideas may yield
further improvements to general-purpose protocols in the future.

Theorem 3. There is a valid interactive proof protocol for n×n matrix multiplication
over the field Fq with the following costs. The communication cost is n2 +O(logn) field
elements. The runtime of the prover is T (n) +O(n2) and the space usage is s(n) +
o(n2), where T (n) and s(n) are the time and space requirements of any (unverifiable)
algorithm for n×n matrix multiplication. The verifier can make a single streaming pass
over the input as well as over the claimed output in time O(n2 logn), storing O(logn)
field elements.



5.1 Comparison to Prior Work

It is worth comparing Theorem 3 to a well-known protocol due to Freivalds [17]. Let D∗

denote the claimed output matrix. In Freivalds’ algorithm, the verifier stores a random
vector x∈Fn, and computes D∗x and ABx, accepting if and only if ABx=D∗x. Freivalds
showed that this is a valid protocol. In both Freivalds’ protocol and that of Theorem 3,
the prover runs in time T (n)+O(n2) (in the case of Freivalds’ algorithm, the O(n2)
term is 0), and the verifier runs in linear or quasilinear time. We now highlight several
properties of our protocol that are not achieved by prior work.

Utility as a Primitive. A major advantage of Theorem 3 relative to prior work is its
utility as a primitive that can be used to verify more complicated computations. This is
important as many algorithms repeatedly invoke matrix multiplication as a subroutine.
For concreteness, consider the problem of computing A2k

via repeated squaring. By
iterating the protocol of Theorem 3 k times, we obtain a valid interactive proof protocol
for computing A2k

with communication cost n2+O(k log(n)). The n2 term is due simply
to specifying the output A2k

, and can often be avoided in applications – see for example
the diameter protocol described two paragraphs hence. The ith iteration of the protocol
for computing A2k

reduces a claim about an evaluation of the multilinear extension of
A2k−i+1

to an analogous claim about A2k−i
. Crucially, the prover in this protocol never

needs to send the verifier the intermediate matrices A2k′
for k′ < k. In contrast, applying

Freivalds’ algorithm to this problem would require O(kn2) communication, as P must
specify each of the intermediate matrices A2i

.
The ability to avoid having P explicitly send intermediate matrices is especially

important in settings in which an algorithm repeatedly invokes matrix multiplication,
but the desired output of the algorithm is smaller than the size of the matrix. In these
cases, it is not necessary for P to send any matrices; P can instead send just the desired
output, and V can use Theorem 3 to check the validity of the output with only a poly-
logarithmic amount of additional communication. This is analogous to how the verifier
in the GKR protocol can check the values of the output gates of a circuit without ever
seeing the values of the interior gates of the circuit.

As a concrete example illustrating the power of our matrix multiplication protocol,
consider the fundamental problem of computing the diameter of an unweighted (pos-
sibly directed) graph G on n vertices. Let A denote the adjacency matrix of G, and let
I denote the n× n identity matrix. Then it is easily verified that the diameter of G is
the least positive number d such that (A+ I)d

i j 6= 0 for all (i, j). We therefore obtain the
following natural protocol for diameter. P sends the claimed output d to V , as well as
an (i, j) such that (A+ I)d−1

i j = 0. To confirm that d is the diameter of G, it suffices for
V to check two things: first, that all entries of (A+ I)d are non-zero, and second that
(A+ I)d−1

i j is indeed non-zero.
The first task is accomplished by combining our matrix multiplication protocol of

Theorem 3 with our DISTINCT protocol from Theorem 1. Indeed, let d j denote the jth
bit in the binary representation of d. Then (A+I)d =∏

dlogde
j (A+I)2 j

, so computing the
number of non-zero entries of (A+ I)d can be treated as a sequence of O(logd) matrix
multiplications, followed by a DISTINCT computation. The second task, of verifying



that (A+ I)d−1
i j = 0, is similarly accomplished using O(logd) invocations of the matrix

multiplication protocol of Theorem 3 – since V is only interested in one entry of (A+
I)d−1, P need not send the matrix (A+ I)d−1 in full, and the total communication here
is just polylog(n).
V’s runtime in this diameter protocol is O(m logn), where m is the number of edges

in G. P’s runtime in the above diameter protocol matches the best known unverifiable
diameter algorithm up to a low-order additive term [30, 38], and the communication is
just polylog(n). We know of no other protocol achieving this.

In many settings, practitioners will not tolerate even a 2x slowdown to achieve veri-
fiability, so the fact that P’s slowdown is a low-order additive term is critical. Moreover,
for a graph with n = 1 million nodes, the total communication cost of the above proto-
col would be on the order of KBs – in contrast, if P had to send the matrices (I +A)d

or (I +A)d−1 explicitly (as required in prior work, e.g., Cormode et al. [13]), the com-
munication cost would be at least n2 = 1012 words of communication, which translates
to terabytes of data.
Small-Space Streaming Verifiers. In Freivalds’ algorithm, V has the store the random
vector x, which requires Ω(n) space. There are methods to reduce V’s space usage by
generating x with limited randomness: Kimbrel and Sinha [24] show how to reduce V’s
space to O(logn), but their solution does not work if V must make a streaming pass
over arbitrarily ordered input. Chakrabarti et al. [12] extend the method of Kimbrel
and Sinha to work with a streaming verifier, but this requires P to play back the input
matrices A,B in a special order, increasing proof length to 3n2. Our protocol works
with a streaming verifier using O(logn) space, and our proof length is n2 +O(logn),
where the n2 term is due to specifying AB and can be avoided in applications such as
the diameter example considered above.

5.2 Protocol Details
When multiplying matrices A and B such that AB = D, let A(i, j), B(i, j) and D(i, j)
denote functions from {0,1}logn×{0,1}logn→ Fq that map input (i, j) to Ai j, Bi j, and
Di j respectively. Let Ã, B̃, and D̃ denote their multilinear extensions.

Lemma 1. For all (p1, p2) ∈ Flogn×Flogn,

D̃(p1, p2) = ∑
p3∈{0,1}logn

Ã(p1, p3) · B̃(p3, p2)

Proof. For all (p1, p2) ∈ {0,1}logn×{0,1}logn, the right hand side is easily seen to
equal D(p1, p2), using the fact that Di j = ∑k AikBk j and the fact that Ã and B̃ agree with
the functions A(i, j) and B(i, j) at all Boolean inputs. Moreover, the right hand side is a
multilinear polynomial in the variables of (p1, p2). Putting these facts together implies
that the right hand side is the unique multilinear extension of the function D(i, j).

Lemma 1 implies the following valid interactive proof protocol for matrix multiplica-
tion: P sends a matrix D∗ claimed to equal the product D = AB. V evaluates D̃∗(r1,r2)
at a random point (r1,r2) ∈ Flogn × Flogn. It can be shown that it is safe for V to
believe D∗ is as claimed, as long as D̃∗(r1,r2) = D̃(r1,r2). In order to check that
D̃∗(r1,r2) = D̃(r1,r2), we invoke a sum-check protocol on the polynomial g(p3) =
Ã(r1, p3) · B̃(p3,r2).



V’s final check in this protocol requires her to compute g(r3) for a random point
r3 ∈ Flogn. V can do this by evaluating both of Ã(r1,r3) and B̃(r3,r2) with a single
streaming pass over the input, and then multiplying the results. The prover can be made
to run in time T (n)+O(n2) across all rounds of the sum-check protocol using the reuse-
of-work technique underlying Theorem 1. Moreover, the space requirements of P are
just s(n)+o(n2).
Implementation. We implemented the protocol of Theorem 3 over the field with q =
261− 1 elements. The results are shown in Table 2, where the column labelled “Ad-
ditional Time for P” denotes the time required to compute P’s prescribed messages
after P has already computed the correct answer. We report the naive matrix multipli-
cation time both when the computation is done using standard multiplication of 64-bit
integers, as well as when the computation is done using finite field arithmetic over Fq.
The main takeaways from Table 2 are that the verifier does indeed save substantial time
relative to performing matrix multiplication locally, and that the runtime of the prover
is hugely dominated by the time required simply to compute the answer.

Problem Size Naive Matrix Multiplication Time Additional Time for P V Time Rounds
210×210 2.17 s over Z; 9.11 s over Fq 0.03s 0.67 s 11
211×211 18.23 s over Z; 73.65 s over Fq 0.13s 2.89 s 12

Table 2. Experimental results for the n×n MATMULT protocol of Theorem 3.

References
1. S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Uni-

versity Press, 2009.
2. S. Benabbas, R. Gennaro, Y. Vahlis. Verifiable delegation of computation over large datasets.

In CRYPTO, pages 111-131, 2011.
3. E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions from RAMs to dele-

gatable succinct constraint satisfaction problems. In ITCS, pages 401-414, 2013.
4. E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. On the concrete-efficiency threshold

of probabilistically-checkable proofs. In STOC, 2013.
5. D. Boneh and D. Freeman. Homomorphic signatures for polynomial functions. In EURO-

CRYPT, pages 149-168, 2011.
6. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to

succinct non-interactive arguments of knowledge, and back again. In ITCS, pages 326-349,
2012.

7. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and bootstrapping
for SNARKs and proof-carrying data. In STOC, 2013.

8. N. Bitansky, and A. Chiesa. Succinct arguments from multi-prover interactive proofs and
their efficiency benefits. In CRYPTO, pages 255-272, 2012.

9. N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-interactive
arguments via linear interactive proofs. In TCC, pages 315-333, 2013.

10. K-M. Chung, Y. Tauman Kalai, F-H. Liu, R. Raz. Memory delegation. In CRYPTO, pages
151-168, 2011.

11. K-M. Chung, Y. Tauman Kalai, and S. P. Vadhan. Improved delegation of computation using
fully homomorphic encryption. In CRYPTO, pages 483-501, 2010.

12. A. Chakrabarti, G. Cormode, and A. McGregor. Annotations in data streams. In ICALP (1),
pages 222-234, 2009.



13. G. Cormode, M. Mitzenmacher, and Justin Thaler. Streaming graph computations with a
helpful advisor. Algorithmica, 65(2):409-442, 2013.

14. G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with streaming
interactive proofs. In ITCS, pages 90-112, 2012.

15. G. Cormode, J. Thaler, and K. Yi. Verifying computations with streaming interactive proofs.
PVLDB, 5(1):25–36, 2011.

16. D. Fiore, R. Gennaro. Publicly verifiable delegation of large polynomials and matrix com-
putations, with applications. In CCS, pages 501-512, 2012.

17. R. Freivalds. Fast probabilistic algorithms. In MFCS, pages 57–69, 1979.
18. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: outsourcing

computation to untrusted workers. In CRYPTO, pages 465-482, 2010.
19. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succint

NIZKs without PCPs. In EUROCRYPT, pages 626-645, 2013.
20. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive proofs

for muggles. In STOC, pages 113–122, 2008.
21. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT,

pages 321-340, 2010.
22. T. Gur and R. Raz Arthur-Merlin Streaming Complexity. In ICALP (1), 2013.
23. Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments without short PCPs. In CCC,

pages 278–291, 2007.
24. T. Kimbrel and R. K. Sinha. A probabilistic algorithm for verifying matrix products Using

O(n2) time and log2 n+O(1) random bits. Inf. Process. Lett. 45(2):107-110, 1993.
25. H. Klauck, and V. Prakash. Streaming computations with a loquacious prover. In ITCS,

pages 305-320, 2013.
26. H. Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero- knowl-

edge arguments. In TCC, pages 169-189, 2012.
27. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof

systems. J. ACM, 39:859–868, 1992.
28. B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: nearly practical verifiable com-

putation. In IEEE Symposium on Security and Privacy (Oakland), 2013.
29. G. Rothblum. Delegating computation reliably: paradigms and constructions. Ph.D. Thesis.

Available online at http://hdl.handle.net/1721.1/54637, 2009.
30. R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. JCSS,

51(3):400-403, 1995.
31. S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making argument systems for

outsourced computation practical (sometimes). In NDSS, 2012.
32. S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish. Taking proof-based

verified computation a few steps closer to practicality. In USENIX Security, 2012.
33. S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walsh. Resolving the conflict

between generality and plausibility in verified computation. In EuroSys, pages 71-84, 2013.
34. A. Shamir. IP = PSPACE. J. ACM, 39:869–877, 1992.
35. J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable computation with mas-

sively parallel interactive proofs. In HotCloud, 2012.
36. J. Thaler. Source code. Available online at http://http://people.seas.harvard.

edu/~jthaler/Tcode.htm

37. V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture for interactive verifi-
able computation. Pre-print, November 2012. In IEEE Symposium on Security and Privacy
(Oakland), May 2013.

38. R. Yuster, Computing the diameter polynomially faster than APSP. CoRR, Vol.
abs/1011.6181, 2010.

http://http://people.seas.harvard.edu/~jthaler/Tcode.htm
http://http://people.seas.harvard.edu/~jthaler/Tcode.htm

	Time-Optimal Interactive Proofs for Circuit Evaluation

