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Abstract. We describe a working implementation of leveled homomorphic en-
cryption (without bootstrapping) that can evaluate the AES-128 circuit in three
different ways. One variant takes under over 36 hours to evaluate an entire AES
encryption operation, using NTL (over GMP) as our underlying software plat-
form, and running on a large-memory machine. Using SIMD techniques, we can
process over 54 blocks in each evaluation, yielding an amortized rate of just un-
der 40 minutes per block. Another implementation takes just over two and a half
days to evaluate the AES operation, but can process 720 blocks in each evalua-
tion, yielding an amortized rate of just over five minutes per block. We also detail
a third implementation, which theoretically could yield even better amortized
complexity, but in practice turns out to be less competitive.
For our implementations we develop both AES-specific optimizations as well as
several “generic” tools for FHE evaluation. These last tools include (among oth-
ers) a different variant of the Brakerski-Vaikuntanathan key-switching technique
that does not require reducing the norm of the ciphertext vector, and a method
of implementing the Brakerski-Gentry-Vaikuntanathan modulus-switching trans-
formation on ciphertexts in CRT representation.

1 Introduction

In his breakthrough result [9], Gentry demonstrated that fully-homomorphic encryption
was theoretically possible, assuming the hardness of some problems in integer lattices.
Since then, many different improvements have been made, for example authors have
proposed new variants, improved efficiency, suggested other hardness assumptions, etc.
Some of these works were accompanied by implementation [19, 10, 6, 20, 14, 7], but all
the implementations so far were either “proofs of concept” that can compute only one
basic operation at a time (at great cost), or special-purpose implementations limited
to evaluating very simple functions. In this work we report on the first implementa-
tion powerful enough to support an “interesting real world circuit”. Specifically, we
implemented a variant of the leveled FHE-without-bootstrapping scheme of Brakerski,
Gentry, and Vaikuntanathan [3] (BGV), with support for deep enough circuits so that
we can evaluate an entire AES-128 encryption operation.

Why AES? We chose to shoot for an evaluation of AES since it seems like a natural
benchmark: AES is widely deployed and used extensively in security-aware applica-
tions (so it is “practically relevant” to implement it), and the AES circuit is nontrivial
on one hand, but on the other hand not astronomical. Moreover the AES circuit has a



regular (and quite “algebraic”) structure , which is amenable to parallelism and opti-
mizations. Indeed, for these same reasons AES is often used as a benchmark for imple-
mentations of protocols for secure multi-party computation (MPC), for example [17,
8, 12, 13]. Using the same yardstick to measure FHE and MPC protocols is quite nat-
ural, since these techniques target similar application domains and in some cases both
techniques can be used to solve the same problem.

Beyond being a natural benchmark, homomorphic evaluation of AES decryption
also has interesting applications: When data is encrypted under AES and we want to
compute on that data, then homomorphic AES decryption would transform this AES-
encrypted data into an FHE-encrypted data, and then we could perform whatever com-
putation we wanted. (Such applications were alluded to in [14, 20, 4]).
Why BGV? Our implementation is based on the (ring-LWE-based) BGV cryptosystem
[3], which at present is one of three variants that seem the most likely to yield “some-
what practical” homomorphic encryption. The other two are the NTRU-like cryptosys-
tem of Lòpez-Alt et al. [15] and the ring-LWE-based fixed-modulus cryptosystem of
Brakerski [2]. (These two variants were not yet available when we started our imple-
mentation effort.) These three different variants offer somewhat different implementa-
tion tradeoffs, but they all have similar performance characteristics. At present we do
not know which of them will end up being faster in practice, but the differences are
unlikely to be very significant. Moreover, we note that most of our optimizations for
BGV are useful also for the other two variants.
Our Contributions. Our implementation is based on a variant of the BGV scheme [3, 5,
4] (based on ring-LWE [16]), using the techniques of Smart and Vercauteren (SV) [20]
and Gentry, Halevi and Smart (GHS) [11], and we introduce many new optimizations.
Some of our optimizations are specific to AES, these are described in Section 4. Most of
our optimization, however, are more general-purpose and can be used for homomorphic
evaluation of other circuits, these are described in Section 3.

Many of our general-purpose optimizations are aimed at reducing the number of
FFTs and CRTs that we need to perform, by reducing the number of times that we need
to convert polynomials between coefficient and evaluation representations. Since the
cryptosystem is defined over a polynomial ring, many of the operations involve various
manipulation of integer polynomials, such as modular multiplications and additions and
Frobenius maps. Most of these operations can be performed more efficiently in evalu-
ation representation, when a polynomial is represented by the vector of values that it
assumes in all the roots of the ring polynomial (for example polynomial multiplication
is just point-wise multiplication of the evaluation values). On the other hand some op-
erations in BGV-type cryptosystems (such as key switching and modulus switching)
seem to require coefficient representation, where a polynomial is represented by list-
ing all its coefficients.3 Hence a “naive implementation” of FHE would need to convert
the polynomials back and forth between the two representations, and these conversions
turn out to be the most time-consuming part of the execution. In our implementation
we keep ciphertexts in evaluation representation at all times, converting to coefficient
representation only when needed for some operation, and then converting back.

3 The need for coefficient representation ultimately stems from the fact that the noise in the
ciphertexts is small in coefficient representation but not in evaluation representation.



We describe variants of key switching and modulus switching that can be imple-
mented while keeping almost all the polynomials in evaluation representation. Our key-
switching variant has another advantage, in that it significantly reduces the size of the
key-switching matrices in the public key. This is particularly important since the main
limiting factor for evaluating deep circuits turns out to be the ability to keep the key-
switching matrices in memory. Other optimizations that we present are meant to reduce
the number of modulus switching and key switching operations that we need to do.
This is done by tweaking some operations (such as multiplication by constant) to get
a slower noise increase, by “batching” some operations before applying key switching,
and by attaching to each ciphertext an estimate of the “noisiness” of this ciphertext, in
order to support better noise bookkeeping.

Our Implementation. Our implementation was based on the NTL C++ library running
over GMP, we utilized a machine which consisted of a processing unit of Intel Xeon
CPUs running at 2.0 GHz with 18MB cache, and most importantly with 256GB of
RAM.4

Memory was our main limiting factor in the implementation. With this machine it
took us just under two days to compute a single block AES encryption using an im-
plementation choice which minimizes the amount of memory required; this is roughly
two orders of magnitude faster than what could be done with the Gentry-Halevi im-
plementation [10]. The computation was performed on ciphertexts that could hold 864
plaintext slots each; where each slot holds an element of F28 . This means that we can
compute b864/16c = 54 AES operations in parallel, which gives an amortize time per
block of roughly forty minutes. A second (byte-sliced) implementation, requiring more
memory, completed an AES operation in around five days; where ciphertexts could hold
720 different F28 slots (hence we can evaluate 720 blocks in parallel). This results in an
amortized time per block of roughly five minutes.

We note that there are a multitude of optimizations that one can perform on our
basic implementation. Most importantly, we believe that by using the “bootstrapping
as optimization” technique from BGV [3] we can speedup the AES performance by an
additional order of magnitude. Also, there are great gains to be had by making better use
of parallelism: Unfortunately, the NTL library (which serves as our underlying software
platform) is not thread safe, which severely limits our ability to utilize the multi-core
functionality of modern processors (our test machine has 24 cores). We expect that by
utilizing many threads we can speed up some of our (higher memory) AES variants by
as much as a 16x factor; just by letting each thread compute a different S-box lookup.

Organization. In Section 2 we review the main features of BGV-type cryptosystems [4,
3], and briefly survey the techniques for homomorphic computation on packed cipher-
texts from SV and GHS [20, 11]. Then in Section 3 we describe our “general-purpose”
optimizations on a high level, with additional details provided in the full version of the
paper. A brief overview of AES and a high-level description and performance numbers
is provided in Section 4.

4 This machine was BlueCrystal Phase 2; and the authors would like to thank the University of
Bristol’s Advanced Computing Research Centre (https://www.acrc.bris.ac.uk/)
for access to this facility.



2 Background

For an integer q we identify the ring Z/qZ with the interval (−q/2, q/2]∩Z, and use [z]q
to denote the reduction of the integer z modulo q into that interval. Our implementation
utilizes polynomial rings defined by cyclotomic polynomials, A = Z[X]/Φm(X). The
ring A is the ring of integers of a themth cyclotomic number field Q(ζm). We let Aq

def
=

A/qA = Z[X]/(Φm(X), q) for the (possibly composite) integer q, and we identify Aq
with the set of integer polynomials of degree upto φ(m)− 1 reduced modulo q.

Coefficient vs. Evaluation Representation. Let m, q be two integers such that Z/qZ
contains a primitive m-th root of unity, and denote one such primitive m-th root of
unity by ζ ∈ Z/qZ. Recall that the m’th cyclotomic polynomial splits into linear terms
modulo q, Φm(X) =

∏
i∈(Z/mZ)∗(X − ζi) (mod q).

We consider two ways of representing an element a ∈ Aq: Viewing a as a degree-
(φ(m) − 1) polynomial, a(X) =

∑
i<φ(m) aiX

i, the coefficient representation of a
just lists all the coefficients in order a =

〈
a0, a1, . . . , aφ(m)−1

〉
∈ (Z/qZ)φ(m). For the

other representation we consider the values that the polynomial a(X) assumes on all
primitivem-th roots of unity modulo q, bi = a(ζi) mod q for i ∈ (Z/mZ)∗. The bi’s in
order also yield a vector b ∈ (Z/qZ)φ(m), which we call the evaluation representation
of a. Clearly these two representations are related via b = Vm · a, where Vm is the
Vandermonde matrix over the primitive m-th roots of unity modulo q. We remark that
for all i we have the equality (a mod (X − ζi)) = a(ζi) = bi, hence the evaluation
representation of a is just a polynomial Chinese-Remaindering representation.

In both representations, an element a ∈ Aq is represented by a φ(m)-vector of in-
tegers in Z/qZ. If q is a composite then each of these integers can itself be represented
either using the standard binary encoding of integers or using Chinese-Remaindering
relative to the factors of q. We usually use the standard binary encoding for the co-
efficient representation and Chinese-Remaindering for the evaluation representation.
(Hence the latter representation is really a double CRT representation, relative to both
the polynomial factors of Φm(X) and the integer factors of q.)

2.1 BGV-type Cryptosystems

Our implementation uses a variant of the BGV cryptosystem due to Gentry, Halevi and
Smart, specifically the one described in [11, Appendix D] (in the full version). In this
cryptosystem both ciphertexts and secret keys are vectors over the polynomial ring A,
and the native plaintext space is the space of binary polynomials A2. (More generally it
could be Ap for some fixed p ≥ 2, but in our case we will always use A2.)

At any point during the homomorphic evaluation there is some “current integer
modulus q” and “current secret key s”, that change from time to time. A ciphertext c
is decrypted using the current secret key s by taking inner product over Aq (with q the
current modulus) and then reducing the result modulo 2 in coefficient representation.
Namely, the decryption formula is

a ← [ [〈c, s〉 mod Φm(X)]q︸ ︷︷ ︸
noise

]2 . (1)



The polynomial [〈c, s〉 mod Φm(X)]q is called the “noise” in the ciphertext c. Infor-
mally, c is a valid ciphertext with respect to secret key s and modulus q if this noise
has “sufficiently small norm” relative to q. The meaning of “sufficiently small norm” is
whatever is needed to ensure that the noise does not wrap around q when performing
homomorphic operations, in our implementation we keep the norm of the noise always
below some pre-set bound (which is determined in the full version of the paper).

Following [16, 11], the specific norm that we use to evaluate the magnitude of the
noise is the “canonical embedding norm reduced mod q”, specifically we use the con-
ventions as described in [11, Appendix D] (in the full version). This is useful to get
smaller parameters, but for the purpose of presentation the reader can think of the norm
as the Euclidean norm of the noise in coefficient representation. More details are given
in the Appendices. We refer to the norm of the noise as the noise magnitude.

The central feature of BGV-type cryptosystems is that the current secret key and
modulus evolve as we apply operations to ciphertexts. We apply five different opera-
tions to ciphertexts during homomorphic evaluation. Three of them — addition, mul-
tiplication, and automorphism — are “semantic operations” that we use to evolve the
plaintext data which is encrypted under those ciphertexts. The other two operations —
key-switching and modulus-switching — are used for “maintenance”: These operations
do not change the plaintext at all, they only change the current key or modulus (respec-
tively), and they are mainly used to control the complexity of the evaluation. Below we
briefly describe each of these five operations on a high level. For reasons of space, key
generation and encryption are described in the full version of the paper, with even more
details being provided in [11, Appendix D].
Addition. Homomorphic addition of two ciphertext vectors with respect to the same
secret key and modulus q is done just by adding the vectors over Aq . If the two argu-
ments were encrypting the plaintext polynomials a1, a2 ∈ A2 then the sum will be an
encryption of a1 + a2 ∈ A2. This operation has no effect on the current modulus or
key, and the norm of the noise is at most the sum of norms from the noise in the two
arguments.
Multiplication. Homomorphic multiplication is done via tensor product over Aq . In
principle, if the two arguments have dimension n over Aq then the product ciphertext
has dimension n2, each entry in the output computed as the product of one entry from
the first argument and one entry from the second.5

This operation does not change the current modulus, but it changes the current key:
If the two input ciphertexts are valid with respect to the dimension-n secret key vector s,
encrypting the plaintext polynomials a1, a2 ∈ A2, then the output is valid with respect
to the dimension-n2 secret key s′ which is the tensor product of s with itself, and it
encrypts the polynomial a1 · a2 ∈ A2. The norm of the noise in the product ciphertext
can be bounded in terms of the product of norms of the noise in the two arguments. For
our choice of norm function, the norm of the product is no larger than the product of
the norms of the two arguments.
Key Switching. The public key of BGV-type cryptosystems includes additional com-
ponents to enable converting a valid ciphertext with respect to one key into a valid

5 It was shown in [5] that over polynomial rings this operation can be implemented while in-
creasing the dimension only to 2n− 1 rather than to n2.



ciphertext encrypting the same plaintext with respect to another key. For example, this
is used to convert the product ciphertext which is valid with respect to a high-dimension
key back to a ciphertext with respect to the original low-dimension key.

To allow conversion from dimension-n′ key s′ to dimension-n key s (both with
respect to the same modulus q), we include in the public key a matrix W = W [s′ → s]
over Aq , where the i’th column ofW is roughly an encryption of the i’th entry of s′ with
respect to s (and the current modulus). Then given a valid ciphertext c′ with respect to
s′, we roughly compute c = W · c′ to get a valid ciphertext with respect to s.

In some more detail, the BGV key switching transformation first ensures that the
norm of the ciphertext c′ itself is sufficiently low with respect to q. In [3] this was done
by working with the binary encoding of c′, and one of our main optimization in this
work is a different method for achieving the same goal (cf. Section 3.1). Then, if the i’th
entry in s′ is s′i ∈ A (with norm smaller than q), then the i’th column of W [s′ → s] is
an n-vector wi such that [〈wi, s〉 mod Φm(X)]q = 2ei+s′i for a low-norm polynomial
ei ∈ A. Denoting e = (e1, . . . , en′), this means that we have sW = s′ + 2e over Aq .
For any ciphertext vector c′, setting c = W · c′ ∈ Aq we get the equation

[〈c, s〉 mod Φm(X)]q = [sWc′ mod Φm(X)]q = [〈c′, s′〉+ 2 〈c′, e〉 mod Φm(X)]q

Since c′, e, and [〈c′, s′〉 mod Φm(X)]q all have low norm relative to q, then the addi-
tion on the right-hand side does not cause a wrap around q, hence we get [[〈c, s〉 mod
Φm(X)]q]2 = [[〈c′, s′〉 mod Φm(X)]q]2, as needed. The key-switching operation changes
the current secret key from s′ to s, and does not change the current modulus. The norm
of the noise is increased by at most an additive factor of 2‖ 〈c′, e〉 ‖.

Modulus Switching. The modulus switching operation is intended to reduce the norm of
the noise, to compensate for the noise increase that results from all the other operations.
To convert a ciphertext c with respect to secret key s and modulus q into a ciphertext
c′ encrypting the same thing with respect to the same secret key but modulus q′, we
roughly just scale c by a factor q′/q (thus getting a fractional ciphertext), then round
appropriately to get back an integer ciphertext. Specifically c′ is a ciphertext vector sat-
isfying (a) c′ = c (mod 2), and (b) the “rounding error term” τ def

= c′ − (q′/q)c has
low norm. Converting c to c′ is easy in coefficient representation, and one of our opti-
mizations is a method for doing the same in evaluation representation (cf. Section 3.2)
This operation leaves the current key s unchanged, changes the current modulus from
q to q′, and the norm of the noise is changed as ‖n′‖ ≤ (q′/q)‖n‖+ ‖τ · s‖. Note that
if the key s has low norm and q′ is sufficiently smaller than q, then the noise magnitude
decreases by this operation.

A BGV-type cryptosystem has a chain of moduli, q0 < q1 · · · < qL−1, where
fresh ciphertexts are with respect to the largest modulus qL−1. During homomorphic
evaluation every time the (estimated) noise grows too large we apply modulus switching
from qi to qi−1 in order to decrease it back. Eventually we get ciphertexts with respect
to the smallest modulus q0, and we cannot compute on them anymore (except by using
bootstrapping).
Automorphisms. In addition to adding and multiplying polynomials, another useful
operation is converting the polynomial a(X) ∈ A to a(i)(X)

def
= a(Xi) mod Φm(X).



Denoting by κi the transformation κi : a 7→ a(i), it is a standard fact that the set of
transformations {κi : i ∈ (Z/mZ)∗} forms a group under composition (which is the
Galois group Gal(Q(ζm)/Q)), and this group is isomorphic to (Z/mZ)∗. In [3, 11] it
was shown that applying the transformations κi to the plaintext polynomials is very
useful, some more examples of its use can be found in our Section 4.

Denoting by c(i), s(i) the vector obtained by applying κi to each entry in c, s, re-
spectively, it was shown in [3, 11] that if s is a valid ciphertext encrypting awith respect
to key s and modulus q, then c(i) is a valid ciphertext encrypting a(i) with respect to
key s(i) and the same modulus q. Moreover the norm of noise remains the same under
this operation. We remark that we can apply key-switching to c(i) in order to get an
encryption of a(i) with respect to the original key s.

2.2 Computing on Packed Ciphertexts

Smart and Vercauteren observed [19, 20] that the plaintext space A2 can be viewed
as a vector of “plaintext slots”, by an application the polynomial Chinese Remainder
Theorem. Specifically, if the ring polynomial Φm(X) factors modulo 2 into a product
of irreducible factors Φm(X) =

∏`−1
j=0 Fj(X) (mod 2), then a plaintext polynomial

a(X) ∈ A2 can be viewed as encoding ` different small polynomials, aj = a mod Fj .
Just like for integer Chinese Remaindering, addition and multiplication in A2 corre-
spond to element-wise addition and multiplication of the vectors of slots.

The effect of the automorphisms is a little more involved. When i is a power of two
then the transformations κi : a 7→ a(i) is just applied to each slot separately. When i
is not a power of two the transformation κi has the effect of roughly shifting the values
between the different slots. For example, for some parameters we could get a cyclic
shift of the vector of slots: If a encodes the vector (a0, a1, . . . , a`−1), then κi(a) (for
some i) could encode the vector (a`−1, a0, . . . , a`−2). This was used in [11] to devise
efficient procedures for applying arbitrary permutations to the plaintext slots.

We note that the values in the plaintext slots are not just bits, rather they are poly-
nomials modulo the irreducible Fj’s, so they can be used to represents elements in
extension fields GF(2d). In particular, in some of our AES implementations we used
the plaintext slots to hold elements of GF(28), and encrypt one byte of the AES state in
each slot. Then we can use an adaption of the techniques from [11] to permute the slots
when performing the AES row-shift and column-mix.

3 General-Purpose Optimizations

Below we summarize our optimizations that are not tied directly to the AES circuit
and can be used also in homomorphic evaluation of other circuits. Underlying many
of these optimizations is our choice of keeping ciphertext and key-switching matrices
in evaluation (double-CRT) representation. Our chain of moduli is defined via a set of
primes of roughly the same size, p0, . . . , pL−1, all chosen such that Z/piZ has a m’th
roots of unity. (In other words, m|pi − 1 for all i.) For i = 0, . . . , L − 1 we then
define our i’th modulus as qi =

∏i
j=0 pi. The primes p0 and pL−1 are special (p0 is

chosen to ensure decryption works, and pL−1 is chosen to control noise immediately



after encryption), however all other primes pi are of size 217 ≤ pi ≤ 220 if L < 100,
see the full version for further details.

In the t-th level of the scheme we have ciphertexts consisting of elements in Aqt
(i.e., polynomials modulo (Φm(X), qt)). We represent an element c ∈ Aqt by a φ(m)×
(t + 1) “matrix” of its evaluations at the primitive m-th roots of unity modulo the
primes p0, . . . , pt. Computing this representation from the coefficient representation
of c involves reducing cmodulo the pi’s and then t+1 invocations of the FFT algorithm,
modulo each of the pi (picking only the FFT coefficients corresponding to (Z/mZ)∗).
To convert back to coefficient representation we invoke the inverse FFT algorithm t+ 1
times, each time padding the φ(m)-vector of evaluation point with m − φ(m) zeros
(for the evaluations at the non-primitive roots of unity). This yields the coefficients of
t + 1 polynomials modulo (Xm − 1, pi) for i = 0, . . . , t, we then reduce each of
these polynomials modulo (Φm(X), pi) and apply Chinese Remainder interpolation.
We stress that we try to perform these transformations as rarely as we can.

3.1 A New Variant of Key Switching

As described in Section 2, the key-switching transformation introduces an additive fac-
tor of 2 〈c′, e〉 in the noise, where c′ is the input ciphertext and e is the noise compo-
nent in the key-switching matrix. To keep the noise magnitude below the modulus q,
it seems that we need to ensure that the ciphertext c′ itself has low norm. In BGV [3]
this was done by representing c′ as a fixed linear combination of small vectors, i.e.
c′ =

∑
i 2ic′i with c′i the vector of i’th bits in c′. Considering the high-dimension ci-

phertext c∗ = (c′0|c′1|c′2| · · · ) and secret key s∗ = (s′|2s′|4s′| · · · ), we note that we
have 〈c∗, s∗〉 = 〈c′, s′〉, and c∗ has low norm (since it consists of 0-1 polynomials).
BGV therefore included in the public key the matrix W = W [s∗ → s] (rather than
W [s′ → s]), and had the key-switching transformation computes c∗ from c′ and sets
c = W · c∗.

When implementing key-switching, there are two drawbacks to the above approach.
First, this increases the dimension (and hence the size) of the key switching matrix.
This drawback is fatal when evaluating deep circuits, since having enough memory
to keep the key-switching matrices turns out to be the limiting factor in our ability to
evaluate these deep circuits. In addition, for this key-switching we must first convert
c′ to coefficient representation (in order to compute the c′i’s), then convert each of the
c′i’s back to evaluation representation before multiplying by the key-switching matrix.
In level t of the circuit, this seem to require Ω(t log qt) FFTs.

In this work we propose a different variant: Rather than manipulating c′ to de-
crease its norm, we instead temporarily increase the modulus q. We recall that for a
valid ciphertext c′, encrypting plaintext a with respect to s′ and q, we have the equality
〈c′, s′〉 = 2e′ + a over Aq , for a low-norm polynomial e′. This equality, we note, im-
plies that for every odd integer p we have the equality 〈c′, ps′〉 = 2e′′+a, holding over
Apq , for the “low-norm” polynomial e′′ (namely e′′ = p · e′ + p−1

2 a). Clearly, when
considered relative to secret key ps and modulus pq, the noise in c′ is p times larger
than it was relative to s and q. However, since the modulus is also p times larger, we
maintain that the noise has norm sufficiently smaller than the modulus. In other words,
c′ is still a valid ciphertext that encrypts the same plaintext a with respect to secret key



ps and modulus pq. By taking p large enough, we can ensure that the norm of c′ (which
is independent of p) is sufficiently small relative to the modulus pq.

We therefore include in the public key a matrix W = W [ps′ → s] modulo pq for
a large enough odd integer p. (Specifically we need p ≈ q

√
m.) Given a ciphertext

c′, valid with respect to s and q, we apply the key-switching transformation simply by
setting c = W · c′ over Apq . The additive noise term 〈c′, e〉 that we get is now small
enough relative to our large modulus pq, thus the resulting ciphertext c is valid with
respect to s and pq. We can now switch the modulus back to q (using our modulus
switching routine), hence getting a valid ciphertext with respect to s and q.

We note that even though we no longer break c′ into its binary encoding, it seems
that we still need to recover it in coefficient representation in order to compute the eval-
uations of c′ mod p. However, since we do not increase the dimension of the ciphertext
vector, this procedure requires only O(t) FFTs in level t (vs. O(t log qt) = O(t2) for
the original BGV variant). Also, the size of the key-switching matrix is reduced by
roughly the same factor of log qt.

Our new variant comes with a price tag, however: We use key-switching matrices
relative to a larger modulus, but still need the noise term in this matrix to be small.
This means that the LWE problem underlying this key-switching matrix has larger ratio
of modulus/noise, implying that we need a larger dimension to get the same level of
security than with the original BGV variant. In fact, since our modulus is more than
squared (from q to pq with p > q), the dimension is increased by more than a factor of
two. This translates to more than doubling of the key-switching matrix, partly negating
the size and running time advantage that we get from this variant.

We comment that a hybrid of the two approaches could also be used: we can de-
crease the norm of c′ only somewhat by breaking it into digits (as opposed to binary
bits as in [3]), and then increase the modulus somewhat until it is large enough relative
to the smaller norm of c′. We speculate that the optimal setting in terms of runtime is
found around p ≈ √q, but so far did not try to explore this tradeoff.

3.2 Modulus Switching in Evaluation Representation

Given an element c ∈ Aqt in evaluation (double-CRT) representation relative to qt =∏t
j=0 pj , we want to modulus-switch to qt−1 – i.e., scale down by a factor of pt; we

call this operation Scale(c, qt, qt−1) The output should be c′ ∈ A, represented via the
same double-CRT format (with respect to p0, . . . , pt−1), such that (a) c′ ≡ c (mod 2),
and (b) the “rounding error term” τ = c′ − (c/pt) has a very low norm. As pt is odd,
we can equivalently require that the element c† def

= pt · c′ satisfy

(i) c† is divisible by pt,
(ii) c† ≡ c (mod 2), and

(iii) c† − c (which is equal to pt · τ ) has low norm.

Rather than computing c′ directly, we will first compute c† and then set c′ ← c†/pt.
Observe that once we compute c† in double-CRT format, it is easy to output also c′ in
double-CRT format: given the evaluations for c† modulo pj (j < t), simply multiply
them by p−1t mod pj . The algorithm to output c† in double-CRT format is as follows:



1. Set c̄ to be the coefficient representation of c mod pt. (Computing this requires a
single “small FFT” modulo the prime pt.)

2. Add or subtract pt from every odd coefficient of c̄, thus obtaining a polynomial δ
with coefficients in (−pt, pt] such that δ ≡ c̄ ≡ c (mod pt) and δ ≡ 0 (mod 2).

3. Set c† = c− δ, and output it in double-CRT representation.
Since we already have c in double-CRT representation, we only need the double-
CRT representation of δ, which requires t more “small FFTs” modulo the pj’s.

As all the coefficients of c† are within pt of those of c, the “rounding error term” τ =
(c† − c)/pt has coefficients of magnitude at most one, hence it has low norm.

The procedure above uses t + 1 small FFTs in total. This should be compared to
the naive method of just converting everything to coefficient representation modulo the
primes (t + 1 FFTs), CRT-interpolating the coefficients, dividing and rounding appro-
priately the large integers (of size ≈ qt), CRT-decomposing the coefficients, and then
converting back to evaluation representation (t + 1 more FFTs). The above approach
makes explicit use of the fact that we are working in a plaintext space modulo 2; in the
full version we present a technique which works when the plaintext space is defined
modulo a larger modulus.

3.3 Dynamic Noise Management

As described in the literature, BGV-type cryptosystems tacitly assume that each homo-
morphic operation operation is followed a modulus switch to reduce the noise magni-
tude. In our implementation, however, we attach to each ciphertext an estimate of the
noise magnitude in that ciphertext, and use these estimates to decide dynamically when
a modulus switch must be performed.

Each modulus switch consumes a level, and hence a goal is to reduce, over a compu-
tation, the number of levels consumed. By paying particular attention to the parameters
of the scheme, and by carefully analyzing how various operations affect the noise, we
are able to control the noise much more carefully than in prior work. In particular, we
note that modulus-switching is really only necessary just prior to multiplication (when
the noise magnitude is about to get squared), in other times it is acceptable to keep the
ciphertexts at a higher level (with higher noise).

3.4 Randomized Multiplication by Constants

Our implementation of the AES round function uses just a few multiplication operations
(only seven per byte!), but it requires a relatively large number of multiplications of
encrypted bytes by constants. Hence it becomes important to try and squeeze down the
increase in noise when multiplying by a constant. To that end, we encode a constant
polynomial in A2 as a polynomial with coefficients in {−1, 0, 1} rather than in {0, 1}.
Namely, we have a procedure Randomize(α) that takes a polynomial α ∈ A2 and
replaces each non-zero coefficients with a coefficients chosen uniformly from {−1, 1}.
By Chernoff bound, we expect that for α with h nonzero coefficients, the canonical
embedding norm of Randomize(α) to be bounded by O(

√
h) with high probability

(assuming that h is large enough for the bound to kick in). This yields a better bound



on the noise increase than the trivial bound of h that we would get if we just multiply
by α itself. (In the full version we present a heuristic argument that we use to bound the
noise, which yields the same asymptotic bounds but slightly better constants.)

4 Homomorphic Evaluation of AES

Next we describe our homomorphic implementation of AES-128. We implemented
three distinct implementation possibilities; we first describe the “packed implemen-
tation”, in which the entire AES state is packed in just one ciphertext. Two other im-
plementations (of byte-slice and bit-slice AES) are described later in Section 4.2. The
“packed” implementation uses the least amount of memory (which turns out to be the
main constraint in our implementation), and also the fastest running time for a single
evaluation. The other implementation choices allow more SIMD parallelism, on the
other hand, so they can give better amortized running time when evaluating AES on
many blocks in parallel.

A Brief Overview of AES. The AES-128 cipher consists of ten applications of the same
keyed round function (with different round keys). The round function operates on a 4×4
matrix of bytes, which are sometimes considered as element of F28 . The basic opera-
tions that are performed during the round function are AddKey, SubBytes, ShiftRows,
MixColumns. The AddKey is simply an XOR operation of the current state with 16
bytes of key; the SubBytes operation consists of an inversion in the field F28 followed
by a fixed F2-linear map on the bits of the element (relative to a fixed polynomial rep-
resentation of F28 ); the ShiftRows rotates the entries in the row i of the 4 × 4 matrix
by i − 1 places to the left; finally the MixColumns operations pre-multiplies the state
matrix by a fixed 4× 4 matrix.

Our Packed Representation of the AES state. For our implementation we chose the na-
tive plaintext space of our homomorphic encryption so as to support operations on the
finite field F28 . To this end we choose our ring polynomial as Φm(X) that factors mod-
ulo 2 into degree-d irreducible polynomials such that 8|d. (In other words, the smallest
integer d such that m|(2d− 1) is divisible by 8.) This means that our plaintext slots can
hold elements of F2d , and in particular we can use them to hold elements of F28 which
is a sub-field of F2d . Since we have ` = φ(m)/d plaintext slots in each ciphertext, we
can represent upto b`/16c complete AES state matrices per ciphertext.

Moreover, we choose our parameter m so that there exists an element g ∈ Z∗m
that has order 16 in both Z∗m and the quotient group Z∗m/ 〈2〉. This condition means
that if we put 16 plaintext bytes in slots t, tg, tg2, tg3, . . . (for some t ∈ Z∗m), then
the conjugation operation X 7→ Xg implements a cyclic right shift over these sixteen
plaintext bytes.

In the computation of the AES round function we use several constants. Some con-
stants are used in the S-box lookup phase to implement the AES bit-affine transforma-
tion, these are denoted γ and γ2j for j = 0, . . . , 7. In the row-shift/col-mix part we use
a constant Cslct that has 1 in slots corresponding to t · gi for i = 0, 4, 8, 12, and 0 in all
the other slots of the form t · gi. (Here slot t is where we put the first AES byte.) We
also use ’X’ to denote the constant that has the element X in all the slots.



4.1 Homomorphic Evaluation of the Basic Operations

We now examine each AES operation in turn, and describe how it is implemented ho-
momorphically. For each operation we denote the plaintext polynomial underlying a
given input ciphertext c by a, and the corresponding content of the ` plaintext slots are
denoted as an `-vector (αi)

`
i=1, with each αi ∈ F28 .

AddKey and SubBytes The AddKey is just a simple addition of ciphertexts, which
yields a 4× 4 matrix of bytes in the input to the SubBytes operation. We place these 16
bytes in plaintext slots tgi for i = 0, 1, . . . , 15, using column-ordering to decide which
byte goes in what slot, namely we have

a ≈ [α00α10α20α30α01α11α21α31α02α12α22α32α03α13α23α33 ],

encrypting the input plaintext matrix

A =
(
αij
)
i,j

=


α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

 .

During S-box lookup, each plaintext byte αij should be replaced by βij = S(αij),
where S(·) is a fixed permutation on the bytes. Specifically, S(x) is obtained by first
computing y = x−1 in F28 (with 0 mapped to 0), then applying a bitwise affine trans-
formation z = T (y) where elements in F28 are treated as bit strings with representation
polynomial G(X) = x8 + x4 + x3 + x+ 1.

We implement F28 inversion followed by the F2 affine transformation using the
Frobenius automorphisms, X −→ X2j . Recall that for a power of two k = 2j , the
transformation κk(a(X)) = (a(Xk) mod Φm(X)) is applied separately to each slot,
hence we can use it to transform the vector (αi)

`
i=1 into (αki )`i=1. We note that apply-

ing the Frobenius automorphisms to ciphertexts has almost no influence on the noise
magnitude, and hence it does not consume any levels.6

Inversion over F28 is done using essentially the same procedure as Algorithm 2 from
[18] for computing β = α−1 = α254. This procedure takes only three Frobenius auto-
morphisms and four multiplications, arranged in a depth-3 circuit (see details below.)
To apply the AES F2 affine transformation, we use the fact that any F2 affine transfor-
mation can be computed as a F28 affine transformation over the conjugates. Thus there
are constants γ0, γ1, . . . , γ7, δ ∈ F28 such that the AES affine transformation TAES(·)
can be expressed as TAES(β) = δ +

∑7
j=0 γj · β2j over F28 . We therefore again apply

the Frobenius automorphisms to compute eight ciphertexts encrypting the polynomials
κk(b) for k = 1, 2, 4, . . . , 128, and take the appropriate linear combination (with coeffi-
cients the γj’s) to get an encryption of the vector (TAES(α−1i ))`i=1. For our parameters,
a multiplication-by-constant operation consumes roughly half a level in terms of added
noise.

6 It does increase the noise magnitude somewhat, because we need to do key switching after
these automorphisms. But this is only a small influence, and we will ignore it here.



One subtle implementation detail to note here, is that although our plaintext slots all
hold elements of the same field F28 , they hold these elements with respect to different
polynomial encodings. The AES affine transformation, on the other hand, is defined
with respect to one particular fixed polynomial encoding. This means that we must
implement in the i’th slot not the affine transformation TAES(·) itself but rather the pro-
jection of this transformation onto the appropriate polynomial encoding: When we take
the affine transformation of the eight ciphertexts encrypting bj = κ2j (b), we therefore
multiply the encryption of bj not by a constant that has γj in all the slots, but rather by
a constant that has in slot i the projection of γj to the polynomial encoding of slot i.

Below we provide a pseudo-code description of our S-box lookup implementation,
together with an approximation of the levels that are consumed by these operations.
(These approximations are somewhat under-estimates, however.)

Level
Input: ciphertext c t

// Compute c254 = c−1

1. c2 ← c� 2 t // Frobenius X 7→ X2

2. c3 ← c× c2 t+ 1 // Multiplication
3. c12 ← c3 � 4 t+ 1 // Frobenius X 7→ X4

4. c14 ← c12 × c2 t+ 2 // Multiplication
5. c15 ← c12 × c3 t+ 2 // Multiplication
6. c240 ← c15 � 16 t+ 2 // Frobenius X 7→ X16

7. c254 ← c240 × c14 t+ 3 // Multiplication

// Affine transformation over F2

8. c′2j ← c254 � 2j for j = 0, 1, 2, . . . , 7 t+ 3 // Frobenius X 7→ X2j

9. c′′ ← γ +
∑7
j=0 γj × c′2j t+ 3.5 // Linear combination over F28

ShiftRows and MixColumns As commonly done, we interleave the ShiftRows/MixColumns
operations, viewing both as a single linear transformation over vectors from (F28)16.
As mentioned above, by a careful choice of the parameter m and the placement of the
AES state bytes in our plaintext slots, we can implement a rotation-by-i of the rows
of the AES matrix as a single automorphism operations X 7→ Xgi (for some element
g ∈ (Z/mZ)∗). Given the ciphertext c′′ after the SubBytes step, we use these opera-
tions (in conjunction with `-SELECT operations, as described in [11]) to compute four
ciphertexts corresponding to the appropriate permutations of the 16 bytes (in each of the
`/16 different input blocks). These four ciphertexts are combined via a linear operation
(with coefficients 1, X , and (1 + X)) to obtain the final result of this round function.
Below is a pseudo-code of this implementation and an approximation for the levels that
it consumes (starting from t − 3.5). We note that the permutations are implemented
using automorphisms and multiplication by constant, thus we expect them to consume
roughly 1/2 level.



Level
Input: ciphertext c′′ t+ 3.5

10. c∗j ← πj(c
′′) for j = 1, 2, 3, 4 t+ 4.0 // Permutations

11. Output X · c∗1 + (X + 1) · c∗2 + c∗3 + c∗4 t+ 4.5 // Linear combination

The Cost of One Round Function The above description yields an estimate of 5
levels for implementing one round function. This is however, an underestimate. The
actual number of levels depends on details such as how sparse the scalars are with
respect to the embedding viaΦm in a given parameter set, as well as the accumulation of
noise with respect to additions, Frobenius operations etc. Running over many different
parameter sets we find the average number of levels per round for this method varies
between 5.0 and 6.0.

We mention that the byte-slice and bit-slice implementations, given in Section 4.2
below, can consume less levels per round function, since they do not need to permute
slots inside a single ciphertext. Specifically, for our byte-sliced implementation, we
only need 4.5-5.0 levels per round on average. However, since we need to manipulate
many more ciphertexts, the implementation takes much more time per evaluation and
requires much more memory. On the other hand it offers wider parallelism, so yields
better amortized time per block. Our bit-sliced implementation should theoretical con-
sume the least number of levels (by purely counting multiplication gates), but the noise
introduced by additions means the average number of levels consumed per round varies
from 5.0 upto 10.0.

4.2 Byte- and Bit-Slice Implementations

In the byte sliced implementation we use sixteen distinct ciphertexts to represent a
single state matrix. (But since each ciphertext can hold ` plaintext slots, then these 16
ciphertexts can hold the state of ` different AES blocks). In this representation there
is no interaction between the slots, thus we operate with pure `-fold SIMD operations.
The AddKey and SubBytes steps are exactly as above (except applied to 16 ciphertexts
rather than a single one). The permutations in the ShiftRows/MixColumns step are now
“for free”, but the scalar multiplication in MixColumns still consumes another level in
the modulus chain.

Using the same estimates as above, we expect the number of levels per round to be
roughly four (as opposed to the 4.5 of the packed implementation). In practice, again
over many parameter sets, we find the average number of levels consumed per round is
between 4.5 and 5.0.

For the bit sliced implementation we represent the entire round function as a binary
circuit, and we use 128 distinct ciphertexts (one per bit of the state matrix). However
each set of 128 ciphertexts is able to represent a total of ` distinct blocks. The main
issue here is how to create a circuit for the round function which is as shallow, in terms
of number of multiplication gates, as possible. Again the main issue is the SubBytes
operation as all operations are essentially linear. To implement the SubBytes we used
the “depth-16” circuit of Boyar and Peralta [1], which consumes four levels. The rest
of the round function can be represented as a set of bit-additions, Thus, implementing



this method means that we consumes a minimum of four levels on computing an entire
round function. However, the extensive additions within the Boyar–Peralta circuit mean
that we actually end up consuming a lot more. On average this translates into actually
consuming between 5.0 and 10.0 levels per round.

4.3 Performance Details

As remarked in the introduction, we implemented the above variant of evaluating AES
homomorphically on a very large memory machine; namely a machine with 256 GB of
RAM. Firstly parameters were selected, for details see the full version, to cope with 60
levels of computation, and a public/private key pair was generated; along with the key-
switching data for multiplication operations and conjugation with-respect-to the Galois
group.

As input to the actual computation was an AES plaintext block and the eleven round
keys; each of which was encrypted using our homomorphic encryption scheme. Thus
the input consisted of eleven packed ciphertexts. Producing the encrypted key schedule
took around half an hour. To evaluate the entire ten rounds of AES took just over 36
hours; however each of our ciphertexts could hold 864 plaintext slots of elements in
F28 , thus we could have processed 54 such AES blocks in this time period. This would
result in a throughput of around forty minutes per AES block.

We note that as the algorithm progressed the operations became faster. The first
round of the AES function took 7 hours, whereas the penultimate round took 2 hours
and the last round took 30 minutes. Recall, the last AES round is somewhat simpler as
it does not involve a MixColumns operation.

Whilst our other two implementation choices (given in Section 4.2 below) may seem
to yield better amortized per-block timing, the increase in memory requirements and
data actually makes them less attractive when encrypting a single block. For example
just encrypting the key schedule in the Byte-Sliced variant takes just under 5 hours
(with 50 levels), with an entire encryption taking 65 hours (12 hours for the first round,
with between 4 and 5 hours for both the penultimate and final rounds). This however
equates to an amortized time of just over five minutes per block.

The Bit-Sliced variant requires over 150 hours to just encrypt the key schedule
(with 60 levels), and evaluating a single round takes so long that our program is timed
out before even a single round is evaluated.
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7. Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and
modulus switching for fully homomorphic encryption over the integers. In Advances in
Cryptology - EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
446–464. Springer, 2012.
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A Other Optimizations

Some other optimizations that we encountered during our implementation work are
discussed next. Not all of these optimizations are useful for our current implementation,
but they may be useful in other contexts.

Three-way Multiplications. Sometime we need to multiply several ciphertexts together,
and if their number is not a power of two then we do not have a complete binary tree
of multiplications, which means that at some point in the process we will have three
ciphertexts that we need to multiply together.

The standard way of implementing this 3-way multiplication is via two 2-argument
multiplications, e.g., x · (y · z). But it turns out that here it is better to use “raw multipli-
cation” to multiply these three ciphertexts (as done in [5]), thus getting an “extended”
ciphertext with four elements, then apply key-switching (and later modulus switching)
to this ciphertext. This takes only six ring-multiplication operations (as opposed to eight
according to the standard approach), three modulus switching (as opposed to four), and
only one key switching (applied to this 4-element ciphertext) rather than two (which
are applied to 3-element extended ciphertexts). All in all, this three-way multiplication
takes roughly 1.5 times a standard two-element multiplication.

We stress that this technique is not useful for larger products, since for more than
three multiplicands the noise begins to grow too large. But with only three multiplicands
we get noise of roughly B3 after the multiplication, which can be reduced to noise≈ B
by dropping two levels, and this is also what we get by using two standard two-element
multiplications.

Commuting Automorphisms and Multiplications. Recalling that the automorphisms
X 7→ Xi commute with the arithmetic operations, we note that some ordering of these
operations can sometimes be better than others. For example, it may be better perform
the multiplication-by-constant before the automorphism operation whenever possible.
The reason is that if we perform the multiply-by-constant after the key-switching that



follows the automorphism, then added noise term due to that key-switching is multi-
plied by the same constant, thereby making the noise slightly larger. We note that to
move the multiplication-by-constant before the automorphism, we need to multiply by
a different constant.

Switching to higher-level moduli. We note that it may be better to perform automor-
phisms at a higher level, in order to make the added noise term due to key-switching
small with respect to the modulus. On the other hand operations at high levels are more
expensive than the same operations at a lower level. A good rule of thumb is to per-
form the automorphism operations one level above the lowest one. Namely, if the naive
strategy that never switches to higher-level moduli would perform some Frobenius oper-
ation at level qi, then we perform the key-switching following this Frobenius operation
at level Qi+1, and then switch back to level qi+1 (rather then using Qi and qi).

Commuting Addition and Modulus-switching. When we need to add many terms that
were obtained from earlier operations (and their subsequent key-switching), it may be
better to first add all of these terms relative to the large modulus Qi before switching
the sum down to the smaller qi (as opposed to switching all the terms individually to qi
and then adding).

Reducing the number of key-switching matrices. When using many different automor-
phisms κi : X 7→ Xi we need to keep many different key-switching matrices in the
public key, one for every value of i that we use. We can reduces this memory require-
ment, at the expense of taking longer to perform the automorphisms. We use the fact that
the Galois group Gal that contains all the maps κi (which is isomorphic to (Z/mZ)∗)
is generated by a relatively small number of generators. (Specifically, for our choice of
parameters the group (Z/mZ)∗ has two or three generators.) It is therefore enough to
store in the public key only the key-switching matrices corresponding to κgj ’s for these
generators gj of the group Gal. Then in order to apply a map κi we express it as a prod-
uct of the generators and apply these generators to get the effect of κi. (For example, if
i = g21 · g2 then we need to apply κg1 twice followed by a single application of κg2 .)


