
On the Security of TLS-DHE in the Standard
Model

Tibor Jager1, Florian Kohlar2, Sven Schäge3?, and Jörg Schwenk2

1 Karlsruhe Institute of Technology, Germany
tibor.jager@kit.edu

2 Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany
{florian.kohlar,joerg.schwenk}@rub.de

3 University College London, United Kingdom
s.schage@ucl.ac.uk

Abstract. TLS is the most important cryptographic protocol in use
today. However, up to now there is no complete cryptographic security
proof in the standard model, nor in any other model. We give the first
such proof for the core cryptographic protocol of TLS ciphersuites based
on ephemeral Diffie-Hellman key exchange (TLS-DHE), which include
the cipher suite TLS DHE DSS WITH 3DES EDE CBC SHA mandatory in TLS
1.0 and TLS 1.1. It is impossible to prove security of the TLS Handshake
protocol in any classical key-indistinguishability-based security model
(like for instance the Bellare-Rogaway or the Canetti-Krawczyk model),
due to subtle issues with the encryption of the final Finished messages.
Therefore we start with proving the security of a truncated version of the
TLS-DHE Handshake protocol, which has been considered in previous
works on TLS. Then we define the notion of authenticated and confi-
dential channel establishment (ACCE) as a new security model which
captures precisely the security properties expected from TLS in prac-
tice, and show that the combination of the TLS Handshake with data
encryption in the TLS Record Layer can be proven secure in this model.
Keywords: authenticated key exchange, SSL, TLS, provable security,
ephemeral Diffie-Hellman

1 Introduction

Transport Layer Security (TLS) is the single most important Internet security
mechanism today. Session keys in TLS are established in the TLS Handshake
protocol, using either encrypted key transport (TLS-RSA) or (ephemeral) Diffie-
Hellman key exchange (TLS-DH(E)), whereas authentication can be provided
mutual or server-only. Due to a subtle interleaving of the TLS Handshake with
the TLS Record Layer it is impossible to prove the security of TLS using well-
established security models [4,10,9], which define security via indistinguishability
of keys (see [18] for a detailed description of this issue). Therefore there is no
security proof for the complete protocol up to now.

? Supported by EPSRC grant number EP/G013829/1.

The paradox that the most important authenticated key-exchange (AKE)
protocol cannot be proven secure in any existing security model can be solved in
two ways. Either one considers a modified version of the TLS Handshake protocol
(‘truncated TLS’), which was subject to previous work [20], or a new security
model for the combination of TLS Handshake protocol and data encryption in
the TLS Record Layer must be devised. In this paper we follow both approaches.

1.1 Contributions

We provide new security results for the core cryptographic protocol of TLS based
on ephemeral Diffie-Hellman key exchange (TLS-DHE).

First we give a formal proof that the truncated version of the TLS-DHE
Handshake protocol from [20] is a secure authenticated key exchange protocol.
We consider a security model which extends the well-known Bellare-Rogaway
model [4] to adaptive corruptions and perfect forward secrecy in the public-key
setting (cf. [6]). This allows to compare our results to previous work.

Second we define the notion of authenticated and confidential channel es-
tablishment (ACCE). ACCE protocols are an extension of AKE protocols, in
the sense that the symmetric cipher is integrated into the model. In contrast to
AKE protocols, where one requires key indistinguishability, we demand that a
secure ACCE protocol allows to establish a ‘secure communication channel’ in
the sense of stateful length-hiding authenticated encryption [22]. Loosely speak-
ing, an ACCE channel guarantees that messages written to this channel are
confidential (indistinguishable, and even the length of messages is concealed up
to some granularity), and that a sequence of messages read from this channel
corresponds exactly to the sequence of messages sent by the legitimate sender (of
course up to dropping messages at the very end of the sequence, which is always
possible). This captures exactly the properties expected from TLS-like protocols
in practice. We prove that the combination of the TLS Handshake protocol with
the TLS Record Layer forms a secure ACCE protocol, if the TLS Record Layer
provides security in the sense of length-hiding authenticated encryption. Note
that the latter was proven recently by Paterson et al. [22] for CBC-based Record
Layer protocols.

The analyses of both truncated TLS-DHE (as an AKE protocol) and TLS-
DHE (as an ACCE protocol) require, that the building blocks of TLS-DHE
(digital signature scheme, Diffie-Hellman key exchange, symmetric cipher) meet
certain security properties. The majority of these properties are standard as-
sumptions, solely for the pseudo-random function we require an additional non-
standard security assumption, which is a variant of the Oracle Diffie-Hellman
assumption introduced by Abdalla, Bellare, and Rogaway [1]. We explain in
Section 6 why such an assumptions seems hard to avoid. Our proof is stated for
mutual authentication, i.e., the client authenticates itself using a client certificate.
This allows us to base our work on standard definitions for secure authenticated
key exchange.

1.2 Interpretation

Our results show that the core cryptographic protocol of TLS-DHE is crypto-
graphically sound, if its building blocks are suitably secure (the full version [18]
of this paper contains an analysis to what extent the concrete building blocks of
TLS meet the required properties, here we can build upon previous work that
considered particular components of TLS).

We note that TLS-DHE is much less used in practice than TLS with en-
crypted key transport (TLS-RSA). Moreover, we consider mutual authentication
(that is, both the client and the server are in possession of a certified public key,
which is used in the protocol to mutually authenticate each other), which is also
rarely used in practice. We believe that our analysis of TLS-DHE is nevertheless
of practical value, for the following reasons:

First, the TLS-DHE-based ciphersuite TLS DHE DSS WITH 3DES EDE CBC SHA

is mandatory for TLS 1.0 and 1.1, which are both still in widespread use. Only
the most recent version TLS 1.2 prescribes TLS-RSA as mandatory. So one could
theoretically configure a considerable amount of servers to use only TLS-DHE
and benefit from the provable security guarantees of TLS-DHE as provided in
our security analysis.

Second, we can show that TLS-DHE provides perfect forward secrecy – a
very strong form of security, which basically states that future compromises of
long-term secrets do no threaten past communication sessions. With encrypted
key transport, as in TLS-RSA, this is not achievable, since an attacker that com-
promises the long-term key (the private decryption key) can easily obtain session
keys from previous sessions by just decrypting recorded ciphertexts. To better
protect users from the consequences of such key compromise attacks and offer
better long-term security, service providers might therefore consider to switch
to the (exclusive) use of TLS-DHE. Recently, Google has made a first step in
that direction, by announcing that it will switch over to TLS-DHE as the de-
fault key exchange method for its services to provide (and push) perfect forward
secrecy [2].

Third, it seems that giving a security proof of the actually most widespread
option TLS-RSA is impossible in the standard model. Any approach we can think
of would require IND-CCA-security of the encryption scheme used to transport
the premaster secret from the client to the server, as otherwise we cannot simu-
late protocol executions while still being able to argue with indistinguishability
of premaster secrets. But unfortunately it is well-known that the RSA-PKCS
v1.5 scheme used in TLS is vulnerable to chosen-ciphertext attacks [7]. This
problem was circumvented in previous work by either using an abstract public-
key encryption scheme which is IND-CCA-secure [20], or by assuming PKCS#1
v2.0 (RSA-OAEP), which is not used in TLS, and omitting authentication [17].

Our work can also be seen as a ‘stepping stone’ towards a TLS version with
a complete security proof in the standard model. Essentially, we identify certain
security properties and prove that the TLS protocol framework yields a secure
ACCE protocol under the assumption that the TLS building blocks satisfy these
properties.

1.3 Related Work

Because of its eminent role, TLS and its building blocks have been subject to
several security analyses. We mention only the works closely related to ours here,
a more complete overview can be found in [18].

Gajek et al. [17] presented the first security analysis of the complete TLS
protocol, combining Handshake and Record Layer, in the UC framework [9] for
all three key exchange protocols static Diffie-Hellman, ephemeral signed Diffie-
Hellman, and encrypted key transport. The ideal functionalities described in
this paper are much weaker than the security guarantees we expect from TLS,
since only unauthenticated key exchange is considered. The paper furthermore
assumes that RSA-OAEP is used for encrypted key transport, which is not the
case for current versions of TLS.

Morissey et al. [20] analysed, in a paper that is closest to our results, the
security of the truncated TLS Handshake protocol in the random oracle model
and provided a modular proof of security. They make extensive use of the random
oracle model to separate the three layers in the TLS Handshake they define, and
to switch from computational to indistinguishability based security models. The
use of the random oracle model is justified by the authors of [20] since it seems
impossible to prove the PKCS#1 v1.5 based ciphersuites of TLS secure in the
standard model. This argumentation does not affect our work, since we consider
Diffie-Hellman-based ciphersuites.

Paterson et al. [22] introduce the notion of length-hiding authenticated en-
cryption, which captures the properties expected from the data encryption in the
TLS Record Layer. Most importantly, they were able to show that CBC-based
ciphersuites of TLS 1.1 and 1.2 meet this security notion. This work matches
nicely our results on the TLS Handshake protocol, and is an important building
block for our work.

Very recently, Brzuska et al. [8] proposed relaxed game-based security notions
for key exchange. This approach may serve as an alternative to our ACCE-based
approach to circumvent the impossibility of proving the TLS Handshake protocol
secure in a key-indistinguishability-based security model.

1.4 Remark on our choice of the security model

Authenticated key exchange (AKE) is a basic building block in modern cryp-
tography. However, since many different security models for different purposes
exist [3,4,6,9,10,13,19,12], the choice of the right model is not an easy task, and
must be considered carefully. We have to take into account that we cannot mod-
ify any detail in the TLS protocol, nor in the network protocols preceding it. We
have chosen an enhanced variant of the first model of Bellare and Rogaway [4].
Variants of this model have also been studied by [12,6], and especially by [20].
Detailed reasons for our choice are given in the full version [18].

2 Preliminaries and Definitions

We denote with ∅ the empty string, and with [n] = {1, . . . , n} ⊂ N the set of

integers between 1 and n. If A is a set, then a
$← A denotes the action of sampling

a uniformly random element from A. If A is a probabilistic algorithm, then

a
$← A denotes that A is run with fresh random coins and returns a. In addition

to the complexity assumption described in the sequel, we need the standard
security notions of digital signatures (EUF-CMA), pseudo-random functions,
and the Decisional Diffie-Hellman (DDH) assumption. These are detailed in the
full version [18].

The PRF-Oracle-Diffie-Hellman (PRF-ODH) Assumption. Let G be a group
with generator g. Let PRF be a deterministic function z = PRF(X,m), taking
as input a key X ∈ G and some bit string m, and returning a string z ∈ {0, 1}µ.
Consider the following security experiment played between a challenger C and
an adversary A.

1. The adversary A outputs a value m.

2. The Challenger samples u, v
$← [q], z1

$← {0, 1}µ uniformly random and sets
z0 := PRF(guv,m). Then it tosses a coin b ∈ {0, 1} and returns zb, g

u and
gv to the adversary.

3. The adversary may query a pair (X,m′) with X 6= gu to the challenger. The
challenger replies with PRF(Xv,m′).

4. Finally the adversary outputs a guess b′ ∈ {0, 1}.

Definition 1. We say that the PRF-ODH problem is (t, εprfodh)-hard with respect
to G and PRF, if for all adversaries A that run in time t it holds that

|Pr [b = b′]− 1/2| ≤ εprfodh.

The PRF-Oracle-Diffie-Hellman (PRF-ODH) assumption is a variant of the ODH
assumption introduced by Abdalla, Bellare and Rogaway in [1], adopted from
hash functions to PRFs. In contrast to allowing a polynomial number of queries
as in the original assumption [1], we allow only a single oracle query.

Stateful Length-Hiding Authenticated Encryption. The following description and
security model was obtained from the authors of [22] via personal communica-
tion. See [22] for a detailed discussion and motivation of this security notion.

A stateful symmetric encryption scheme consists of two algorithms StE =

(StE.Enc,StE.Dec). Algorithm (C, st′e)
$← StE.Enc(k, len, H,m, ste) takes as in-

put a secret key k ∈ {0, 1}κ, an output ciphertext length len ∈ N, some header
data H ∈ {0, 1}∗, a plaintext m ∈ {0, 1}∗, and the current state ste ∈ {0, 1}∗,
and outputs either a ciphertext C ∈ {0, 1}len and an updated state st′e or an
error symbol ⊥ if for instance the output length len is not valid for the message
m. Algorithm (m′, st′d) = StE.Dec(k,H,C, std) takes as input a key k, header
data H, a ciphertext C, and the current state std ∈ {0, 1}∗, and returns an

Encrypt(m0,m1, len, H): Decrypt(C,H):

u := u+ 1 v := v + 1

(C(0), st
(0)
e)

$← StE.Enc(k, len, H,m0, ste) If b = 0, then return ⊥
(C(1), st

(1)
e)

$← StE.Enc(k, len, H,m1, ste) (m, std) = StE.Dec(k,H,C, std)

If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If v > u or C 6= Cv, then phase := 1

(Cu, ste) := (C(b), st
(b)
e) If phase = 1 then return m

Return Cu Return ⊥

Fig. 1. Encrypt and Decrypt oracles in the stateful LHAE security experiment.

updated state st′d and a value m′ which is either the message encrypted in C, or
a distinguished error symbol ⊥ indicating that C is not a valid ciphertext. Both
encryption state ste and decryption state std are initialized to the empty string ∅.
Algorithm StE.Enc may be probabilistic, while StE.Dec is always deterministic.

Definition 2. We say that a stateful symmetric encryption scheme StE =
(StE.Init,StE.Enc,StE.Dec) is (t, εsLHAE)-secure, if Pr[b = b′] ≤ εsLHAE for all
adversaries A running in time at most t in the following experiment.

– Choose b
$← {0, 1} and k

$← {0, 1}κ, and set ste := ∅ and std := ∅,
– run b′

$← AEncrypt,Decrypt.
Here AEncrypt,Decrypt denotes that A has access to two oracles Encrypt and Decrypt.
The encryption oracle Encrypt(m0,m1, len, H) takes as input two messages m0

and m1, length-parameter len and header data H. It maintains a counter u which
is initialized to 0. Oracle Decrypt(C,H) takes as input a ciphertext C and header
H, and keeps a counter v and a variable phase, both are initialized to 0. Both
oracles process a query as defined in Figure 1.

3 Transport Layer Security

The current version of TLS is 1.2 [16] coexists with its predecessors TLS 1.0 [14]
and TLS 1.1 [15]. In the following we give a description of all messages sent
during the TLS Handshake with ephemeral Diffie-Hellman key exchange and
client authentication (i.e. for ciphersuites TLS DHE *). This description and its
illustration in Figure 2 are valid for all TLS versions since v1.0. Our descrip-
tion makes use of several ‘state variables’ (Λ, k,Π, ρ, st). For instance, variable
Λ ∈ {accept, reject} determines whether one party ‘accepts’ or ‘rejects’ an
execution of the protocol, or variable k stores the session key. These variables
will also appear later in our security model (Section 4).

The TLS Handshake protocol consists of 13 messages, whose content ranges
from constant byte values to tuples of cryptographic values. Not all messages
are relevant for our security proof, we list them merely for completeness. All
messages are prepended with a numeric tag that identifies the type of message,
a length value, and the version number of TLS. All messages are sent through

C S

(IC = pkC , skC)(IC = pkC , skC) (IS = pkS , skS)

rC
$← {0, 1}λ m1 := (rC , cs-list)

rS
$← {0, 1}λ, tS

$← Zq, TS := gtS mod p

σS := SIG.Sign(skS , rC ||rS ||p||g||TS)

(m2,m3) := (rS , cs-choice, certS)

(m4,m5,m6) := (p, g, TS , σS , get-cert, done)

Π := S, S is determined from certS

If SIG.Vfy(pkΠ , σS , rC ||rS ||p||g||TS) = 0→ Λ := ‘reject’ and abort

tC
$← Zq, TC := gtC mod p, σC := SIG.Sign(skC ,m1|| . . . ||m8)

pms := T tCS mod p,ms := PRF(pms, label1||rC ||rS)

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := PRF(ms, label2||rC ||rS)

k := (kClientenc := (KC→S
enc ,KC→S

mac), kClientdec := (KS→C
enc ,KS→C

mac))

(m7,m8,m9,m10) := (certC , TC , σC , f lagenc)

finC := PRF(ms, label3||m1|| . . . ||m10)

m7,m8,m9,m10

m11 := StE.Enc(kClientenc , len, H, finC , ste)

Π := C, C is determined from certC

If SIG.Vfy(pkΠ , σC ,m1|| . . . ||m8) = 0→ Λ := ‘reject’ and abort

pms := T tSC mod p,ms := PRF(pms, label1||rC ||rS)

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := PRF(ms, label2||rC ||rS)

k := (kServerenc := (KS→C
enc ,KS→C

mac), kServerdec := (KC→S
enc ,KC→S

mac))
m12 := flagenc, finS := PRF(ms, label4||m1|| . . . ||m12)

m12,m13 := StE.Enc(kServerenc , len, H, finS , ste)

If finS 6= PRF(ms, label4||m1|| . . . ||m12)→ Λ := ‘reject’ and abort

else Λ := ‘accept’ and output k

If finC 6= PRF(ms, label3||m1|| . . . ||m10)→ Λ := ‘reject’ and abort

else Λ := ‘accept’ and output kpre-accept phase

——————————————————————————————————–

post-accept phase
StE.Enc(kClientenc , len, H, data, ste)

StE.Enc(kServerenc , len, H, data, ste)

Fig. 2. Handshake protocol for ciphersuites TLS DHE * with client authentication

the TLS Record Layer, which at startup provides no encryption nor any other
cryptographic transformations.

Message m1 is the Client Hello message. It contains four values, two of
which are optional. For our analysis the only important value is rC , the random
value chosen by the client. It consists of 32 bytes (256 Bits), where 4 Bytes are
usually used to encode the local time of the client. The remaining 28 Bytes are
chosen randomly by the client. This is followed by a list cs-list of ciphersuites,
where each ciphersuite is a tuple of key exchange method, signing, encryption
and MAC algorithms, coded as two bytes. Data compression is possible before
encryption and is signaled by the inclusion of zero or more compression methods.

The Server Hello message m2 has the same structure as Client Hello,
with the only exception that at most one ciphersuite and one compression
method can be present. Message m3 may contain a certificate (or a chain of
certificates, which is not considered in this paper) and the public key in the cer-
tificate must match the ciphersuite chosen by the server. For ephemeral Diffie-
Hellman key exchange, the public key may be any key that can be used to sign
messages. The Diffie-Hellman (DH) key exchange parameters are contained in
the Server Key Exchange message m4, including information on the DH group
(e.g. prime number p and generator g for a prime-order q subgroup of Z∗p), the
DH share TS , and a signature computed over these values plus the two random
numbers rC and rS . The next two messages are very simple: the Certificate

Request message m5 only contains a list of certificate types that the client may
use to authenticate itself, and the Server Hello Done message m6 does not
contain any data, but consists only of a constant tag with byte-value ‘14’ and a
length value ‘0’.

Having received these messages, the signature σS is verified. If this fails, the
client ‘rejects’ and aborts, otherwise the client completes the key exchange and
computes the cryptographic keys. The Client Certificate message m7 con-
tains a signing certificate certC with the public key pkC of the client.4 Message
m8 is called Client Key Exchange, and contains the Diffie-Hellman share TC
of the client. To authenticate the client, a signature σC is computed on a con-
catenation of all previous messages (up to m8) and padded prefixes and sent in
the Certificate Verify message m9.

The client is now also able to compute the premaster secret pms, from which
all further secret values are derived. After computing the master secret ms, it is
stored for the lifetime of the TLS session, and pms is erased from memory. The
master secret ms is subsequently used, together with the two random nonces, to
derive all encryption and MAC keys as well as the Client Finished message
finC . More precisely, the key material is computed as

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := PRF(ms, label2||rC ||rS). (1)

After these computations have been completed, the keys are handed over to
the TLS Record Layer of the client, which is now able to MAC and encrypt
any data. To signal the ‘start of encryption’ to the server, a single message
m10 (Change Cipher Spec) with byte value ‘1’ (flagenc) is sent unencrypted
to S. Then message m11 consists of an authenticated encryption of the Client

4 When either party receives a certificate certX , the partner id is set to Π := X.

Finished message finC . After the server has received messages m7,m8,m9, the
server verifies the signature in m9. If this fails, the server ‘rejects’ (i.e. sets Λ =
‘reject’) and aborts. Otherwise it first determines pms and ms. From this the
encryption and MAC keys are computed as in (1). It can then decrypt m11 and
check finC by computing the pseudo-random value on the messages sent and
received by the server. If this check fails, it ‘rejects’ and aborts. If the check is
successful, it ‘accepts’ (i.e. sets Λ = ‘accept’), computes the Server Finished

message finS and sends messages m12 and m13 to the client. If the check of finS
on the client side is successful, the client also ‘accepts’.

The obtained keys can now be used to transmit payload data in the TLS
Record Layer using a stateful symmetric encryption scheme (StE.Enc,StE.Dec).

Abbreviated TLS Handshakes, side-channels and cross-protocol at-
tacks. In our analysis, we do not consider the abbreviated TLS Handshake, but
note that the server can always enforce an execution of the full protocol. More-
over, we do not consider attacks based on side-channels, such as error messages,
or cross-protocol attacks like [24].

4 AKE Protocols

While the established security models for, say, encryption (e.g. IND-CPA or
IND-CCA security), or digital signatures (e.g., EUF-CMA), are clean and sim-
ple, a more complex model is required to model the capabilities of active ad-
versaries to define secure authenticated key-exchange. An important line of re-
search [6,10,19,13] dates back to Bellare and Rogaway [4], where an adversary
is provided with an ‘execution environment’, which emulates the real-world ca-
pabilities of an active adversary, which has full control over the communication
network. In the sequel we describe a variant of this model, which captures adap-
tive corruptions, perfect forward secrecy, and security against key-compromise
impersonation attacks in a public-key setting.

Execution Environment Consider a set of parties {P1, . . . , P`}, ` ∈ N, where
each party Pi ∈ {P1, . . . , P`} is a (potential) protocol participant and has a long-
term key pair (pki, ski). To model several sequential and parallel executions of
the protocol, each party Pi is modeled by a collection of oracles π1

i , . . . , π
d
i for

d ∈ N. Each oracle πsi represents a process that executes one single instance of
the protocol. All oracles π1

i , . . . , π
d
i representing party Pi have access to the same

long-term key pair (pki, ski) of Pi and to all public keys pk1, . . . , pk`. Moreover,
each oracle πsi maintains as internal state the following variables:
– Λ ∈ {accept, reject}.
– k ∈ K, where K is the keyspace of the protocol.
– Π ∈ {1, . . . , `} containing the intended communication partner, i.e., an index
j that points to a public key pkj used to perform authentication.5

– Variable ρ ∈ {Client,Server}.
5 We assume that each party Pi is uniquely identified by its public key pki. In practice,

several keys may be assigned to one identity. Furthermore, there may be other ways

– Some additional temporary state variable st (which may, for instance, be
used to store ephemeral Diffie-Hellman exponents or a transcript of mes-
sages).

The internal state of each oracle is initialized to (Λ, k,Π, ρ, st) = (∅, ∅, ∅, ∅, ∅),
where V = ∅ denotes that variable V is undefined. Furthermore, we will always
assume (for simplicity) that k = ∅ if an oracle has not reached accept-state
(yet), and contains the computed key if an oracle is in accept-state, so that we
have

k 6= ∅ ⇐⇒ Λ = accept. (2)

An adversary may interact with these oracles by issuing the following queries.

– Send(πsi ,m): The adversary can use this query to send message m to oracle
πsi . The oracle will respond according to the protocol specification, depending
on its internal state. If the attacker asks the first Send-query to oracle πsi ,
then the oracle checks whether m = > consists of a special ‘initialization’
symbol >. If true, then it sets its internal variable ρ := Client and responds
with the first protocol message. Otherwise it sets ρ := Server and responds as
specified in the protocol. 6 The variables Λ, k,Π, st are also set after certain
Send-queries. 7

– Reveal(πsi): Oracle πsi responds to a Reveal-query with the contents of variable
k. Note that we have k 6= ∅ if and only if Λ = accept, see (2).

– Corrupt(Pi): Oracle π1
i responds with the long-term secret key ski of party

Pi.
8 If Corrupt(Pi) is the τ -th query issued by A, then we say that Pi is

τ -corrupted. For parties that are not corrupted we define τ :=∞.
– Test(πsi): This query may be asked only once throughout the game. If πsi has

state Λ 6= accept, then it returns some failure symbol ⊥. Otherwise it flips

a fair coin b, samples an independent key k0
$← K, sets k1 = k to the ‘real’

key computed by πsi , and returns kb.

Security Definition Bellare and Rogaway [4] have introduced the notion of
matching conversations in order to define correctness and security of an AKE
protocol precisely. We denote with Ti,s the sequence that consists of all messages
sent and received by πsi in chronological order (not including the initialization-
symbol >). We also say that Ti,s is the transcript of πsi . For two transcripts Ti,s
and Tj,t, we say that Ti,s is a prefix of Tj,t, if Ti,s contains at least one message,

to determine identities, for instance by using certificates. However, this is out of
scope of this paper.

6 Note that we assume that learning identities of communication partners (which is
necessary to determine the public-key used to perform authentication) is part of the
protocol.

7 For details on when and how they are set in TLS, see the description in Section 3
and Figure 2.

8 Note, that the adversary does not ‘take control’ of oracles corresponding to a cor-
rupted party. But he learns the long-term secret key, and can henceforth simulate
these oracles.

and the messages in Ti,s are identical to and in the same order as the first |Ti,s|
messages of Tj,t.

Definition 3 (Matching conversations). We say that πsi has a matching
conversation to πtj, if
– Tj,t is a prefix of Ti,s and πsi has sent the last message(s), or
– Ti,s is a prefix of Tj,t and πtj has sent the last message(s).

Security of AKE protocols is now defined by requiring that (i) the protocol is
a secure authentication protocol, and (ii) the protocol is a secure key-exchange
protocol.

AKE Game. We formally capture this notion as a game, played between an
adversary A and a challenger C. The challenger implements the collection of
oracles {πsi : i ∈ [`], s ∈ [d]}. At the beginning of the game, the challenger
generates ` long-term key pairs (pki, ski) for all i ∈ [`]. The adversary receives
the public keys pk1, . . . , pk` as input. Now the adversary may start issuing Send,
Reveal and Corrupt queries, as well as one Test-query. Finally, the adversary
outputs a bit b′ and terminates.

Definition 4. We say that an adversary (t, ε)-breaks an AKE protocol, if A
runs in time t, and at least one of the following two conditions holds:
1. When A terminates, then with probability at leastA ε there exists an oracle

πsi such that
– πsi ‘accepts’ when A issues its τ0-th query with partner Π = j, and
– Pj is τj-corrupted with τ0 < τj,

9 and
– there is no unique oracle πtj such that πsi has a matching conversation

to πtj.
If an oracle πsi accepts in the above sense, then we say that πsi accepts ma-
liciously.

2. When A issues a Test-query to any oracle πsi and
– A does not issue a Reveal-query to πsi , nor to πtj such that πsi has a

matching conversation to πtj (if such an oracle exists), and
– πsi ‘accepts’ when A issues its τ0-th query, and both parties Pi and Pj

are τi- and τj-corrupted, respectively, with τ0 < τi, τj,
10

then the probability that A outputs b′ which equals the bit b sampled by the
Test-query satisfies

|Pr[b = b′]− 1/2| ≥ ε.

We say that an AKE protocol is (t, ε)-secure, if there exists no adversary that
(t, ε)-breaks it.

Remark 1. Note that the above definition even allows to corrupt oracles involved
in the Test-session (of course only after the Test-oracle has reached accept-
state, in order to exclude trivial attacks). Thus, protocols secure with respect

9 That is, Pj is not corrupted (i.e. τ -corrupted with τ =∞) when πsi ‘accepts’.
10 That is, neither party Pi nor Pj is corrupted when πsi ‘accepts’.

to this definition provide perfect forward secrecy. Note also that we allow the
‘accepting’ oracle to be corrupted even before it reaches accept-state, which
provides security against key-compromise impersonation attacks.

Now we can prove the security of a modified version of the TLS Handshake
protocol. As discussed in the introduction, it is impossible to prove the full TLS
Handshake protocol secure in any security model based on key-indistinguishabil-
ity, like the model from Section 4, because the encryption and MAC of the
Finished messages provide a ‘check value’, that can be exploited by an adversary
to determine the bit b chosen by the Test-query.

Therefore we consider a ‘truncated TLS’ protocol as in [20,21]. In this trun-
cated version, we assume that the Finished messages are sent in clear, that is,
neither encrypted nor authenticated by a MAC. More precisely, we modify the
TLS protocol depicted in Figure 2 such that messages m11 and m13 contain only
finΠ (instead of StE.Enc(kΠenc, len, H,finΠ , ste)), allowing us to prove security in
the above model.

Theorem 1. Let µ be the output length of PRF and let λ be the length of the
nonces rC and rS. Assume that the pseudo-random function PRF is (t, εprf)-
secure, the signature scheme is (t, εsig)-secure, the DDH-problem is (t, εddh)-hard
in the group G used to compute the TLS premaster secret, and the PRF-ODH-
problem is (t, εprfodh)-hard with respect to G and PRF.

Then for any adversary that (t′, εttls)-breaks the truncated TLS-DHE protocol
in the sense of Definition 4 with t ≈ t′ holds that

εttls ≤ 4 · d`
(
d`

2λ
+ ` · εsig +

5

4
· εddh +

5

2
· εprf + d`

(
εprfodh + εprf +

1

2µ

))
.

Proof Sketch. Let us sketch the proof of Theorem 1, more details can be found
in the full version [18]. We consider three types of adversaries:

1. Adversaries that succeed in making an oracle accept maliciously, such that
the first oracle that does so is a Client-oracle (i.e., an oracle with ρ = Client).
We call such an adversary a Client-adversary.

2. Adversaries that succeed in making an oracle accept maliciously, such that
the first oracle that does so is a Server-oracle (i.e., an oracle with ρ = Server).
We call such an adversary a Server-adversary.

3. Adversaries that do not succeed in making any oracle accept maliciously, but
which answer the Test-challenge. We call such an adversary a Test-adversary.

We prove Theorem 1 by three lemmas. Lemma 1 bounds the probability εclient
that a Client-adversary succeeds, Lemma 2 bounds the probability εserver that a
Server-adversary succeeds, and Lemma 3 bounds the success probability εke of a
Test-adversary. Then we have εttls ≤ εclient + εserver + εke.

Lemma 1. For any adversary A running in time t′ ≈ t, the probability that
there exists an oracle πsi with ρ = Client that accepts maliciously is at most

εclient ≤ d`
(
d`

2λ
+ ` · εsig + d`

(
εprfodh + εprf +

1

2µ

))

where all quantities are defined as stated in Theorem 1.

Proof Sketch. We prove Lemma 1 in a sequence of games [5,23].
Game 0. This is the original security experiment.
Game 1. We add an abort condition. The challenger aborts, if throughout the

game any oracle chooses a random nonce rC or rS which is not unique. Since
nonces are chosen uniformly random, the collision probability is bounded
by (d`)22−µ. This abort condition ensures that any oracle that accepts with
non-corrupted partner has a unique partner oracle.

Game 2. The challenger guesses an oracle πs
∗

i∗ , and aborts if this oracle does
not accept maliciously with ρ = Client. If there exists a maliciously accepting
Client-oracle, then the guess is correct with probability 1/d`.

Game 3. Next we want to ensure that πs
∗

i∗ receives as input exactly the Diffie-
Hellman share TS chosen by another oracle πtj (not by the adversary). Note

that the respective party Pj must not be corrupted, as otherwise πs
∗

i∗ would
not accept maliciously in the sense of Definition 4. The Diffie-Hellman share
TS is contained in the digital signature received by πs

∗

i∗ , thus we can use
the (εsig, t)-security of the signature scheme to ensure that the adversary can
only forward TS from πtj to πs

∗

i∗ .

Game 4. In this game the challenger guesses upfront the oracle πt
∗

j∗ that chooses

and signs the Diffie-Hellman share TS received by πs
∗

i∗ , and aborts if its guess
is wrong. Again the guess is correct with probability at least 1/d`.

Game 5. Now we are in a game where the challenger controls both Diffie-
Hellman shares TC = gtc and TS = gts chosen and received by πs

∗

i∗ . A
natural approach would be to use the DDH assumption now to replace the
premaster-secret pms = gtcts with an independent random value p̃ms, in
order to be able to use the security of the PRF(p̃ms, ·) as an argument in a
following game to replace the master secret ms with an independent m̃s.
However, unfortunately we cannot do this, as this would lead to a problem
with the simulation of the finS-message sent by πt

∗

j∗ (we describe this issue
in more detail in Section 6). Instead, we use the PRF-ODH-assumption to
directly replace the master secret ms with an independent value m̃s. We
use the oracle provided by the PRF-ODH-assumption to simulate the finS
message if necessary, which allows us to overcome the mentioned problem.

Game 6. In this game the challenger replaces the function PRF(m̃s, ·) with a
truly random function. Note that m̃s is an independent random value, thus
we can use the security of the PRF to argue that this game is indistinguishable
from Game 5.

Game 7. Finally, we use the fact that in this game a truly random function is
used to verify the finished-message finS received by πs

∗

i∗ , to conclude that
πs

∗

i∗ accepts maliciously with probability at most 2−µ.

Lemma 2. For any adversary A running in time t′ ≈ t, the probability that
there exists an oracle πsi with ρ = Server that accepts maliciously is at most

εserver ≤ d`
(
d`

2λ
+ ` · εsig + εddh + 2 · εprf +

1

2µ

)

where all quantities are defined as stated in Theorem 1.

Proof Sketch. The proof of Lemma 2 is very similar to the proof of Lemma 2,
except that the problem with the simulation of the finS message does not occur
in the case where we are dealing with Server-adversaries. Therefore we are able
to base security in this case on the standard DDH assumption instead of the
non-standard PRF-ODH assumption. (This is the reason why we consider Client-
and Server-adversaries separately).

Lemma 3. For any adversary A running in time t′ ≈ t, the probability that A
answers the Test-challenge correctly is at most 1/2 + εke with

εke ≤ εclient + εserver + d` · (εddh + 2 · εprf) .

where εclient + εserver is an upper bound on the probability that there exists an
oracle that accepts maliciously in the sense of Definition 4 (cf. Lemmas 1 and 2)
and all other quantities are defined as stated in Theorem 1.

Proof Sketch. In order to prove Lemma 3, we first use the bounds derived in
Lemmas 1 and 2 on the probability that there exists a Client- or Server-oracle
that accepts maliciously. We then employ a very similar sequence of games as
in the proofs of Lemmas 1 and 2. Recall that the keys in the real protocol are
computed as

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := PRF(ms, label2||rC ||rS),

and in the proofs of Lemmas 1 and 2 we have first replaced ms with an indepen-
dent value m̃s, and then the function PRF(m̃s, ·) with a truly random function.
Once we have reached this game, the adversary will always receive an indepen-
dent key vector KC→S

enc ||KS→C
enc ||KC→S

mac ||KS→C
mac as input, regardless of the bit b

sampled for the Test-query. Thus, the adversary outputs its guess b′ without re-
ceiving any information about b. This allows us to bound the success probability
of the adversary in this final game as Pr[b′ = b] = 1/2.

Summing up probabilities from Lemmas 1 to 3, we obtain that

εttls ≤εclient + εserver + εke ≤ 2 · (εclient + εserver) + d` · (εddh + 2 · εprf)
≤4 ·max{εclient, εserver}+ d` · (εddh + 2 · εprf)

≤4 · d`
(
d`

2λ
+ ` · εsig + εddh + 2 · εprf + d`

(
εprfodh + εprf +

1

2µ

))
+ d` (εddh + 2 · εprf)

=4 · d`
(
d`

2λ
+ ` · εsig +

5

4
· εddh +

5

2
· εprf + d`

(
εprfodh + εprf +

1

2µ

))
.

5 ACCE Protocols

An authenticated and confidential channel establishment (ACCE) protocol is a
protocol executed between two parties. The protocol consists of two phases,
called the ‘pre-accept’ phase and the ’post-accept’ phase.

Pre-accept phase. In this phase a ‘handshake protocol’ is executed. In terms
of functionality this protocol is an AKE protocol as in Section 4, that is, both
communication partners are mutually authenticated, and a session key k is
established. However, it need not necessarily meet the security definition for
AKE protocols (Definition 4). This phase ends, when both communication
partners reach an accept-state.

Post-accept phase. This phase is entered, when both communication partners
reach accept-state. In this phase data can be transmitted, encrypted and
authenticated with key k.

The prime example for an ACCE protocol is TLS. Here, the pre-accept phase
consists of the TLS Handshake protocol. In the post-accept phase encrypted and
authenticated data is transmitted over the TLS Record Layer.

To define security of ACCE protocols, we combine the security model for
authenticated key exchange from Section 4 with stateful length-hiding encryp-
tion in the sense of [22]. Technically, we provide a slightly modified execution
environment that extends the types of queries an adversary may issue.

Execution environment The execution environment is very similar to the
model from Section 4, except for a few simple modifications. We extend the
model such that in the post-accept phase an adversary is also able to ‘inject’
chosen-plaintexts by making an Encrypt-query, and chosen-ciphertexts by making
a Decrypt-query. Moreover, each oracle πsi keeps as additional internal state a

(randomly chosen) bit bsi
$← {0, 1}, two counters u and v required for the security

definition, and two state variables ste and std for encryption and decryption with
a stateful symmetric cipher. In the sequel we will furthermore assume that the
key k consists of two different keys k = (kρenc, k

ρ
dec) for encryption and decryption.

Their order depends on the role ρ ∈ {Client,Server} of oracle πsi . This is the case
for TLS (see Section 3).

An adversary issue the following queries to the provided oracles.

– Sendpre(πsi ,m): This query is identical to the Send-query in the AKE model
from Section 4, except that it replies with an error symbol ⊥ if oracle πsi has
state Λ = accept. (Send-queries in accept-state are handled by the Decrypt-
query below).

– Reveal(πsi) and Corrupt(Pi): These queries are identical to the corresponding
queries in the AKE model from Section 4.

– Encrypt(πsi ,m0,m1, len, H): This query takes as input two messages m0 and
m1, length parameter len, and header data H. If Λ 6= accept then πsi returns
⊥. Otherwise, it proceeds as Encrypt(m0,m1, len, H) depicted in Figure 1
with k = kρenc and b = bsi depending on the internal state of πsi .

– Decrypt(πsi , C,H): This query takes as input a ciphertext C and header data
H. If Λ 6= accept then πtj returns ⊥. Otherwise, it proceeds as Decrypt(C,H)
depicted in Figure 1 with k = kρdec and b = bsi depending on the internal state
of πsi .

Security Definition Security of ACCE protocols is defined by requiring that
(i) the protocol is a secure authentication protocol (ii) in the post-accept phase

data is transmitted over an authenticated and confidential channel in the sense
of Definition 2.

Again this notion is captured by a game, played between an adversary A
and a challenger C. The challenger implements the collection of oracles {πsi :
i ∈ [`], s ∈ [d]}. At the beginning of the game, the challenger generates ` long-
term key pairs (pki, ski) for all i ∈ [`]. The adversary receives the public keys
pk1, . . . , pk` as input. Now the adversary may start issuing Send, Reveal, Corrupt,
Encrypt, and Decrypt queries. Finally, the adversary outputs a triple (i, s, b′) and
terminates.

Definition 5. We say that an adversary (t, ε)-breaks an ACCE protocol, if A
runs in time t, and at least one of the following two conditions holds:
1. When A terminates, then with probability at least ε there exists an oracle πsi

such that
– πsi ‘accepts’ when A issues its τ0-th query with partner Π = j, and
– Pj is τj-corrupted with τ0 < τj,

11 and
– there is no unique oracle πtj such that πsi has a matching conversation

to πtj.
2. When A terminates and outputs a triple (i, s, b′) such that

– πsi ‘accepts’ when A issues its τ0-th query with intended partner Π = j,
and Pj is τj-corrupted with τ0 < τj,

– A did not issue a Reveal-query to πsi , nor to πtj such that πsi has a
matching conversation to πtj (if such an oracle exists), and

then the probability that b′ equals bsi is bounded by

|Pr[bsi = b′]− 1/2| ≥ ε.

If an adversary A outputs (i, s, b′) such that b′ = bsi and the above conditions
are met, then we say that A anwers the encryption-challenge correctly.

We say that an ACCE protocol is (t, ε)-secure, if there exists no adversary that
(t, ε)-breaks it.

Remark 2. Note that the above definition even allows to corrupt the oracle πsi
whose internal secret bit the attacker tries to determine. Of course this is only
allowed after πsi has reached accept-state, in order to exclude trivial attacks.
Thus, protocols secure with respect to this definition provide perfect forward
secrecy. Note also that again we allow the ‘accepting’ oracle to be corrupted even
before it reaches accept-state, which provides security against key-compromise
impersonation attacks.

Relation to the AKE Security Definition from Section 4. Note that an ACCE
protocol can be constructed in a two-step approach.
1. (AKE part) First an authenticated key-exchange (AKE) protocol is exe-

cuted. This protocol guarantees the authenticity of the communication part-
ner, and provides a cryptographically ‘good’ (i.e., for the attacker indistin-
guishable from random) session key.

11 That is, Pj is not corrupted (i.e. τ -corrupted with τ =∞) when πsi ‘accepts’.

2. (Symmetric part) The session key is then used in a symmetric encryption
scheme providing integrity and confidentiality.

This modular approach is simple and generic, and therefore appealing. It can
be shown formally that this two-step approach yields a secure ACCE protocol, if
the ‘AKE part’ meets the security in the sense of Definition 4, and the ‘symmetric
part’ consists of a suitable authenticated symmetric encryption scheme (e.g.
secure according to Definition 2).

However, if the purpose of the protocol is the establishment of an authenti-
cated confidential channel, then it is not necessary that the ‘AKE-part’ of the
protocol provides full indistinguishability of session keys. It actually would suffice
if encrypted messages are indistinguishable, and cannot be altered by an adver-
sary. These requirements are strictly weaker than indistinguishability of keys
in the sense of Definition 4, and thus easier to achieve (possibly from weaker
hardness assumptions, or by more efficient protocols).

We stress that our ACCE definition is mainly motivated by the fact that
security models based on key indistinguishability do not allow for a security
analysis of full TLS, as detailed in the introduction. We do not want to propose
ACCE as a new security notion for key exchange protocols, since it is very
complex and the modular two-step approach approach seems more useful in
general.

Theorem 2. Let µ be the output length of PRF and let λ be the length of the
nonces rC and rS. Assume that the pseudo-random function PRF is (t, εprf)-
secure, the signature scheme is (t, εsig)-secure, the DDH-problem is (t, εddh)-hard
in the group G used to compute the TLS premaster secret, and the PRF-ODH-
problem is (t, εprfodh)-hard with respect to G and PRF. Suppose that the stateful
symmetric encryption scheme is (t, εsLHAE)-secure.

Then for any adversary that (t′, εtls)-breaks the TLS-DHE protocol in the
sense of Definition 5 with t ≈ t′ holds that

εtls ≤ 4d`

(
d`

2λ
+ `εsig +

5

4
εddh +

5

2
εprf +

1

4
εsLHAE + d`

(
εprfodh + εprf +

1

2µ

))
.

Proof Sketch. The proof of Theorem 2 is very similar to the proof of Theorem 1.
Instead of proving indistinguishability of keys, as in Lemma 3 from the proof of
Theorem 1, we now have to consider indistinguishability of encrypted messages
and authenticity of ciphertexts. We do this by employing the same sequence
of games as in the proof of Lemma 3, except that we extend the proof by one
game-hop at the end of the sequence of games.

Recall that in the proof of Lemma 3 the keys KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac ,
which determine the encryption and decryption keys (kρenc, k

ρ
dec) of the stateful

encryption scheme, were replaced with independent random values. This allows
us to extend the sequence of games by one final game, where the security of
TLS-DHE is reduced to the sLHAE-security (in the sense of Definition 2) of the
underlying stateful encryption scheme.

6 Security of TLS-DHE from Standard Assumptions

In this section we sketch why we had to make the PRF-ODH-assumption in the
proof of Lemma 1 (and thus in Theorems 1 and 2), and why it seems unlikely
that one can prove security based on standard DDH and a standard assumption
on the PRF, if a security model allowing active adversaries and user corruptions
is considerd.

Suppose we are given a Client-adversary, that is, an adversary which always
makes Client-oracle C := πsi (i.e., πsi with ρ = Client) accept maliciously with
intended partner Π = S. Suppose we want to argue that the adversary is not
able to forge the finS-message received by C (which we would have to, since the
finS-message is the only message that cryptographically protects all messages
previously received by πsi , and thus is required to ensure that πsi has a matching
conversation to some other oracle), and that we want to assume only that the
PRF is secure in the standard sense (see [18, Definition 3]). Then at some point
in the proof we would have to replace the premaster secret computed by πsi as
pms = T tCS = gtCtS with an independent random value.

Note that in order to do so and to argue in the proof with indistinguishability,
we must not know any of the exponents tC and tS in TC = gtC and TS = gtS ,
as otherwise we can trivially distinguish the real pms = gtCtS from a random
pms′. The problematic property of TLS-DHE is now, that an adversary may
test whether the challenger ‘knows’ tS , and then make Client-oracle πsi accept
maliciously only if this holds. This works as follows.

1. The adversary establishes a communication between two oracles πsi (repre-
senting the client C) and πtj (representing the server S) by simply forwarding
the messages m1 and (m2, . . . ,m6) between C and S.

2. Then C will respond with (m7, . . . ,m11) = (certC , TC , σC , f lagenc,finC).12

This message is not forwarded.
3. Instead, the adversary corrupts some party P ∗ 6∈ {Pi, Pj}, and obtains the

secret key sk∗ of this party. Then it computes

(a) T ∗ := gt
∗

mod p for random t∗
$← Zq,

(b) σ∗ := SIG.Sign(sk∗; (rC , rS , TS , T
∗)) using the corrupted key sk∗,

(c) ms∗ := PRF(T t
∗

S , label1||rC ||rS) using knowledge of t∗, and
(d) fin∗C := PRF(ms∗,m1||m2||(T ∗, σ∗)).
and sends (m7, . . . ,m11) = (certC∗ , T ∗, σ∗, f lagenc,fin∗C) to S. Note that S
cannot determine that its communication partner has changed, because any
messages previously received by S were perfectly anonymous.

4. If S responds with a correct fin∗S-message (note that the adversary is able to
compute the key pms∗ := T t

∗

S , since it ‘knows’ t∗, and thus is able to verify
the validity of fin∗S), then adversary concludes that the challenger ‘knows’ tS
and forges the required finS-message to make πsi accept without matching
conversations. Otherwise the adversary aborts.

12 We consider truncated TLS-DHE here for simplicity, the same argument applies to
TLS-DHE with encrypted Finished-messages, too.

Note that the above adversary is a valid, successful adversary in the real security
experiment. It does not issue any Reveal-query and only one Corrupt-query to
an unrelated party, such that the intended communication partner Π = S of
C = πsi remains uncorrupted, but still it makes C = πsi ‘accept’ and there is no
oracle that C has a matching conversation to.

However, we explain why we will not be able to use this adversary in a
simulated security experiment, where the challenger does not know the exponent
tS of TS = gtS . Intuitively, the reason is that in this case the challenger would
first have to compute the Finished-message fin∗S , where

fin∗S = PRF(ms,m1|| . . . ||m3) and ms = PRF(T t
∗

S , label1||rC ||rS),

but ‘knowing’ neither tS = log TS , nor t∗ = log T ∗. This is the technical problem
we are faced with, if we want to prove security under a standard assumption like
DDH. Under the PRF-ODH-assumption, we can however use the given oracle to
compute first ms, and from this the Finished-message fin∗S .

Interestingly, the above technical problem does not appear if we consider
only Server-adversaries (i.e., adversaries that make an oracle πsi accept mali-
ciously with ρ = Server) instead. This is due to an asymmetry of the TLS-DHE
Handshake protocol, see [18] for details.

One can circumvent the above problem, and thus base the security proof on
the standard DDH assumption instead of PRF-ODH, if one considers a weaker
security model where no Corrupt-queries are allowed (which however seems not
adequate for the way how TLS-DHE is used on the Internet).

In [11] Canetti and Krawczyk describe a protocol called Σ0, which exhibits
many similarities to the TLS-DHE Handshake protocol, but is provably secure
under standard assumptions (in particular under DDH instead of PRF-ODH).
We discuss why the subtle differences between Σ0 and TLS-DHE are crucial
in [18, Section 8]. We also note that one could, in principle, make TLS-DHE
provably secure under standard assumptions, if one would modify it such that
it becomes more similar to Σ0, which would allow to carry the security analysis
of Σ0 from [11] over to TLS-DHE. Of course it seems unrealistic that such
substantial changes become accepted in practice.

7 Conclusion

We have shown that the core cryptographic protocol underlying TLS-DHE pro-
vides a secure establishment of confidential and authenticated channels. We can
avoid the random oracle model, if we make a suitable assumption on the pseudo-
random function. The goal of this work is to analyse TLS-DHE on the protocol
layer. As common in cryptographic protocol analyses, we therefore have ignored
implementational issues like error messages, which of course might also be used
to break the security of the protocol. We leave it as an interesting open question
to find an adequate approach for modeling such side-channels in complex sce-
narios like AKE involving many parties and parallel, sequential, and concurrent
executions.

The whole TLS protocol suite is much more complex than the cryptographic
protocol underlying TLS-DHE. It is very flexible, as it allows to negotiate cipher-
suites at the beginning of the protocol, or to resume sessions using an abbreviated
TLS Handshake. So clearly the security analysis of TLS is not finished yet, there
are still many open questions. However, we consider this work as a strong indi-
cator for the soundness of the TLS protocol framework. We believe that future
revisions of the TLS standard should be guided by provable security – ideally in
the standard model.

Acknowledgements. We would like to thank Dennis Hofheinz, Kenny Paterson,
Zheng Yang, and the anonymous referees for helpful comments and discussions.

References

1. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, Topics in
Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science,
pages 143–158. Springer, April 2001.

2. Adam Langley, Google Security Team. Protecting data for the long term
with forward secrecy. http://googleonlinesecurity.blogspot.co.uk/2011/11/

protecting-data-for-long-term-with.html.
3. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key ex-

change secure against dictionary attacks. In Bart Preneel, editor, Advances in
Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Sci-
ence, pages 139–155. Springer, May 2000.

4. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of
Lecture Notes in Computer Science, pages 232–249. Springer, August 1994.

5. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Serge Vaudenay, editor, Advances
in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 409–426. Springer, May / June 2006.

6. Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols
and their security analysis. In Michael Darnell, editor, 6th IMA International Con-
ference on Cryptography and Coding, volume 1355 of Lecture Notes in Computer
Science, pages 30–45. Springer, December 1997.

7. Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS #1. In Hugo Krawczyk, editor, Advances in
Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer Science,
pages 1–12. Springer, August 1998.

8. C. Brzuska, M. Fischlin, N.P. Smart, B. Warinschi, and S. Williams. Less is more:
Relaxed yet composable security notions for key exchange. Cryptology ePrint
Archive, Report 2012/242, 2012. http://eprint.iacr.org/.

9. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, pages
136–145. IEEE Computer Society Press, October 2001.

10. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology

http://googleonlinesecurity.blogspot.co.uk/2011/11/protecting-data-for-long-term-with.html
http://googleonlinesecurity.blogspot.co.uk/2011/11/protecting-data-for-long-term-with.html
http://eprint.iacr.org/

– EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages
453–474. Springer, May 2001.

11. Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-
exchange protocol. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 143–161. Springer, Au-
gust 2002. http://eprint.iacr.org/2002/120/.

12. Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Examining
indistinguishability-based proof models for key establishment protocols. In Bi-
mal K. Roy, editor, Advances in Cryptology – ASIACRYPT 2005, volume 3788 of
Lecture Notes in Computer Science, pages 585–604. Springer, December 2005.

13. Cas J. F. Cremers. Session-state reveal is stronger than ephemeral key reveal:
Attacking the NAXOS authenticated key exchange protocol. In Michel Abdalla,
David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors, ACNS
09: 7th International Conference on Applied Cryptography and Network Security,
volume 5536 of Lecture Notes in Computer Science, pages 20–33. Springer, June
2009.

14. T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed
Standard), January 1999. Obsoleted by RFC 4346, updated by RFCs 3546, 5746.

15. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.1. RFC 4346 (Proposed Standard), April 2006. Obsoleted by RFC 5246, updated
by RFCs 4366, 4680, 4681, 5746.

16. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878.

17. Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jörg
Schwenk. Universally Composable Security Analysis of TLS. In Joonsang Baek,
Feng Bao, Kefei Chen, and Xuejia Lai, editors, ProvSec, volume 5324 of LNCS,
pages 313–327. Springer, 2008.

18. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security
of TLS-DHE in the Standard Model (full version). Cryptology ePrint Archive,
Report 2011/219, 2011, revised 2012. http://eprint.iacr.org/2011/219.

19. Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of
authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors,
ProvSec, volume 4784 of LNCS, pages 1–16. Springer, 2007.

20. Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. A modular security anal-
ysis of the TLS Handshake protocol. In Josef Pieprzyk, editor, Advances in Cryp-
tology – ASIACRYPT 2008, volume 5350 of Lecture Notes in Computer Science,
pages 55–73. Springer, December 2008.

21. Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. The TLS Handshake
protocol: A modular analysis. Journal of Cryptology, 23(2):187–223, April 2010.

22. Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does
matter: Attacks and proofs for the TLS record protocol. In Advances in Cryptology
– ASIACRYPT 2011, Lecture Notes in Computer Science, pages 372–389. Springer,
December 2011.

23. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, Nov 2004.

24. David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol. In Proceedings
of the Second USENIX Workshop on Electronic Commerce, pages 29–40. USENIX
Association, 1996.

http://eprint.iacr.org/2002/120/
http://eprint.iacr.org/2011/219

	On the Security of TLS-DHE in the Standard Model
	Tibor Jager, Florian Kohlar, Sven Schäge, Jörg Schwenk

