Functional Encryption with Bounded Collusions
via Multi-Party Computation

Sergey Gorbunov*!, Vinod Vaikuntanathan**!, and Hoeteck Wee* * *2

! University of Toronto
2 (George Washington University

Abstract. We construct functional encryption schemes for polynomial-
time computable functions secure against an a-priori bounded polyno-
mial number of collusions. Our constructions require only semantically
secure public-key encryption schemes and pseudorandom generators
computable by small-depth circuits (known to be implied by most
concrete intractability assumptions). For certain special cases such as
predicate encryption schemes with public index, the construction requires
only semantically secure encryption schemes.

Along the way, we show a “bootstrapping theorem” that builds a g¢-
query functional encryption scheme for arbitrary functions starting from
a g-query functional encryption scheme for bounded-degree functions. All
our constructions rely heavily on techniques from secure multi-party
computation and randomized encodings.

Our constructions are secure under a strong simulation-based definition
of functional encryption.

1 Introduction

Traditional notions of public-key encryption provide all-or-nothing access to
data: users who possess the secret key can recover the entire message from a
ciphertext, whereas those who do not know the secret key learn nothing at all.
While such “black-and-white” notions of encryption have served us well for the
past thirty years and are indeed being widely used for secure communications and
storage, it is time to move beyond. In particular, the advent of cloud computing
and the resulting demand for privacy-preserving technologies requires that we
come up with a much more fine-grained access control mechanism for encrypted
data.

* Supported by NSERC Alexander Graham Bell Graduate Scholarship.

** Supported by an NSERC Discovery Grant and by DARPA under Agreement number
FA8750-11-2-0225. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the author and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

*** Supported by NSF CAREER Award CNS-1237429.



Boneh, Sahai and Waters [BSW11] recently formalized the notion of func-
tional encryption towards this end, building on and generalizing a num-
ber of previous constructs including (anonymous) identity-based encryption
(IBE) [Sha84,BF01,Coc01,BWO06], fuzzy IBE [SWO05], attribute-based encryption
(ABE) [GPSW06,LOS*10], and predicate encryption [KSW08,LOS*10].

Informally, a functional encryption scheme for a function F(-,-) on two inputs
—a “key” K and a “message” M — associates secret keys SKx with every K and
ciphertexts CT with every M. The owner of a secret key SKx and a ciphertext
CT of a message M should be able to obtain F(K, M), but learn nothing else
about the message M itself.

Constructions of functional encryption are known only for limited classes
of functions (see [BF01,Coc01,SW05,GPSW06,KSW08,LOST10] and others),
leaving open a challenging open question: Can we build functional encryption
schemes for arbitrary (polynomial-time) functions?

Much like its predecessors, functional encryption schemes are required to
satisfy rather stringent security notions. In particular, a large part of the
difficulty in constructing functional encryption schemes lies in the fact that
we typically require security against adversaries who obtain secret keys for an

unbounded number of inputs K, ..., K.
In this work, we consider a relaxed notion of security where the adversary
is given secret keys for an a-priori bounded number of inputs K, ..., K, of her

choice (which can be made adaptively). This notion, which we call g-bounded
security (or security against ¢ collusions), is a natural relaxation of the strong
definition above, and could be sufficient in a number of practical aituations. In
particular, one could envision scenarios where an authority releases secret keys
for arbitrarily many inputs K, however the adversary can only form collusions
of size at most q.

Our main result in this paper is a construction of g-bounded secure functional
encryption schemes for arbitrary polynomial-time functions under minimal
cryptographic assumptions.

The question of designing IBE schemes with bounded collusions has been
considered in a number of works [DKXY02,CHH"07,GLW12]. The functional
encryption setting presents us with a significantly more challenging landscape
since (1) a secret key SK in functional encryption can be used to obtain
(partial) information about many messages, as opposed to IBE where a
secret key decrypts only ciphertexts for a single identity, and (2) the partial
information is a result of a potentially complex computation on the key and the
message together. Our constructions leverage interesting ideas from the study of
(information-theoretic) multi-party computation (a la [BGW88,BMR90,DI05])
and randomized encodings [Ya086,IK00,ATKO06].

1.1 Owur Results

The main result of this work is the construction of g-query functional encryption
schemes that:



1. handle arbitrary (polynomial-time computable) functions, and

2. are based on the existence of semantically secure public key encryption
schemes, and pseudorandom generators (PRG) computable by polynomials
of degree poly(k), where k is the security parameter. The former is clearly a
necessary assumption, and the latter is a relatively mild assumption which, in
particular, is implied by most concrete intractability assumptions commonly
used in cryptography, such as ones related to factoring, discrete logarithm,
or lattice problems.

An important special case of functional encryption that we will be interested
in is predicate encryption with public index (which is also called attribute-based
encryption by some authors). This corresponds to a function F' defined as:

R A e

for some predicate g. In other words, the second input for F is divided into
two parts — a “public index” M on which the computation takes place, and
a secret “payload” p which is conditionally released. For the special case
of predicate encryption schemes with public index, our construction handles
arbitrary polynomial-time functions while relying solely on the existence of
semantically secure public-key encryption schemes, which is clearly the minimal
necessary assumption. In particular, we do not need the “bounded-degree PRG”
assumption for this construction.

In contrast, functional encryption schemes that handle an unbounded number
of secret-key queries are known only for very limited classes of functions, the most
general being inner product predicates [KSW08,LOS*10,0T10]. In particular,
constructing an unbounded-query secure functional encryption scheme for
general functions is considered a major open problem in this area [BSW11]. As for
functional encryption schemes with public index (also referred to as “attribute-
based encryption” by some authors) that handle an unbounded number of
secret-key queries, there are a handful of constructions for polynomial-size
formulas [GPSW06,0SWO07], which themselves are a sub-class of NC?! circuits.

We will henceforth refer to a functional encryption scheme that supports
arbitrary polynomial-time functions as a general functional encryption scheme.
Summarizing this discussion, we show:

Theorem 1 (Main Theorem, Informal). Let k be a security parameter.
Assuming the existence of semantically secure encryption schemes as well as
PRGs computable by arithmetic circuits of degree-poly(k), for every q = q(k),
there exists a general functional encryption scheme secure against q secret key
queries.

We have so far avoided discussing the issue of which security definition to
use for functional encryption. Indeed, there are a number of different definitions
in the literature, including both indistinguishability style and simulation style
definitions. In a nutshell, we prove our constructions secure under a strong,
adaptive simulation-based definition; see Section 1.3 for details.



1.2 Overview of Our Techniques

The starting point of our constructions is the fact, observed by Sahai and
Seyalioglu [SS10], that general functional encryption schemes resilient against a
single secret-key query can be readily constructed using the beautiful machinery
of Yao’s “garbled circuits” [Yao86] (and in fact, more generally, from randomized
encodings [IK00,AIK06]).* Building on this, our construction proceeds in two
steps.

Construction 1: Functional Encryption for Bounded-Degree Functions
In the first step, we show how to construct a ¢-query functional encryption
scheme for bounded-degree functions starting from any 1-query scheme (such as
the one of [SS10]).

By bounded degree, we mean functions F' such that for every K, the degree
of the restriction F'(K,-) is bounded a-priori by D = D(k) in the variables of
M. This captures both arithmetic and boolean circuits of depth at most log D
(with constant multiplicative fan-in). The complexity of our construction will be
polynomial in both D and ¢, where ¢ is the number of secret keys the adversary
is allowed to see before he gets the challenge ciphertext. This construction
assumes only the existence of semantically secure public-key encryption schemes.
In addition, it also gives us for free a predicate encryption scheme with public
index for arbitrary polynomial-time functions (with no a-priori bound on the
degree).

The starting point of our construction is the BGW semi-honest MPC protocol
without degree reduction (c.f. [DI0O5, Section 2.2]). Our main idea is to use
the fact that this protocol is completely non-interactive when used to compute
bounded-degree functions.

Suppose the encryptor holds input M = (My,..., M), the decryptor holds
input K, and the goal is for the decryptor to learn F(K, My,..., M;). The
public/secret keys of the system consists of N independent public/secret keys
for the 1-query scheme. To encrypt M, the encryptor first chooses ¢ random
polynomials p1, ..., pue of degree t with constant terms My, ..., My respectively.
In addition, she chooses a random polynomial ¢ of degree Dt with constant term
0. (Here, t and N are parameters of the construction). Now, since F(K,-) has
degree at most D, observe that

P() = F(E, pa ()5 pue()) +C()

is a univariate polynomial of degree at most Dt and whose constant term is
F(K,(M,...,My)). The encryptor simply encrypts the shares P(1),..., P(N)
using the IV public keys.

The key generation algorithm associates the receiver with a random subset
I' C [N] of size Dt + 1 and generates secret keys for the public keys MPK;

3 We note that [SS10] is completely insecure for collusions of size two: in particular,
given two secret keys SKy and SK;¢, an adversary can derive the SKx for any
other K.



for ¢ € T'. Using the underlying (1-query) FE scheme, the decryptor learns the
evaluation of P on the points in I, which allows her to recover F(K, My, ..., My).

The key question now is: what happens when ¢ of the decryptors collude? Let
I'y,...,I'y € [N] be the (uniformly random) sets chosen for each of the ¢ secret
key queries of the adversary. Whenever two of these sets intersect, the adversary
obtains two distinct secret keys for the same public key in the underlying one-
query FE scheme. More precisely, for every j € I'yNI'y, the adversary obtains two
secret keys under the public key MPK;. Since security of MPK; is only guaranteed
under a single adversarial query, we have to contend with the possibility that
in this event, the adversary can potentially completely break the security of the
public key MPK;, and learn a share of the encrypted message M.

In particular, to guarantee security, we require that sets I'y, ..., I'y have small
pairwise intersections which holds for a uniformly random choice of the sets
under an appropriate choice of the parameters ¢ and N. With small pairwise
intersections, the adversary is guaranteed to learn at most ¢ shares of the message
M, which together reveal no information about M.

For technical reasons, we cannot establish security of the basic scheme.
Informally, we need to rerandomize the polynomial P for each of the ¢ queries.
This can be done by having the encryptor hard-code additional randomness into
the ciphertext. For more details, see Section 4.

To obtain a predicate encryption scheme with public index, we observe that
the construction above satisfies a more general class of functions. In particular,
if the input to the encryption algorithm is composed of a public input (that
we do not wish to hide) and a secret input (that we do wish to hide), then the
construction above only requires that the function F' has small degree in the bits
of the secret input. Informally, this is true because we do not care about hiding
the public input, and thus, we will not secret share it in the construction above.
Thus, the degree of the polynomial P(-) grows only with the degree of F' in its
secret inputs. The bottomline is that since predicate encryption schemes with
public index deal with functions that have very low degree in the secret input
(degree 1, in particular), our construction handles arbitrary predicates.

Construction 2: Bootstrapping Theorem for Functional Encryption In
the second step, we show a “bootstrapping theorem” for functional encryption
schemes. In a nutshell, this shows how to generically convert a g-query secure
functional encryption scheme for degree-D circuits into one that is g-query secure
for arbitrary polynomial-time functions, assuming in addition the existence of a
pseudo-random generator (PRG) that can be computed with circuits of degree
poly(x). Such PRGs can be constructed based on most concrete intractability
assumptions such as those related to factoring, discrete logarithms and lattices.

The main tool that enables our bootstrapping theorem is the notion of
randomized encodings [Ya086,IK00,ATK06]. Instead of using the FE scheme to
compute the (potentially complicated) function F, we use it to compute its
randomized encoding F which is typically a much easier function to compute.



In particular, secret keys are generated for K and the encryption algorithm
for the bounded-degree scheme is used to encrypt the pair (M, R), where R is a
uniformly random string. The rough intuition for security is that the randomized
encoding F (K, M; R) reveals “no more information than” F(K, M) itself and
thus, this transformation does not adversely affect the security of the scheme.

Unfortunately, intuitions can be misleading and so is this one. Note that in
the g-query setting, the adversary obtains not just a single randomized encoding,
but ¢ of them, namely F(K1,M;R),...,F(Ky, M;R). Furthermore, since all
these encodings use the same randomness R, the regular notion of security of
randomized encodings does not apply as-is. We solve this issue by hard-coding a
large number of random strings (proportional to ¢) in the ciphertext and using
a cover-free set construction, ensuring that the adversary learns g randomized
encodings with independently chosen randomness. See Section 5 for more details.

Putting this construction together with a randomized encoding scheme
for polynomial-time computable functions (which follows from Yao’s garbled
circuits [Yao86,AIK06]) whose complexity is essentially the complexity of
computing a PRG, we get our final FE scheme.

As a bonus, we show a completely different way to bootstrap ¢-query FE
schemes for small functions into a g-query FE scheme for polynomial-time
functions, using a fully homomorphic encryption scheme [Gen09,BV11]. We defer
the details to the full version.

1.3 Definitions of Functional Encryption

Our constructions are shown secure under a strong simulation-based definition,
in both the adaptive and non-adaptive sense. The non-adaptive variant requires
the adversary to make all its secret key queries before receiving the challenge
ciphertext whereas in the adaptive variant, there is no such restriction. Although
the adaptive variant is clearly stronger, Boneh, Sahai and Waters [BSW11]
recently showed that it is also impossible to achieve, even for very simple
functionalities (related to IBE). We observe that the BSW impossibility result
holds only if the adversary obtains an unbounded number of ciphertexts
(essentially because of a related lower bound for non-committing encryption
schemes with unbounded messages). Faced with this state of affairs, we show
our constructions are shown secure in the non-adaptive sense, as well as in the
adaptive sense with a bounded number of messages. Due to lack of space, we deal
with the non-adaptive setting in this paper, postponing a discussion of adaptive
security to the full version.

1.4 A Perspective: Bounded-Use Garbled Circuits

The reason why the construction of Sahai and Seyalioglu only achieves security
against collusions of size 1 is intimately related to the fact that Yao’s garbled cir-
cuits become completely insecure when used more than once. Our constructions
may be viewed as a stateless variant of Yao’s garbled circuit that can be reused



for some a-priori bounded number of executions. Fix a two-party functionality
F(K,M). Specifically, we can view the ciphertext as encoding computation of
F(-,M) on some fixed value M, such that we can “delegate” computation on
q different inputs K7, ..., K, without leaking any information about M beyond
F(Ki,M),...,F(Kq,M).

Organization of the Paper. After describing a simulation-based definition of
functional encryption in Section 2, we describe Construction 1 for bounded-
degree circuits in Section 4 and Construction 2 for bootstrapping in Section 5.
For completeness, we have also included the construction of a 1-query functional
encryption in the appendix.

2 Functional Encryption against Bounded Collusions

A functional encryption scheme for a family of functions F' = {F,Qi K XM, —
{0, 1}}KGN is a four-tuple of algorithms (FE.Setup, FE.Keygen, FE.Enc, FE.Dec)
where:

— FE.Setup(1%) generates a pair of keys — a master public key MPK and a
master secret key MSK;

— FE.Keygen(MSK, K) takes as input K € K,; and generates a secret key SK;

FE.Enc(MPK, M) takes as input M € M, and generates a ciphertext CT;

and

— given SKx and CT, FE.Dec outputs y € {0,1}.

We require that for all but a negligible fraction of (MPK, MSK) «— FE.Setup(1%),
for all SKx € FE.Keygen(MSK,K) and all CT € FE.Enc(MPK, M), the
decryption algorithm FE.Dec(SKg,CT) outputs y = F,. (K, M).

We now describe simulation-based definitions for functional encryption with
bounded collusions, largely based on the recent works of Boneh, Sahai and
Waters [BSW11] and O’Neill [O’N10]. We then go on to discuss relations between
various flavors of these definitions, with details deferred to the full version.

Definition 1 (¢-NA-SIM- and ¢-AD-SIM- Security). Let FE be a functional
encryption scheme for a family of functions F = {FK 2k X M“}neN‘ For every
p.p.t. adversary A = (A1, As) and a p.p.t. simulator S = (S1,52), consider the
following two experiments.

We distinguish between two cases of the erperiment:

1. The adaptive case, where:
— the oracle O(MSK, -) = FE.Keygen(MSK, -) and
— the oracle O'(MSK, st’,-) is the second stage of the simulator, namely
SECM (MSK, st/ ).

The simulator algorithm Sy is stateful in that after each invocation, it updates
the state st’ which is carried over to its next invocation. We call a simulator
algorithm S = (S, S2) admissible if, on each input K, So makes just a single
query to its oracle F(-, M) on K itself.



Explre,a(1): Explgs (17):

~

: (MPK, MSK) + FE.Setup(1*) 1: (MPK, MSK) « FE.Setup(1*)

90 (M, st)  ATEKereen(MSK) by 20 (M, st) « AT KBS (mpK)
» Let (Kq,...,K,) be Ay’s oracle
queries

» Let SK; be the oracle reply to K;
» Let V= {FH(K“ M), K;, SKZ}

3: | CT + FE.Enc(MPK, M) 3. ‘(CT,st’) — S1(MPK, D, 1|M\)‘
O(MSK,- ’ »

4o o= AFMUMPK,CT st) | . | AQ MSKst') (MPK CT, st)

5: Output (o, M) 5: Output (o, M)

The functional encryption scheme FE is then said to be g-query simulation-
secure for one message against adaptive adversaries (¢-AD-SIM-secure, for
short) if there is an admissible p.p.t. simulator S = (S1,S2) such that
for every p.p.t. adversary A = (A1, As) that makes at most q queries, the
following two distributions are computationally indistinguishable:

{eman) £ {eetian]
KEN KEN

2. The non-adaptive case, where the oracles O(MSK; ) and O'(MSK, st,-) are
both the “empty oracles” that return nothing: the functional encryption
scheme FE is then said to be g-query simulation-secure for one message
against non-adaptive adversaries (¢-NA-SIM-secure, for short) if there is
a p.p.t. simulator S = (S1,L) such that for every p.p.t. adversary A =
(A1, As) that makes at most q queries, the two distributions above are
computationally indistinguishable.

Intuitively, our security definition states that any information that the adversary
is able to learn from the ciphertext and secret keys, can be obtained by a
simulator from the secret keys and the outputs of the function alone. A number
of remarks on this definition are in order.

1. In the non-adaptive definition, the only difference between the real and ideal
experiments is in how the ciphertext is generated — in the real experiment,
the ciphertext is an encryption of M, whereas in the ideal experiment,
the simulator generates a simulated ciphertext given (the secret keys
SKk,,-..,SKk,, K1, ..., K, and) the output values F'(K1, M), ..., F'(Kq, M).
In the adaptive definition, we additionally allow the simulator to “program”
the answers to the post-ciphertext secret-key queries.

2. Even if the the adversary does not request any secret keys, he learns the
length of M and therefore, the simulator should be given this information to
be on even ground with the adversary. This also ensures that the definition
properly generalizes (regular) public-key encryption.



3. We remark that our definitions imply (and are stronger than) those of
presented in the work of Boneh, Sahai and Waters [BSW11]. We defer a
discussion of this and other definitional implications to the full version.

Why focus on this definition? First, as mentioned above, our definition is at
least as strong as the definition presented in [BSW11]. In addition, in the full
version of this paper, we show the following relations between the definitions:

1. Relations between simulation and indistinguishability: We show that a single
message simulation definition implies single message indistinguishability
definition for both non-adaptive and adaptive worlds.

2. Relations between single and many messages (simulation): We show that
a single message non-adaptive simulation implies many messages non-
adaptive simulation definition. However, we cannot hope to achieve the same
implication for adaptive world due to the impossibility results presented
in [BSW11].

3. Relations between single and many messages (indistinguishability): Finally,
we show that a single message indistinguishability implies many message
indistinguishability definition in both the adaptive and non-adaptive worlds.

As a result of these definitional implications, we focus on proving that our
constructions are secure under the single message simulation definitions for both
adaptive and non-adaptive worlds.

3 Preliminaries and Standard Cryptographic Definitions

3.1 Shamir’s Secret Sharing

We assume familiarity with Shamir’s secret-sharing scheme [Sha79] which works
as follows: Let F be a finite field and let x = (z1,...,2z,) be a vector of any
distinct non-zero elements of F, where n < |F|. Shamir’s t-out-of-n secret-sharing
scheme works as follows:

— To share a secret M € F, the sharing algorithm SS.Share; ,,(M) chooses a
random univariate polynomial p(z) of degree t with constant coefficient M.
The n shares are p(x1),. .., pu(x,).

Note that any ¢ or fewer shares look uniformly random.

— The reconstruction algorithm SS.Reconstruct takes as input ¢ + 1 shares and
uses Lagrange interpolation to find a unique degree-t polynomial pu(-) that
passes through the share points. Finally, it computes p(0) to recover the
secret.

An important property of this scheme is that it permits computation on
the shares, a feature used in many multi-party computation protocols starting
from [BGW88]. In particular, adding shares gives us u (¢) 4 p2(7) = (11 + p2) (%)
meaning that that sharing scheme is additively homomorphic. Multiplying shares



gives us p1(i)p2(i) = (p1p2)(4) meaning that the scheme is also multiplicatively
homomorphic (where p1ps denotes the product of the polynomials). The main
catch is that the degree of the polynomial increases with the number of
multiplications, requires more shares to recover the answer post multiplication.
In other words, the scheme per se is multiplicatively homomorphic for a bounded
number of multiplications (but an arbitrary number of additions).

3.2 Decomposable Randomized Encoding

Let C be a circuit that takes inputs K € {0,1}¥, M € {0,1}" and outputs
C(K,M) € {0,1}™. A decomposable randomized encoding scheme RE consists
of two algorithms (RE.Encode, RE.Decode) satisfying the following properties:

1. Decomposable Encoding. RE.Encode(1%,C, M): A p.p.t. algorithm takes
as inputs a security parameter, a description of a circuit C, an input M and
outputs a randomized encoding;:

(C(-,M;R),...,Ci(-,M;R)) for i € [{], where C;(-, M; R) depends only on K;

2. Decoding. RE.Decode((ffi)le): On input an encoding of a circuit Y; =
CNZ-(KZ»,M;R) for some K = (K3, ..., Ky) output C(K, M).

3. Semantic Security. We say decomposable randomized encoding RE is
secure if there exists a p.p.t. simulator RE.Sim, such that for every
p.p-t. adversary A, every circuit C, and inputs K = (Ki,...,Ky) and
M, the outputs of the following two distributions are computationally
indistinguishable:

{@i(Ki,M;R))f_l . Ci(-, M;R) « RE.Encode(l”,aM)} e

{@(K,;,M;R))f_l < RE.Sim(1%,C,C(K, M))}

Note that such a randomized encoding for arbitrary polynomial-size circuits
follows from Yao’s garbled circuit construction [Yao86,AIK06].

4 A Construction for Bounded-Degree Functions

In this section, we construct a functional encryption scheme for functions
that can be computed by circuits of bounded degree (see below for a precise
definition), secure against an a-priori bounded number of non-adaptive secret
key queries. Our construction will rely on any semantically secure public-key
encryption scheme.



The Class of Functions. We consider the class of determinitic functions that
computes a bounded-degree polynomial over the message space for some fixed
degree bound D. That is, the message space M = F’ is an /-tuple of field
elements, and for every key K € K, F(K,-) is an ¢-variate polynomial over F
of total degree at most D (in the second input). This captures both arithmetic
and boolean circuits of depth at most log D (with constant multiplicative fan-
in). Specifically, to handle boolean circuits, we let F be a sufficiently large field
extension of Fy. The complexity of our construction will be polynomial in both
D and ¢, where ¢ is the number of secret keys the adversary is allowed to see
before he gets the challenge ciphertext.

Building Block. The main result of this section shows how to construct a
functional encryption scheme for degree-D functions secure against ¢ (non-
adaptive) secret-key queries, starting from one that is secure against a single
non-adaptive secret-key query. Sahai and Seyalioglu [SS10] have shown that FE
schemes (for general polynomial-time functions) secure against a single query
can be readily constructed using Yao’s garbled circuits [Yao86].

4.1 Our Construction

Let F be a functionality with circuits of degree D = D(k) in its second input
(namely, the message M), and let ¢ = g(k) be a bound on the number of secret
key queries. Our scheme is associated with additional parameters S = S(k),
N = N(k), t = t(k) and v = v(k) (for an instantiation of the parameters, see
Section 4.2).

We start by defining a new functionality G as follows:

G((K,N), (M, Zy,....Zs)) == F(K,M)+ > _ Z (1)
IEA

where A C [S] and Z1,...,Zg € F.

Let (OneQFE.Setup, OneQFE.Keygen, OneQFE.Enc, OneQFE.Dec) be a func-
tional encryption scheme for G secure against a single secret key query. Our g-
query secure scheme BDFE = (BdFE.Setup, BdFE.Keygen, BAFE.Enc, BdFE.Dec)
for F works as follows:

— Setup BdFE.Setup(1%): Run the one-query setup algorithm N times to
generate independent master public-key/secret-key pairs

(MPK;, MSK;) < OneQFE.Setup(1") fori=1,...,N

Output (MPK;)X_, as the master public key and (MSK;)¥, as the master
secret key.
— Key Generation BdFE.Keygen(MSK, K): On input the master secret key
MSK and a key K € K for the functionality,
1. Choose a uniformly random set I' C [N] of size tD + 1;



2. Choose a uniformly random set A C [S] of size v;
3. Generate the secret keys

SKk A,i < OneQFE.Keygen(MSK;, (K, A)) for every i € I’

Output as secret key SKg := (T, A, (SKk A i) ier)-
— Encryption BdFE.Enc(MPK, AM): On input the master public key MPK =
(MPK;)N | and a message M = (Mj,..., M;) € M:
1. For i = 1,2,...,¢, pick a random degree t polynomial u;(-) whose
constant term is M;.
2. For i = 1,2,...,S, pick a random degree Dt polynomial (;(-) whose
constant term is 0.
3. Run the omne-query encryption algorithm OneQFE.Enc N times to
produce ciphertexts

CTZ — OneQFE.Enc(MPKi, (/1,1(%), - ,/Le(i), Cl(l)7 A ,Cs(l)))

fori=1...N.
Output (CT;)X, as the ciphertext.
— Decryption BdFE.Dec(SKk,CT): On input a secret key SKx and a
ciphertext CT, do the following:
1. Parse SKx == (I, A, (SKk.a4)ier) and CT = (CT,)N,.
2. Compute a degree Dt polynomial 7(-) such that

1(i) = OneQFE.Dec(SKg A 4, CT;)

for all i € T
3. Output n(0).

We first show that the scheme above is correct. By correctness of the underlying
single-query FE, we have that for all i € T,

n(i) = G((K, A), (1 (i), - - -, pe(2)), G (2), - Cs()))
= F(K’ (Ml(i)v s 7M€(i))) + Z Ca(i)

acA
Since |I'| > Dt + 1, this means that 7 is equal to the degree Dt polynomial
() = FOE, ()5 pe()) + Y Gal)
aEA

Hence, n(0) = F(K, (M, ..., My)) = F(K, M).

4.2 Setting the Parameters

We show how to set the parameters S = S(k), N = N(k) and ¢t = t(x). These
parameters govern the choice of the sets I' and A during the key generation
algorithm, and are required to satisfy the following two conditions:



Small Pairwise Intersections. Let I'q,...,Ty C [N] be the (uniformly random)
sets chosen for each of the ¢ secret key queries of the adversary. Whenever two
of these sets intersect, the adversary obtains two distinct secret keys for the
underlying one-query secure FE scheme. More precisely, for every j € I'y N Ty,
the adversary obtains two secret keys under the public key MPK;. Since security
of MPK; is only guaranteed under a single adversarial query, we have to contend
with the possibility that in this event, the adversary can potentially completely
break the security of the public key MPK;. In particular, for every such j, the
adversary potentially learns a share of the encrypted message M.

Thus, to guarantee security, we require that the union of the pairwise

intersections of I'y,...,I'; is small. In particular, we require that 'U#j(Fi N

I';)| < t. This ensures that the adversary learns at most ¢ shares of the message

M, which together reveal no information about M.

A simple probabilistic argument shows that this is true (with probability
1 — 272t/4) as long as ¢2 - (Dt/N)%- N < ¢/10. In other words, we will set
t(k) = O(¢*k) and N (k) = O(D?¢?*t) which satisfies the above constraint with
probability 1 — 27%(),

Cover-Freeness. Let Aq,...,A, C [S] be the (uniformly random) sets chosen
for each of the ¢ secret key queries of the adversary. The security proof relies
on the condition that the polynomials A Ca(+) are uniformly random and
independent which is true if the collection of sets Aq,..., A, is cover-free. That

is, for every i € [g]: A; \ (Uj# Aj> # .

A simple probabilistic argument shows that this is true (with probability
1 — 272a*"/9)) a5 long as ¢2v?/S < v/100. In other words, we will set v(k) =
O(x) and S(k) = O(vg?) which satisfies the above constraint with probability
1— 290,

We remark that in our construction, multiple secret key queries for the same
K € K result in different secret keys SK, essentially because of the different
random choices of the sets A and T'. Using a pseudorandom function (applied
to K), it is possible to ensure that multiple secret key queries for the same K
result in the same answer.

4.3 Proof of Security

Overview. We prove that BDFE is q-NA-SIM-secure. Recall that the simu-
lator gets as input all of the following values: 1) the public key: MPK =
(MPK4,...,MPKy); 2) the queries and outputs of F: Kq,...,K,), and all the
outputs F'(K1, M), ..., F(K,, M); 3) the corresponding secret keys: SKy, ..., SKg,
which determine the sets I'1,...,I'q, Aq,..., Aq.

We describe our strategy for simulating the ciphertext CT = (CTy,...,CTy).
Let 7 :=J;,;(I'; NT'j). We will consider two cases:



— ¢ ¢ Z: Here, we issue at most one secret key corresponding to (MPK;, MSK;);
this is because at most one of the sets I'y,...,I'; contains i. Therefore,
we may appeal to the security of the underlying one-query FE scheme.
Specifically, we simulate CT,; computationally using the simulator for the
underlying one-query FE scheme.

— 4 € I: Here, we may issue more than one secret key corresponding to
(MPK;, MSK;); therefore, we can no longer rely on the security of the
underlying one-query FE scheme. Instead, we rely on the statistical security
of the underlying MPC protocol and the fact that |Z| < ¢. Specifically, we
simulate CT; statistically as in an honestly generated ciphertext.

We refer the reader to the full version for the formal proof of security.

5 A Bootstrapping Theorem for Functional Encryption

In this section, we show a “bootstrapping-type” theorem for functional en-
cryption (FE). In a nutshell, this shows how to take a g¢-query functional
encryption scheme for “bounded degree” circuits, and transform them into a
g-query functional encryption scheme for arbitrary polynomial-size circuits. The
transformation relies on the existence of a pseudorandom generator (PRG) that
stretches the seed by a constant factor, and which can be computed by circuits of
degree poly(x). This is a relatively mild assumption, and in particular, is implied
by most concrete intractability assumptions commonly used in cryptography,
such as ones related to factoring, discrete logarithm, or lattice problems.

In a high-level the idea is this: Suppose we wish to construct an FE scheme
for a polynomial-size circuit F'(K, M), and let F(K, M; R) denote a randomized
encoding of F that is computable by a constant-depth circuit with respect to
the inputs M and R. By [AIKO06, Theorem 4.14], we know that assuming the
existence of a pseudo-random generator in @L/poly, such a randomized encoding
exists for every polynomial-size circuit F'.

Consider the function G that works in the following way:

G((K,A),(M,Ry,...,Rs)) := ﬁ(K, M; P Ra>

a€A
Observe the following:

— Since G(K, - ; - ) is computable by a constant-depth circuit, then
G((K,A), - ) is computable by a constant-degree polynomial. Using the
result from the previous scheme, we have a ¢-NA-SIM-secure FE scheme for
G.

— Given a functional encryption scheme for G, it is easy to construct one for
F. Decryption works by first recovering the output of G and then applying
the decoder for the randomized encoding.



— Informally, 1-AD-SIM-security follows from the fact that the ciphertext
together with the secret key reveals only the output of G(K, M), which
in turn reveals no more information than F(K, M). More formally, given
F(K, M), we can simulate G(K, M) and then the ciphertext, using first the
simulator for the randomized encoding and then that for the underlying FE
scheme.

— The role of the subset A is similar to that in the preceding construction —
to “rerandomize” the randomness used in GG, which is necessary to achieve
g-AD-SIM-security.

Functional Encryption Scheme for F'. Let (BdFE.Setup, BAFE.Keygen, BdFE.Enc,
BdFE.Dec) be a ¢-AD-SIM-secure scheme for G, with a simulator BAFE.Sim.
We construct an encryption scheme (FE.Setup, FE.Keygen, FE.Enc, FE.Dec) for F
works as follows (that takes parameters S, v as before).

— Setup FE.Setup(1%): Run the bounded FE setup algorithm to generate a
master public-key/secret-key pair (MPK, MSK) < BdFE.Setup(1*).
— Key Generation FE.Keygen(MSK, K): On input the master secret key MSK
and a key K € K for the functionality F', do the following:
1. Choose a uniformly random set A C [S] of size v;
2. Generate the secret key SKg A < BdFE.Keygen(MSK, (K, A)). for the
functionality G.
Output as secret key SKg := (A, SKg a).
— Encryption FE.Enc(MPK, M): On input the master public key MPK and a
message M € M, do the following:
1. Fori=1,2,...,5, choose uniformly random R; <- {0,1}".
2. Run the bounded degree encryption algorithm BdFE.Enc to produce a
ciphertext CT <— BdFE.Enc(MPK, (M, Ry,...,Rg)).
Output CT as the ciphertext.
— Decryption FE.Dec(SKg, CT): On input a secret key SKi and a ciphertext
CT,
e Run the bounded FE decryption algorithm to get Y « BdFE.Dec(SKk, CT).
e Run the randomized encoding decoder on Y to get the output Y <«
RE.Decode(Y).

Correctness and Security We first show correctness of the scheme FE. Given
a secret key SKx and a ciphertext CT «+ FE.Enc(MPK, M), the decryption
algorithm computes

Y = BdFE.Dec(SKx, CT) = G((K,A), (M, Ry,...,Rs)) = F(K, M; EB@GA R.))

Of course, running RE.Decode on this should return Y = F(K, M), by the
correctness of the randomized encoding scheme.

The security of the scheme follows in a straightforward way from the security of
BDFE, and that of the randomized encoding.



Bootstrapping for Unbounded Queries. Although the transformation above
assumes the knowledge of ¢ (the bound on the number of secret key queries
of the adversary), we can generalize it to work for unbounded queries as follows.
Essentially, the idea is to generate fresh (computational) randomness for each
randomized encoding using a pseudo-random function.

In particular, let {prfg}seo,1}+ be a family of weak pseudo-random functions.
Consider a function G that works in the following way:

G((K,R),(M,S)) := ﬁ(K, M:; prfS(R))

Then, essentially the same construction as above works as a way to bootstrap
an FE scheme for arbitrary circuits from FE schemes for circuits that can
compute the weak PRF followed by the randomized encoding. Assuming the
existence of weak PRFs and PRGs that can be computed by circuits of degree
poly(x), we then obtain functional encryption schemes for arbitrary circuits.

References

[AIKO6] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally
private randomizing polynomials and their applications. Computational
Complezity, 15(2):115-162, 2006.

[BFO1] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
weil pairing. In CRYPTO, pages 213-229, 2001.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
In Proceedings of the twentieth annual ACM symposium on Theory of
computing, STOC ’88, pages 1-10, New York, NY, USA, 1988. ACM.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In STOC, pages 503-513, 1990.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption:
Definitions and challenges. In TCC, pages 253273, 2011.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In FOCS, pages 97-106, 2011.

[BWO6] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based
encryption (without random oracles). In CRYPTO, pages 290-307, 2006.

[CFGN96] Ran  Canetti, Uriel = Feige, Oded  Goldreich, and  Moni
Naor. Adaptively secure multi-party computation.
In STOC, pages 639-648, 1996. Longer  version at
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-682.pdf.

[CHH'07] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike
Kiltz, Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Bounded
CCA2-secure encryption. In ASTACRYPT, pages 502-518, 2007.

[Coc01]  Clifford Cocks. An identity based encryption scheme based on quadratic
residues. In IMA Int. Conf., pages 360-363, 2001.

[DI05] Ivan Damgérd and Yuval Ishai. Constant-round multiparty computation
using a black-box pseudorandom generator. In CRYPTO, pages 378-394,
2005.



[DKXYO02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-

[DNOO]

[Gen09]

[GLW12]

insulated public key cryptosystems. In In FUROCRYPT, pages 65-82.
Springer-Verlag, 2002.

Ivan Damgard and Jesper Buus Nielsen. Improved non-committing
encryption schemes based on a general complexity assumption. In
CRYPTO, pages 432-450, 2000.

Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009. crypto.stanford.edu/craig.

Shafi Goldwasser, Allison B. Lewko, and David A. Wilson. Bounded-
collusion IBE from key homomorphism. In T'CC, pages 564-581, 2012.

[GPSWO06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-

[TK00]

[KO04]

[KSWO08]

[LOST10]

[O’N10]

[OSW07]

[OT10]

[Sha79]

[Sha84]

[SS10]

[SWO5]

[Yao86]

based encryption for fine-grained access control of encrypted data. In ACM
Conference on Computer and Communications Security, pages 8998, 2006.

Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new
representation with applications to round-efficient secure computation. In
FOCS, pages 294-304, 2000.

Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party
computation. In CRYPTO, pages 335-354, 2004.

Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption
supporting disjunctions, polynomial equations, and inner products. In
EUROCRYPT, pages 146-162, 2008.

Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima,
and Brent Waters. Fully secure functional encryption: Attribute-based
encryption and (hierarchical) inner product encryption. In Henri Gilbert,
editor, FEUROCRYPT, volume 6110 of Lecture Notes in Computer Science,
pages 62-91. Springer, 2010.

Adam O’Neill. Definitional issues in functional encryption. Cryptology
ePrint Archive, Report 2010/556, 2010. http://eprint.iacr.org/.

Rafail Ostrovsky, Amit Sahai, and Brent Waters.  Attribute-based
encryption with non-monotonic access structures. In ACM Conference on
Computer and Communications Security, pages 195-203, 2007.

Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional
encryption with general relations from the decisional linear assumption.
In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer
Science, pages 191-208. Springer, 2010.

Adi Shamir. How to share a secret. Commun. ACM, 22:612—613, November
1979.

Adi Shamir. Identity-based cryptosystems and signature schemes. In
CRYPTO, pages 47-53, 1984.

Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional
encryption with public keys. In ACM Conference on Computer and
Communications Security, pages 463-472, 2010.

Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In
EUROCRYPT, pages 457473, 2005.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In FOCS, pages 162-167, 1986.



A One-Query General Functional Encryption from
Randomized Encodings

We describe a construction of a one-query functional encryption scheme that is
essentially from Sahai and Seyalioglu [SS10]. They proved the construction secure
in the 1-NA-SIM sense; we observe that their “bootstrapping” construction works
for 1-AD-SIM. Let F be arbitrary polynomial-size functionality. We construct the
scheme ONEQFE for F as follows.

Our starting point is a “brute-force construction” first presented by Boneh et
al. [BSW11, Section 4.1]. We call this BFFE. Essentially, Boneh et al. presented
an NA-SIM-secure scheme for any functionality where the key space has polyno-
mial size, starting from any semantically secure public-key encryption scheme.
(They only claimed indistinguishability-based security, but it clearly satisfies
simulation-based security too.) For simplicity, we just use their construction
for the key-space K = {0,1}. In addition, we observe that the scheme can be
made AD-SIM-secure (for bounded message spaces) by replacing the underlying
encryption scheme by an appropriate “non-committing type” scheme; the details
are deferred to the full version.

In a high-level the idea is this: suppose we wish to construct an FE scheme
for a polynomial-size circuit F'(K, M), and let F(K, M; R) denote a randomized
encoding of F' where for every M, R, F (-, M;R) has small locality; specifically,
every output bit of F (K, M; R) depends only on one input bit of K. Assume the
key has length A. Then, we can write

F(K,M;R) = (F\(Ki,M;R),...,F\(Kx, M;R))
where E( -, M; R) depends only on K;, the ith bit of K.

— Setup FE.Setup(1®): Run the brute-force setup algorithm A times to
generate independent master public-key /secret-key pairs

(MPK;, MSK;) < BFFE.Setup(1*) for Fyandi=1,...,\

Output (MPK;)2_, as the master public key and (MSK;)?_; as the master
secret key.

— Key Generation FE.Keygen(MSK, K): On input the master secret key MSK
and a key K € K for the functionality, pick

SKKJ‘ — BFFEKeygen(MSKl,KZ) for i = 1,...,A
Output as secret key SKx := ((SKk i)icln))-
— Encryption FE.Enc(MPK, M): On input the master public key MPK and a
message M € M, compute

CT; «+ BFFE.Enc(MPK;, M) fori=1,...,\

Output (CT;)2, as the ciphertext.



— Decryption FE.Dec(SKg,CT): On input a secret key SKx = (SKk )ie[n)
and a ciphertext CT = (CT;)2_;, do the following:
1. Compute Y; = BFFE.Dec(MSK;,CT;) for i =1,...,\;
2. Run the decoder to get YV « RE.Decode(XN/l, ce )N/A)
Output Y.



