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Abstract. When Alice and Bob want to securely evaluate a function of
their shared inputs, they typically first express the function as a (boolean
or arithmetic) circuit and then securely evaluate that circuit, gate-by-
gate. In other words, a secure protocol for evaluating f is typically ob-
tained in a non-black-box-way from f itself. Consequently, secure compu-
tation protocols have high overhead (in communication & computation)
that is directly linked to the circuit-description complexity of f .
In other settings throughout cryptography, black-box constructions in-
variably lead to better practical efficiency than comparable non-black-
box constructions. Could secure computation protocols similarly be made
more practical by eliminating their dependence on a circuit representa-
tion of the target function? Or, in other words, must one know the code
of f to securely evaluate f?
In this work we initiate the theoretical study of this question. We show
the following:

1. A complete characterization of the 2-party tasks which admit such
security against semi-honest adversaries. The characterization is in-
spired by notions of autoreducibility from computational complexity
theory. From this characterization, we show a class of pseudorandom
functions that cannot be securely evaluated (when one party holds
the seed and the other holds the input) without “knowing” the code
of the function in question. On the positive side, we show a class of
functions (related to blind signatures) that can indeed be securely
computed without “knowing” the code of the function.

2. Sufficient conditions for such security against malicious adversaries,
also based on autoreducibility. We show that it is not possible to
prove membership in the image of a one-way function in zero-knowledge,
without “knowing” the code of the one-way function. We also de-
scribe a variant of the GMW compiler for transforming semi-honest
to malicious security while preserving the specific black-box property
considered here.

1 Introduction

In cryptography, a black-box construction is one that uses only the input/output
behavior of its components [21,28]. By contrast, a non-black-box construction
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relies on the code of its components. Understanding exactly when non-black-
box techniques are necessary is important for cryptography, since black-box
constructions are typically much more efficient (in their computation and/or
communication) than comparable non-black-box constructions.

Secure multi-party computation (MPC) allows mutually distrusting parties
to securely evaluate a function f on their shared inputs. This powerful paradigm
is well-known in the theoretical community but appears to be seldom used in
practice. As a result, much current work focuses on improving the efficiency of
MPC constructions to facilitate more widespread use. A recent line of work (see
[20] and followup works [22,17,26]) has focused on improving efficiency by re-
moving certain non-black-box techniques used in all earlier work. In particular,
these results focus on the black-box use of the underlying cryptographic prim-
itives (that is, one-way functions, trapdoor permutations, or standalone-secure
oblivious transfer) used in the protocol.

One goal in this paper is to make explicit another non-black-box step inher-
ent to all existing general-purpose MPC protocols. To build a secure protocol for
a function f , the function must first be expressed as a low-level circuit ([30,19]
use boolean circuits, [16,9] use arithmetic circuits, and [23] uses branching pro-
grams). Then, the protocol proceeds to securely evaluate the circuit, gate by gate.
In other words, a secure protocol for f is non-black-box in its usage of f itself.
While this framework provides a straight-forward way to achieve complete gener-
ality, it also inherently ties the efficiency (communication, computation, or both)
of the protocol to the circuit-representation complexity of f . For this reason, an
important line of research has streamlined many aspects of this non-black-box
dependence, including techniques for optimizing circuits for MPC [24,27] and
exploring alternative circuit representations [3].

It is unreasonable to expect that we can avoid this non-black-box step for
general-purpose MPC (indeed, our results explicitly confirm this). Still, it is im-
portant to understand exactly to what extent the non-black-box dependence is
inherent. For which special-purpose secure computation tasks can we avoid de-
pendence on the code of the target function altogether (and hopefully construct
highly efficient protocols)?

1.1 Overview of the Results

We initiate the theoretical study of when a protocol can securely compute f
without “knowing” the code of f . When considering a (standard) secure proto-
col for a functionality f , that choice of f is fixed and the protocol is allowed to
depend arbitrarily on f . In this case, it is not meaningful to place any syntactic
restrictions on the protocol (e.g., that it use oracle access to a subroutine imple-
menting f), since the protocol could have a circuit for f hard-coded anyway.

Instead, we model a protocol that “does not know” the code of its target func-
tionality in the following way. The protocol is a pair of oracle machines that,
when instantiated with any f from some larger class of functionalities, securely
emulates a functionality related to f . By considering large classes of functional-



ities, we prevent the protocol from hard-coding relevant circuit representations
of the functionalities.

Definition (Informal). Let F be an ideal (2-party) functionality implemented
as an oracle machine, and let C be a class of functions. Then a functionally-
black-box (FBB) protocol for FC is a pair of oracle machines (πA, πB) such

that, for all f ∈ C, the instantiated protocol (πfA, π
f
B) is a secure protocol for Ff .

As a natural example, C can be a class of functions that take two inputs,
and F can be the simple functionality which collects x from Alice, y from Bob,
queries its oracle to obtain z = f(x, y), and gives the result to both parties
(secure function evaluation). Or, F can be the functionality which collects (x,w)
from Alice, and then gives x to Bob if f(x,w) = 1 (zero-knowledge proof).

We point out that it is only the protocol which must treat f as a black-box.
In particular, the order of quantifiers is such that adversaries and simulators
attacking the f -instantiated protocol may depend arbitrarily on the choice of f
(and hence could be said to “know” the code of f).

We put forth the FBB property as a necessary condition for highly efficient,
practical MPC protocols. This work therefore focuses on a theoretical under-
standing of the FBB property, as a proxy for practical efficiency. However, FBB
alone is not a sufficient condition for practical protocols. Indeed, the protocols
that we construct in this work may not be considered “practical.”

Autoreducibility characterization for 2-party passive security. In computational
complexity theory, the notion of autoreducibility is a way to measure the “struc-
ture” within a set. Very generally, a set A is autoreducible if there exists an
oracle machine M such that MA(x) = A(x), and yet M ’s oracle queries do not
“depend too much” on x. An instance of autoreducibility which shows up fre-
quently in cryptography is the notion of random self-reducibility. In that case,
the oracle queries of M are distributed independently of the input x.

We define a variant of autoreducibility called 2-hiding autoreducibility,
which subsumes random self-reducibility and has some similarities to “2-oracle
instance-hiding” autoreducibility defined by Beaver & Feigenbaum [5]. Intu-
itively, 2-hiding autoreducibility requires a single oracle machine M such that
Mf (x, y) = f(x, y) for every f in a large class C; furthermore, half of M ’s oracle
queries are “independent” of x and the other half are “independent” of y, in
some sense. We then show that 2-hiding autoreducibility completely character-
izes FBB feasibility (for 2-party deterministic secure function evaluation):

Theorem (Informal). Let C be a class of 2-input functions. Then functionally-
black-box secure evaluation of C is possible against semi-honest adversaries, in
the presence of an arbitrary trusted setup, if and only if C is 2-hiding autore-
ducible.

We also emphasize that achieving the FBB property is not simply a matter of
providing a very powerful trusted setup to the parties. Indeed, to be meaningful,
the trusted setup must be the same for every f ∈ C. Since it is only the parties



and not the trusted setup that have access to f , it is not immediate that even a
powerful setup can be useful. Subsequently, our characterization can be used to
give impossibility results that hold even in the presence of an arbitrary setup.
Without loss of generality, one can assume the presence of a complete trusted
setup such as the oblivious transfer functionality [22], or a common reference
string [14].

Non-trivial FBB feasibility. There is a trivial sense in which some classes of
functionalities admit FBB protocols. We say (informally) that a class C is learn-
able if it is possible to efficiently obtain a circuit for f using only oracle access
for f , for every f ∈ C. Then every learnable class admits an FBB protocol of the
following form: the parties independently query f to obtain a (canonical) circuit
that evaluates f ; they then use a standard general-purpose construction such as
[19,14,22]. Thus, the notion of functionally-black-box is most meaningful when
considering non-learnable classes of functionalities. (We note that a similar triv-
iality occurs in the context of obfuscation [4], with respect to this same notion of
learnability.) Informally, it is possible to “securely compute f without knowing
the code of f” if f belongs to some class C that admits FBB secure protocols
but is not learnable from oracle queries.

Using our autoreducibility characterization, we explicitly show that non-
trivial FBB protocols are possible. That is, learnability is a strictly stronger
condition than FBB feasibility. Intuitively, learnability requires the entire func-
tion to be deduced from oracle access, while our autoreducibility characterization
only requires M to deduce the correct answer on a single, given input. We show
a class of functions (related to blind signatures) that admits FBB protocols, but
is not explicitly learnable from oracle queries. Thus, in some cases it is in fact
possible to securely compute f “without knowing” the code of f .

Infeasibility of PRF evaluation. As another demonstration of our autoreducibil-
ity characterization, we show that it is impossible to securely evaluate arbitrary
PRFs (where one party holds the seed and the other holds the PRF input)1 in
an FBB manner. Impossibility holds even if arbitrary trusted setups are avail-
able, and even if security is only required against semi-honest adversaries. The
result also easily extends to the class of (strong) PRPs. We leave open the ques-
tion of whether a natural subclass of PRFs admits FBB-secure protocols (in a
non-trivial way).

Sufficient conditions for malicious security. We define another variant of au-
toreducibility, called 1-hiding autoreducibility. The definition is similar to that
of 2-hiding autoreducibility, except that in 1-hiding autoreducibility all of the
oracle machine’s queries are independent of both x and y. We then show that
1-hiding autoreducible is a sufficient condition for FBB feasibility against mali-
cious adversaries.

1 Evaluating the AES block cipher in this way is now a relatively standard performance
benchmark for MPC protocols [25].



We also show a variant of the GMW compiler to convert semi-honest-secure
to malicious-secure protocols, in a way that preserves the FBB property. Just
as the GMW compiler uses zero-knowledge proofs as its main component, we
require an FBB protocol for the simple functionality that takes input x from
Alice and gives f(x) to Bob (FBB with respect to f ∈ C). This functionality can
be considered a zero-knowledge proof of membership in the image of f .

Zero-knowledge. Beyond the GMW-inspired application described above, zero-
knowledge proofs are interesting in their own right. ZK proofs are often the
sole source of non-black-box behavior (and thus the efficiency bottleneck) in a
protocol.

Let f be a deterministic function and define the relation Rf (x,w) = 1 ⇔
f(w) = x. We show that FBB zero-knowledge proofs are impossible for the class
of relations {Rf | f is a OWF}. In fact, our impossibility result is much stronger,
ruling out even honest-verifier witness-hiding (instead of zero-knowledge), ar-
guments rather than proofs; impossibility further applies to basic standalone
security, and holds in the presence of arbitrary trusted setups.

1.2 Other Related Work

The notion of autoreducibility has proven to be a fruitful tool in complexity
theory for quantifying the amount of structure in a set. For a gentle introduction
to research on this topic, see [29,2].

In cryptography, autoreducibility has already been recognized as a tool for
several interesting applications. Abadi, Feigenbaum, & Kilian [1] used “instance
hiding” autoreducibility to reason about what would in today’s parlance be called
a form of outsourced computation. Here, a client wishes to compute f(x) using
access to a powerful trusted server who can evaluate the function f ; the client
wants to learn f(x) but does not want his queries to f to leak any information
about x. The notion was later extended by Beaver & Feigenbaum [5] to a setting
involving multiple (non-colluding) servers. A summary of this line of work was
given by Brassard [12]. Beaver et al. [6] also used autoreducibility to construct
efficient perfect zero-knowledge proofs.

The question of FBB protocols requires a fundamentally different style of
autoreducibility than studied in previous works. First, existing definitions con-
sider an oracle machine which is required to work only for a single fixed language
(or function); whereas here we require a single oracle machine which works for
any function from a large class. Second, we must explicitly consider functions
on two inputs, and make a distinction between oracle queries that depend on
each of the inputs. In addition, our notion of “query independence” is specific
to our application of secure protocols. Finally, many previous definitions of au-
toreducibility allow the oracle machine to be instantiated with an oracle that is
distinct from (but depends on) the required output function — e.g., an oracle
machine computes the function f when given oracle access to g, a low-degree
encoding of f .



2 Preliminaries

A probability p(n) is negligible if for all, c > 0, p(n) < n−c for all but finitely
many n. We write p(n) ≈ q(n) if |p(n) − q(n)| is negligible. A probability p(n)
is overwhelming if p(n) ≈ 1.

When discussing security of MPC protocols, we use Canetti’s framework of
Universally Composable (UC) security [13]. The low-level details of the security
model are not crucial to our results. We do, however, make one distinction about
notation:

In the MPC literature, the notation πf often refers to a protocol π where the
parties can use a shared ideal functionality f (the f -hybrid model, in UC par-
lance). In this work, write πf to instead denote a protocol machine equipped with
(local) oracle access to independent instances of f . In that sense, our notation
reflects the complexity-theoretic idea of an oracle computation.

Definition 1 (Related-Key security for PRFs [8]). Let Φ be a class of
functions over {0, 1}k. Then F : {0, 1}k×{0, 1}k → {0, 1}k is a pseudorandom
function secure under Φ-related-key attacks (Φ-RKA-PRF) if for all
efficient M , |Pr[MO(1k) = b]− 1

2 | is negligible in k, in the following game:
Bit b is chosen at random and s is chosen uniformly from {0, 1}k. If b = 0

then queries of the form O(φ, x), where φ ∈ Φ and x ∈ {0, 1}k, are answered as
F (φ(s), x). If b = 1 then the query O(φ, x) is answered as Rφ(s)(x), where for

each v, Rv is chosen as a random function from {0, 1}k → {0, 1}k.

If ⊗ is a group operation on {0, 1}k, and Φ = {φ∆ | ∆ ∈ {0, 1}k} where
φ∆(x) = x⊗∆, then we say that Φ is group-induced. Bellare & Cash [7] give
constructions of Φ-RKA-PRFs (and PRPs) for group-induced Φ.

Definition 2 (Blind signatures [15]). Let Σ = (KeyGen,Sign,Ver) be a sig-
nature scheme. A blind signature protocol for Σ is one in which the client
has input (1k,m), the signer has input (1k, sk), and the client receives output
Sign(sk,m). The blindness condition is that the view of the signer is statistically
independent of m.

3 Functionally Black-Box Protocols

We now give the formal definition of MPC protocols that “do not know” the
code of their target function f , as described in the introduction:

Definition 3. Let C be a class of functions, and let F be an ideal functionality
that is implemented as an (uninstantiated) oracle machine. Let πA and πB be
interactive oracle machines. Then we say that π = (πA, πB) is a functionally-
black-box (FBB) protocol for FC in a certain security model if, for all f ∈ C,

the protocol (πfA, π
f
B) is a secure protocol (in the model in question) for the ideal

functionality Ff .



Importantly, the definition defers to the security condition separately for
each instantiation (πfA, π

f
B). Thus, adversaries and simulators attacking the f -

instantiated protocol in the security definition can depend arbitrarily on the
choice of f ∈ C. This models the fact that adversaries are not restricted to use
f as a black-box. Indeed, the intent is to characterize convenience/efficiency for
the honest parties, without compromising any level of security.

Instantiations used in this work. Let Fsfe be the non-reactive functionality that
takes input x from Alice and y from Bob, queries its oracle f to obtain z =
f(x, y), and gives the output to both parties. Then an FBB protocol for FCsfe
would allow the protocols to have only black-box access to the function f being
evaluated.

As another example, let Ffzk be the functionality that takes input w from
Alice, queries its oracle f to obtain x = f(w), and gives output x to Bob. When

instantiated with function f , Fffzk is essentially a zero-knowledge argument (of
knowledge) functionality for statements of the form “∃w : x = f(w)”. Note that
in this setting we allow parties to have access to the function f rather than the
(more restricted) NP relation Rf (x,w) = 1⇔ f(w) = x.

Simple observations. Suppose C is learnable in the following sense. There exists
a PPT oracle TM M such that with overwhelming probability (in k), Mf (1k, 1t)
outputs a circuit that agrees with f on {0, 1}t, for all f ∈ C. In the simple case
where M will always output a canonical circuit, then an FBB protocol can be
obtained by having both parties (independently) running M , and then using an
appropriate non-FBB protocol construction on the resulting circuit. Even if M
does not reliably output the same circuit each time, an FBB protocol can be
obtained using the approach outlined later in Theorem 2 (the class is 1-hiding
autoreducible via the oracle machine which runs C ←Mf (1k, 1|x|+|y|);C(x, y)).

Suppose C contains only functions whose input domains are constant-sized
(i.e., not growing in size with k). Then C is (canonically) learnable in the above
sense, by exhaustively querying the function. For this reason, we only consider
classes which contain functions over infinite domains.

4 Classification for Semi-Honest Security

In this section we define a notion of autoreducibility, and then show that it
completely characterizes feasibility of FBB MPC protocols against semi-honest
adversaries.

Definition 4. Let C denote a class of functions on two inputs. Let M be a PPT
oracle machine, and suppose each oracle query is tagged with a label i ∈ {1, 2}
(say, by setting some internal variable at the time of the query). Then for i ∈
{1, 2} define Qi[M,f ; z] to be the random variable containing the sequence of
oracle queries made with label i during the computation Mf (z). We say that C
is 2-hiding autoreducible if there exists a PPT oracle machine M such that
for all f ∈ C:



1. For all x, y, we have that Pr[Mf (1k, x, y) = f(x, y)] is overwhelming in k.
2. There exists a PPT machine Sf,1 such that for all x, y, the following ensem-

bles are indistinguishable (in k):

{Sf,1(1k, f(x, y), x)}k and {Q1[M,f ; 1k, x, y]}k.

3. There exists a PPT machine Sf,2 such that for all x, y, the following ensem-
bles are indistinguishable (in k):

{Sf,2(1k, f(x, y), y)}k and {Q2[M,f ; 1k, x, y]}k.

In other words, M is able to use oracle access to f to determine f(x, y), yet
its type-1 oracle queries to f are “independent” of y and its type-2 queries are
“independent” of x, in some sense. A special case is when M ’s type-1 queries
are distributed independently of y (and type-2 queries independently of x).

We now give our main classification for semi-honest security, which holds in
the presence of arbitrary trusted setups. Without loss of generality, we can take
the trusted setup to be the oblivious transfer functionality, which we denote by
Fot.

Theorem 1. There is a FBB protocol for FCsfe secure against PPT semi-honest
adversaries in the Fot-hybrid model if and only if C is 2-hiding autoreducible.

Proof. (⇐) Suppose that the oracle machine M satisfies the definition of 2-hiding
autoreducibility for C. Without loss of generality, assume that the number of
queries made by M depends only on the input 1k (i.e., it does not depend on
x or y), and that M strictly alternates between type-1 and type-2 queries. We
then define the ideal functionality FM as in Figure 1.

There is a UC-secure protocol for FM in the Fot-hybrid model, so it suffices
to design a FBB MPC protocol for FCsfe in the FM -hybrid model. (Note that
the same FM will be used in the protocol for each f ∈ C.) The FBB protocol

for Ffsfe, f ∈ C, is relatively straight-forward. On inputs x for Alice and y for
Bob, the parties send (init, x) and (init, y) to FM , respectively. Whenever a
party receives output (query, q) from FM , for q 6= ⊥, that party uses its local
oracle to compute r = f(q), and gives (resp, r) to FM . When the parties receive
(out, z) from FM , they output z.

Clearly the protocol is FBB. To show that this protocol is secure against
semi-honest adversaries, it suffices to show that the view of an honest party
can be simulated in the ideal world. The simulator for a semi-honest Alice is
as follows. Fix f ∈ C and recall that the simulator for the f -instantiated pro-
tocol can depend arbitrarily on f . The simulator receives Alice’s input x from
the environment. When Alice sends (init, x) to FM , the simulator sends x to
the ideal functionality and receives z = f(x, y). The simulator then computes
Q ← Sf,1(1k, z, x), where Sf,1 is the machine guaranteed by the 2-hiding au-
toreducibility definition. For each query q in the sequence Q, the simulator gives
(query, q) and then (query,⊥) to Alice on behalf of FM . Finally, the simula-
tor gives output (out, z) to Alice on behalf of FM . It is clear that Alice’s view



The functionality maintains a configuration of the machine M in an internal
variable S. This variable is manipulated by commands from Alice and Bob, as
described below. After every such input, the functionality simulates M with
configuration S. If M terminates with output z, give output (out, z) to both
parties and halt. If M queries its oracle with a type-1 query q, then give output
(query, q) to Alice and (query,⊥) to Bob, and wait. If M queries its oracle
with a type-2 query q, then give output (query,⊥) to Alice and (query, q)
to Bob, and wait.

1. On inputs (init, x) from Alice and (init, y) from Bob, initialize S as the
initial configuration of oracle machine M on input (1k, x, y), where k is
the global security parameter. Then simulate M as described above.

2. On input (resp, r) from Alice, ensure that in configuration S, M is await-
ing a reply to a type-1 oracle query (otherwise abort). Update S to reflect
a response r on the oracle response tape, then simulate M as described
above.

3. On input (resp, r) from Bob, do the same as the previous step except
ensure that M is awaiting a reply to a type-2 oracle query.

Fig. 1. Ideal functionality FM , parameterized by oracle PPT machine M .

is computationally indistinguishable from that of the real interaction, by the
guarantees of Sf,1. The protocol is essentially symmetric with respect to Alice
and Bob, and so security holds for a semi-honest Bob as well. Note that since
we consider only semi-honest security, the adversary will indeed provide correct
oracle responses to FM . Indeed, a malicious party could easily invalidate this
security argument by providing incorrect oracle responses to FM .

(⇒) Suppose π = (πA, πB) is an FBB protocol for FCsfe in the Fot-hybrid model.
Define an oracle machine M as follows: It internally simulates instances of πA,
πB , and Fot as in their protocol interaction. On input (1k, x, y) to M , it gives
input (1k, x) to πA and input (1k, y) to πB . It then simulates the three sub-
components in the natural way. Whenever πA makes an oracle query, M makes
the same query as a type-1 query and returns the result to the πA component.
Similarly, queries made by πB are made as type-2 queries. The final output of
πA is taken to be the output of M .

By the correctness of the protocol π, we have that the output of M is equal to
f(x, y) with overwhelming probability for all x, y, when instantiated with f as its
oracle. Now fix a particular f ∈ C. The security of π instantiated with f implies
the existence of a simulator S in the Ffsfe-ideal model. We define Sf,1 to do the
following, on input (1k, f(x, y), x): First, run S on input (1k, f(x, y)) against a
semi-honest corrupt Alice with input (1k, x). Then S generates a simulated view
for Alice; output the sequence of simulated oracle queries contained in Alice’s
view. By the soundness of S, the output of Sf,1 is indistinguishable from the
sequence of type-1 queries made by M , as required for 2-hiding autoreducibility.
The required Sf,2 algorithm is defined symmetrically.



Discussion. The protocol for realizing FM in the Fot-hybrid model uses the
oracle machine M in a highly non-black-box manner. So while the protocol is
black-box in the code of f ∈ C, it is not black-box in the code of M . However,
we note that the code of M may be significantly simpler than that of f ∈ C (for
example, when M ’s oracle queries are made uniformly), and also that M is fixed
for the entire class C.

4.1 A Positive Example, and Comparison to Learnability

Using our characterization, we can show that FBB feasibility is a strictly weaker
condition than learnability (as defined in Section 3). In other words, it is indeed
possible to securely evaluate certain classes of functions without “knowing” the
code of the function.

Let Σ = (KeyGen,Sign,Ver) be an existentially unforgeable signature scheme.
Without loss of generality, we assume that the Sign algorithm is deterministic
(it can be derandomized using a PRF). Let (πC , πS) denote a blind signature
protocol for this scheme (Definition 2), where C is the client and S is the signer.
We call a blind signature protocol modular if the πS protocol does not use the
signing key except via oracle access to Sign(sk, ·). That is, the signer executes the

protocol as π
Sign(sk,·)
S (1k, vk). As a concrete example, the Boneh-Lynn-Shacham

signature scheme [11] supports such a blind signature protocol [10].

For a signing key sk, define the function Ssk(x, y) = Sign(sk, x).

Lemma 1. If Σ has a modular and semi-honest secure blind signature protocol,
then the class CΣ = {Ssk | sk ∈ {0, 1}∗} is 2-hiding autoreducible but not learn-
able. (In fact, the class CΣ is 1-hiding autoreducible; defined later in Section 5.)

Proof. We construct a machine M for the definition of 2-hiding autoreducibility.
On input (1k, x, y), the machine M simulates instances of πC(1k, vk, x) and

π
Sign(sk,·)
S (1k, vk) in the natural way. Whenever πS queries its oracle on message
m, M makes a type-1 query (m,⊥) and uses the result as the response to πS .
Finally, M uses the final output of πC as its own output.

By the correctness of the π protocol, M satisfies the desired correctness con-
dition for 2-hiding autoreducibility. From the blindness property of π, it follows
that the oracle queries made by πS in the protocol are distributed independently
of x. Hence, the entire set of queries made by M (all type-1) are distributed in-
dependently of (x, y).

The fact that CΣ is not learnable follows from the existential unforgeability
of Σ. Suppose a machine M , using oracle access to Ssk for a randomly chosen
sk, is able to output a circuit correctly computing Ssk. Then the following is an
attack in the unforgeability game for Σ: On input (1k, vk) run M(1k). Whenever
M makes an oracle query (x, y), request a signature on x in the game and return
the result to M . When M outputs a circuit C, choose any x∗ such that no query



of the form (x∗, ·) was ever made. Then run C(x∗,⊥), which by assumption is a
valid signature on x∗; hence, a forgery.2

4.2 A Negative Example: Infeasibility of PRFs

In this section, we treat pseudorandom functions as functions of two arguments:
the first argument being the seed and the second argument being the PRF input.
Thus, a functionality evaluating a PRF in our terminology corresponds to a
functionality which takes a seed from Alice and an input from Bob, and evaluates
the PRF accordingly.

We now show that FBB protocols are impossible for the class of all pseudo-
random functions. While this claim is sensible at an intuitive level (pseudoran-
domness precludes significant structure like that required for 2-hiding autore-
ducibility), the proof has some subtlety. To apply the security of the PRF we
must have its seed (secretly) chosen at random, whereas in the 2-hiding autore-
ducibility definition, the oracle machine is given Alice’s input (taken to be the
PRF seed) and can arbitrarily query the unseeded PRF f(·, ·) as an oracle. We
show that, given a PRF secure against related-key attacks, we can “embed” an
additional seed into the PRF oracle in a way that allows the PRF security to
apply to the 2-hiding autoreducibility interaction.

Lemma 2. Define Cprf = {f | f is a PRF}. If Φ-RKA-secure PRFs exist for
group-induced Φ (Definition 1), and injective PRGs exist, then Cprf is not 2-
hiding autoreducible, and thus there is no FBB protocol for FCprfsfe , even against
semi-honest adversaries and in the Fot-hybrid model.

Additionally, we point out that the proof goes through with minimal mod-
ification with respect to the class of pseudorandom permutations (as before,
assuming the existence of RKA-secure PRPs). Regarding the condition in the
lemma statement, Bellare & Cash [7] give constructions of suitable PRFs (and
PRPs) under either the DDH or DLIN assumptions, and also assuming the ex-
istence of collision-resistant hash functions.

Proof. Let f be a PRF secure against group-induced RKA attacks. For concrete-
ness and clarity, we write the allowed group operation as ⊕. Let g : {0, 1}k →
{0, 1}2k be an injective PRG and define the following function for an arbitrary
string s:

fs(x, y) = f(s⊕ g(x), g(y)).

So that fs is defined for inputs of arbitrary length, we assume that the fixed
string s is padded with zeroes or truncated to the appropriate length (|g(x)|) in
the expression s ⊕ g(x). Now we claim that for each (fixed) string s ∈ {0, 1}∗,

2 The same argument holds with a significantly weaker requirement on learnability —
the circuit C need only agree with Ssk on some noticeable fraction of inputs, and
this only with noticeable probability.



the function fs is a PRF (interpreting x as its seed). Consider an efficient oracle
machine A. We have:

Pr
x←{0,1}k

[Af(s⊕g(x),·)(1k) = 1] ≈ Pr
x′←{0,1}2k

[Af(s⊕x
′,·)(1k) = 1]

≈ Pr
x′←{0,1}2k

[Af(x
′,·)(1k) = 1] ≈ Pr

R
[AR(1k) = 1].

In the above, R is a random oracle; thus fs is a PRF. Indistinguishability holds
due to the pseudorandomness of g, the fact that ⊕ is a group operation, and the
pseudorandomness of f , respectively.

Suppose for the sake of contradiction that oracle machine M satisfies the con-
dition required for 2-hiding autoreducibility of the class of pseudorandom func-
tions. Then for every PRF h and all strings x and y, we have that Pr[Mh(1k, x, y) =
h(x, y)] is overwhelming in k. In particular, the same probability is overwhelm-
ing for random choice of x, y ∈ {0, 1}k, s ∈ {0, 1}2k, and setting h = fs (since
each fs is a PRF). In the RKA-PRF security game for f , the oracle machine
is allowed to make queries of the form (φ, z) and obtain either f(s ⊕ φ, z) for
randomly chosen s, or Rφ(z), where each Rφ is an independent random function.
Hence,

Pr
x,y←{0,1}k

s←{0,1}2k

[Mfs(1k, x, y) = fs(x, y)] ≈ Pr
x,y←{0,1}k

[MRg(·)(·)(1k, x, y) = Rg(x)(y)]

= Pr
x,y←{0,1}k

[MR(1kx, y) = R(x, y)].

Here, each Rφ, and finally R, is chosen as a random function. The last equality
holds from the fact that g is injective.

From this we see that when the machine M is given inputs x, y ∈ {0, 1}k cho-
sen randomly, and an oracle fs with s ∈ {0, 1}2k chosen randomly, it must query
the oracle on (x, y) with overwhelming probability. By an averaging argument,
there must exist a negligible function δ and strings {sk}k∈N, each sk ∈ {0, 1}2k,
such that:

∀k : Pr
x,y←{0,1}k

[Mfsk (1k, x, y) queries its oracle on (x, y)] ≥ 1− δ(k).

When M queries its oracle on its given input, this query is either a type-1 or
a type-2 query. Thus, there must exist additional {bk}k∈N, each bk ∈ {1, 2},
satisfying:

∀k : Pr
x,y←{0,1}k

[(x, y) ∈ Qbk [M,fsk ; 1k, x, y]] ≥ 1

2
− δ(k).

Importantly, even for a fixed sk, the function fsk is a PRF and thus in the class
C for which the properties of M apply. So for each sk, there is a corresponding
simulator Sk that takes input 1k, fsk(x, y), and either x or y (depending on bk),
and whose output is indistinguishable from Qbk [M,fsk ; 1k, x, y].

Then we can use such a simulator to invert the PRG g with probability
essentially half. The attack uses the non-uniform advice {(sk, bk,Sk)}k.



On input (1k, β): // where α← {0, 1}k and β = f(α)

1. If bk = 1: choose x← {0, 1}k and run Q← Sk(1k, f(sk⊕g(x), β), x).
2. If bk = 2: choose y ← {0, 1}k and run Q← Sk(1k, f(sk⊕β, g(y)), y).
3. For each (a, b) ∈ Q: output a if g(a) = β; output b if g(b) = β.

By our assumption, Q is a polynomial-length list that, with probability essen-
tially 1/2, contains a value (a, b) such that β ∈ {g(a), g(b)}. Thus, we can output
the preimage of β with probability essentially 1/2. Since g is a PRG, and hence
a one-way function, we have achieved a contradiction. Thus, the class of PRFs
is not 2-hiding autoreducible.

Discussion & interpretation. The proof considers only PRFs of a certain form.
Let f be a fixed, Φ-RKA-secure PRF as above and g a fixed, length-doubling
injective PRG. Then define Ĉf,gprf = {fs | s ∈ {0, 1}∗}, where fs(x, y) = f(s ⊕
g(x), g(y)). More precisely, we have shown that Ĉf,gprf (⊆ Cprf) is not 2-hiding
autoreducible.

Admittedly, the class Ĉf,gprf is not the most natural subclass of PRFs. The
result shown here leaves open the possibility that some other class C ⊆ Cprf of
PRFs is 2-hiding autoreducible (and not in a trivial sense, as when |C| < ∞).
For instance, let F g denote the well-known GGM construction [18] applied to a
PRG g. Is the class Cggm = {F g | g is a PRG} ⊆ Cprf 2-hiding autoreducible?3

5 Results for Malicious Security

In this section we describe two constructions of FBB MPC protocols that achieve
security against malicious adversaries.

Autoreducibility Criterion. Our first construction is similar in spirit to the one
given in Section 4. Like that construction, it is based on a variant of autore-
ducibility.

Definition 5. Let C denote a class of functions of two inputs. Let M be a PPT
oracle machine and define Q[M,f ; z] to be the random variable containing the
sequence of oracle queries made during the computation Mf (z). We say that C
is 1-hiding autoreducible if there exists a PPT oracle machine M such that
for all f ∈ C:

1. For all x, y, we have that Pr[Mf (1k, x, y) = f(x, y)] is overwhelming in k.
2. There exist PPT machine Sf,1 and Sf,2 such that for all x, y, the ensembles
{Sf,1(1k, f(x, y), y)}k, {Sf,2(1k, f(x, y), y)}k, and {Q[M,f ; 1k, x, y]}k are in-
distinguishable in k.

3 An alternative way to frame the question is as follows: define Fggm to be the oracle
functionality which takes input x from Alice, y from Bob, and evaluates the GGM
construction on seed x, input y, and taking the oracle g as the underlying PRG. Let
Cprg denote the class of all PRGs. Is an FBB secure protocol possible for FCprg

ggm ?



In other words, M is able to use oracle access to f to determine f(x, y), yet its
oracle queries to f are “independent” of x and of y in some sense. A special case of
Definition 5 is when the M ’s oracle queries are distributed uniformly (analogous
to the definition of random self-reducibility, except defined with respect to a
class of functions).

Theorem 2. If C is 1-hiding autoreducible, then FCsfe has a FBB, UC-secure
(i.e., against malicious adversaries) protocol in the Fot-hybrid model.

Proof (Proof sketch). The construction is quite similar to the one in the proof
of Theorem 1. Both parties access an ideal functionality FM which carries out
an execution of the machine M from the definition of 1-hiding autoreducibility.
In this setting, however, FM gives output to both parties whenever M makes an
oracle query. It then waits for responses from both Alice and Bob, and aborts
if the two parties give different responses. Otherwise, it continues its simulation
of M , using the parties’ response as the oracle response. As before, when the
simulation of M finishes, FM gives the output to both parties.

The simulator for a corrupt Alice in the f -instantiated protocol is as fol-
lows. When Alice gives input (init, x) to FM , the simulator sends x to the
ideal functionality and receives output z = f(x, y). Then the simulator runs
(q1, . . . , qt) ← Sf,1(1k, z, x). For i ∈ [t], the simulator gives output (query, qi)
to Alice on behalf of FM , and aborts if Alice responds with anything but
(resp, f(qi)). Recall that the simulator can depend arbitrarily on f and can
therefore compute and verify f(qi). Finally, the simulator gives (out, z) to Alice
and delivers the output in the ideal model. Soundness of this simulation follows
from the definition of 1-hiding autoreducibility. The simulation for corrupt Bob
is analogous.

A GMW-style Protocol Compiler. We describe another way to construct malicious-
secure FBB protocols, similar in spirit to the well-known GMW compiler [19].
We use zero-knowledge proofs to “compile” a semi-honest-secure protocol into a
malicious-secure one, preserving the relevant FBB property.

Theorem 3. Let F be an ideal functionality implemented as an oracle machine.
If there exists a FBB protocol for FC secure against semi-honest adversaries in
the Fot-hybrid model and a FBB protocol for FCfzk (Section 3) that is UC-secure
in the Fot-hybrid model, then there is an FBB protocol for FC that is UC-secure
in the Fot-hybrid model.

In other words, malicious security for the (possibly simpler) function FCfzk
can be leveraged to yield malicious security for FC , while preserving the C-FBB
property.

Proof. The basic approach is to leverage the Ffzk functionality to ensure con-
sistency of each party’s oracle responses in the FC protocol. We first augment
the FC protocol so that whenever one party is asked to make local oracle query
q, the other party obtains a commitment of q. Then we augment FCfzk to check



that the prover indeed provided the value q underlying the commitment, and
also give the verifier a commitment to f(q). Then both parties can return the
commitment to f(q) to the FC protocol to ensure that the query was answered
consistently.

Let Com denote a statistically binding commitment scheme with non-interactive
reveal phase. Let (πA, πB) be the FBB protocol for FC . Define the ideal func-

tionality F̃π to do the following:

1. Simulate πA, πB , and Fot in the natural way, with inputs of Alice being fed
into πA, outputs of πA being given to Alice, and likewise for Bob with πB .

2. Whenever πA makes oracle query q, honestly generate a commitment c ←
Com(q) with decommitment value σ. Give (query, c, q, σ) to Alice and (query, c)
to Bob, and wait.

3. Upon receiving inputs (resp, c∗, σ∗) from Alice and (resp, c∗) from Bob,
ensure that πA is currently waiting for an oracle response and that σ∗ is a
valid decommitment of c∗ — say, to the value r∗. If so, then continue the
simulation taking r∗ as the oracle response for πA.

The functionality has analogous behavior for Bob with respect to πB . Let (ρP , ρV )

be the FBB protocol for FCfzk. Define the ideal functionality F̃ρ to do the follow-
ing:

1. Expect common input c. On input (init, σ) from the prover, ensure that σ
is a valid decommitment of c, say, to the value q∗.

2. Simulate instances of ρP , ρV , and Fot in the natural way with input q∗ to
the sender.

3. Whenever ρP makes an oracle query q, give (query, q) to prover, expect
(resp, r) from the prover, and continue simulating the components with r
as the oracle answer for ρP .

4. When ρV generates output r∗ for the verifier, honestly generate a commit-
ment c∗ = Com(r∗) with decommitment value σ∗. Give (out, c∗, σ∗) to the
prover, and (out, c∗) to verifier.

Let F̃ Cfzk denote the functionality which does the following:

1. Expect common input c. On input σ from the prover, ensure that σ is a valid
decommitment of c, say, to the value q∗.

2. Query the oracle f ∈ C on input q∗ to obtain r∗ = f(q∗).
3. Honestly generate a commitment c∗ = Com(r∗) with decommitment value
σ∗. Give (c∗, σ∗) to the prover, and c∗ to verifier.

Then the protocol in the F̃ρ-hybrid model (thus the Fot-hybrid model) which
answers (query, q) messages using the local oracle is a UC-secure, FBB protocol

for F̃ Cfzk.
Now the UC-secure FBB protocol for FC is as follows. Parties give their initial

inputs to F̃π and report outputs from F̃π. Say that F̃π gives (query, c, q, σ) to

Alice and (query, c) to Bob. Then the parties invoke F̃ Cfzk on common input



c, with Alice acting as the prover providing input σ. Alice obtains (c∗, σ∗) and

Bob obtains c∗. Then Alice gives (resp, c∗, σ∗) and Bob gives (resp, c∗) to F̃π.

Finally, when F̃π gives output (from πA or πB), the appropriate party reports
it as their own output.

The security of this protocol follows from the binding and hiding properties
of the commitment scheme, as well as the security properties of ρ and π. Proof
is deferred to the full version.

6 FBB Zero-Knowledge Proofs (and relaxations)

If f is a deterministic function, then Fffzk (defined in Section 3) is essentially
a zero-knowledge proof functionality for the preimage relation Rf (x,w) = 1 ⇔
f(w) = x.

Theorem 4. Define Cowf = {f | f is a OWF}. If injective one-way functions
exist, then there is no standalone-secure, FBB, honest-verifier witness-hiding
protocol for FCowf

fzk , even in the presence of an arbitrary trusted setup.

We emphasize that only plain standalone-secure security is required, and
that the protocol is not assumed to be a proof (argument) of knowledge. In
particular, the above theorem rules out essentially any interesting relaxation of
zero-knowledge proofs for the class of relations in question.

Proof. Suppose such a protocol exists, and call its algorithms (P f , V f ). When
the statement “∃w : Rf (x,w)” is being proven, the honest prover runs P f (1n, w)
and the honest verifier runs V f (1n, x).

Let f be an injective, length-increasing OWF f . In an interaction involving
an honest verifier with input x, let E denote the event that his view contains a
query to the oracle on a preimage of x. If Prw[E | P f (1n, w) � V f (1n, f(w))] is
non-negligible in n (over choice of random w ← {0, 1}n), then we contradict the
(honest verifier) witness-hiding property of the protocol.

So assume that this probability is negligible. Furthermore, in the interaction
P f (1n, w) � V f (1n, f(w)), the verifier accepts with overwhelming probability
due to the completeness property.

Then by an averaging argument, there exists a negligible function δ and
strings w1, w2, . . ., with |wk| = k, such that Pr[E | P f (1n, wn) � V f (1n, f(wn))] ≤
δ(n). Now for each n, let zn be a string not in the image of f({0, 1}n), since f
is length-increasing. Define:

f ′n(s) =

{
zn if s = wn

f(s) else
.

Now f ′n is also a OWF and hence the security properties of the 〈P, V 〉 protocol
hold when instantiated with f ′n. Note thatRf (f(wn), wn) = 1 butRf ′n(f(wn), wn) =
0, since f is injective.



Conditioned on V not querying its oracle on input wn (an event which
we assume happens with negligible probability), the outcomes P f (1n, wn) �
V f (1n, f(wn)) and P f (1n, wn) � V f

′
n(1n, f(wn)) are identical. That is, the ver-

ifier accepts with overwhelming probability when instantiated with either f or
f ′n. Then when the prover runs the honest protocol with oracle f and input wn, it
constitutes a violation of soundness against an honest verifier instantiated with
f ′n. More specifically, in such an interaction the honest verifier is instantiated
with oracle f ′n yet accepts a statement about Rf ′n that is false.
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