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Abstract. Despite the fact that we evidently have very good block ci-
phers at hand today, some fundamental questions on their security are
still unsolved. One such fundamental problem is to precisely assess the
security of a given block cipher with respect to linear cryptanalysis. In
by far most of the cases we have to make (clearly wrong) assumptions,
e.g., assume independent round-keys. Besides being unsatisfactory from
a scientific perspective, the lack of fundamental understanding might
have an impact on the performance of the ciphers we use. As we do not
understand the security sufficiently enough, we often tend to embed a se-
curity margin – from an efficiency perspective nothing else than wasted
performance. The aim of this paper is to stimulate research on these
foundations of block ciphers. We do this by presenting three examples
of ciphers that behave differently to what is normally assumed. Thus,
on the one hand these examples serve as counter examples to common
beliefs and on the other hand serve as a guideline for future work.

1 Introduction

IT Security plays an increasingly crucial role in everyday life and business. When
talking on a mobile phone, when withdrawing money from an ATM or when
buying goods over the internet, security plays a crucial role in both protecting
the user and in maintaining public confidence in the system. Moreover, security
techniques are often an enabler for innovative business models, e.g., iTunes and
the Amazon Kindle require strong copyright protection mechanisms, or after-sale
feature activation in modern cars. Virtually all modern security solutions are
based on cryptographic primitives. Block ciphers are arguably the most widely
used type of these primitives.

State-of-the-Art of Block Ciphers While great progress has been made in
designing and analyzing block ciphers, fundamental aspects of these ciphers are
still not understood.
? The full version of this paper is available at ePrint.



Besides being unsatisfactory from a scientific perspective, the lack of funda-
mental understanding might have consequence on the performance of the ciphers
we use. As we do not understand the security sufficiently, we tend to embed a
security margin in the ciphers we are using. From an efficiency perspective, a
security margin is nothing else than wasted performance. While for some appli-
cations this might not be critical, for others it certainly is. In particular, when
it comes to cryptography in the emerging field of pervasive computing, the com-
putational resources of the devices in question are often highly constrained, and
we can only allow close to zero overhead for a security margin.

Especially for the key-scheduling algorithm, the fundamental part of a cipher
that is responsible for generating key-material from a master-key to be used
at several places in the algorithm (see Figure 1 for an example), simplifying
assumptions are standard. While these assumptions are strictly speaking wrong,
the hope is that the behaviour of the real cipher does not differ significantly from
the simplified model.

Linear Cryptanalysis One of the best known and most general applicable
attacks on block ciphers is Matsui’s linear attack [15]. Since its introduction many
extensions and improvements have been made, and we mention a selection here.
A more precise estimate for the success probability and the data complexity are
given by Selçuk [21]. The effect of using more than one linear trail, referred to as
linear hulls, has been introduced by Nyberg [17]; see also Daemen and Rijmen [8].
This has been used for example by Cho [6]. Multi-dimensional linear attacks have
been studied by Hermelin, Cho, and Nyberg [10] as a way to further reduce the
data complexity of the basic attack. We also like to mention the critics on the
concept of linear hulls by Murphy [16]; see Leander [13] for a further discussion.
One of the most recent developments is the idea to make use of unbiased linear
approximations by Bogdanov et al. [4].

However, despite its discovery more than 15 years ago, and the many exten-
sions introduced since then some very fundamental properties are not yet well
understood.

In a nutshell, for claiming a cipher secure against linear attacks, one has to
demonstrate that the cipher does not possess certain statistical irregularities. In
almost all cases the best we can do is to bound the correlation of a single linear
trail (see [20] for an exception), as this roughly corresponds to bounding the
number of active Sboxes. Thus, using for example the well established wide-trail
strategy used in AES [8], obtaining strong bounds on the correlation of a single
trail is quite easy nowadays. However, when it comes to bounding the correlation
of a linear approximation, or linear hull to emphasize its relation to many linear
trails, no general convincing arguments are available. More precisely, the task of
understanding the distribution of linear correlations over the keys is unsolved.

In order to be able to do so, it is in by far most of the cases necessary to
assume that all (round) keys are independently and uniformly chosen or make
the even stronger (and clearly wrong) assumption that distinct linear trails are
independent.



While independent round-keys are hardly ever used in any real cipher, this
assumption is on the one hand needed to make the analysis feasible and on the
other hand often does not seem problematic as even with the keys not inde-
pendently and uniformly chosen, most ciphers (experimentally) do not behave
different from the expectation.

However, those experimental confirmations that the cipher behaves as as-
sumed are inherently insufficient. For a 128 bit block cipher a single linear ap-
proximation that for a fraction of 2−30 of all keys has a correlation greater than
2−30 is something that, on the one hand, we clearly want to avoid but, on the
other hand, we will never discover by experiments only.

Thus, it is important to really understand the distribution of bias, where
the distribution is taken over all possible keys. Only by studying the entire
distribution can weak keys possibly be identified (this has been pointed out
previously, cf. for example [8]). Promising results along these lines include the
work of Daemen and Rijmen [9] where the problem is clearly stated and attempts
are made to give general statements. Unfortunately, as we will discuss below, one
of the most general theorems is strictly speaking wrong.

Our Contribution The aim of this paper is to stimulate research on the foun-
dations of block ciphers. We do this by presenting three examples of ciphers that
behave differently to what is normally assumed. Thus, on the one hand these
examples serve as counter examples to common beliefs and on the other hand
serve as a guideline for future work. The value of our examples as guidelines for
future work is specific for each example. The first example mainly limits the most
general statements one can hope to prove, and in particular is a counter example
to Theorem 22 in [9] where under rather natural conditions it was stated that the
distribution of correlations is well approximated by a normal approximation and
in particular one should expect many different possible values for the bias. The
second example considers the influence of the key scheduling on the distribution
of correlations. Here the variance (but not the shape) of the distribution signifi-
cantly depends on the key-scheduling. For future work this suggests that highly
non-linear key scheduling algorithms are superior to linear ones with respect to
the distribution of correlations. Here highly non-linear has to be understood not
as a vague criteria but in terms of minimizing the absolute values for all linear
approximations. The last example is again related to key-scheduling but more
so to symmetries in ciphers. We show a general equivalence of symmetries and
linear approximations for weak-keys that exist for any number of rounds and
illustrate this fact with an example.

The techniques used to analyze these examples are surprisingly diverse and
of independent interest.

In order to facilitate the understanding of our examples without diving into
too many details we give only an overview of the results of the first and the third
example in Section 3. The details for the first example are postponed to Section
4 and for the third example to Section 5.



2 Notation and Preliminaries

Given an n bit function F : Fn2 → Fn2 , a linear approximation is an equation of
the form

〈α, x〉+ 〈β, F (x)〉 = 0,

where 〈·, ·〉 denotes an inner product. The vector α is called the input mask and
β is the output mask. The bias εF (α, β) ∈ [−1/2, 1/2] of a linear approximation
is defined as

Prob(〈α, x〉+ 〈β, F (x)〉 = 0) =
1

2
+ εF (α, β),

where the probability is taken over all inputs x. The bias is the value of major
importance for linear attacks. However, due to scaling reasons, it is much more
convenient to work with the correlation cF (α, β) ∈ [−1, 1] defined by

cF (α, β) = 2εF (α, β).

Another measure that we are going to use is the Fourier-transformation of F ,

F̂ (α, β) =
∑
x∈Fn2

(−1)〈β,F (x)〉+〈α,x〉.

Up to scaling F̂ (α, β) is equivalent to the bias εF (α, β) and the correlation
cF (α, β). More precisely,

εF (α, β) =
cF (α, β)

2
=
F̂ (α, β)

2n+1
. (1)

Linear Trails and Linear Hull Given a composite function F , i.e., Fi : Fn2 →
Fn2 such that F = Fr◦· · ·◦F2◦F1, a linear trail θ is a collection of all intermediate
masks

θ = (θ0 = α, . . . , θr = β)

and its correlation is defined by

Cθ =
∏
i

cFi(θi, θi+1).

It is well known, see e.g., [8], that the correlation of a linear approximation is
the sum of all correlations of linear trails starting with the same mask α and
ending with the same mask β, i.e.,

cF (α, β) =
∑

θ | θ0=α,θr=β

Cθ. (2)

In this paper we are concerned with keyed permutations, more precisely with
key-alternating ciphers as defined for example in [8, Section 2.4.2] and depicted



Key-scheduling E(k) = (k0, . . . , kr)k
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Fig. 1. A key-alternating cipher

in Fig. 1. An n bit key-alternating cipher with a k bit (master) key consists of

round functions Fi : Fn2 → Fn2 and a key-scheduling algorithm E : Fk2 → Fn(r+1)
2 .

The dependence of the correlation of a linear trail is conceptually very simple,
only the sign of the correlation depends on the key. More precisely,

Cθ = (−1)〈θ,E(k)〉
∏
i

cFi(θi, θi+1).

Plugging this into Equation (2) leads to the following result.

cF (α, β) =
∑

θ | θ0=α,θr=β

(−1)〈θ,E(k)〉+σθ |Cθ| (3)

It is exactly this equation that is often referred to as the linear hull : The correla-
tion of a linear approximation is the key-dependent signed sum of the correlation
of all trails.

In this work we are interested in the distribution over the keys of the linear
correlation. Here one can think of each linear trail Cθ as a random variable with a
fixed absolute value that with probability 1/2 is positive and with probability 1/2
is negative. In this setting the linear hull is the sum of those random variables.

While in general not a lot is known about this distribution, two important
characteristics can be stated, assuming independent round-keys. First, as the
average of a sum of random variables is the sum of the averages, the average
bias is zero. Here, independent round-keys are used to ensure that each single
trail has average zero. Moreover, it is easy to see that two distinct linear trails
Cθ and C ′θ are pairwise independent. It follows (cf. Theorem 7.9.1 in [8]) that
with independent round-keys the variance of the distribution, i.e., the average
square correlation, is the sum of the squares of the correlations of all trails. We
summarize this in the following proposition.

Proposition 1. Assuming independent round-keys, i.e., k = n(r+1) and E(k) =
k, the average correlation is zero, i.e.,

E(Cθ) = 0.

Moreover, the average square correlation is given by

E(C2
θ ) =

∑
i

cFi(θi, θi+1)2.



Finally, we already note here an observation that we will make use of later.

Lemma 1. If the key-scheduling E : Fk2 → Fn(r+1)
2 is linear then two distinct

linear trails Cθ and C ′θ are either independent or Cθ = ±c ·C ′θ for a constant c.
More precisely Cθ and C ′θ are independent if and only if E∗(θ + θ′) 6= 0 where
E∗ is the adjoint linear mapping.

Proof. The lemma follows directly from the observation that

〈θ,E(k)〉+ 〈θ′, E(k)〉 = 〈E∗(θ), k〉+ 〈E∗(θ′), k〉 = 〈E∗(θ + θ′), k〉

and the general remark that a linear function `(·) = 〈a, ·〉 is either balanced (if
a 6= 0) or constant (if a = 0). Thus two trails are independent if and only if
E∗(θ + θ′) 6= 0. ut

3 Our Results

In this section we briefly describe our examples, the results and their interpre-
tation. As the first and the last example require more technical details for a full
explanation, the exact analysis of those results are given in later sections.

3.1 Example I: The Cube-Cipher

As a first example, we study the two round key-alternating cipher depicted in
Fig. 2 with block size n, n odd. The round function x→ x3 has to be understood
as a mapping on the finite field F2n with 2n elements (as n is odd this is a
bijection). The key consists of three independent subkeys k0, k1, k3 each of n
bits. Obviously, and for various reasons [12, Section 8.4], this is an artificial
example of a block cipher. However, for the purpose of this counterexample that
does not matter – it is a counterexample anyway. Moreover, as this cipher clearly
belongs to the class of key-alternating ciphers, general theorems on these have
to either explicitly exclude this (and similar) examples or the statements have
to cover this strange behavior as well.

m

k0

x3

k1

x3

k2

c

Fig. 2. The Cube-cipher

As we will prove in Theorem 2, the number of trails is very large. Namely
roughly 2n−2 trails with non-zero correlation exist. Furthermore, all trails have



the same absolute correlation. This seems the ideal situation (we even have a
parameter, n, that could go to infinity) for assuming that the distribution of
correlations over the keys is very well approximated by a normal distribution,
cf. Theorem 22 in [9].

Theorem 1 (Theorem 22 of [9]). Given a key-alternating cipher with inde-
pendent round-keys. If the number of linear trails with non-zero correlation is
large and the square of the correlation of each linear trail is small compared to
the variance of the distribution then the distribution is well approximated by a
normal distribution.

The intuition why a normal distribution should be a good approximation is that
in this case the linear hull is the sum of a huge amount of pairwise(!) independent
random variables. However, it turns out to be wrong. In particular, for any n,
the correlation of the cipher actually takes only 5 different values. Thus, the
roughly 2n−2 random variables are not independent at all. As an example of
the real distribution compared to the assumed normal distribution we consider
the case n = 31 (other cases behave very similarly). Figs. 3(a) and 3(b) show
both distributions and make clear that the normal approximation is not a very
good approximation and in particular does not get substantially better when n
increases. In Section 4 we prove that in general only 5 values are obtained and
we furthermore study the exact distribution of those 5 values.

(a) The (normalized) distribution of the
Cube-cipher vs the normal distribution

(b) The (normalized) cumulative probabil-
ity distribution of the Cube-cipher vs the
normal distribution

Fig. 3. (Normalized) distributions of the Cube-cipher vs the normal distribution



3.2 Example II: PRESENT with identical round-keys

Our second example is related to the block cipher PRESENT by Bogdanov et
al., see [3] for details. As was previously shown, e.g., by Ohkuma [19], for an
increasing number of rounds PRESENT exhibits many linear trails with only
one active Sbox per round. Due to the design criteria of the Sbox, it follows that
all those trails have the same linear bias. Besides, those trails are the ones with
a maximal correlation (in absolute terms).

It was experimentally confirmed in [19] that the distribution of the correlation

nicely follows a normal-distribution with mean zero and variance 2(−2r−1)
2

N
where N is the number of the linear trails with only one active Sbox per rounds.
Thus, experimentally, we can notice two facts: Firstly, for PRESENT different
trails behave like independent random variables (in contrast to the Cube-cipher)
and secondly, the contribution of the non-optimal trails does not influence the
distribution significantly.

Let us now come to a variant of PRESENT with identical round-keys1 (and
round-constants to avoid trivial slide attacks [1]). As it turns out this is an in-
triguing example of the influence of the key-scheduling on the distribution of the
correlations. We started by performing experiments on a large number of random
keys and observed that the total variance of the bias distribution for some linear
approximations of PRESENT with identical round-keys is consistently bigger
than that of standard PRESENT for any number of rounds ≥ 5. Fig. 4 shows
the distribution of the linear correlation for the identical round-keys case vs. the
original PRESENT key-scheduling for 17 rounds.

Fig. 4. The (normalized) probability distribution of the PRESENT-cipher with the
usual vs the identical round-keys case

The difference is significant in the sense that more rounds of PRESENT

with identical round-keys are vulnerable to linear attacks for a non-negligible
fraction of keys. In other words, in this example it is indeed the choice of the key-
scheduling that makes the cipher secure or insecure against linear cryptanalysis.

1 Note that identical round-keys have been used before, see for example the block
cipher NOEKEON [7]



To illustrate the difference consider a 20 round version. The fraction of keys with
a squared bias larger than 2−55 is 33.7% in the case of identical round-keys but
only 1.1% in the case of the standard PRESENT key-scheduling.

For computing the variance of a sum of random variables it is sufficient
to study the pairwise covariance of the summands. Now, as mentioned above in
Lemma 1 for a linear key-scheduling algorithm there are only two possibilities for
the covariance. Either two trails are independent or identical up to a constant
factor. In our particular case this constant is either 1 or −1 as all trails we
consider have the same absolute correlation. Note furthermore that, following
Lemma 1, two trails Cθ and C ′θ are identical (up to a constant ±1) iff E∗(θ+θ′) =
0 where E denotes the key-scheduling function. For identical round-keys, we have
that E(k) = (k, . . . , k) and thus

E∗(θ) = E∗(θ0, . . . , θr) =
r∑
i=0

θi.

In other words two trails are identical iff the (xor) sums of all intermediate
masks are identical. While in general, computing the number of trails is much
more efficient than listing all trails, it is still feasible for r ≤ 20 to compute the
list of trails and sort this list according to the sum of the intermediate masks.
Thus, for r ≤ 20 we can relatively easily compute the expected variance for
the PRESENT-variant with identical round-keys. Table 1 shows the expected
variance (Var2) of the bias distribution of the optimal linear approximation
for a specific one bit input and output difference. For PRESENT with identical
round-keys the expected variance is very close to the observed variance (ObsVar)
sampled over 20000 random keys. Table 1 also shows the expected variance of the
bias distribution of the optimal linear approximation of (standard) PRESENT

(Var1) along with the number of trails (N1) with one active Sbox per round, and
the number of trails (N2) where the sign depends on the keybits, for number of
rounds r, 15 ≤ r ≤ 20.

Table 1. Analytical and experimental data on r-round reduced PRESENT (possibly
with identical round-keys). N1 is the number of all linear trials with one active Sbox. N2

is the number of trails (among N1) that don’t behave the same (their absolute values
are equal but the correlation sign is different and it changes according to the subkeys).
Var1 gives the expected variance of the bias of the optimal linear approximation of
(standard) PRESENT, while Var2 corresponds to PRESENT with identical round-
keys. ObsVar is the experimentally observed variance sampled over 20000 random keys.

r N1 N2 log2(Var1) log2(Var2) log2(ObsVar)

15 166375 12016 −44.66 −42.71 −42.71
16 435600 20039 −47.26 −45.15 −45.28
17 1140480 31799 −49.88 −47.63 −47.61
18 2985984 48223 −52.49 −50.03 −50.12
19 7817472 69528 −55.10 −52.50 −52.52
20 20466576 95125 −57.71 −54.88 −54.92



It is important to note that, while the Cube-cipher is certainly an artificial
design, PRESENT with identical round-keys is not. In this context we like to
mention that it is precisely the behavior described here that resulted in the need
to choose a different Sbox in the PRESENT-inspired sponge-based hash-function
SPONGENT by Bogdanov et al. [2]. SPONGENT can be seen as a fixed key
and large block size variant of PRESENT with identical round-keys.

3.3 Example III: PRINTcipher or Block Ciphers with Symmetries

It was already pointed out by Leander et al. [14] that for PRINTcipher-48 [11]
by Knudsen et al. there exist strongly biased linear relations for any number of
rounds. More precisely,

Proposition 2 (Corollary 2 in [14]). For a fraction of 2−28 of all keys
and for any round r ≤ 48 there exists at least one linear approximation for
PRINTcipher-48 with correlation at least 2−16 − 2−32.

Here (cf. Section 5), we extend upon this analysis by showing an equivalence
between a submatrix A of the correlation matrix that has an eigenvector with
eigenvalue one and a round function that has an invariant subspace. This is cru-
cial as this implies that this sub-matrix A, when taken to the r-th power, does not
converge to the all-zero matrix. In particular in the case where there is a unique
eigenvector with eigenvalue of norm 1, Ar converges to a non-zero constant. This
is equivalent to saying that trails with all intermediate masks determined by the
invariant subspace cluster significantly for any number of rounds.

Note that an invariant subspace in particular captures, as a special case, what
is usually referred to as symmetries. Thus, besides PRINTcipher one could also
imagine an identical-round-key variant of AES with round constants that do
not destroy the symmetries introduced by the very structured and byte oriented
linear layer of AES. This example reveals two interesting points. First, in such a
situation of trail clustering, increasing the number of rounds does not help and
secondly without the link to invariant subspaces it seems very hard to understand
why certain trails should cluster even for an AES-like design that follows the
wide-trail strategy. Moreover this clustering is not inherently limited to ciphers
with weak mixing (e.g., PRINTcipher), but is rather a problem for all ciphers
exhibiting symmetries.

Interestingly, in a restricted sense to be discussed in Section 5, the reciprocal
statement holds as well. That is, if the cipher does not exhibit symmetries, then
no sub-matrices (of a certain type) have eigenvectors (of a certain type) with
eigenvalue 1. Thus by avoiding symmetries one also ensures that trail clustering
for any number of rounds is highly unlikely.

Fig. 5 shows the difference of the distribution of the correlation for non-weak
keys vs. the distribution for weak keys for a 24-bit version of PRINTcipher.
Both graphs can be nicely approximated by normal distributions, however, the
mean of the distribution for weak keys differ significantly from the origin.



2−21
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(a) The non-weak xor keys

2−9.0
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(b) The weak xor keys

Fig. 5. The distribution of PRINTcipher-24 biases for a fixed permutation key. The
experimentally observed means m are indicated. In both distributions, the standard
deviation σ is approximately 2−13.0. Ticks have been placed at m+kσ, k ∈ {−3, . . . , 3}.

4 Example I: The Cube-Cipher

In this section we give a detailed analysis of the distribution of the correlations
in the Cube-cipher.2

We denote the block size by n, where in this example n has to be odd. First
note that the initial and the final key-addition do not change the distribution.
Thus, to simplify notation, we ignore them from now on. We therefore have to
consider the function Fk(x) = (x3 + k)3. Moreover, to make the analysis easier,
we focus on the input and output mask 1 ∈ F2n . That is, we are interested in
the distribution of F̂k(1, 1) for varying key k.

As a first step we show that the corresponding linear hull contains a very
large number of trails with non-zero correlations. More precisely, the following
holds (cf. the full version for the proof).

Theorem 2. The number t of trails with non-zero correlation of the form

1
x3

→ α
x3

→ 1

is

t =
2n + 1− (an1 + an2 + an3 + an4 )

4
,

where ai are the four (complex) roots of the polynomial x4 + x3 + 2x + 4. Fur-
thermore, each trail has a correlation of ±21−n.

The next proposition shows that, despite the huge number of non-zero trails,
only 5 values occur for the correlations.

Proposition 3. F̂k(1, 1) ∈ {0,±2
n+1
2 ,±2

n+3
2 }

2 Due to page limitations most of the proofs are given in the full version.



Proof. We denote by µ(x) = (−1)Tr(x), where Tr(x) = x+ x2 + x4 + . . . x2
n−1

is
the trace mapping and note that Tr(xy) is the natural inner product on F2n .

F̂k(1, 1)2 =
∑
x,y

µ
(
(x3 + k)3 + (y3 + k)3 + x+ y

)
=
∑
x,y

µ
(
((x+ y)3 + k)3 + (y3 + k)3 + x

)
=
∑
x

µ
(
(x3 + k)3 + x+ k3

)∑
y

µ
((
x64 + (k16 + k4)x16 + (k8 + k2)x4 + x

)
y8
)

= 2n
∑
x∈M

µ
(
(x3 + k)3 + x+ k3

)
where

M = {x | x64 + (k16 + k4)x16 + (k8 + k2)x4 + x = 0}.

Thus, we have to understand the kernel (and in particular its size) of the F2 -
linear mapping

P (x) = x64 + (k16 + k4)x16 + (k8 + k2)x4 + x.

As a polynomial, P splits nicely into factors, i.e.,

P (x) = A1(x3)A2(x3)A3(x3)A4(x3)x,

with

A1(x) = x3 + k2x+ 1 A3(x) = x6 + x4 + (k4 + k2 + 1)x2 + x+ 1

A2(x) = x3 + (k2 + 1)x+ 1 A4(x) = x9 + x3 + (k8 + k2)x+ 1.

For now, we show that A3(x) does not have any roots. Note that this is actually
enough to prove the proposition, as this upper bounds the number of elements
in M by 16 = 9 + 3 + 3 + 1 and for general reasons we know that |M | = 2i with
i odd. Thus |M | ∈ {2, 8}. Assume that A3(x) = 0. Then

k4 + k2 + 1 =
x6 + x4 + x+ 1

x2
= x4 + x2 +

1

x
+

1

x2
.

Applying the trace mapping to both sides implies Tr(1) = 0.3 A contradiction,
as n is odd. ut

This already demonstrates an unexpected behavior. The following theorem,
proven in the full version of the paper, allows us to compute the exact dis-
tribution of the 5 occurring values for reasonably large n.

Theorem 3. We have

#{k ∈ F2n | F̂k(1, 1)2 = 2n+3} =
1

3
#{β ∈ F2n |β satisfies Eqns. (4)},

3 Note that Tr(x) = Tr(x2) for all x ∈ F2n .



where

Tr

((
1

(β2 + β)

)1/9
)

= Tr

((
β3

β2 + β

)1/9
)

= Tr

((
(1 + β)3

β2 + β

)1/9
)

= 1. (4)

The advantage of the above theorem is that it gives a fast way to compute
the number A of k ∈ F2n such that F̂k(1, 1) = 2n+3. Let us further denote by B

the number of k ∈ F2n such that F̂k(1, 1) = 2n+1. Then clearly∑
k

F̂k(1, 1)2 = A2n+3 +B2n+1.

On the other hand, since knowing the number of trails with non-zero correlation
together with their correlation values, corresponds to knowing the average square
correlation, we have∑

k

F̂k(1, 1)2 = 2−n
∑
α

Ĉ(1, α)2Ĉ(α, 1)2.

Using the above and Theorem 2 we see that

A2n+3 +B2n+1 =
∑
k

F̂k(1, 1)2 = 2n(2n + 1− an1 − an2 − an3 − an4 ),

where, as in Theorem 2, ai are the four (complex) roots of the polynomial x4 +
x3+2x+4. Thus using Proposition 3 and the symmetry of the distribution (which
can easily be proven in this case) one can now obtain the complete distribution
for how many k, Fk(1, 1) obtains a particular value in {±2(n+3)/2,±2(n+1)/2, 0}
for reasonably large values of n. We give some examples below.

n −2(n+3)/2 −2(n+1)/2 0 2(n+1)/2 2(n+3)/2

1 0 1 0 1 0
3 1 0 6 0 1
5 0 6 20 6 0
9 10 90 312 90 10
19 10868 87078 328396 87078 10868
31 44732008 357939982 1342139668 357939982 44732008

5 Example III: PRINTcipher or Block Ciphers with
Symmetries

The results in this section, especially as summarized in Theorem 5, are quite
general, applying to any block cipher (permutation) exhibiting these kinds of
symmetries. For this reason, we do not describe PRINTcipher in detail here,
but refer to the full version or [11] instead. We only note here that the round-
key is the same in every round (there is a small round constant).

PRINTcipher is used for experiments in Section 3.3 and below. Smaller-
state versions are not formally defined but are easy to extrapolate from [11].
We use the same round constants as in the first rounds of PRINTcipher-48. A
PRINTcipher-key can be split into a permutation key and an xor key.



The Invariant Subspace Let us define a subspace U ⊂ Fn2 , the orthogonal
subspace U⊥ = {y : 〈x, y〉 = 0,∀x ∈ U⊥} and a constant d ∈ Fn2 . Then, the
invariant subspace property (cf. [14]) can be expressed as Fi(U + d) = U + d. In
the case of PRINTcipher, the exact definitions of U , U⊥, and d can be found in
the full version of the paper. We only note that for PRINTcipher, |U +d| = 216,
and the trails do not involve the round constants so the invariant subspace
extends to the entire cipher F , regardless of the number of rounds. However,
even if an invariant subspace only occurs for some rounds of the cipher, it can
certainly be interesting in linear cryptanalysis as seen below.

Understanding the Large Correlations The correlation matrix (cf. [8])
Mi = (cFi(α, β))αβ collects all correlation coefficients for a single round. We
are interested in the submatrix A = (aαβ)α,β∈U⊥ constructed through aαβ =
cFi(α, β) and its powers Ar. Thus A collects the correlations where input and
output masks only involve the bits that govern the invariant subspace. In any
correlation matrix, the first row and column are all-zero except for c(0, 0) = 1.
We extract the sub-matrix B = (aαβ)α,β∈U⊥\{0}, since it will be slightly more
convenient to use.

We should identify Ai with Fi, but the round constants do not affect Ai, so
all Ai are equal. In particular ArAr−1 . . . A1 = Ar. Note how Ar describes the
contribution to the linear hull from following trails with intermediate masks in
U⊥. More specifically, we can write Equation (3) as

cF (α, β) =
∑

θ | θ0=α,θr=β,

θi∈U⊥, ∀i

(−1)〈θ,E(k)〉+σθ |Cθ|+
∑

θ | θ0=α,θr=β,

∃i: θi /∈U⊥

(−1)〈θ,E(k)〉+σθ |Cθ|,

where the first sum corresponds to element (α, β) of Ar. If elements of Ar have a
large magnitude, then the corresponding elements of Mr have (at least) the same
magnitude, unless the contributions from trails that go outside U⊥ (essentially)
cancel those from inside.

We now examine the asymptotic behaviour of Ar. Define v = (vα)α∈U⊥ by
vα = (−1)〈d,α〉.

Lemma 2. vT is an eigenvector to A with eigenvalue 1, i.e., AvT = vT .

We prove this lemma in the full version of the paper.
Now, in the case where there is no other (non-trivial) eigenvector with eigen-

value 1 the sequence Ar will converge (see the theorem below). This motivates
the following definition.

Definition 1. If the algebraic multiplicity of A’s eigenvalue 1 is two and A has
no other eigenvalue of absolute value 1, we say that A (or the corresponding
cipher) has a stable symmetry. (The eigenvectors are that given in Lemma 2,
and the vector (1, 0, 0, . . . , 0)T .)

For the following theorem, we use that A has eigenvalues with absolute value at
most 1, the Schur decomposition of A and the relation between convergence of
Ar and the spectrum of A [5].



Theorem 4. If A has a stable symmetry then Br → C = 1
2dim(U)−1u

Tu, r →∞,

u = (vα)α∈U⊥\{0}.

If other contributions to cF (α, β) are negligible, then all characteristics with
non-zero α, β ∈ U⊥ have cF (α, β) ≈ ±2− dim(U) so bias εF (α, β) ≈ ±2− dim(U)−1.

Equivalence Between Eigenvectors and Invariant Subspaces With the
following theorem, which we prove in the full version, we establish a loose relation
between symmetries in block ciphers and susceptibility to linear cryptanalysis.
In the case of PRINTcipher, this was a negative result, but in case of block
ciphers without symmetries, it is positive.

Theorem 5. Consider an invertible vectorial Boolean function F , a subspace
U , the orthogonal subspace U⊥ and a vector d. Define A = (aαβ)α,β∈U⊥ and

v = (vα)α∈U⊥ , vα = (−1)〈d,α〉. Then AvT = vT if and only if F (U +d) = U +d.

Experimental Results on PRINTcipher We have implemented PRINTcipher-
48 for a key from the class of weak keys used as the main example in [14]. This
allowed us to derive A and verify that AvT = vT . We could also derive the
biases for 16 characteristics with α, β ∈ U⊥. All of them were close to ±2−17 as
suggested by the above analysis. This gives some circumstantial support to the
idea that B48 ≈ C, that PRINTcipher has a stable symmetry, and that this is
the main contribution to cF (α, β).

On PRINTcipher-12, we can derive B12 analogously to above. Here the sta-
ble symmetry can then be confirmed by deriving the eigenvalues numerically for
all possible matrices B12. Also, the convergence can be observed experimentally.
Fig. 6(a) shows B100

12 for a non-weak key, while Fig. 6(b) corresponds to a weak
key. The matrices clearly differ both in terms of magnitude and structure. Fur-
thermore convergence is rather fast, B10

12 is already very close to the expected
limit.

6 Conclusion and Future Work

We presented and analyzed three interesting examples of ciphers with a non-
expected distribution of correlations. The first example mainly limits the most
general statements one can hope to prove. General theorems on key-alternating
ciphers have to deal with this strange behavior as well.

The second example considered the influence of the key scheduling on the
distribution of correlations. For future work this suggests that highly non-linear
key scheduling algorithms might be preferable (cf. also [18]). To see this con-
sider the covariance between two different non-zero trails Cθ and Cθ′ for θ =
(α, θ1, . . . , θr−1, β) and θ′ = (α, θ′1, . . . , θ

′
r−1, β) in the case where the key-length

equals the block length. Given E(k) = (E0(k), . . . , Er(k)) we assume further-
more that all Ei are permutations and wlog E1(k) = k. Denoting γ = θ1 + θ′1,



(a) The matrix B100
12 for a non-weak key (b) The matrix B100

12 for a weak key

Fig. 6. The matrix B100
12 for two different keys

δ = (θ2 + θ′2, . . . , θr−1 + θ′r−1) and E′(k) = (E2(k), . . . , Er−1(k)), in this setup
the covariance is essentially determined by∑

k

(−1)〈θ+θ
′,E(k)〉 =

∑
k

(−1)〈δ,E
′(k)〉+〈γ,k〉,

which is nothing else than the Fourier coefficient Ê′(γ, δ). Thus minimizing all

covariances corresponds to minimizing the absolute value of Ê′(γ, δ) which in
turn corresponds exactly to maximizing the nonlinearity of E′.

The last example is again related to key-scheduling but more so to symme-
tries in ciphers. We show a general equivalence of symmetries and linear approx-
imations for weak keys that exist for any number of rounds. This is actually a
positive result as it suggests that avoiding these symmetries makes clustering of
trails unlikely. Future work is needed to either make this equivalence tighter or
find examples of round-independent trail clustering that does not originate from
symmetries.

We hope that this work stimulates further research on this fundamental
topic.
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