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Abstract. Liskov, Rivest and Wagner formalized the tweakable blockci-
pher (TBC) primitive at CRYPTO’02. The typical recipe for instantiat-
ing a TBC is to start with a blockcipher, and then build up a construction
that admits a tweak. Almost all such constructions enjoy provable secu-
rity only to the birthday bound, and the one that does achieve security
beyond the birthday bound (due to Minematsu) severely restricts the
tweak size and requires per-invocation blockcipher rekeying.
This paper gives the first TBC construction that simultaneously allows
for arbitrarily “wide” tweaks, does not rekey, and delivers provable secu-
rity beyond the birthday bound. Our construction is built from a block-
cipher and an ε-AXU2 hash function.
As an application of the TBC primitive, LRW suggest the TBC-MAC
construction (similar to CBC-MAC but chaining through the tweak),
but leave open the question of its security. We close this question, both
for TBC-MAC as a PRF and a MAC. Along the way, we find a nonce-
based variant of TBC-MAC that has a tight reduction to the security
of the underlying TBC, and also displays graceful security degradation
when nonces are misused. This result is interesting on its own, but it also
serves as an application of our new TBC construction, ultimately giving
a variable input-length PRF with beyond birthday-bound security.

1 Introduction

A blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n is typically viewed as a family
of permutations EK over {0, 1}n, where the index into the family is the key
K ∈ {0, 1}k. A tweakable blockcipher (TBC) extends this viewpoint by adding a
second “dimension” to the function family, called a tweak. In particular, a TBC
Ẽ : {0, 1}k×T ×{0, 1}n → {0, 1}n is a family of permutations indexed by a pair
(K,T ) ∈ {0, 1}k×T . There is, however, a semantic asymmetry between the key
and the tweak: the key is secret and gives rise to security, while the tweak may
be public and gives rise to variability.

Liskov, Rivest and Wagner [21] formalized the TBC primitive. Their the-
sis was that primitives with inherent variability are a more natural starting
point for building modes of operation, whereas classical constructions would
use a blockcipher (deterministic once the key is fixed) and induce variability
by using a per-message IV or nonce. Subsequent papers have delivered tweak-
able enciphering schemes (e.g. [14–16, 32, 8] and others), message authentication



codes(e.g [28]), and authenticated encryption (e.g. [27, 28, 20]) modes of opera-
tion. The Skein [30] hash function has a TBC at its core. TBC-based construc-
tions have found widespread practical application for full-disk encryption.

Building TBCs. There are few dedicated TBC designs: the Hasty Pudding [29]
and Mercy [10] ciphers natively admit tweaks. The more common approach is to
start from a blockcipher and build up a TBC, incorporating support for a tweak
without (one hopes) sacrificing whatever security the original blockcipher offered.
The original LRW paper itself gave two constructions, which we call LRW1 and
LRW2. The former construction is LRW1[E]K(T,X) = EK(T ⊕ EK(X)) and it
is secure tweakable-PRP1 if the underlying n-bit blockcipher E is a secure PRP,
although there is a birthday-type loss in the reduction. (That is, the security
bound becomes vacuous around 2n/2 queries.) In addition to birthday-bound
security, the tweakspace is limited to T ⊆ {0, 1}n. The second LRW construction
LRW2[H,E]h,K(T,X) = h(T )⊕ EK(X ⊕ h(T )) avoids this length restriction by
hashing the tweak. LRW prove that this is a tweakable strong-PRP when E is
a secure strong-PRP and h is a random element of an ε-almost 2-xor-universal
(ε-AXU2) hash function family H. But here, too, one finds only birthday-bound
security. Variations on the LRW constructions, for example Rogaway’s XE and
XEX constructions [28], similarly offer provable security only to the birthday
bound.

Tweakable blockciphers with beyond birthday-bound (BBB) security may be
of particular interest for applications such as large-scale data-at-rest protection,
where key management and negotiation issues seem likely to drive up the amount
of data protected by a single key. Also, when legacy restrictions require the use
of Triple-DES (where n = 64), delivering BBB security has obvious benefits.
We also note that OCB mode [28] would deliver BBB authenticated-encryption
security if constructed over a BBB tweakable blockcipher; other TBC-based con-
structions with (tight) security reductions to the security of the underlying TBC
would similarly benefit.

Nonetheless, constructions of TBCs with BBB security are rare. One due to
Minematsu [24] achieves BBB security, but only admits short tweaks (e.g. T =
{0, 1}n−m for m ≥ n/2). It requires two blockcipher calls per TBC invocation,
and suffers an additional performance penalty by rescheduling one blockcipher
key whenever the tweak changes. This last point also violates a TBC design goal,
that changing a tweak should more efficient than changing a key.

1 This notion is formally defined in Section 2. Informally, a TBC eE is a secure
tweakable-PRP if, for a random and secret key K, the family of mappings eEK(·, ·)
is computationally indistinguishable from a family of random permutations. The
tweakable strong-PRP notion allows for inverse queries, too.
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A New Construction with BBB Security: CLRW2. Our main technical
result is the first TBC construction that has strong tweakable-PRP security
beyond the birthday bound, admits essentially arbitrary tweaks, and does not
require per-invocation rekeying of any of the underlying objects.
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Fig. 1. The CLRW2 Construction.

We call this the Chained LRW2 (CLRW2) construction, since it can be written as
LRW2[H,E]h2,K2(T, LRW2[H,E]h1,K1(T,X)). The bulk of the paper is dedicated
to showing that when E is a secure strong-PRP and H is an ε-AXU2 hash
function family with ε = 2−n, the CLRW2 TBC is a strong tweakable-PRP with
security against adaptive attackers making O(22n/3) queries. Figure 2 gives a
graphical comparison of our security bound and the birthday bound.

We also consider some variations of CLRW2, for example omitting internal
xors, or keying the two blockciphers with the same key.

Note that there are many efficient constructions of ε-AXU2 families with
ε ≈ 2−n and, except perhaps for very long tweaks, the running time of CLRW2
is likely to be dominated by the two blockcipher calls.

Analyzing the TBC-MAC construction and variants. In addition to
formalizing the TBC primitive, LRW suggested TBC-based constructions for
(authenticated) encryption, hashing and message authentication. The last of
these has yet to receive formal analysis, so we consider it. The basic TBC-MAC
construction operates as follows. Fix k, n > 0 and let Ẽ : {0, 1}k × {0, 1}n ×
{0, 1}n → {0, 1}n be a tweakable blockcipher. Fix T0 ∈ {0, 1}n. Then for any
key K ∈ {0, 1}k and a plaintext M = M1, . . . ,Mb consisting of n-bit blocks,
define TBCMAC[Ẽ]K(M) = Tb where Ti ← ẼK(Ti−1,Mi) for all i ∈ [1..b]. This
is the TBC-MAC (over Ẽ) of the input M . It is intuitive to think of TBC-MAC
as analogous to CBC-MAC. Indeed, if ẼK(T,X) = EK(T ⊕X) then we have
the CBC-MAC construction. But perhaps by abstracting away the details of Ẽ
one can achieve better security than that offered by CBC-MAC? This seems a
reasonable expectation, since an attacker can directly influence the input to the
blockcipher E in CBC-MAC via the exclusive-or operation, but no such influence
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is guaranteed when the chaining value (the tweak) is separated from the plaintext
input block. Moreover, it is easy to build TBCs with tweak inputs that are much
larger than n bits (LRW already gave one way), and exploiting this may allow
for simple twists on the basic TBC-MAC that give better security.

We first consider TBC-MAC as a variable-input-length pseudorandom func-
tion (VIL-PRF). We show that it is secure if the underlying TBC is secure
tweakable-PRP. Like CBC-MAC, however, TBC-MAC has only birthday-bound
security. A small benefit is that this result is not restricted to prefix-free en-
coded inputs as it is for CBC-MAC. Actually, one can view TBC-MAC as an
instance of the Merkle-Damg̊ard iteration [23, 11] over a compression function
with a dedicated key input. In this setting Bellare and Ristenpart [3] have al-
ready shown that various versions of Merkle-Damg̊ard (plain, suffix-free encoded
inputs, prefix-free encoded inputs) are PRF-preserving.

A more interesting result is found if the underlying TBC allows “wide”
tweaks, i.e. tweaks that are wider than the blocksize. In this case, a simple
nonce-based version of TBC-MAC (TBCMAC2) achieves much better PRF se-
curity bounds. In fact, if nonces are properly respected, the mode of operation
imparts no loss over the security of the underlying TBC. Thus, TBCMAC2 in-
stantiated with a beyond-birthday secure TBC yields a variable-input-length
PRF with beyond-birthday security. What’s more, the security bound degrades
quadratically in the maximum number of times any nonce is repeated, providing
more graceful behavior than most nonce-based constructions, which fail catas-
trophically when a nonce-repeat occurs. Such nonce misuse-resistance can be
quite useful in practice.

Lastly, we show that TBC-MAC is unforgeable assuming only that the un-
derlying TBC is likewise unforgeable. This holds only for prefix-free encoded
inputs. In fact, this follows from the work of Maurer and Sjödin [22], who give
general results for the Merkle-Damg̊ard iteration. When the prefix-free encoding
restriction is lifted, we exhibiting a TBC Ẽ that is unforgeable, yet TBC-MAC
over Ẽ is easily forged.

Unforgeability Preservation of TBC constructions. In the full ver-
sion of this work, we make another contribution to the theory of TBC construc-
tions. We begin to explore the provable security of TBCs built from blockciphers
that are assumed only to be unpredictable, rather than pseudorandom. In par-
ticular, we show that LRW1 is not unforgeability preserving. That is, we build
a blockcipher E that is unforgeable but for which is it easy to forge LRW1[E].
(In fact, we use LRW1 against itself in this result!) Likewise for LRW2, we show
that there is an ε-AXU2 hash function family and an unforgeable blockcipher E
such that LRW2[H,E] is easily forged. (Again, we use LRW1 again to construct
the E we need.) At this time, we do not know if CLRW2 remains unforgeable
given only unforgeable underlying blockciphers.

Additional Related Work. We have already mentioned the paper of Liskov
et al. [21] as the starting point for our work. Goldenberg et al. [17] show how
to build a TBC by directly tweaking the Luby-Rackoff construction. Using n-bit
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random functions, the resulting 2n-bit TBC has strong tweakable PRP security
to roughly 2n queries, and can accommodate a tweak of length `n using ` + 6
rounds.

Coron et al. [9] show that a three-round Feistel construction over an n-bit
TBC with a wide tweak yields a 2n-bit TBC that has beyond birthday-bound
security if the underlying TBC does. Our CLRW2 construction meets this re-
quirement.

The PMAC1 construction by Rogaway [28] builds a (parallelizable) VIL-PRF
from a TBC, achieving birthday-bound security. Recently, Yasuda [34] intro-
duced the PMAC plus construction, which has O(22n/3) security like TBCMAC2
but is more efficient and parallelizable. PMAC plus could be viewed as a construc-
tion over a tweakable blockcipher (which might be called the “XXE” construc-
tion, following Rogaway’s naming convention), but neither the construction nor
the proof is cast this way. Separately, Yasuda [33] proves that Algorithm 6 from
ISO 9797-1 and SUM-ECBC both have security against O(22n/3) queries.

The WMAC construction of Black and Cochran [6] is a stateful hash-then-
MAC construction that, like our TBCMAC2 construction, allows for graceful
(quadratic) security degradation when nonces are repeated. There are various
methods for using randomness to build VIL-PRFs with beyond birthday-bound
security; for example MACRX [2], RMAC [19], randomized WMAC and en-
hanced hash-then-MAC [25]

We note that real-world protocols such as TLS [31] employ nonce-based PRFs
by using per-message sequence numbers. Nonce-based PRFs also have applica-
tions in secure memory; see Garay et al. [18] and references therein.

Bellare and Ristenpart [3] study unforgeability preservation of iterated Merkle-
Damg̊ard constructions in the dedicated-key compression-function setting. They
show that, in general, these iterations do not preserve unforgeability; however,
their counterexample does not apply to TBC-MAC because the compression
function they construct is not a TBC.

Zhang et al. [35] study so-called rate-1 MACs constructed from variations of
the PGV [26, 7] blockcipher-based compression functions. They show that cer-
tain of these compression functions, for example f(T,X) = EK ⊕ T (X), iterate
(through T ) to unforgeable MACs under the assumption that the underlying
blockcipher is related-key unpredictable for specific related-key functions. In the
case of our example, the related-key functions are {K 7→ K ⊕ T | T ∈ {0, 1}|K|}.
But in this example and others, assuming that the blockcipher is related-key un-
forgeable is equivalent to assuming that the compression function is an unforge-
able TBC, chaining through the tweak leads to TBC-MAC. Hence our results
generalize some of those given by Zhang et al. [35]. We note that TBCs like
EK ⊕ T (X) are inefficient choices for iteration through the tweak, since they
require rescheduling the blockcipher key each round.

We mention in passing that the basic three-key enciphered CBC construction
due to Dodis et al. [12] can, in large, part be viewed as an instance of TBC-MAC
over the LRW1 TBC. (The IV is no longer a fixed value, but depends on the
first input block.)
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2 Preliminaries

Notation. When X is a set, we write x $←X to mean that an element (named x)
is uniformly sampled from X . We overload the notation for probabilistic algo-
rithms, writing x

$←M to mean that algorithm M runs and outputs a value
named x. When X and Y are strings, we write X ‖ Y for their concatena-
tion. When X ∈ {0, 1}∗ we write |X| for its length. For a tuple of strings
(X1, X2, . . . , Xr) we define |(X1, X2, . . . , Xr)| = |X1 ‖ X2 ‖ · · · ‖ Xr|. The set
{0, 1}n is the set of all n-bit strings, ({0, 1}n)r is the set of all nr-bit strings
understood as r blocks of n-bits each, and ({0, 1}n)+ is the set of all strings that
are a positive number of n-bit blocks in length. When X ∈ ({0, 1}n)+, we write
X1, . . . , Xb

n←X to mean that X is parsed into b blocks of n-bits each. For a
string X of even length n, we define XL and XR to be X[1..n2 ] and X[(n2 +1)..n],
respectively. An adversary A is a probabilistic algorithm that takes zero or more
oracles. We often use the notation A⇒x to denote the event (defined over some
specified probability space) that some algorithm A outputs value x.

We make use of the code-based game-playing framework of Bellare and Ro-
gaway [5]. When G is a game and A an adversary, we write Pr

[
GA⇒ y

]
for

the probability that the Finalize procedure of game G outputs y when exe-
cuted with adversary A. The probability is over the coins of G and A. When the
Finalize procedure is trivial, returning whatever A does, we omit the procedure
from the game and write Pr

[
AG⇒ y

]
for the probability that A outputs y

when executed with game G. In games, all boolean flags are initialized to false
and all arrays are initially undefined at every point.

Function Families and (Tweakable) Blockciphers. Let K,D and R be
sets, where at least K is non-empty. A mapping F : K×D → R can be thought of
as a function family F = {FK} where for each K ∈ K we assign FK(·) = F (K, ·).
We will use both representations of the family, as a two-argument mapping and
as a set indexed by the first argument, choosing whichever is most convenient.
We write Func(D,R) for the set of all mappings from D to R. We write Perm(n)
to denote the set of all permutations (bijections) over {0, 1}n. We can view each
of these as function families with some understood ordering.

A blockcipher is a function family E : K × {0, 1}n → {0, 1}n such that for
all K ∈ K the mapping EK(·) ∈ Perm(n). We write BC(K, n) to mean the set
of all such blockciphers, shortening to BC(k, n) when K = {0, 1}k. A tweakable
blockcipher (TBC) is a function family Ẽ : K× (T ×{0, 1}n)→ {0, 1}n such that
for every K ∈ K and T ∈ T ⊆ {0, 1}∗ the mapping ẼK(T, ·) is a permutation
over {0, 1}n. The set T is called the tweakspace of the TBC, and the element
T ∈ T is the tweak.

Security notions. Let F : K×D → R be a function family, and let A be an
adversary taking one oracle. Then we define

Advprf
F (A) = Pr

[
K

$←K : AFK(·)⇒ 1
]
− Pr

[
ρ

$← Func(D,R) : Aρ(·)⇒ 1
]
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to be the PRF advantage of A attacking F . Here, and throughout, the probability
is over the random choices of the described experient and those of the adversary.
We define

Advuf-cma
F (A) = Pr

[
K

$←K ; (M, τ) $←AFK(·) : FK(M) = τ ∧ new-msg
]

to be the UF-CMA advantage (or “forging” advantage) of A. Here the event
new-msg holds iff the string M was never asked by A to its oracle.

Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher, and let Ẽ : {0, 1}k×(T ×
{0, 1}n) → {0, 1}n be a tweakable blockcipher. Let K $← {0, 1}k, π $← Perm(n),
and Π

$← BC(T , n). Then we define

Advprp
E (A) = Pr

[
AEK(·) ⇒ 1

]
− Pr

[
Aπ(·) ⇒ 1

]
Advsprp

E (A) = Pr
[
AEK(·),E−1

K (·) ⇒ 1
]
− Pr

[
Aπ(·),π−1(·) ⇒ 1

]
AdvgprpeE (A) = Pr

[
A

eEK(·,·) ⇒ 1
]
− Pr

[
AΠ(·,·) ⇒ 1

]
Adv gsprpeE (A) = Pr

[
A

eEK(·,·), eE−1
K (·,·) ⇒ 1

]
− Pr

[
AΠ(·,·),Π−1(·,·) ⇒ 1

]
to be (respectively) the PRP, strong PRP, tweakable-PRP, and strong tweakable-
PRP advantages ofA, an adversary taking the indicated number of oracles. These
probabilities are over the random coins of A and the random choices of K, π,
and Π, as appropriate.

A function family F : K×D → R is ε-almost-XOR-universal (ε-AXU2) if for
all distinct X,X ′ ∈ D and Y ∈ R, Pr

[
K

$←K : FK(X)⊕ FK(X ′) = Y
]
≤ ε.

Resourses and conventions. We consider the following adversarial resources:
the running time t, the number of oracle queries asked q, and the total length
of these queries µ. For the PRP and strong PRP notions, we suppress µ since it
is implicitly computable from q and the blocksize. In the UF-CMA advantage,
µ includes the length of the output forgery attempt (M, τ). It will often be
the case that queries (and forgery attempts) are strings in ({0, 1}n)+ for some
blocksize n > 0, and here it will be convenient to speak of the total number of
blocks σ = µ/n. The running time of an adversary is relative to some (implicit)
fixed underlying model of computation. Running times will always be given with
respect to some security experiment, and we define the running time to include
the time to execute the entire experiment. We assume that adversaries do not
make pointless queries: they do not repeat queries, nor do they ask queries that
are outside of the domain of oracles they may access.

3 Tweakable SPRP-security of CLRW2

The centerpiece of this work is a TBC construction that provides BBB secu-
rity, admits a large tweakspace, and does not require rekeying of any underlying
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object. Given a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n and a hash func-
tion family H : KH ×D → {0, 1}n, the CLRW2 construction Ẽ[H,E] : (KH)2 ×
({0, 1}k)2 ×D × {0, 1}n → {0, 1}n is given by

Ẽ[H,E]h1,h2,K1,K2(T,X) =
EK2(EK1(X ⊕Hh1(T ))⊕Hh1(T )⊕Hh2(T ))⊕Hh2(T ).

The following theorem is our main technical result.

Theorem 1. Fix k, n > 0 and let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockci-
pher. Fix a non-empty set KH , and let D ⊆ {0, 1}∗. Let H : KH × D → {0, 1}n
be an ε-AXU2 function family. Let Ẽ = Ẽ[H,E] be the CLRW2 construction,
defined above. Let A be an adversary asking a total of q queries to its oracles,
these of total length µ, and running in time t. Let ε̂ = max{ε, 1/(2n−2q)}. Then
there exists an adversary B using the same resources, such that.

Adv gsprpeE (A) ≤ 2Advsprp
E (B) +

6q3ε̂2

1− q3ε̂2
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Fig. 2. The maximum advantage of an adversary making q queries agaisnt
CLRW2 (solid line) and constructions limited by the birthday bound, q2/2n

(dashed line). Here, n = 128, ε = 2−n, and we have assumed the Advsprp
E (B)

term is negligible.

This bound deserves some interpretation. Consider ε = 2−n (since there are
efficient constructions meeting this), and assume q ≤ 2n−2. Then ε̂ ≤ 1/2n−1 ≈
2−n for interesting values of n. The second term in the bound is at most p when
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q ≤ (p/(p+ 6))1/3ε̂−2/3, so for any small constant p we have q = O(22n/3). Thus
when Advsprp

E (B) is sufficiently small, CLRW2 is secure as a tweakable-SPRP
up to about 22n/3 queries.2 Figure 2 gives a graphical comparison of our bound
and the standard birthday bound.

Proof overview. The proof of Theorem 1 is quite long and involved, so we’ll
start by giving a high-level overview of it. Proofs demonstrating birthday-bound
security for TBC constructions typically “give up” if the adversary can cause a
collision at a blockcipher input. In constructions like LRW1 and LRW2, the TBC
output is “no longer random”, even when the blockcipher has been replaced by a
random permutation. We overcome this problem by using two rounds of LRW2,
and showing that it takes two independent collisions on the same query to force
non-random CLRW2 outputs.

The chief difficulty is ensuring that the second LRW2 round can withstand
a collision so long as there was not also one on the first round. To this end,
we argue that given a collision-free first round, the resulting distribution of
CLRW2 output values — including those which require a second-round collision
to obtain — is extremely close to that of an ideal TBC.

The bulk of the proof is a sequence of games bounding the success probability
of an adversary in the information-theoretic setting, where the blockciphers have
been replaced by random permutations. The first three games address first-round
collisions, and show that the distribution of CLRW2 outputs is consistent with
that of an ideal cipher unless there is simultaneous a second-round collision. Our
next three games address the case in which there is no first-round collision. By
swapping the order in which dependent random variables are assigned values, we
can choose the output early on in the game, and gain insight into the distribution
by which it is governed. This distribution is shown to be very close to the ideal
one. The final two games are used to derive an upper bound for the probability
that the adversary can set a “bad flag”, which would force the game to exhibit
non-ideal behavior. In the end, we are able to assume that the adversary is non-
adaptive by giving it explicit control over oracle return values. At that point,
the ε-AXU2 property can be applied.

Proof. For notational simplicity, we write h1 for Hh1 , and h2 for Hh2 ; this should
cause no confusion. The majority of the proof will consider the construction Ẽ
with EK1 and EK2 replaced with random permutations π1 and π2, which we
write as Ẽh1,h2,πi,π2 . At the end we can make a standard move to lift to the fully
complexity theoretic setting.

Let A be an adversary making q queries. If the i th query is to the left (encryp-
tion) oracle, we denote the query with (Ti, Xi) and the response with Yi; if the
query is to the right (decryption) oracle, the roles of Xi and Yi are reversed. We
make the standard simplifying assumption that A makes no redundant queries
by, for example, giving its encryption oracle the result of a decryption oracle

2 We note that Advsprp
E (B) will be at least t/2k ≈ q/2k by exhaustive key search

so, q = 22n/3 requires k > 2n/3, which is met by AES (k = n = 128) and DES
(k = 56, n = 64).
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query with the same tweak. We denote by Yi the set of permissible (tweak-
respecting) return values for an encryption oracle query, and similarly, Xi is the
set of permissible return values for a decryption oracle query. That is,

Yi = {0, 1}n \ {Yj : j < i, Tj = Ti}
Xi = {0, 1}n \ {Xj : j < i, Tj = Ti} .

An encryption oracle simulating an ideal cipher Π $← BC(T , n) would sample its
return value Yi from Yi.

The bulk of this proof concerns showing that a sequence of games are iden-
tical, or are identical until a specified event occurs (a boolean variable is set to
true). Due to space limitations, we will simply describe game transitions on a
high level and refer readers interested in a more rigorous argument to the full
version of this paper. The permutations π1 and π2 are constructed lazily, while
h1 and h2 are already defined. Initially, boolean variables have the value false.

Note that Ẽ is the dual of Ẽ−1, in the sense that Ẽ−1
h1,h2,π1,π2

(Y, T ) =
Ẽh2,h1,π

−1
2 ,π−1

1
(Y, T ). When arguing that transitions between games are correct,

we will exploit this duality by limiting our discussion to changes in the encryp-
tion oracle, and hence to queries made to that oracle; the arguments used to
justify the corresponding changes in the decryption oracle are practically iden-
tical. Therefore fix some value i ∈ [1..q], and assume the i th query is to the
encryption oracle.

Game G1 simulates Ẽ by defining π1 and π2 through lazy sampling, so

Pr
[
A

eE, eE−1
⇒ 1

]
= Pr

[
AG1⇒ 1

]
.

In Game G2, we change what happens when there is a collision at the first
blockcipher: we sample Yi

$←Yi, but raise a bad flag if we also encounter a
collision at the input of second blockcipher (bad1) or if Yi ⊕ h2(Ti) is already in
its range (bad2). Should either of these events occur, we fall back to the lazy-
sampling method of Game G1 to choose a new value for Yi. Game G3 is identical
to Game G2, except Yi is not reassigned after a bad flag is set. Hence

Pr
[
AG1⇒ 1

]
= Pr

[
AG2⇒ 1

]
≤ Pr

[
AG3⇒ 1

]
+ Pr

[
AG3 : bad1 ∨ bad2

]
.

Next we modify the section of code in Game G3 that is executed when no
collision occurs at π1; i.e., when Xi ⊕ h1(Ti) 6= Xj ⊕ h1(Tj) for all j < i. The
behavior of the encryption oracle in this game during the i th query can be
completely described by the pair (Pi, Qi), where Pi is the output of π1 and Qi
is the output of π2. The oracle’s output, Yi, is uniquely determined by Qi, since
Yi = Qi ⊕ h2(Ti). Hence, we treat the pair (Pi, Qi) as a single random variable;
any method of assigning it a value that respects the joint distribution on Pi and
Qi preserves the black-box behavior of Game G3’s oracles.

Fix a query (Xi, Ti). Suppose no collision occurs at π1 (i.e., Xi ⊕ h1(Ti) 6=
Xj ⊕ h1(Tj) for all j < i). Call s ∈ {0, 1}n possible if Pr [Qi = s ] > 0. A possible
s is fresh when s 6= Qj for all j < i (i.e., s is not yet in the range of π2), and
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stale otherwise. The correspondence Yi = Qi ⊕ h2(Ti) between Yi and Qi allows
us to describe the distribution governing Yi in terms of Qi. To do so, we first
define:

S1 = {y ∈ {0, 1}n : y ⊕ h2(Ti) is fresh}
S2 = {y ∈ {0, 1}n : y ⊕ h2(Ti) is stale}
S3 = {y ∈ Yi : y ⊕ h2(Ti) is not possible}
S4 =

{
y ∈ Yi : y ⊕ h2(Ti) is not possible

}
(Hence {0, 1}n = S1∪S2∪S3∪S4). One can show that for fixed k = 1, 2, 3, 4, any
two values in Sk are equally likely to be returned by the Game G3’s encryption
oracle on the i th query. With a little effort, one can compute these probabilities
in terms of N = |{p : Pr [ Pi = p ] > 0}|— the number of values not in π1’s
range — and each |Sk|. As Figure 3 shows, the resulting distribution is very close
to the one an ideal cipher would provide.

CLRW2

Ideal Cipher

Fig. 3. When there is no collision at π1, the distribution governing Ẽ’s outputs
is very close to the distribution an ideal cipher would provide. Horizontal scaling
suggests plausible relative sizes of each |Sk|: likely |S1| � |S2 ∪ S4| � |S3|. This
graph is accurate for the oracles in Games 1–5.

The two distributions vary with each query (and in particular, with each
tweak change), and an adaptive adversary could conceivably make the difference
between them significant after a large number of queries. Intuitively, S3 is the
problematic set, and indeed, Pr

[
Yi

$←Yi ; Yi ∈ S3

]
is the statistical distance

between the two distributions. The next few games reveal this more explicitly
by “bubbling up” Yi’s assignment in the pseudocode, then linking the two dis-
tributions together by setting a bad flag if Yi

$←Yi gives Yi ∈ S3.
In Game G4, we flip a weighted coin to determine if Qi is fresh or stale, and

then choose (Pi, Qi) after conditioning on the outcome.
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Next, instead of using the coin flip to determine Qi (or equivalently, Yi),
Game G5 samples Yi

$←Yi to determine Qi — and hence how the coin landed.
Again, ultimately all that matters is the distribution on the joint random variable
(Pi, Qi). Since Qi = Yi ⊕ h2(Ti) may be neither fresh nor stale (i.e., not possible),
Game G5 falls back to the technique of Game G4 when Yi ∈ S3, after setting
bad3. This overwrites the value assigned to Yi.

Finally, in Game G6, we do not do anything special after setting bad3; we
simply keep the value of Yi we originally sampled from Yi.

Game G7 simplifies some of Game G6’s flow. In particular, Yi is now always
sampled from Yi (regardless of whether or not there is a collision at π1), and its
value is never overwritten; consequently, the line Yi

$←Yi is moved to the start of
the encryption oracle pseudocode. Since a family of random permutations would
return Yi from this precise distribution, Game G7 simulates an ideal cipher:

Pr
[
Π

$← BC(T , n) ; AΠ,Π
−1
⇒ 1

]
= Pr

[
AG7⇒ 1

]
.

As consequences of the Fundamental Lemma of Game Playing,

Pr
[
AG3⇒ 1

]
= Pr

[
AG4⇒ 1

]
= Pr

[
AG5⇒ 1

]
≤ Pr

[
AG6⇒ 1

]
+ Pr

[
AG6 : bad3

]
= Pr

[
AG7⇒ 1

]
+ Pr

[
AG7 : bad3

]
,

and similarly

Pr
[
AG3 ; bad1 ∨ bad2

]
≤ Pr

[
AG7 ; bad1 ∨ bad2

]
+ Pr

[
AG7 ; bad3

]
.

Using a standard hybrid argument, it follows that there exists an SPRP adver-
sary B making q queries and running in time O(t) such that

Adv gsprpeE (A) ≤ 2Advsprp
E (B) + Pr

[
AG7 ; bad1 ∨ bad2

]
+ 2 Pr

[
AG7 ; bad3

]
.

We wish to find an upper bound for the probabilities in this expression.
Predictably, the difficulty here is that A is adaptive, and hence its queries are
not independent of, for example, h1. In Game G8, we give the adversary control
over what value is assigned to Yi (or Xi, in the case of decryption queries),
but insist that it be in Yi or Xi, as appropriate. Because this new adversary
Ã can compute Yi and Xi, he may simulate the oracles of Game G7 if desired;
hence, given q queries, Ã can set the bad flags in Game G8 with probability
at least as high as any A can set the corresponding flags in Game G7. The
oracle’s outputs are now deterministic, and may be (trivially) computed by the
adversary in advance. Hence, we may assume without loss of generality that Ã
is non-adaptive.

One can show that in order to set badm (m = 1, 2, 3), Ã must make a sequence
of queries such that there exist i, j, k ≤ q such that j, k 6= i, Xi ⊕ h1(Ti) =
Xj ⊕ h1(Tj), and either

12



1. Yi ⊕ h2(Ti) = Yk ⊕ h2(Tk) or
2. π1(Li)⊕ h1(Ti)⊕ h2(Ti) = π1(Lk)⊕ h1(Tk)⊕ h2(Tk),

where Li = Xi ⊕ h1(Ti), and similarly for Lk. Either case requires query i to
“collide” with independently with two other queries in some fashion. The ε-AXU2

property makes the first type of collision unlikely, and the fact that in this game,
π1(Li) will be sampled from a set of size at least 1/(2n − 2q) makes it unlikely
that π1(Li) will be assigned the unique value that causes the second type of
collision to occur (for given i, j, and k).

Let ε̂ = max(ε, 1/(2n − 2q)). By carefully computing these upper bounds for
the probabilities of these collisions and taking a union bound over all permissible
(i, j, k) pairs, one can show that

Adv gsprpeE (A) ≤ 2Advsprp
E (B) +

6q3ε̂2

1− q3ε̂2
,

completing the proof. �

Attacks on simpler variants. Having seen our construction, one wonder if
simpler variants work. For example, consider CLRW2 without the first Hh2(T )
XOR operation, leaving

Ẽh1,h2,K1,K2(T,X) = Hh2(T )⊕ EK2(Hh1(T )⊕ EK1(Hh1(T )⊕X)).

This variation permits birthday-bound attack. Namely, an adversary could sub-
mit queries in pairs, (Ti, X ′) and (Ti, X ′′), where X ′ and X ′′ are fixed, and a
new random tweak is used for each pair. By remembering Ẽ(Ti, X ′)⊕ Ẽ(Ti, X ′′)
values, which are independent of Hh2 , it could detect collisions in Hh1 , say by
using a hash table. That is, if Hh1(Ti) = Hh1(Tj), then Ẽ(Ti, X ′)⊕ Ẽ(Ti, X ′′) =
Ẽ(Tj , X ′)⊕ Ẽ(Tj , X ′′). The converse is false, but false positives could be weeded
out by testing a small number of X-values. Such an adversary would gain ad-
vantage close to one. Similar variations on Ẽ permit analogous attacks, though
we believe (but do not prove) that omitting the second Hh1(T ) XOR operation
yields a construction secure against adversaries constrained to chosen-plaintext
attacks.

One might also wish to try setting K2 = K1. While we know of no attacks
here, modifying our proof to accomodate this change would be non-trivial. In
particular, bounding certain probabilities required us to trace back through a
game’s execution history to determine when π1 became defined at particular
points (Li or Lk in the above proof); this task would be messier and more
difficult to verify if π2 = π1. Still, this may merit future investigation.

4 PRF-security of TBC-MAC

The TBC-MAC function family. Fix k, n > 0 and let Ẽ : {0, 1}k×{0, 1}n×
{0, 1}n → {0, 1}n be a tweakable blockcipher. We define the TBC-MAC function
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family TBCMAC[Ẽ] : {0, 1}k × ({0, 1}n)+ → {0, 1}n as follows. On input K ∈
{0, 1}k and M ∈ ({0, 1}n)+, let TBCMAC[Ẽ]K(T,M) = Tb where T0 = 0n;
let M1, · · · ,Mb

n←M , and Ti ← ẼK(Ti−1,Mi) for i ∈ {1, . . . , b}. To extend the
domain to {0, 1}∗, one could introduce an explicit, unambiguous padding rule
mapping {0, 1}∗ → ({0, 1}n)+, say mapping M 7→M ‖10r where r is the smallest
integer needed to reach a block boundary. But for simplicity we assume that
all strings input to TBCMAC[Ẽ] are block-aligned. We extend this assumption
by writing TBCMACpf for the TBC-MAC construction restricted to prefix-free
encoded, block-aligned inputs.

Building from a “narrow” tweaksize TBC. Our first result in this section
is a natural one. We prove that TBC-MAC is a secure PRF if the underlying
TBC Ẽ, with n-bit tweaks and blocksize, is secure as a tweakable-PRP. One
might hope that the security bound for TBCMAC[Ẽ] is better than for CBC-
MAC over an n-bit blockcipher, since the former is intuitively a “stronger” object
than the latter. This is not the case. This is because the IV is fixed; thus an
adversary can ask a series of distinct one-block messages and wait for a collision.
Considering the information-theoretic setting, the fixed IV effectively reduces
the ideal cipher to a random permutation in the first round, and so the standard
PRP-PRF distinguishing attack forces us to accept birthday-bound security. The
following theorem closely follows the code-based game-playing proof of CBC-
MAC due to Bellare and Rogaway [5]. We note that a tighter bound could be
achieved (with more work) following the techniques of Bellare et al. [4]. The
proof appears in the full version.

Theorem 2. (TBCMAC is a PRF.) Fix n > 0. Let Ẽ : {0, 1}n × ({0, 1}n ×
{0, 1}n)→ {0, 1}n be a tweakable blockcipher. Let A be an adversary running in
time t, asking q queries, each of length at most ` blocks of n-bits. Then

Advprf

TBCMAC[ eE]
(A) ≤ AdvgprpeE (B) +

(q`)2

2n

for an adversary B that runs in time t′ = t + O(`q) and asks at most q′ = q`
queries.

Building from a “wide” tweaksize TBC. The LRW2 and CLRW2 con-
structions each give TBC that can handle tweaks that are potentially much
larger than the blocksize. So we now consider the security of a nonce-based
version of TBC-MAC based upon such a TBC. In particular, fix k, n, b > 0
and let Ẽ : {0, 1}k × ({0, 1}n+b+1 × {0, 1}n) → {0, 1}n be a tweakable blockci-
pher with tweaksize n+ b+ 1 bits and blocksize n bits. For an `-block message
M1, . . . ,M` where ` > 1, nonce N ∈ {0, 1}b, and a fixed T0 = IV , define
TBCMAC2[Ẽ]K(N,M) as T` = ẼK(T`−1 ‖ 1 ‖ N,M`) where for i = 1 to ` − 1,
Ti = ẼK(Ti−1 ‖ 0 ‖ 0b,Mi). We say that a PRF-adversary A is nonce-respecting
(for TBCMAC2) if it never repeats a nonce. The multiplicity α of a nonce N is
the number of times it is used in an attack, e.g. α = 1 for every nonce if the
attack is nonce-respecting.
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Theorem 3. (TBCMAC2 is a PRF.) Fix n > 0 and b ≥ 0. Let Ẽ : {0, 1}n ×
({0, 1}n+b+1 × {0, 1}n) → {0, 1}n be a tweakable blockcipher. Let TBCMAC2[Ẽ]
be as described above. Let A be an adversary that runs in time t, asks q queries
for the form (N,M) where the length of M is at most ` blocks. Assume that
there are r distinct values of N among these queries, and let α1, . . . , αr denote
the multiplicities of these. Then

Advprf

TBCMAC2[ eE]
(A) ≤ AdvgprpeE (B)+

1
2n+1

(
r∑
i=1

αi(αi − 1)

)
+

r∑
i=1

(
αi
2

)
(2`+ 1)(2`)

2n

where B runs in time t′ = t+O(q`) and asks at most q′ = q` queries. Specifically,
if A is nonce-respecting, Advprf

TBCMAC2[ eE]
(A) ≤ AdvgprpeE (B).

The proof of Theorem 3 appears in the full version.

5 Unforgeability-Preservation of TBC-MAC

TBC-MAC preserves the unforgeability of its underlying TBC when the TBC-
MAC inputs are prefix-free. Since, qualitatively, this amounts to a new applica-
tion of an existing result by Maurer and Sjödin [22], we defer our proof until the
full version.

Theorem 4. (TBCMACpf preserves UF-CMA.) Fix k, n > 0, and let Ẽ : {0, 1}k×
{0, 1}n × {0, 1}n → {0, 1}n be a TBC. Let A be an adversary for TBCMACpf [Ẽ]
that runs in time t, asks q queries, these totaling σ blocks of n-bits in length.
Then there exist adversaries B and C such that

Advuf-cma
TBCMACpf [ eE]

(A) ≤ σ(σ − 1)
2

Advuf-cmaeE (B) + Advuf-cmaeE (C)

where B runs in time tB ≤ t, asks qB ≤ σ queries totalling σB ≤ 2σ blocks; and
where C runs in time tC = t, asks qC = σ queries totalling σC = 2σ blocks.

However, if adversaries may mount an attack using non-prefix-free inputs,
it is possible to forge TBC-MAC.3 The following lemma says that there exists
a TBC F̃ that is unforgeable if some underlying TBC Ẽ is. Liskov et al. [21]
provide a TBC Ẽ with the required signature. The proof appears in the full
version.

Lemma 1. Let Ẽ : {0, 1}k×{0, 1}3n×{0, 1}n → {0, 1}n be a tweakable blockci-
pher. Let F̃ : {0, 1}k × {0, 1}2n × {0, 1}2n → {0, 1}2n be a tweakable blockcipher
defined by F̃K(TL ‖ TR, XL ‖ XR) = XL ⊕ TR ‖ ẼK(XL ‖ TL ‖ TR, XR). Then
Advuf-cmaeF (A) ≤ Advuf-cmaeE (B) where the resources of adversaries A and B are
the same.
3 We note that Bellare and Ristenpart [3] have already shown that the Merkle-

Damg̊ard iteration is not unforgeability preserving for arbitrary inputs. However,
their counterexample does not suffice here, because the compression function they
build is not a TBC.
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We now show that TBC-MAC instantiated with F̃ admits efficient forging at-
tacks if arbitrary inputs are allowed.

Theorem 5. (TBCMAC is not UF-CMA preserving.) Let Ẽ be a tweakable
blockcipher and let F̃ be as defined in Lemma 1. Then there exists an adver-
sary A that asks q = 2 queries totalling σ = 12 blocks of n-bits such that
Advuf-cma

TBCMAC[ eF ]
(A) = 1.

Proof. Consider the adversary A that queries Y 1 ← TBCMAC[F̃ ]K(02n ‖ 02n),
and then forges with X∗ = 02n and Y ∗ = 0n ‖ Y 1

L . The forgery is valid; we leave
the confirmation of this fact to the interested reader. �
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