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Abstract. A problem of solving a system of multivariate quadratic poly-
nomials over a finite field, which is called an MQ problem, is a promising
problem in cryptography. A number of studies have been conducted on
designing public-key schemes using the MQ problem, which are known
as multivariate public-key cryptography (MPKC). However, the security
of the existing schemes in MPKC relies not only on the MQ problem
but also on an Isomorphism of Polynomials (IP) problem. In this paper,
we propose public-key identification schemes based on the conjectured
intractability of the MQ problem under the assumption of the existence
of a non-interactive commitment scheme. Our schemes do not rely on the
IP problem, and they consist of an identification protocol which is zero-
knowledge argument of knowledge for the MQ problem. For a practical
parameter choice, the efficiency of our schemes is highly comparable to
that of identification schemes based on another problem including Per-
muted Kernels, Syndrome Decoding, Constrained Linear Equations, and
Permuted Perceptrons. Furthermore, even if the protocol is repeated in
parallel, our scheme can achieve the security under active attack with
some additional cost.
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1 Introduction

A problem of solving a system of multivariate quadratic polynomials over a
finite field, which is called an MQ problem, is a promising problem in cryptog-
raphy. The associated decision problem is known to be NP-complete [24, 40],
and a random instance of the MQ problem is widely believed to be intractable.
In contrast to factorization or a discrete logarithm problem, there is no known
polynomial-time quantum algorithm to solve the MQ problem. A function con-
sisting of multivariate quadratic polynomials, which we call an MQ function,
can be used as a one-way function with short input and output. Complexity
of generic attacks using Gröbner basis is known to be exponential in time and
space [3, 16], and the best known attack to break the MQ function over F2 with
84-bit input and 80-bit output requires 288.7(> 280) bit operations [10].



A number of studies on designing primitives based on the MQ function have
been conducted both in symmetric and in asymmetric cryptography. In sym-
metric cryptography, a stream cipher which is named QUAD is proposed by
Berbain et al. [7]. The security of QUAD is provably reducible to the conjectured
intractability of the MQ problem. In asymmetric cryptography, several public-
key schemes have been proposed, which are known as multivariate public-key
cryptography (MPKC) [30, 35, 39]. However, the security of the existing schemes
in MPKC relies not only on the MQ problem but also on an Isomorphism of
Polynomials (IP) problem. The IP problem consists of recovering a particular
transformation between two sets of multivariate polynomials, and some crypt-
analyses of the problem have been reported [11, 17, 22, 41]. In fact, some schemes
in MPKC have been already shown to be insecure [11, 14, 31, 38].

In this paper, we propose public-key identification schemes based on the
conjectured intractability of the MQ problem under the assumption of the exis-
tence of a non-interactive commitment scheme which is statistically-hiding and
computationally-binding. We emphasize that our schemes do not rely on the IP
problem. The assumption for the commitment scheme is natural, since it can
be constructed from a collision resistant hash function [27]. Our identification
protocols are non-trivial constructions of statistical zero-knowledge argument of
knowledge for the MQ problem. Assuming the intractability of the MQ function,
our identification schemes consisting of the sequential composition and the par-
allel composition of the protocols are secure against impersonation under active
attack and passive attack, respectively. These security levels are the same as
those of known identification schemes based on another problem including Per-
muted Kernels (PK) [46], binary Syndrome Decoding (SD) [47, 49], Constrained
Linear Equations (CLE) [48], Permuted Perceptrons (PP) [42, 43], and q-ary
SD [12].

For a practical parameter choice, the sizes of a public key, a secret key, and
communication data of our schemes are comparable to those of the schemes
based on PK, SD, CLE, PP, and q-ary SD. In particular, the sizes of a public
key and a secret key of our 3-pass scheme are only 80 bits and 84 bits for 80-bit
security, respectively. These are smaller than those of the known schemes [12,
42, 43, 46–49]. This is due to the fact that the MQ function has short input and
output. The size of communication data in our 3-pass protocol is 29,640 bits
when the impersonation probability is less than 2−30. This is also small com-
pared to those of the existing 3-pass protocols [42, 43, 47–49], which are between
45,517 bits and 100,925 bits. Although the data size of system parameter of our
scheme is relatively large, it can be reduced to some small seed, e.g. 128 bits,
by employing a pseudo-random number generator. The technique is also used in
the implementation of QUAD [2].

Furthermore, we consider the case that our scheme employs the MQ function
which is substantially compressing (e.g., mapping 160 bits to 80 bits), although
the sizes of the secret key and the communication data increase compared to
those of the practical parameter choice. In this case, when such a function is
preimage resistant, our scheme is secure under active attack even if the protocol is
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repeated in parallel. The proof of the security is non-trivial, since zero knowledge
is not preserved under the parallel composition. Thus we prove the security by
also showing that the MQ function is second-preimage resistant if such a function
is preimage resistant, although the MQ function is known not to have the collision
resistance [9].

Techniques for our constructions. Our protocols employ the cut-and-choose ap-
proach, where a prover first divides her secret into shares and then proves the
correctness of some shares depending on the choice of a verifier without reveal-
ing the secret itself. The property of group homomorphism such as a modular
exponentiation x 7→ gx mod p and a linear function x 7→ Mx is useful for this
approach, since dividing a secret s = r0 + r1 simply corresponds to dividing its
image gs = (gr0)(gr1) and Ms = Mr0 + Mr1, respectively. However, the MQ
function (x1, . . . , xn) 7→ (y1, . . . , ym) where yl =

∑
i,j al,i,jxixj +

∑
i bl,ixi does

not seem to have such a property.
Therefore, we introduce new dividing techniques using the bilinearity of a

polar form of the MQ function. The polar form G of the MQ function F is a
function G(x1,x2) = F(x1 + x2) − F(x1) − F(x2) and is known to be bilinear.
It was introduced as the differential of the quadratic system, and has been used
for cryptanalysis of MPKC so far [14, 15, 21, 22]. To our knowledge, this is the
first time that it is constructively used in a context of a public-key identification
scheme.

Our dividing techniques are briefly described as follows. Let s and v = F(s)
be a secret key and a public key, respectively. When the secret key is divided as
s = r0 + r1, the public key v = F(r0 + r1) can be represented as v = F(r0) +
F(r1) + G(r0, r1) by using the polar form G of F. However, this representation
still contains the term G(r0, r1) which depends on both r0 and r1. Consider
that r0 and F(r0) are further divided as r0 = t0 + t1 and F(r0) = e0 + e1,
respectively. In this case, the public key can be divided into two parts v =(
G(t0, r1) + e0

)
+

(
F(r1) + G(t1, r1) + e1

)
, due to the bilinearity of G. Each of

the two parts is represented by either a tuple (r1, t0, e0) or a tuple (r1, t1, e1),
while no information on the secret key s can be obtained from one out of the
two tuples.

Related work. Identification schemes based on PK [46], SD [47, 49], CLE [48],
PP [42, 43], and q-ary SD [12] have some features similar to our schemes as
follows. First, these schemes rely on the hardness of a random instance of each
of the problems whose associated decision version is known to be NP-complete.
Second, their protocols have perfect correctness. Finally, assuming the existence
of a non-interactive commitment scheme, the sequential version and the parallel
version of the schemes are secure against impersonation under active attack and
passive attack, respectively. However, it is not explicitly known that the parallel
versions of these schemes achieve the security under active attack.

On the other hand, lattice-based schemes [29, 33, 34, 36] have other features.
They are based on an average-case problem which is as hard as worst-case prob-
lems, and some of them [29, 33, 34] are secure under active attack even if repeated

3



in parallel. Lyubashevsky’s scheme [34] is stated to be more practically efficient
than the others [29, 33, 36]. The size of communication data of the scheme [34]
for 80-bit security against impersonation is only about 65,000 bits, although the
scheme has small correctness error 2−20. Both of the sizes of the public key and
the secret key are 16,000 bits.

In a context of post-quantum cryptography, Komano et al. proposed a signa-
ture scheme based on a section finding problem on algebraic surface [32]. Their
construction, similarly to our schemes, does not rely on a property of homomor-
phism. However, their scheme is universally forgeable under key-only attack, and
their technique turned out to be unsuccessful to realize a signature scheme [45].

Paper Organization. The remainder of this paper is organized as follows. In
Section 2 we present several notions and tools that are used in our constructions.
In Section 3 and Section 4, our 3-pass and 5-pass constructions are presented,
respectively. In Section 5 we discuss their security and efficiency for a practical
parameter choice. In Section 6 we study the security of the parallel composition
of our scheme at the expense of the efficiency. In Section 7 we mention some
extensions of our scheme.

2 Preliminaries

A finite field of order q is denoted by Fq. If an element x is randomly chosen
from a finite set S, it is expressed by x ∈R S. If A and B are sets, and R ⊂ A×B
is a binary relation, then we define R(x) = {s : (x, s) ∈ R}. If s ∈ R(x), then s
is called a solution for x.

Identification scheme. An identification scheme is a tuple of algorithms (Setup,
Gen, P, V) defined as follows. Setup is a setup algorithm which takes a security
parameter 1λ and outputs a system parameter param. Gen is a key-generation
algorithm which takes param, and outputs a public key and a secret key (pk , sk).
A pair of a prover P and a verifier V is an interactive protocol where a common
input is (param, pk) and an auxiliary input of P is sk . After interactions, V
outputs a bit as a verification result. The protocol (P, V) is called an identification
protocol.

Security against impersonation under passive/active attacks considers an ad-
versary whose goal is to impersonate the prover without the knowledge of the
secret key. The adversary under passive attack has access to interactions between
the real prover and an honest verifier. The adversary under active attack can
interact with the prover. Requiring security against impersonation under active
attack is stronger than under passive attack. The details are described in [1, 18].

The definitions of zero knowledge, witness indistinguishability, and argument
of knowledge are omitted. For formal definitions, refer to textbooks, e.g., [25].

String commitment scheme. A string commitment function is denoted by Com.
The commitment scheme runs in two phases. In the first phase, the sender com-
putes a commitment value c ← Com(s; ρ) and sends c to the receiver, where s
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is a string and ρ is a random string. In the second phase, the sender gives (s, ρ)
to the receiver and the receiver verifies c = Com(s; ρ). We require two security
properties of Com, statistically hiding and computationally binding. Informally,
the former means that, at the end of the first phase, no receiver can distinguish
two commitment values generated from two distinct strings even if the receiver is
computationally unbounded. The latter means that, no polynomial-time sender
can change the committed string after the first phase. The formal definitions and
a practical construction are given in [27]. Throughout this paper, we assume the
existence of such a commitment scheme. The assumption is natural, since it can
be constructed from a collision resistant hash function [27]. Note that such an
interactive commitment scheme can be constructed from any one-way function
including the MQ function [26].

The MQ function. We denote by MQ(n,m, Fq) a family of functions{
F(x) = (f1(x), . . . , fm(x))

fl(x) =
∑

i,j al,i,jxixj +
∑

i bl,ixi,

al,i,j , bl,i ∈ Fq for l = 1, . . . ,m

}
where x = (x1, . . . , xn). For the simplicity, constant terms are omitted with-
out any security loss. We call F ∈ MQ(n,m, Fq) an MQ function. A function
G(x,y) = F(x + y) − F(x) − F(y) is called the polar form of F. The func-
tion G = (g1, . . . , gm) is bilinear, since gl(x,y) =

∑
i,j al,i,j(yixj + xiyj) where

x = (x1, . . . , xn) and y = (y1, . . . , yn). An intractability assumption for a ran-
dom instance of MQ(n, m, Fq) is defined as follows.

Definition 1 For polynomially bounded functions n = n(λ), m = m(λ), and
q = q(λ), it is said that MQ(n, m, Fq) is intractable if there is no polynomial-
time algorithm that takes (F,v) generated via F ∈R MQ(n,m, Fq), s ∈R Fn

q , and
v ← F(s) and finds a preimage s′ ∈ Fn

q such that F(s′) = v with non-negligible
probability ϵ(λ).

All the state-of-the-art solving techniques have exponential complexity to break
the intractability [8, 10, 16]. In particular, it is known that complexity of generic
attacks using Gröbner basis is exponential in time and space [3, 16]. Bouillaguet
et al. stated that it would not outperform exhaustive search in the practically
interesting range m = n ≤ 200 [10]. They proposed an improved exhaustive
search algorithm to break MQ(n, m, F2) in 2n+2 · log2 n bit operations, which is
the best known algorithm [10].

In addition, for F ∈ MQ(n, m, Fq), we define a binary relation RF = {(v,x)
∈ Fm

q × Fn
q : v = F(x)}. Given an instance F ∈ MQ(n,m, Fq) and a vector

v ∈ Fm
q , the MQ problem is finding a solution s ∈ RF(v).

3 A 3-pass Identification Scheme

In this section, we construct an identification scheme which consists of a 3-pass
statistical zero-knowledge argument of knowledge for RF with knowledge error
2/3, assuming the existence of a non-interactive commitment scheme Com which
is statistically hiding and computationally binding.
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Prover’s input: ((F,v), s) Verifier’s input: (F,v)

Pick r0, t0 ∈R Fn
q , e0 ∈R Fm

q

r1 ← s − r0, t1 ← r0 − t0

e1 ← F(r0) − e0

c0 ← Com(r1,G(t0, r1) + e0)

c1 ← Com(t0, e0)

c2 ← Com(t1, e1) (c0, c1, c2)-
Pick Ch ∈R {0, 1, 2}Ch¾

If Ch = 0, Rsp ← (r0, t1, e1)

If Ch = 1, Rsp ← (r1, t1, e1)

If Ch = 2, Rsp ← (r1, t0, e0) Rsp - If Ch = 0, parse Rsp = (r0, t1, e1) and check

c1
?
= Com(r0 − t1,F(r0) − e1)

c2
?
= Com(t1, e1)

If Ch = 1, parse Rsp = (r1, t1, e1) and check

c0
?
= Com(r1,v − F(r1) − G(t1, r1) − e1)

c2
?
= Com(t1, e1)

If Ch = 2, parse Rsp = (r1, t0, e0) and check

c0
?
= Com(r1,G(t0, r1) + e0)

c1
?
= Com(t0, e0)

Fig. 1. Our 3-pass identification protocol

Key generation. We begin with describing a setup algorithm and a key-
generation algorithm. Let λ be a security parameter. Let n = n(λ), m = m(λ),
and q = q(λ) be polynomially bounded functions. The setup algorithm Setup
takes 1λ and outputs a system parameter F ∈R MQ(n,m, Fq) which consists
of m-tuple of random multivariate quadratic polynomials. The key-generation
algorithm Gen takes F. After choosing a random vector s ∈R Fn

q , Gen computes
v ← F(s), then outputs (pk , sk) = (v, s).

An identification protocol. The basic idea for our 3-pass construction is that a
prover proves that she has a tuple (r0, r1, t0, t1, e0, e1) satisfying

G(t0, r1) + e0 = v − F(r1) − G(t1, r1) − e1 (1)
and (t0, e0) = (r0 − t1,F(r0) − e1), (2)

since if the tuple satisfies (1) and (2) then v = F(r0+r1). Note that G is the polar
form of F. In the concrete protocol, corresponding to a challenge Ch ∈ {0, 1, 2}
of a verifier, the prover reveals one out of three tuples (r0, t1, e1), (r1, t1, e1),
and (r1, t0, e0). The verifier can check each side of each equations (1) and (2) by
using either of the three tuples. Such vectors r0, r1, t0, t1, e0, e1 are produced by
using the dividing techniques described in Section 1. Thus, when r0, t0, and e0

are randomly chosen, the verifier can obtain no information on the secret key s
from only one out of the three tuples.
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The 3-pass identification protocol is described in Figure 1. For the simplicity,
a random string ρ in Com is not written explicitly. The verifier finally outputs
1 if both the checks of “ ?=” are passed, otherwise outputs 0. This is denoted by
0/1 ← Dec(F,v; (c0, c1, c2),Ch,Rsp). It is easy to see that the verifier always
accepts an interaction with the honest prover. Thus the 3-pass scheme has perfect
correctness.

Now we show two properties of the protocol in Theorem 2 and Theorem 3 as
follows.

Theorem 2 The 3-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Proof sketch. Let S be a simulator which takes F and v without knowing s,
and interacts with a cheating verifier CV. We show that the simulator S can
impersonate the honest prover with probability 2/3. The simulator S randomly
chooses a value Ch∗ ∈R {0, 1, 2} and vectors s′, r′0, t

′
0 ∈R Fn

q , e′0 ∈R Fm
q , where

Ch∗ is a prediction of what value the cheating verifier CV will not choose. Then,
it computes r′1 ← s′ − r′0 and t′1 ← r′0 − t′0. If Ch∗ = 0 then it computes e′1 ←
v − F(s′) + F(r′0) − e′0, else e′1 ← F(r′0) − e′0. If Ch∗ = 2 then it computes
c′0 ← Com(r′1,v − F(r′1) − G(t′1, r

′
1) − e′1), else c′0 ← Com(r′1,G(t′0, r

′
1) + e′0).

It computes c′1 ← Com(t′0, e
′
0) and c′2 ← Com(t′1, e

′
1) and sends (c′0, c

′
1, c

′
2) to

CV. Due to the statistically hiding property of Com, a challenge Ch from CV is
different from Ch∗ with probability 2/3. If Ch ̸= Ch∗ then (r′0, t

′
1, e

′
1), (r′1, t

′
1, e

′
1),

and (r′1, t
′
0, e

′
0) are accepted responses to Ch = 0, 1, and 2, respectively. Note

that if Ch∗ = 0 and Ch = 1 then it is seen that v − F(r′1) − G(t′1, r
′
1) − e′1 =

G(t′0, r
′
1)+e′0, since e′1 = v−F(s′)+F(r′0)−e′0, F(s′) = F(r′0)+F(r′1)+G(r′0, r

′
1),

and r′0 − t′1 = t′0.

The details of the proof are given in the full paper, where we formally con-
struct a black-box simulator S which has oracle access to a cheating verifier CV,
and outputs a successful transcript with probability 2/3. Furthermore, the dis-
tribution of the output of S is shown to be statistically close to the distribution
of the real transcript. ⊓⊔

Theorem 3 The 3-pass protocol is argument of knowledge for RF with knowl-
edge error 2/3 when the commitment scheme Com is computationally binding.

Proof sketch. Let ((c0, c1, c2),Ch0,Rsp0), ((c0, c1, c2),Ch1,Rsp1), and ((c0, c1,
c2),Ch2,Rsp2) be three transcripts such that Chi = i and Dec(F,v; (c0, c1, c2),
Chi,Rspi) = 1 for i ∈ {0, 1, 2}. Then, by using the three transcripts, it is shown
to be able to either break the binding property of Com or extract a solution for v.
Consider the situation where the responses are parsed as Rsp0 = (r̃(0)

0 , t̃(0)
1 , ẽ(0)

1 ),
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Rsp1 = (r̃(1)
1 , t̃(1)

1 , ẽ(1)
1 ), and Rsp2 = (r̃(2)

1 , t̃(2)
0 , ẽ(2)

0 ). Then, it is seen that

c0 = Com(r̃(1)
1 ,v − F(r̃(1)

1 ) − G(t̃(1)
1 , r̃(1)

1 ) − ẽ(1)
1 )

= Com(r̃(2)
1 ,G(t̃(2)

0 , r̃(2)
1 ) + ẽ(2)

0 ), (3)

c1 = Com(r̃(0)
0 − t̃(0)

1 ,F(r̃(0)
0 ) − ẽ(0)

1 ) = Com(t̃(2)
0 , ẽ(2)

0 ), and (4)

c2 = Com(t̃(0)
1 , ẽ(0)

1 ) = Com(t̃(1)
1 , ẽ(1)

1 ). (5)

If the two pairs of the arguments of Com are distinct on any one of the above
equations, the binding property of Com is broken. Otherwise, the equation (3)
yields v = F(r̃(2)

1 ) + G(t̃(1)
1 + t̃(2)

0 , r̃(2)
1 ) + ẽ(2)

0 + ẽ(1)
1 . Combining it with the

equations (4) and (5), it is seen that v = F(r̃(2)
1 ) + G(r̃(0)

0 , r̃(2)
1 ) + F(r̃(0)

0 ) =
F(r̃(0)

0 + r̃(2)
1 ). It means that a solution r̃(0)

0 + r̃(2)
1 for v is extracted.

The details of the proof are given in the full paper, where we formally con-
struct a knowledge extractor which has oracle access to a message specification
function PF,v,s,r, and either breaks the binding property of Com or outputs a
solution for v. ⊓⊔

Extension. The trick mentioned in [49] for saving one hash value can be applied
to our 3-pass identification protocol as follows. In the first pass, by using a
collision resistant hash function H, one hash value c = H(c0, c1, c2) instead
of three commitments (c0, c1, c2) is sent. In the third pass, for a challenge Ch
of a verifier, a prover sends ci|i=Ch in addition to Rsp. Consequently, a verifier
computes ci|i ̸=Ch by using Rsp and checks c = H(c0, c1, c2). The modified version
of 3-pass protocol is also shown to be zero-knowledge argument of knowledge
with knowledge error 2/3.

4 A 5-pass Identification Scheme

In this section, we construct a 5-pass identification protocol which is statistical
zero-knowledge argument of knowledge for RF with knowledge error 1/2+1/2q,
assuming the existence of a non-interactive commitment scheme Com which is
statistically hiding and computationally binding. The knowledge error of the 5-
pass protocol is smaller than that of the 3-pass protocol when q ≥ 4. The setup
algorithm and the key-generation algorithm of the 5-pass scheme are identical
to those of the 3-pass scheme.

In the 5-pass protocol, a prover also divides the secret key s and the public
key F(s) as s = r0 + r1 and F(s) = F(r0 + r1) = F(r0) + F(r1) + G(r0, r1),
respectively. The difference from the 3-pass protocol is that r0 and F(r0) are
divided as αr0 = t0 + t1 and αF(r0) = e0 + e1 where α ∈ Fq is a choice of
a verifier. After sending (t1, e1) to the verifier, corresponding to a challenge
Ch ∈ {0, 1} of the verifier, the prover reveals one out of two vectors r0 and r1.
When r0, t0, and e0 are randomly chosen, the verifier can obtain no information
on the secret key s from only one out of the two vectors r0 and r1. On the other
hand, the argument-of-knowledge property comes from that, for more than one
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Prover’s input: ((F,v), s) Verifier’s input: (F,v)

Pick r0, t0 ∈R Fn
q , e0 ∈R Fm

q

r1 ← s − r0

c0 ← Com(r0, t0, e0)

c1 ← Com(r1,G(t0, r1) + e0) (c0, c1)-
Pick α ∈R Fqα¾

t1 ← αr0 − t0

e1 ← αF(r0) − e0 (t1, e1)-
Pick Ch ∈R {0, 1}Ch¾

If Ch = 0, Rsp ← r0

If Ch = 1, Rsp ← r1
Rsp- If Ch = 0, parse Rsp = r0 and check

c0
?
= Com(r0, αr0 − t1, αF(r0) − e1)

If Ch = 1, parse Rsp = r1 and check

c1
?
= Com(r1, α(v − F(r1)) − G(t1, r1) − e1)

Fig. 2. Our 5-pass identification protocol

choice of α ∈ Fq, an impersonator cannot response both of verifier’s challenges
Ch = 0 and Ch = 1 unless the impersonator has a solution s for v.

The 5-pass identification protocol is described in Figure 2 where G is the
polar form of F. For the simplicity, a random string ρ in Com is not written
explicitly. The verifier finally outputs 1 if the check of “ ?=” is passed, otherwise
outputs 0. This is denoted by 0/1 ← Dec(F,v; (c0, c1), α, (t1, e1),Ch,Rsp). It is
easy to see that the verifier always accepts an interaction with the honest prover.
Thus the 5-pass scheme has perfect correctness.

Now we show two properties of the protocol in Theorem 4 and Theorem 5 as
follows.

Theorem 4 The 5-pass protocol is statistically zero knowledge when the com-
mitment scheme Com is statistically hiding.

Proof sketch. Let S be a simulator which takes F and v without knowing s,
and interacts with a cheating verifier CV. We show that the simulator S can
impersonate the honest prover with probability 1/2. The simulator S randomly
chooses a value Ch∗ ∈R {0, 1} and vectors s′, r′0, t

′
0 ∈R Fn

q , e′0 ∈R Fm
q , where

Ch∗ is a prediction of what value the cheating verifier CV will choose. Then, it
computes r′1 ← s′− r′0, c′0 ← Com(r′0, t

′
0, e

′
0), and c′1 ← Com(r′1,G(t′0, r

′
1)+e′0).

It sends (c′0, c
′
1) to CV. Receiving a challenge α from CV, it computes t′1 ←

αr′0−t′0. If Ch∗ = 0 then it computes e′1 ← αF(r′0)−e′0, else e′1 ← α(v−F(s′)+
F(r′0)) − e′0. It sends (t′1, e

′
1) to CV. Due to the statistically hiding property of

Com, a challenge Ch from CV is equal to Ch∗ with probability 1/2. If Ch = Ch∗

then r′0 and r′1 are accepted responses to Ch = 0 and 1, respectively. Note that
the case of α = 0 does not spoil the zero-knowledge property. The details of
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the proof are given in the full paper, where we formally construct a black-box
simulator S which outputs a successful transcript with probability 1/2 + 1/2q.

⊓⊔

Theorem 5 The 5-pass protocol is argument of knowledge for RF with knowl-
edge error 1/2 + 1/2q when the commitment scheme Com is computationally
binding.

Proof sketch. Let ((c0, c1), αi, (t̃
(i)
1 , ẽ(i)

1 ),Chj ,Rsp(i,j)) be four transcripts for
i, j ∈ {0, 1} such that Dec(F,v; (c0, c1), αi, (t̃

(i)
1 , ẽ(i)

1 ),Chj ,Rsp(i,j)) = 1, α0 ̸=
α1, and Chj = j. Then, by using the four transcripts, it is shown to be able to
either break the binding property of Com or extract a solution for v. Consider
that the responses are parsed as Rsp(0,0) = r̃(0)

0 , Rsp(0,1) = r̃(0)
1 , Rsp(1,0) = r̃(1)

0 ,
and Rsp(1,1) = r̃(1)

1 . Then, it is seen that

c0 = Com(r̃(0)
0 , α0r̃

(0)
0 − t̃(0)

1 , α0F(r̃(0)
0 ) − ẽ(0)

1 )

= Com(r̃(1)
0 , α1r̃

(1)
0 − t̃(1)

1 , α1F(r̃(1)
0 ) − ẽ(1)

1 ) and (6)

c1 = Com(r̃(0)
1 , α0(v − F(r̃(0)

1 )) − G(t̃(0)
1 , r̃(0)

1 ) − ẽ(0)
1 )

= Com(r̃(1)
1 , α1(v − F(r̃(1)

1 )) − G(t̃(1)
1 , r̃(1)

1 ) − ẽ(1)
1 ). (7)

If the two tuples of the arguments of Com are distinct on either of the above
equations, the binding property of Com is broken. Otherwise, it is seen that
(α0 − α1)(v −F(r̃(0)

1 )) = G(t̃(0)
1 − t̃(1)

1 , r̃(0)
1 ) + ẽ(0)

1 − ẽ(1)
1 from the equation (7).

Combining it with the equation (6) yields (α0 − α1)(v − F(r̃(0)
1 )) = G((α0 −

α1)r̃
(0)
0 , r̃(0)

1 ) + (α0 − α1)F(r̃(0)
0 ). Thus, v = F(r̃(0)

1 ) + G(r̃(0)
0 , r̃(0)

1 ) + F(r̃(0)
0 ) =

F(r̃(0)
1 + r̃(0)

0 ) is obtained, since α0 ̸= α1. It means that a solution r̃(0)
1 + r̃(0)

0

for v is extracted. The details of the proof are given in the full paper, where a
knowledge extractor is formally constructed. ⊓⊔

5 Security and Efficiency

In this section, we summarize the security which is easily derived from the prop-
erties of zero-knowledge argument of knowledge, and give a practical parameter
choice for each of the 3-pass scheme and the 5-pass scheme.

5.1 Security of the Identification Schemes

Here we briefly mention the security of each of the sequential and the parallel
compositions when MQ(n, m, Fq) is intractable and the commitment scheme
Com is statistically hiding and computationally binding. Let (P, V) be an iden-
tification protocol described in Section 3 or Section 4. Then identification pro-
tocols which consist of repeating (P, V) N -times in sequential and in parallel are
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denoted by (P(s)
N , V

(s)
N ) and (P(p)

N , V
(p)
N ), respectively. The security of our identifi-

cation schemes (Setup, Gen, P(s)
N , V

(s)
N ) and (Setup, Gen, P(p)

N , V
(p)
N ) is evaluated as

follows.
First, we consider (Setup, Gen, P(s)

N , V
(s)
N ). From Theorem 2 and the sequential

composition lemma [25], (P(s)
N , V

(s)
N ) is statistically zero knowledge. Furthermore,

it is directly shown that the sequential repetition reduces the knowledge error at
an optimal rate in the same way as [48, 49]. We note that Bellare and Goldreich
showed the theorem for a general reduction of a knowledge error by the sequen-
tial repetition [4]. Therefore, the identification scheme (Setup, Gen, P(s)

N , V
(s)
N ) is

secure against impersonation under active attack where N = ω(log λ).
Second, consider (Setup, Gen, P(p)

N , V
(p)
N ). It is easy to see that the paral-

lel repetition of (P, V) reserves zero-knowledge with respect to an honest ver-
ifier. Because if the simulator S knows a challenge Ch which CV will choose,
then S can always output a successful transcript in both case of the 3-pass
protocol and the 5-pass protocol. Furthermore, Pass and Venkitasubramaniam
mentioned that the parallel repetition reduces a knowledge error in a constant-
round public-coin argument of knowledge [37]. In particular, the error rate drops
exponentially with the number of repetitions N . Therefore, the identification
scheme (Setup, Gen, P(p)

N , V
(p)
N ) is secure against impersonation under passive at-

tack where N = ω(log λ). In addition, for a certain parameter choice, the parallel
version of our scheme is also secure under active attack as shown in Section 6.

5.2 Efficiency

We estimate practical sizes of system parameters, a public key, a secret key, and
a transcript of our schemes. The numbers of arithmetic operations, computing
permutations, and computing hash functions are also estimated as computational
cost. Almost all arithmetic operations are done in evaluations of F and G. The
efficiency is compared with that of the identification schemes based on binary
SD, q-ary SD, CLE, PP, and PK. The key lengths of these schemes for around
80-bit security is estimated in [12, 23]. In our evaluation, the key lengths given
in [12] are used, where lengths of a hash value and a random seed are 160 bits
and 128 bits, respectively.

First, we consider the 3-pass identification scheme employing MQ(84, 80, F2).
Following the same way as [7, 3], the time complexity of the F5 algorithm to break
MQ(84, 80, F2) is estimated to be more than 280. Furthermore, the complexity of
the improved exhaustive search algorithm to break MQ(84, 80, F2) [10], which
is stated as the best known algorithm, is 288.7 and thus also more than 280.
Table 1 shows comparison of the sequential version of our scheme and the 3-
pass schemes based on binary SD, CLE, and PP when each protocol is repeated
until impersonation probability is less than 2−30. In the SD-based scheme, the
CLE-based scheme, and ours, we consider the case that H(c0, c1, c2) is sent in
the first pass instead of (c0, c1, c2) as mentioned at the end of Section 3. In the
PP-based scheme, we consider the efficient version using hash tree [43]. The sizes
of public/secret keys and communication of our scheme are smaller than those
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of the others. Although the size of system parameter of our scheme is relatively
large, it can be reduced to some small seed, e.g. 128 bits, if a pseudo-random
number generator is used as the implementation of QUAD [2]. Although the cost
of arithmetic operations of our scheme is relatively high, it is still reasonable. In
particular, our scheme does not require random permutations.

SD [47, 49] CLE [48] PP [43] Our

round 52 52 73 52

system parameter (bit) 122,500*1 4,608*1 28,497*1 285,600*1

public key (bit) 350 288*2 245 80
secret key (bit) 700 192 177 84

communication (bit) 59,800*6 45,517*3*4*6 100,925*6 29,640
arithmetic ops. (times/field) 224 / F2 216 / F257 222 / F127 226 / F2

permutations*5 (times/size) 2/S700 4/S24 2/S161,S177 NO
hash function (times) 4 4 8 4

best known key-recovery attack 287 284 > 274 280

Table 1. Comparison of 3-pass schemes on 80-bit security against key-recovery attack
when the impersonation probability is less than 2−30

SD [47, 49] SD [12] PK [46] CLE [48] PP [42, 43] Our

round 31 31 31 31 52 33

system parameter (bit) 122,500*1 32,768*1 4,608*1 4,608*1 28,497*1 259,200*1

public key (bit) 2450 512 384 288*2 245 120

secret key (bit) 4900 1024 203*7 192 177 180

communication (bit) 120,652*6 61,783*6 27,234*6 27,528*3*6 105,060*6 26,565
arithmetic ops. (times/field) 223/F2 218/F256 215/F251 215/F257 221/F127 222/F24

permutations*5 (times/size) 8/S700 2/S128 3/S48 4/S24 2/S161,S177 NO
hash function (times) 2 2 2 2 5 2

best known key-recovery attack 287 287 285 284 > 274 283

Table 2. Comparison of 5-pass schemes on 80-bit security against key-recovery attack
when the impersonation probability is less than 2−30

*1 These values can be reduced to 128 bit if a pseudo-random number generator is used.
*2 For the verification, only one vector P is required for the public key whose size is 96

bits. However, as mentioned in [48, 12], zero-knowledge property of the scheme can
only be stated if two quantities (Sσ and Tτ) are public in addition to the vector P .

*3 It is estimated for the case where elements in F257 are regarded as 8 bits.
*4 In the original paper [48], a prover sends (Uσ, V τ, (U + S)σ, (V − T )τ) in the third

pass. However, if the prover sends (Uσ, V τ, Sσ, Tτ) instead of (Uσ, V τ, (U+S)σ, (V −
T )τ), then the communication cost is reduced. Our estimation employs the efficient
version.

*5 This shows the number of times of computing permutations and the size of the
permutation, where Sn means a permutation over {1, . . . , n}.

*6 By following [46, 48], the data size of Sn is regarded as ⌈log2(n!)⌉ bits. Furthermore,
in the same way as [48, 49, 12], the data size of a random permutation or a random
vector is estimated at the length of random seed as 128 bits if it is over 128 bits.

*7 We follow the original paper [46] and estimate the length of the secret key as
⌈log2(n!)⌉ bits, although it is regarded as the length of the random seed in [12].
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Second, consider the 5-pass identification scheme. As the order q of a field
becomes larger, the knowledge error of the 5-pass protocol 1/2+1/2q is smaller.
Here we use MQ(45, 30, F24) which is one of the minimal recommended param-
eters given in [8] for 80-bit security. Table 2 shows efficiency of the sequential
version of our scheme and the 5-pass schemes based on binary SD, q-ary SD,
CLE, PK, and PP when each protocol is repeated until impersonation probabil-
ity is less than 2−30. This table tells us some advantages of our 5-pass scheme,
which are similar to those of our 3-pass scheme.

6 On the Security against Active Attack in Parallel
Repetition

In this section, we focus on the case that the underlying MQ function is sub-
stantially compressing, in particular, mapping Fn

q to Fm
q where n = m + k and

k = ω(log λ). For example, the MQ function F ∈ MQ(2m,m, Fq) satisfies the
requirement where m = ω(log λ). In this case, the parallel version (Setup, Gen,
P
(p)
N , V

(p)
N ) of our 3-pass scheme is shown to be secure against impersonation un-

der active attack, although the sizes of the secret key and the communication
data increase at most double compared to those of Section 5.2. This argument
can also be applied to our 5-pass scheme.

First, we define the preimage resistance and the second-preimage resistance
of the MQ function as follows. The preimage resistance is slightly different from
the intractability assumption of Definition 1 in the distribution of the challenge
v, but is also widely believed.

Definition 6 For polynomially bounded functions n = n(λ), m = m(λ), and
q = q(λ), it is said that MQ(n, m, Fq) is preimage resistant if there is no
polynomial-time algorithm that takes (F,v) generated via F ∈R MQ(n,m, Fq)
and v ∈R Fm

q and finds a preimage s ∈ Fn
q such that F(s) = v with non-

negligible probability ϵ(λ). On the other hand, it is said that MQ(n,m, Fq) is
second-preimage resistant if there is no polynomial-time algorithm that takes
(F,x) generated via F ∈R MQ(n, m, Fq) and x ∈R Fn

q and finds a second preim-
age x′ ∈ Fn

q such that F(x′) = F(x) and x′ ̸= x with non-negligible probability
ϵ(λ).

When a second-preimage resistant hash function is substantially compressing,
it is known to be preimage resistant [44]. Conversely, with respect to the MQ
function, the following lemma is also shown.

Lemma 7 If MQ(n, m, Fq) is preimage resistant, then MQ(n + 1, m, Fq) is
second-preimage resistant.

Proof sketch. Given F = (f1, . . . , fm) ∈R MQ(n, m, Fq) and v = (v1, . . . , vm)
∈R Fm

q , we show that a preimage x satisfying v = F(x) can be found by using an
algorithm A that breaks the second-preimage resistance of MQ(n + 1,m, Fq),
where fl(x1, . . . , xn) =

∑n
i=1

∑n
j=1 al,i,jxixj +

∑n
i=1 bl,ixi. For the simplicity,
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suppose that the algorithm A takes F̃ = (f̃1, . . . , f̃m) ∈ MQ(n + 1,m, Fq) and
t = (t1, . . . , tn+1) ∈ Fn+1

q and outputs a second preimage t+∆ such that F̃(t+∆)
= F̃(t) and ∆ = (d1, . . . , dn, 1), where f̃l(x1, . . . , xn+1) =

∑n+1
i=1

∑n+1
j=1 ãl,i,jxixj

+
∑n+1

i=1 b̃l,ixi. In this case, the equation F̃(t + ∆) − F̃(t) = 0 is expanded as
follows:

n∑
i=1

n∑
j=1

ãl,i,jdidj +
n∑

i=1

(
n+1∑
j=1

(ãl,i,j + ãl,j,i)tj + b̃l,i + (ãl,i,n+1 + ãl,n+1,i))di

+
n+1∑
j=1

(ãl,n+1,j + ãl,j,n+1)tj + b̃l,n+1 + ãl,n+1,n+1 = 0

for l = 1, . . . ,m. From the above equation, we can see that the output t + ∆ of
A satisfies v = F(d1, . . . , dn) if the input (F̃, t) of A is produced as follows.

– The vector t is generated via t ∈R Fn+1
q .

– For 1 ≤ i ≤ n and 1 ≤ j ≤ n do ãl,i,j ← al,i,j , otherwise ãl,i,j ∈R Fq.
– For 1 ≤ i ≤ n do b̃l,i ← bl,i − (ãl,n+1,i + ãl,i,n+1) −

∑n+1
j=1 (ãl,i,j + ãl,j,i)tj ,

otherwise b̃l,n+1 ← −vl − ãl,n+1,n+1 −
∑n+1

j=1 (ãl,n+1,j + ãl,j,n+1)tj .

The details of the proof of Lemma 7 are described in the full paper. ⊓⊔

Moreover, the following lemma is also shown.

Lemma 8 Let n = m + k, k = ω(log λ), and N = ω(log λ). Suppose that
MQ(n,m, Fq) is second-preimage resistant. Then, (P(p)

N , V
(p)
N ) achieves the secu-

rity against impersonation under active attack when Com is statistically hiding
and computationally binding.

Proof sketch. The proof of the lemma follows standard techniques used in [19,
29, 33]. We construct an algorithm B breaking the second-preimage resistance of
MQ(n,m, Fq) by using an impersonator I = (CP, CV) which succeeds imper-
sonation under active attack. Given (F,x), the algorithm B runs the cheating
verifier CV on input (F,v) where v = F(x). Using the secret key x, B can simu-
late the prover oracle perfectly. After obtaining a state for CP from CV, B feeds
the state to CP and acts as the legitimate verifier. By using standard rewinding
techniques, B either breaks the binding property of Com or obtains x′ satisfying
v = F(x′), in the same way as the proof of Theorem 3. Furthermore, the event
x′ ̸= x occurs with non-negligible probability, because of the following (1) and
(2): (1) (P(p)

N , V
(p)
N ) is statistically witness indistinguishable when Com is statis-

tically hiding, due to Theorem 2. (2) The probability that there is not another
x′ ∈ Fn

q \ {x} such that F(x) = F(x′) is at most q−k which is negligible, since
k = ω(log(λ)). In the case of x′ ̸= x, B finds a second preimage x′. The details
of the proof of Lemma 8 are described in the full paper. ⊓⊔

We note that the above proof can be extended into that of the security under
concurrent attack [6] as in the proof of Kawachi et al. [29].

Finally, combining Lemma 7 and Lemma 8 yields the following theorem.
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Theorem 9 Let n = m + k, k = ω(log λ), and N = ω(log λ). Suppose that
MQ(n − 1, m, Fq) is preimage resistant. Then, (P(p)

N , V
(p)
N ) achieves the security

against impersonation under active attack when Com is statistically hiding and
computationally binding.

7 Extensions of our Scheme

In this section we mention the following two extensions of our scheme.

Slightly efficient parallelization. The trick mentioned in the end of Section 3
can also be applied into the parallel version of our 3-pass scheme (Setup, Gen,
P
(p)
N , V

(p)
N ) without losing the security. After that, a hash value of 3N -tuple of

commitments c = H((c0,1, c1,1, c2,1), . . . , (c0,N , c1,N , c2,N )) is sent by a prover in
the first pass, where ci,j is a commitment and H is a collision resistant hash
function. The sizes of a public key, a secret key, and communication data of the
modified scheme are only 80 bits, 84 bits, and 160 + 410N bits, respectively.

A signature scheme. The Fiat-Shamir method is a generic technique which trans-
forms an identification scheme into a signature scheme [20]. The signature scheme
is secure against chosen-message attack in the random oracle model if the un-
derlying identification scheme is secure against impersonation under passive at-
tack [1]. Thus the transform yields a signature scheme based on the conjectured
intractability of the MQ problem from the parallel version of our 3-pass identifi-
cation scheme. Using the signature scheme, our identification/signature scheme
can also be extended to an identity-based one in a natural way [5].

8 Conclusion

We introduced the dividing techniques using bilinearity of the polar form of
the MQ function and proposed public-key identification schemes consisting of a
non-trivial construction of zero-knowledge argument of knowledge for the MQ
problem, assuming the existence of a non-interactive commitment scheme. For a
practical parameter choice, the efficiency of our schemes is highly comparable to
identification schemes based on another problem including PK, SD, CLE, and
PP. Furthermore, even if the protocol is repeated in parallel, our scheme can
achieve the security under active attack with some additional cost.
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