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Abstract. Strong lattice reduction is the key element for most attacks
against lattice-based cryptosystems. Between the strongest but impracti-
cal HKZ reduction and the weak but fast LLL reduction, there have been
several attempts to �nd e�cient trade-o�s. Among them, the BKZ al-
gorithm introduced by Schnorr and Euchner [FCT'91] seems to achieve
the best time/quality compromise in practice. However, no reasonable
complexity upper bound is known for BKZ, and Gama and Nguyen [Eu-
rocrypt'08] observed experimentally that its practical runtime seems to
grow exponentially with the lattice dimension. In this work, we show that
BKZ can be terminated long before its completion, while still providing
bases of excellent quality. More precisely, we show that if given as inputs
a basis (bi)i≤n ∈ Qn×n of a lattice L and a block-size β, and if ter-

minated after Ω
“
n3

β2 (logn+ log log maxi ‖bi‖)
”
calls to a β-dimensional

HKZ-reduction (or SVP) subroutine, then BKZ returns a basis whose

�rst vector has norm ≤ 2ν
n−1

2(β−1)+ 3
2

β · (detL)
1
n , where νβ ≤ β is the maxi-

mum of Hermite's constants in dimensions ≤ β. To obtain this result, we
develop a completely new elementary technique based on discrete-time
a�ne dynamical systems, which could lead to the design of improved
lattice reduction algorithms.
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1 Introduction

A (full-rank) n-dimensional lattice L ⊆ Rn is the set of integer linear com-
binations

∑n
i=1 xibi of some linearly independent vectors (bi)i≤n. Such

vectors are called a basis and we write L = L[(bi)i]. Since L is discrete,
it contains a shortest non-zero lattice vector, whose norm λ1(L) is called
the lattice minimum. Computing such a vector given a basis is referred to
as the (computational) Shortest Vector Problem (SVP), and is NP-hard
under randomized reductions [1,12]. The complexities of the best known
SVP solvers are no less than exponential [22,23,2,15] (the record is held by



the algorithm from [22], with complexity 22n+o(n) · Poly(log maxi ‖bi‖)).
Finding a vector reaching λ1(L) is polynomial-time equivalent to com-
puting a basis of L that is reduced in the sense of Hermite-Korkine-
Zolotarev (HKZ). The aforementioned SVP solvers can all be used to
compute HKZ-reduced bases, in exponential time. On the other hand,
bases reduced in the sense of Lenstra-Lenstra-Lovász (LLL) can be com-
puted in polynomial time [16], but the �rst vector is only guaranteed to

satisfy the weaker inequality ‖b1‖ ≤ (4/3 + ε)
n−1

2 · λ1(L) (for an arbi-
trary ε > 0). In 1987, Schnorr introduced time/quality trade-o�s between
LLL and HKZ [33]. In the present work, we propose the �rst analysis
of the BKZ algorithm [36,37], which is currently the most practical such
trade-o� [40,8].

Lattice reduction is a popular tool in cryptanalysis [27]. For many ap-
plications, such as Coppersmith's method for computing the small roots
of polynomials [5], LLL-reduction su�ces. However, reductions of much
higher quality seem required to break lattice-based cryptosystems. Lattice-
based cryptography originated with Ajtai's seminal hash function [1], and
the GGH and NTRU encryption schemes [9,14]. Thanks to its excellent
asymptotic performance, provable security guarantees, and �exibility, it
is currently attracting wide interest and developing at a steady pace. We
refer to [21,31] for recent surveys. A major obstacle to the real-life deploy-
ment of lattice-based cryptography is the lack of a precise understanding
of the limits of the best practical attacks, whose main component is the
computation of strongly reduced lattice bases. This prevents from hav-
ing a precise correspondence between speci�c security levels and practical
parameters. Our work is a step towards a clearer understanding of BKZ,
and thus of the best known attacks.

Strong lattice reduction has been studied for about 25 years (see
among others [33,37,34,6,32,8,7]). From a theoretical perspective, the best
known time/quality trade-o� is due to Gama and Nguyen [7]. By building
upon the proof of Mordell's inequality on Hermite's constant, they de-
vised the notion of slide reduction, and proposed an algorithm computing
slide-reduced bases: Given an arbitrary basis B = (bi)i≤n of a lattice L,
the slide-reduction algorithm �nds a basis (ci)i≤n of L such that

‖c1‖ ≤ ((1 + ε)γβ)
n−β
β−1 · λ1(L), (1)



within τslide := O
(
n4

β·ε · log maxi ‖bi‖
)
calls3 to a β-dimensional HKZ-

reduction algorithm and a β-dimensional (computational-)SVP solver,
where γβ ≈ β is the β-dimensional Hermite constant. If L ⊆ Qn, the
overall cost of the slide-reduction algorithm is ≤ Poly(n, size(B))·CHKZ(β),
where CHKZ(β) = 2O(β) is the cost of HKZ-reducing in dimension β.
The higher β, the lower the achieved SVP approximation factor, but the
higher the runtime. Slide reduction also provides a constructive variant
of Minkowski's inequality, as (letting detL denote vol(Rn/L)):

‖c1‖ ≤ ((1 + ε)γβ)
n−1

2(β−1) · (detL)
1
n , (2)

From a practical perspective, however, slide reduction seems to be
(signi�cantly) outperformed by the BKZ algorithm [8]. BKZ also relies on
a β-dimensional HKZ-reduction algorithm (resp. SVP-solver). The worst-
case quality of the bases it returns has been studied in [34] and is com-
parable to that of the slide reduction algorithm. The �rst vector of the

output basis (ci)i≤n satis�es ‖c1‖ ≤ ((1+ ε)γβ)
n−1
β−1 ·λ1(L). Note that this

bound essentially coincides with (1), except for large values of β. A bound
similar to that of (2) also holds.4 In practice, the quality of the computed
bases seems much higher with BKZ than with the slide-reduction algo-
rithm [8]. With respect to run-time, no reasonable bound is known on the
number of calls to the β-dimensional HKZ reduction algorithm it needs to
make before termination.5 In practice, this number of calls does not seem
to be polynomially bounded [8] and actually becomes huge when β ≥ 25.
Because of its large (and somewhat unpredictable) runtime, it is folklore
practice to terminate BKZ before the end of its execution, when the so-
lution of the problem for which it is used for is already provided by the
current basis [38,24].

Our result.We show that if terminated within polynomially many calls
to HKZ/SVP, a slightly modi�ed version of BKZ (see Section 3) returns
bases whose �rst vectors satisfy a slightly weaker variant of (2).

Theorem 1. There exists6 C > 0 such that the following holds for all n
and β. Let B = (bi)i≤n be a basis of a lattice L, given as input to the

3 The component n4

β
of this upper bound is derived by adapting the results from [7]

to our notations. A more thorough analysis leads to a smaller term.
4 In [8], the bound ‖c1‖ ≤ (γβ)

n−1
2(β−1)+ 1

2 · (detL)
1
n is claimed to hold, but without

proof nor reference. We prove a (slightly) weaker bound, but we are able to improve
it if γn is replaced by any linear function. See the appendix of the full version [10].

5 A bound (nβ)n is mentioned in [8]. For completeness, we give a proof of a similar
result in the appendix of the full version [10].

6 The constant C is used to absorb lower-order terms in n, and could be taken small.



modi�ed BKZ algorithm of Section 3 with block-size β. If terminated af-

ter τBKZ := C n3

β2

(
log n+ log log maxi

‖bi‖
(detL)1/n

)
calls to an HKZ-reduction

(or SVP solver) in dimension β, the output (ci)i≤n is a basis of L that

satis�es (with νβ ≤ β de�ned as the maximum of Hermite's constants in

dimensions ≤ β):

‖c1‖ ≤ 2(νβ)
n−1

2(β−1)
+ 3

2 · (detL)
1
n .

If L ⊆ Qn, then the overall cost is ≤ Poly(n, size(B)) · CHKZ(β).

By using [18, p. 25], this provides an algorithm with runtime bounded
by Poly(n, size(B)) · CHKZ(β) that returns a basis whose �rst vector sat-

is�es ‖c1‖ ≤ 4(νβ)
n−1
β−1

+3
· λ1(L), which is only slightly worse than (1).

These results indicate that BKZ can be used to achieve essentially the
same quality guarantees as slide reduction, within a number of calls to
HKZ in dimension β that is no larger than that of slide reduction. Actu-
ally, note that τBKZ is signi�cantly smaller than τslide, in particular with a
dependence with respect to maxi ‖bi‖ that is exponentially smaller. It may
be possible to obtain a similar bound for the slide-reduction algorithm by
adapting our analysis.

To achieve our result, we use a completely new approach for analyzing
lattice reduction algorithms. The classical approach to bound their run-
times was to introduce a quantity, sometimes called potential, involving
the current Gram-Schmidt norms ‖b∗i ‖, which always strictly decreases
every time some elementary step is performed. This technique was in-
troduced by Lenstra, Lenstra and Lovász [16] for analyzing their LLL
algorithm, and is still used in all complexity analyzes of (variants of)
LLL we are aware of. It was later adapted to stronger lattice reduction
algorithms [33,6,32,7]. We still measure progress with the ‖b∗i ‖'s, but in-
stead of considering a single scalar combining them all, we look at the
full vector (‖b∗i ‖)i. More speci�cally, we observe that each call to HKZ
within BKZ has the e�ect of applying an a�ne transformation to the vec-
tor (log ‖b∗i ‖)i: instead of providing a lower bound to the progress made on
a �potential�, we are then led to analyze a discrete-time dynamical a�ne
system. Its �xed-points encode information on the output quality of BKZ,
whereas its speed of convergence provides an upper bound on the number
of times BKZ calls HKZ.

Intuitively, the e�ect of a call to HKZ on the vector (log ‖b∗i ‖)i≤n is to
essentially replace β consecutive coe�cients by their average. We formal-
ize this intuition by making a speci�c assumption (see Section 4). Under



this assumption, the execution of BKZ exactly matches with a dynami-
cal system that we explicit and fully analyze. However, we cannot prove
that this assumption is always correct (counter-examples can actually be
constructed). To circumvent this di�culty, we instead consider the vec-
tor µ = (1

i

∑i
j=1 log ‖b∗j‖)i≤n. This amortization (also used in [11] for

analyzing HKZ-reduced bases) allows us to rigorously bound the evolu-
tion of µ by the orbit of a vector under another dynamical system. Since
this new dynamical system happens to be a modi�cation of the dynam-
ical system used in the idealized model, the analysis performed for the
idealized model can be adapted to the rigorous set-up.

This approach is likely to prove useful for analyzing other lattice re-
duction algorithms. As an illustration of its power, we provide two new re-

sults on LLL. First, we show that the SVP approximation factor
√

4/3
n−1

can be reached in polynomial time using only Gauss reductions. This is
closely related to the question whether the �optimal LLL� (i.e., using LLL
parameter δ = 1) terminates in polynomial time [3,17]. Second, we give
a LLL-reduction algorithm of bit-complexity Poly(n) · Õ(size(B)). Such
a complexity bound was only very recently achieved, with a completely
di�erent approach [29]. Note that close-by results on LLL have been con-
currently and independently obtained by Schnorr [35].

Practical aspects. Our result is a (possibly pessimistic) worst-case
quality bound on BKZ with early termination. In itself, this does not give
a precise explanation of the practical behavior of BKZ. In particular, it
does not explain why it outperforms slide reduction, but only why it does
not behave signi�cantly worse. However, this study illustrates the useful-
ness of early termination in BKZ: Much progress is done at the beginning
of the execution, and quickly the basis quality becomes excellent; the rest
of the execution takes much longer, for a signi�cantly less dramatic qual-
ity improvement. This behavior is very clear in practice, as illustrated
by Figure 1 of Section 2. Since most of the work performed by BKZ is
completed within the �rst few calls to HKZ, it shows that the BKZ per-
formance extrapolations used to estimate the hardness of cryptographic
instances should focus only on the cost of a single call to HKZ and on
the achieved basis quality after a few such calls. For instance, it indicates
that the strategy (adopted, e.g., in [14,13]) consisting in measuring the
full run-time of BKZ might be reconsidered.

Additionally, parts of the analysis might prove useful to better un-
derstand BKZ and devise reduction algorithms with improved practical
time/quality trade-o�s. In particular, the heuristic modelisation of BKZ
as a discrete-time a�ne dynamical system suggests that the block of vec-



tors on which HKZ-reduction is to be applied could be chosen adaptively,
so that the system converges faster to its limit. It would not improve the
output quality for BKZ, but it is likely to accelerate its convergence. Also,
the second phase of BKZ, the one that takes longer but during which some
little progress is still made, could be understood by introducing some ran-
domness in the model: most of the time, the norm of the �rst vector found
by the HKZ-reduction sub-routine is around its expected value (a constant
factor smaller than its worst-case bound), but it is signi�cantly smaller
every now and then. If such a model could predict the behavior of BKZ
during its second phase, then maybe it would explain why it outperforms
slide reduction. It might give indications on the optimal time for stopping
BKZ with block-size β before switching to a larger block-size.

Notations. All vectors will be denoted in bold, and matrices in capital
letters. If b ∈ Rn, the notation ‖b‖ will refer to its Euclidean norm.
If B ∈ Rn×n, we de�ne ‖B‖2 = max‖x‖=1 ‖B · x‖ and we denote the
spectral radius of B by ρ(B). If B is a rational matrix, we de�ne size(B)
as the sum of the bit-sizes of the numerators and denominators of its
entries. All complexity statements refer to elementary operations on bits.
We will use the Landau notations o(·), O(·), Õ(·) and Ω(·). The notations
log(·) and ln(·) respectively stand for the base 2 and natural logarithms.

2 Reminders

For an introduction to lattice reduction algorithms, we refer to [28].

Successive Minima. Let L be an n-dimensional lattice. Its i-th min-
imum λi(L) is de�ned as the minimal radius r such that B(0, r) con-
tains ≥ i linearly independent vectors of L.

Hermite's constant. The n-dimensional Hermite constant γn is de�ned
as the maximum taken over all lattices L of dimension n of the quan-

tity λ1(L)2

(detL)2/ dim(L) . Let νn = maxk≤n γk, an upper bound on γn which

increases with n. Very few values of νn are known, but we have νn ≤ 1+ n
4

for all n (see [20, Re 2.7.5]).

Gram-Schmidt orthogonalisation. Let (bi)i≤n be a lattice basis. Its
Gram-Schmidt orthogonalization (b∗i )i≤n is de�ned recursively by b∗i =
bi−

∑
j<i µi,jb

∗
j with µi,j = (b∗i , b

∗
j )/‖b∗j‖2 for i > j. The b∗i 's are mutually

orthogonal. For i ≤ j, we de�ne b
(i)
j as the projection of bj orthogonally

to Span(bk)k<i. Note that if L is an n-dimensional lattice, then detL =∏n
i=1 ‖b∗i ‖, for any basis (bi)i≤n of L.



A few notions of reduction. Given a basis (bi)i≤n, we say that it
is size-reduced if the Gram-Schmidt coe�cients µi,j satisfy |µi,j | ≤ 1/2
for all j < i ≤ n. We say that (bi)i≤n is δ-LLL-reduced for δ ≤ 1 if it is
size-reduced and the Lovász conditions δ‖b∗i ‖2 ≤ ‖b∗i+1‖2+µ2

i+1,i‖b∗i ‖2 are
satis�ed for all i < n. For any δ < 1, a δ-LLL-reduced basis of a rational
lattice L can be computed in polynomial time, given an arbitrary basis of L
as input [16]. We say that (bi)i≤n is HKZ-reduced if it is size-reduced and

for all i < n, we have ‖b∗i ‖ = λ1(L[(b(i)
j )i≤j≤n]). An HKZ-reduced basis of

a lattice L ⊆ Qn can be computed in time 22n+o(n)·Poly(size(B)), given an
arbitrary basis B of L as input [22]. The following is a direct consequence
of the de�nitions of the HKZ-reduction and Hermite constant.

Lemma 1. For any HKZ-reduced basis (bi)i≤n, we have: ∀i < n, ‖b∗i ‖ ≤√
νn−i+1 · (

∏n
j=i ‖b∗j‖)

1
n−i+1 .

The BKZ algorithm. We recall the original BKZ algorithm from [37]
in Algorithm 1. BKZ was originally proposed as a mean of computing
bases that are almost β-reduced. β-Reduction was proposed by Schnorr
in [33], but without an algorithm for achieving it. The BKZ algorithm
proceeds by iterating tours consisting of n − 1 calls to a β-dimensional

SVP solver called on the lattices L[(b(k)
i )k≤i≤k+β−1]. Its execution stops

when no change occurs during a tour.

Input : A (LLL-reduced) basis (bi)i≤n, a blocksize β and a constant δ < 1.
Output : A basis of L[(bi)i≤n].
repeat

for k ← 1 to n− 1 do

Find b such that ‖b(k)‖ = λ1(L[(b
(k)
i )k≤i≤min(k+β−1,n)]);

if δ · ‖b∗
k‖ > ‖b‖ then

LLL-reduce(b1, . . . , bk−1, b, bk, . . . , bmin(k+β,n)).
else

LLL-reduce(b1, . . . , bmin(k+β,n)).
until no change occurs.

Algorithm 1: The Schnorr and Euchner BKZ algorithm.

3 Terminating BKZ

In this article, we will not analyze the original BKZ algorithm, but we will
focus on a slightly modi�ed variant instead, which is given in Algorithm 2.
It also performs BKZ tours, and during a tour it makes n−β+1 calls to a β-
dimensional HKZ-reduction algorithm. It �ts more closely to what would
be the simplest BKZ-style algorithm, aiming at producing a basis (bi)i≤n



such that the projected basis (b(k)
i )k≤i≤k+β−1 is HKZ-reduced for all k ≤

n− β + 1.

Di�erences between the two variants of BKZ. The di�erences be-
tween the two algorithms are the following:

• In Algorithm 2, the execution can be terminated at the end of any
BKZ tour.

• In the classical BKZ algorithm, the vector b found by the SVP solver
is kept only if ‖b(k)‖ is smaller than δ · ‖b∗k‖. Such a factor δ < 1 does
not appear in Algorithm 2. It is unnecessary for our analysis to hold,
complicates the algorithm, and leads to output bases of lesser quality.

• For each k within a tour, Algorithm 1 only requires an SVP solver
while Algorithm 2 calls an HKZ-reduction algorithm, which is more
complex. We use HKZ-reductions for the ease of the analysis. Our
analysis would still hold if the loop was done for k from 1 to n−1 and
if the HKZ-reductions were replaced by calls to any algorithm that
returns bases whose �rst vector reaches the minimum (which can be
obtained by calling any SVP solver, putting the output vector in front
of the input basis and calling LLL to remove the linear dependency).

• Finally, to insert b in the current basis, Algorithm 1 performs an
LLL-reduction. Indeed, applying LLL inside the projected block (i.e.,

to b(k), b
(k)
k , . . . , b

(k)
k+β−1) would be su�cient to remove the linear de-

pendency while keeping b(k) in �rst position, but instead it runs LLL
from the beginning of the basis until the end of the next block to
be considered (i.e., up to index min(k + β, n). This reduction is per-
formed even if the block is already reduced and no vector is inserted.
Experimentally, this seems to improve the speed of convergence of the
algorithm by a small factor, but it does not seem easy to use our
techniques to analyze this e�ect.

Input : A basis (bi)i≤n and a blocksize β.
Output : A basis of L[(bi)i≤n].
repeat

for k ← 1 to n− β + 1 do

Modify (bi)k≤i≤k+β−1 so that (b
(k)
i )k≤i≤k+β−1 is HKZ-reduced;

Size-reduce(b1, . . . , bn).
until no change occurs or termination is requested.

Algorithm 2: BKZ', the modi�ed BKZ algorithm.

On the practical behavior of BKZ. In order to give an insight on
the practical behavior of BKZ and BKZ', we give experimental results



on the evolution of the quantity ‖b1‖
(detL)1/n

(the so-called Hermite factor)

during their executions. The experiment corresponding to Figure 1 is as
follows: We generated 64 knapsack-like bases [25] of dimension n = 108,
with non-trivial entries of bit-length 100n; Each was LLL-reduced using
fplll [4] (with parameters δ = 0.99 and η = 0.51); Then for each we
ran NTL's BKZ [40] and an implementation of BKZ' in NTL, with block-
size 24. Figure 1 only shows the beginning of the executions. For both
algorithms, the executions of about half the samples consisted in ' 600
tours, whereas the longest execution stopped after ' 1200 tours. The
average value of ‖b1‖

(detL)1/n
at the end of the executions was ' 1.012.
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Fig. 1. Evolution of the Hermite factor ‖b1‖
(detL)1/n

during the execution of BKZ and

BKZ'.

Cost of BKZ'. In order to bound the bit-complexities of BKZ and BKZ',
it is classical to consider several cost components separately. In this article,
we will focus on the number of tours. The number of calls to an SVP solver
(for BKZ) or an HKZ-reduction algorithm (in the case of BKZ') is ≤ n
times larger. A tour consists of e�cient operations (LLL, size-reductions,
etc) and of the more costly calls to SVP/BKZ. The cost of the SVP
solver or the HKZ-reduction algorithm is often bounded in terms of the
number of arithmetic operations it performs: For all known algorithms,
this quantity is (at least) exponential in the block-size β. Finally, one
should also take into account the bit-costs of the arithmetic operations
performed to prepare the calls to SVP/HKZ, during these calls, and after
these calls (when applying the computed transforms to the basis, and



calling LLL or a size-reduction). These arithmetic costs are classically
bounded by considering the bit-sizes of the quantities involved. They can
easily be shown to be polynomial in the input bit-size, by relying on
rational arithmetic and using standard tools from the analyses of LLL
and HKZ [16,15]. It is likely that these costs can be lowered further by
relying on �oating-point approximations to these rational numbers, using
the techniques from [26,30]. To conclude, the overall cost is upper bounded
by Poly(n, log ‖B‖) · 2O(β) · τ , where τ is the number of tours.

4 Analysis of BKZ' in the Sandpile Model

In this section, we (rigorously) analyze a heuristic model of BKZ'. In the
following section, we will show how this analysis can be adapted to allow
for a (rigorous) study of the genuine BKZ' algorithm.

We �rst note that BKZ' can be studied by looking at the way the
vector x := (log ‖b∗i ‖)i changes during the execution, rather than consid-
ering the whole basis (bi)i. This simpli�cation is folklore in the analyzes
of lattice reduction algorithms, and allows for an interpretation in terms
of sandpiles [19]. The study in the present section is heuristic in the sense
that we assume the e�ect of a call to HKZβ on x is determined by x only,
in a deterministic fashion.

4.1 The model and its dynamical system interpretation

Before describing the model, let us consider the shape of a β-dimensional
HKZ-reduced basis. Let (bi)i≤β be an HKZ-reduced basis, and de�ne xi =
log ‖b∗i ‖. Then, by Lemma 1, we have:

∀i ≤ β, xi ≤
1
2

log νβ−i+1 +
1

β − i+ 1

β∑
j=i

xj . (3)

Our heuristic assumption consists in replacing these inequalities by equal-
ities.

Heuristic Sandpile Model Assumption (SMA). We assume for any

HKZ-reduced basis (bi)i≤β , we have xi = 1
2 log νβ−i+1 + 1

β−i+1

∑β
j=i xj for

all i ≤ β, with x = (log ‖b∗i ‖)i≤β .

Under SMA, once
∑

i xi (i.e., |det(bi)i|) is �xed, an x of an HKZ-
reduced basis is uniquely determined.



Lemma 2. Let (bi)i≤β be HKZ-reduced, x = (log ‖b∗i ‖)i and E[x] =∑
i≤β

xi
β . Then, under SMA, xβ = E[x]− Γβ(β − 1) and:

∀i < β, xi = E[x]− (β − i+ 1)Γβ(i− 1) + (β − i)Γβ(i),

with Γn(k) =
∑n−1

i=n−k
log νi+1

2i for all 0 ≤ k < n.

We now exploit SMA to interpret BKZ' as a discrete-time linear dy-
namical system. Let (bi)i≤n be a lattice basis and x = (log ‖b∗i ‖)i. Let
β ≤ n be a block-size and α ≤ n− β + 1. When we apply an HKZ reduc-

tion algorithm to the projected sublattice (b(α)
i )α≤i<α+β−1, we obtain a

new basis (b′i)i≤n such that (with x′ = (log ‖b′∗i ‖)i):

α+β−1∑
i=α

x′i =
α+β−1∑
i=α

xi and ∀i 6∈ [α, α+ β − 1], x′i = xi.

Under SMA, we also have:

∀i ∈ [α, α+ β − 1], x′i =
1
2

log να+β−i +
1

α+ β − i

α+β−1∑
j=i

x′j .

By applying Lemma 2, we obtain x′ = A(α) · x+ g(α), with:

A(α) =





. . .

1
1
β · · ·

1
β (α)

...
. . .

...
1
β · · ·

1
β (α+β−1)

1
. . .

g
(α)
i =



0 if i < α

(β + α− i− 1)Γβ(i− α+ 1)− (β + α− i)Γβ(i− α)
if i ∈ [α, α+ β − 2]

−Γβ(β − 1) if i = α+ β − 1
0 if i ≥ α+ β.

We recall that a BKZ' tour is the successive (n− β + 1) applications
of an HKZ-reduction algorithm with α = 1, . . . , n− β + 1 (in this order).



Under SMA, the e�ect of a BKZ' tour on x is to replace it by Ax + g
with g = g(n−β+1) +A(n−β+1) · (g(n−β) +A(n−β) · (. . .)) and:

A = A(n−β+1) · . . . ·A(1) =

(1) (β)



1
β · · · 1

β
β−1
β2 · · · β−1

β2
1
β

...
...

. . .
. . .

(β−1)n−β

βn−β+1 · · ·
(β−1)n−β

βn−β+1 · · · β−1
β2

1
β (n−β+1)

...
...

...
...

(β−1)n−β

βn−β+1 · · ·
(β−1)n−β

βn−β+1 · · · β−1
β2

1
β (n)

.

We sum up the study of the discrete-time dynamical system x ←
A·x+g in the following Theorem. The solutions and speed of convergence
respectively provide information on the output quality and runtime of
BKZ' (under SMA). Overall, we have:

Theorem 2. Under SMA, there exists C > 0 such that the following holds

for all n and β. Let (bi)i≤n be given as input to BKZ'β and L the lattice

spanned by the bi's. If terminated after C n2

β2 (log n+log log maxi
‖b∗i ‖

(detL)1/n
)

tours, then the output (ci)i≤n is a basis of L that satis�es ‖x−x∞‖2 ≤ 1,
where xi = log ‖c∗i ‖

(detL)1/n
for all i and x∞ is the unique solution of the

equation x∞ = A · x∞ + g with E[x∞] = 0. This implies that:7

‖c1‖ ≤ 2(νβ)
n−1

2(β−1)
+ 3

2 · (detL)
1
n .

4.2 Solutions of the dynamical system

Before studying the solutions of x = A ·x+ g, we consider the associated
homogeneous system.

Lemma 3. If A · x = x, then x ∈ span(1, . . . , 1)T .

It thus su�ces to �nd one solution to x = A · x+ g to obtain all the
solutions. We de�ne x as follows:

xi =

{
β

2(β−1) log νβ + 1
β−1

∑i+β−1
j=i+1 xj if i ≤ n− β

g
(n−β+1)
i if i > n− β

.

7 If we replace νβ by a linear function that bounds it (e.g., νβ ≤ β), then the constant 3
2

may be replaced by 1−ln 2
2

+ ε (with ε > 0 arbitrarily close to 0 and β su�ciently
large).



Lemma 4. We have x = A · x+ g.

We now provide explicit lower and upper bounds for the coordinates
of the solution x.

Lemma 5. For all i ≤ n − β + 1, we have
(
n−i
β−1 −

3
2

)
log νβ ≤ xi −

xn−β+1 ≤ n−i
β−1 log νβ.

We refer to [10] for proofs Lemmata 3, 4, 5.
As the set of solutions to x = A · x + g is x + Span(1, . . . , 1)T , the

value of x is only interesting up to a constant vector, which is why we
bound xi−xn−β+1 rather than xi. In other words, since x∞ of Theorem 1
is x− (E[x])i, the Lemma also applies to x∞. It is also worth noting that
the di�erence between the upper and lower bounds 3

2 log νβ is much smaller
than the upper bound n−i

β−1 log νβ (for most values of i). If we replace νβ
by β, then, via a tedious function analysis, we can improve both bounds
so that their di�erence is lowered to 1

2 log β. In the special case β = 2, the
expression of x is xi = xn + (n− i) log ν2.

4.3 Speed of convergence of the dynamical system

The classical approach to study the speed of convergence (with respect
to k) of a discrete-time dynamical system xk+1 := An · xk + gn (where
An and gn are the n-dimensional values of A and g respectively) consists
in providing an upper bound to the largest eigenvalue of ATnAn. It is
relatively easy to prove that it is 1 (note that An is doubly stochastic).

We are to show that the second largest singular value is < 1 − β2

2n2 , and
that this bound is sharp, up to changing the constant 1/2 and as long
as n− β = Ω(n).

The asymptotic speed of convergence of the sequence (Akn · x)k is in
fact determined by the eigenvalue(s) of An of largest module8 (this is the
principle of the power iteration algorithm). However, this classical fact
provides no indication on the dependency with respect to x, which is
crucial in the present situation. As we use the bound ‖Akn · x‖ ≤ ‖An‖k2 ·
‖x‖, we are led to studying the largest singular values of ATnAn.

We �rst explicit the characteristic polynomial χn of ATnAn. The fol-
lowing lemma shows that it satis�es a second order recurrence formula.

Lemma 6. We have χβ(t) = tβ−1(t − 1), χβ+1(t) = tβ−1(t − 1)(t − 1
β2 )

and, for any n ≥ β:
8 which can also be proved to be ≤ 1− cβ2/n2 for some constant c.



χn+2(t) =
(2β(β − 1) + 1)t− 1

β2
· χn+1(t)−

(
β − 1
β

)2

t2 · χn(t).

This is used to study the roots of χn(t). The proof of the following
result relies on several changes of variables to link the polynomials χn(t)
to the Chebyshev polynomials of the second kind.

Lemma 7. For any n ≥ β ≥ 2, the largest root of the polynomial χn(t)
t−1

belongs to
[
1− π2β2

(n−β)2
, 1− β2

2n2

]
.

We refer to [10] for proofs of Lemmata 6 and 7.

Proof of Theorem 2. The unicity and existence of x∞ come from Lem-
mata 3 and 4.

Let (b(k)
i )i≤n be the basis after k tours of the algorithm BKZ'β and

x
(k)
i = log ‖b(k)∗

i ‖
(detL)1/n

. The de�nition of x∞ and a simple induction imply

that x(k) − x∞ = Ak(x(0) − x∞). Both x(0) and x∞ live in the sub-
space E := Span(1, . . . , 1)⊥, which is stabilized by A. Let us denote by AE
the restriction of A to this subspace. Then the largest eigenvalue of ATEAE

is bounded in Lemma 7 by
(
1− β2

2n2

)
. Taking the norm in the previous

equation gives:

‖x(k) − x∞‖2 ≤ ‖AE‖k2 · ‖x(0) − x∞‖2 = ρ(ATEAE)
k/2 · ‖x(0) − x∞‖2

≤
(

1− β2

2n2

)k/2
‖x(0) − x∞‖2.

The term ‖x(0) − x∞‖2 is bounded by
(
log maxi ‖b∗i ‖

(detL)1/n

)
n + nO(1). Thus,

there exists C such that ‖x(k) − x∞‖2 ≤ 1 when k ≥ C n2

β2 (log n +

log log maxi
‖b∗i ‖

(detL)1/n
).

We now prove the last inequality of the theorem. By Lemma 5 and the

fact that
∑n

i=n−β+1 x
∞
i ≥ βx∞n−β+1+

∑n
i=n−β+1

(
log νβ
β−1 (n− i)− 3

2 log νβ
)
,

we have:

x∞1 ≤ (n− 1)
log νβ
β − 1

− 1
n

n∑
i=1

(
log νβ
β − 1

(n− i)− 3
2

log νβ

)
=
(

n− 1
2(β − 1)

+
3
2

)
log νβ.

Using the inequality x
(k)
1 ≤ x∞1 +1 and taking the exponential (in base 2)

leads to the result. ut



5 Analysis of BKZ'

We now show how the heuristic analysis of the previous section can be
made rigorous. The main di�culty stems from the lack of control on
the ‖b∗i ‖'s of an HKZ-reduced basis (bi)i≤β . More precisely, once the de-
terminant and ‖b∗β‖ are �xed, the ‖b∗i ‖'s are all below a speci�c curve
(explicitly given in Lemma 2). However, if only the determinant is �xed,
the pattern of the ‖b∗i ‖'s can vary signi�cantly: as an example, taking or-
thogonal vectors of increasing norms shows that ‖b∗1‖ (resp. ‖b∗β‖) can be
arbitrarily small (resp. large). Unfortunately, when applying HKZ within
BKZ', it seems we only control the determinant of the HKZ-reduced ba-
sis of the considered block, although we would prefer to have an upper
bound for each Gram-Schmidt norm individually. We circumvent this dif-
�culty by amortizing the analysis over the ‖b∗i ‖'s: as observed in [11], we
have a sharp control on each average of the �rst ‖b∗i ‖'s. For an arbitrary

basis B := (bi)i≤n, we de�ne µ
(B)
k = 1

k

∑
1≤i≤k log ‖b∗i ‖, for k ≤ n.

Lemma 8 ([11, Le. 3]). If B = (bi)i≤β is HKZ-reduced, then µ
(B)
k ≤

β−k
k logΓβ(k) + µ

(B)
β for all k ≤ β.

5.1 A dynamical system for (genuine) BKZ' tours

We now reformulate the results of the previous section with the µ
(B)
i 's

instead of the log ‖b∗i ‖'s. This amounts to a base change in the discrete-
time dynamical system of Subsection 4.1. We de�ne:

P = (1
i1i≥j)1≤i,j≤n, Ã = PAP−1 and g̃ = P · g.

Note that µ(B) = P · x(B), where x(B) = (log ‖b∗i ‖)i and µ(B) = (µ(B)
i )i.

Lemma 9. Let B′ be the basis obtained after a BKZ' tour given an n-
dimensional basis B as input. Then µ(B′) ≤ Ã · µ(B) + g̃, where the in-

equality holds componentwise.

5.2 Analysis of the updated dynamical system

Similarly to the analysis of the previous section, it may be possible to
obtain information on the speed of convergence of BKZ' by estimating the
eigenvalues of ÃT · Ã. However, the latter eigenvalues seem signi�cantly
less amenable to study than those of ATA. The following lemma shows
that we can short-circuit the study of the modi�ed dynamical system. For
a basis B ∈ Rn×n given as input to BKZ'β , we de�ne B

[0] = B and B[i] as
the current basis after the i-th BKZ' tour. We also de�ne µ∞ = P · x∞.



Lemma 10. Let B ∈ Rn×n a basis given as input to BKZ'β. Wlog we

assume that µ
(B)
n = µ∞n (since µ

(B)
n = 1

n log |detB|, this can be achieved

by multiplying B by a scalar). We have:

∀k ≥ 0,∀i ≤ n, µ(B[k])
i ≤ µ∞i +(1+logn)1/2·

(
1− β2

2n2

)k/2
‖x(B[0])−x∞‖2.

Lemma 11. There exists C > 0 such that the following holds for all

integers n ≥ β, and ε ∈ (0, 1]. Let (bi)i≤n be a basis of a lattice L, given
as input to the modi�ed BKZ' algorithm of Section 2 with block-size β.

If terminated after C n3

β2 (log n
ε + log log maxi

‖b∗i ‖
(detL)1/n

) calls to an HKZ-

reduction (resp. SVP solver) in dimension β, the output (ci)i≤n is a basis

of L that satis�es:

‖c1‖ ≤ (1 + ε)νβ
n−1

2(β−1)
+ 3

2 · (detL)
1
n .

Theorem 1 corresponds to taking ε = 1 in Lemma 11. Also, when β =
2, using the explicit expression of x∞ leads to the improved bound ‖c1‖ ≤
(1 + ε) · (ν2)

n−1
2 · (detL)

1
n .

6 Applications to LLL-Reduction

In this section, we investigate the relationship between BKZ'2 reduction
and the notion of LLL-reduction [16]. Note that analogues of some of the
results of this section have been concurrently and independently obtained
by Schnorr [35].

Reminders on the LLL algorithm. The LLL algorithm with param-
eter δ proceeds by successive loop iterations. Each iteration has a corre-
sponding index k, de�ned as the smallest such that (bi)i≤k is not δ-LLL-
reduced. The iteration consists in size-reducing (bi)i≤k and then checking
Lovász's condition δ‖b∗k−1‖2 ≤ ‖b∗k‖2 + µ2

k,k−1‖b∗k−1‖2. If it is satis�ed,
then we proceed to the next loop iteration, and otherwise, we swap the
vectors bk and bk−1. Any such swap decreases the quantity Π((bi)i) =∏n
i=1 ‖b∗i ‖2(n−i+1) by a factor ≥ 1/δ whereas it remains unchanged dur-

ing size-reductions. Since Π((bi)i) ≤ 2O(n2 size(B))) and since for any in-
teger basis Π((bi)i) is an integer, this allows to prove termination within
O(n2 size(B)) loop iterations when δ < 1. When δ = 1, we obtain the
so-called optimal LLL algorithm. Termination can still be proven by using
di�erent arguments, but with a much larger bound 2Poly(n) ·Poly(size(B))
(see [3,17]).



An iterated version of BKZ'2. We consider the algorithm Iterated-
BKZ'2 (described in Algorithm 3) which given as input a basis (bi)i≤n
successively applies BKZ'2 to the projected bases (bi)i≤n, (b

(2)
i )2≤i≤n, . . . ,

(b(n−1)
i )n−1≤i≤n. By using a quasi-linear time Gauss reduction algorithm

(see [39,41]) as the HKZ2 algorithm within BKZ'2, Algorithm Iterated-
BKZ'2 can be shown to run in quasi-linear time.

Input : A basis (bi)i≤n of a lattice L.
Output : A basis of L.
for k := 1 to n− 1 do

Apply BKZ'2 to the basis (b
(k)
i )k≤i≤n;

Let T be the corresponding transformation matrix;
Update (bi)i≤n by applying T to (bi)k≤i≤n.

Return (bi)i≤n.

Algorithm 3: Iterated-BKZ'2 Algorithm

Lemma 12. Let B be a basis of an n-dimensional lattice, and ε > 0
be arbitrary. Then, using Algorithm Iterated-BKZ'2, one can compute, in

time Poly(n) · Õ(size(B)), a basis (b′i)i≤n such that

∀i ≤ n, ‖b′i
∗‖ ≤ (1 + ε)

(
4
3

)n−i
2

·
( n∏
j=i

‖b′i
∗‖
) 1
n−i+1

. (4)

A close analogue of the optimal LLL. Let B = (bi)i≤n an integral
basis output by Iterated-BKZ'2. For i ≤ n, we let pi, qi be coprime rational

integers such that pi
qi

=
(

3
4

)(n−i+1)(n−i) · ‖bi
∗‖2(n−i+1)Qn
j=i ‖bj

∗‖2 . By (4), we know

that pi/qi ≤ (1 + ε)n−i+1. Note that pi/qi is a rational number with
denominator ≤ 2O(n2+size (B)). We can thus �nd a constant c such that,
for all i, the quantity |pi/qi − 1| is either 0 or ≥ 2−c(n

2+size (B)). Hence, if
we choose ε < 1

2n .2
−c(n2+size(B′)), all the inequalities from (4) must hold

with ε = 0. Overall, we obtain, in polynomial time and using only swaps
and size-reductions, a basis for which (4) holds with ε = 0.

A quasi-linear time LLL-reduction algorithm. BKZ'2 can be used
to obtain a variant of LLL which given as input an integer basis (bi)i≤n
and δ < 1 returns a δ-LLL-reduced basis of L[(bi)i≤n] in time Poly(n) ·
Õ(size(B)). First, we apply the modi�cation from [18, p. 25] to a ter-
minated BKZ'2 so that the modi�ed algorithm, when given as input an
integer basis (bi)i≤n and ε > 0, returns in time Poly(n) · Õ(size(B)) a
basis (b′i)i≤n of L[(bi)i≤n] such that ‖b′1‖ ≤ (1 + ε)2(4/3)n−1λ1(L). The
complexity bound holds because the transformation from [18, p. 25] ap-
plies BKZ'2 n times on bases whose bit-sizes are Poly(n) · Õ(size(B)).



We iterate this algorithm n times on the projected lattices (b(k)
i )k≤i≤n

so that the output basis (ci)i≤n of L[(bi)i≤n] satis�es:

∀i ≤ n, ‖ci∗‖ ≤ (1 + ε)2(4/3)n−iλ1(L[(b(i)
j )i≤j≤n]). (5)

It follows from inequalities and the size-reducedness of (ci)1≤i≤n that
size(C) = Poly(n) · size(B).

We call δ-LLL' the successive application of the above algorithm based
on BKZ'2 and LLL with parameter δ. We are to prove that the number
of loop iterations performed by δ-LLL is Poly(n).

Theorem 3. Given as inputs a basis B ∈ Zn×n of a lattice L and δ < 1,
algorithm δ-LLL' algorithm outputs a δ-LLL-reduced basis of L within

Poly(n) · Õ(size(B)) bit operations.

Proof. With the same notations as above, it su�ces to prove that given
as input (ci)i≤n, algorithm δ-LLL terminates within Poly(n) · Õ(size(C))
bit operations. Let (c′i)i≤n be the output basis. As size-reductions can

be performed in time Poly(n) · Õ(size(C))), it su�ces to show that the
number of loop iterations of δ-LLL given (ci)i≤n as input is Poly(n). To
do this, it su�ces to bound

Π((ci)i≤n)

Π((c′i)i≤n)
by 2Poly(n).

First of all, we have λ1(L[(c(i)
j )i≤j≤n]) ≤ λi(L), for all i ≤ n. Indeed, let

v1, . . . ,vi ∈ L be linearly independent such that maxj≤i ‖vj‖ ≤ λi(L); at
least one of them, say v1, remains non-zero when projected orthogonally

to Span(cj)j<i. We thus have λ1(L[(c(i)
j )i≤j≤n]) ≤ ‖v1‖ ≤ λi(L). Now,

using (5), we obtain:

Π((ci)i≤n) =
n∏
i=1

‖ci∗‖2(n−i+1) ≤ 2O(n3)
n∏
i=1

λi(L)2(n−i+1).

On the other hand, we have (see [16, (1.7)]) λi(L) ≤ maxj≤i ‖c′j‖ ≤
( 1√

δ−1/4
)i−1‖c′∗

i ‖, for all i ≤ n. As a consequence, we have Π((c′i)i≤n) ≥

2−O(n3) ·
∏n
i=1 λi(L)2(n−i+1). This completes the proof. ut
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