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Abstract. Much recent work in cryptography attempts to build secure schemes
in the presence of side-channel leakage or leakage caused by malicious software,
like computer viruses. In this setting, the adversary may obtain some additional
information (beyond the control of the scheme designer) about the internal secret
state of a cryptographic scheme. Here, we consider key-evolution schemes that
allow a user to evolve a secret-key K1 via a deterministic function f , to get up-
dated keys K2 = f(K1),K3 = f(K2), . . .. Such a scheme is leakage-resilient if
an adversary that can leak on the first i steps of the evolution process does not get
any useful information about any future keys. For such schemes, one must assume
some restriction on the complexity of the leakage to prevent pre-computation at-
tacks, where the leakage on a key Ki simply pre-computes a future key Ki+t and
leaks even a single bit on it.
Much of the prior work on this problem, and the restrictions made therein, can be
divided into two types. Theoretical work offers rigor and provable security, but at
the cost of having to make strong restrictions on the type of leakage and design-
ing complicated schemes to make standard reduction-based proof techniques go
through (an example of such an assumption is the “only computation leaks” ax-
iom). On the other hand, practical work focuses on simple and efficient schemes,
often at the cost of only achieving an intuitive notion of security without formal
well-specified guarantees.
In this paper, we complement the two tracks via a middle-of-the-road approach.
On one hand, we rely on the random-oracle model. On the other hand, we show
that even in the random-oracle model, designing secure leakage-resilient schemes
is susceptible to pitfalls. For example, just assuming that leakage “cannot evaluate
the random oracle” can be misleading. Instead, we define a new model in which
we assume that the “leakage” can be any arbitrary space bounded computation
that can make random oracle calls itself. We connect the space-complexity of a
computation in the random-oracle modeling to the pebbling complexity on graphs.
Using this connection, we derive meaningful guarantees for relatively simple key-
evolution constructions.
Our scheme is secure also against a large and natural class of active attacks, where
an attacker can leak as well as tamper with the internals of a device. This is
especially important if the key evolution is performed on a PC that can be attacked
by a virus, a setting considered by prior work in the bounded retrieval model
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(BRM)). This paper provides the first scheme were the adversary in the BRM can
also modify the data stored on the machine.
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1 Introduction

In the recent years, there has been a growing interest in the design of cryptographic
schemes that are secure even if implemented on a devices that can leak information.
The motivation for this research comes from the fact that, in practice, it is very hard to
construct hardware that does not reveal any “extra” information about its internal data.
In particular, leakage on the internals can often be obtained using side-channel attacks,
that exploit physical phenomena such as electromagnetic radiation [36,30], timing [5],
power consumption [29], acoustic emanations [38], and many others (see e.g. [33] for an
overview). Another case in which the adversary may obtain leakage from cryptographic
protocols is the situation when the protocols are implemented on PCs on which the
adversary can install malicious software, like the computer viruses.

The first papers proposing algorithmic countermeasures against the side-channel
attacks came from the practitioners’ community (e.g. [7]). Later this area attracted a lot
of attention also from the theoreticians, starting from the seminal papers of Ishai et al.
[24], Micali and Reyzin [31], and Akavia et al. [1]. The theoretical countermeasures
against the virus attacks are known under the name bounded-retrieval model [8,14].

In this paper we consider the following natural problem. Suppose a cryptographic
key K0 is stored on a device that leaks information. If leakage occurs continuously,
then the adversary may obtain more and more information about the key, and eventu-
ally learn it entirely. A natural idea to prevent this from happening is to periodically
update the key i.e. to repeatedly apply some key evolution function f to it, obtaining a
sequence of keys K0,K1, . . . , where each Ki+1 := f(Ki). The key evolution func-
tion should be constructed in such a way that the evolved key Ki used in period i is
indistinguishable from uniform, even if the adversary can leak from the entire evolu-
tion process K1 → K2 → . . . → Ki−1. We will assume that the key evolution is
deterministic (i.e. it does not depend on any external randomness) hence these keys Ki

will be shared by synchronized devices, which evolve their keys simultaneously but
independently (without communication). As we will see, the design of key-evolution
functions is also intimately related to the design of leakage-resilient stream-ciphers,
and pseudo-random generators. The problem of designing such primitives been stud-
ied before, both by the practitioners and by the theoreticians. Next, we look at several
models of leakage-resilience and their results.

1.1 Leakage Resilient Key Evolution: Theory vs. Practice

Theoretical work on leakage-resilience usually included a formal model for reasoning
about leakage. Usually, side-channel leakage is modeled as a family of functions where
the attacker can choose a function from the family and learn the output of this func-
tion applied to the secret key. For example, a popular and powerful model of Akavia



et al. [1], allows the adversary to compute arbitrary poly-time leakage functions of
the internal secret key, subject only to the constraint that the amount of data retrieved
(the output-length of the function) is bounded. Unfortunately, when it comes to key-
evolution, it is clear that security cannot be achieved in this model, even if the adversary
is restricted to leaking a single bit! In fact, just given the ability to leak on the initial
key K1, the adversarial leakage-function can pre-compute any future key Ki and out-
put (say) the first bit of it. If the adversary can leak even 1 bit in several consecutive
rounds, the adversary can eventually recover any future key Ki in full! This example
(called a key-precomputation attack in [19]) shows that, when considering the security
of the key-evolution schemes, the sole restriction that the output of the leakage function
is bounded does not suffice. However, it is also easy to see that the leakage-functions
used in the above counter-examples are extremely artificial, and are very unlikely to
model natural side-channel attacks that occur in real life. Hence, it is natural to look for
different (weaker) models for the leakage, that still cover all the realistic attacks, but in
which key-evolution schemes may exist. We survey two such key-evolution schemes in
their corresponding models of leakage. The two schemes come from two very differ-
ent point views: one theoretical with an emphasis on models and proofs, and the other
practical with an emphasis toward efficiency and simplicity. Therefore, it is interesting
to compare their advantages and disadvantages.

The scheme of Dziembowski and Pietrzak [19]. On the theoretical side, [19] constructed
a stream cipher (and, implicitly, a key evolution scheme) in a formal model called “only
computation leaks information”, first proposed by Micali and Reyzin [31] and refined
in [19]. In this model, the internal memory of the device is separated into two or more
segments, and all computation is divided into simpler sub-computations that access
only some small subset of these segments. The assumption is that, during each sub-
computation, the adversary can leak an arbitrary bounded-length function of only the
memory segments accessed by the sub-computation. In other words, during any com-
putational step, data can leak if and only if it is accessed. Pre-computation attacks can
therefore be prevented, since the adversary can never get any global leakage of the entire
state of the system needed to compute a future key.

The actual scheme of [19] (and a related scheme of [34]) uses an alternating struc-
ture with two memory segments accessed in alternating rounds. The main drawback of
this model is that it relies on the highly controversial assumption that data which is not
accessed cannot leak. Also, the security of solutions in this model is highly dependent
on “implementation details” such what data is accessed when.

The scheme of Kocher [28]. On the practical side, Kocher [28] proposes a simple and
efficient solution to just use a “sufficiently complicated” cryptographic hash function for
the key-evolution function f . This scheme seems intuitively secure since it’s unlikely
that any natural and therefore “sufficiently simple” leakage could learn anything about
Ki+1 = f(Ki) from Ki (or even from the entire key-evolution process used to derive
Ki), if f is “sufficiently complicated”. However, [28] does not offer any meaningful
model in which to analyze the above intuition. The main idea is to assume that the
adversarial leakage on the ith update Ki → Ki+1 can be an arbitrary function of the
entire state of that update subject to the constraints: (1) the leakage function cannot



make any random-oracle calls, (2) the output-length of the leakage function is bounded
to be just slightly smaller than the key-length |K|. At first, it may seem that constraint
(1) offers a meaningful way of capturing “sufficiently simple” leakage. Unfortunately,
it is not clear what this constraint means in practice, and can lead to counter-intuitive
consequences, described next.

Since the amount of leakage tolerated by the scheme should be close to |K|, it is
natural to try to increase |K| if one would want to achieve more leakage. Of course,
that means using a key-evolution function, and therefore hash function, with suffi-
ciently large input-size and output-size. Assume we start with a compression func-
tion H : {0, 1}2` → {0, 1}`, and we want to allow key-size |K| = t` to allow
for more leakage. The standard technique for domain-extension is the Merkle-Damgård
transformation [9] (and variants of it in the indifferentiability framework) which gives
a function H ′ : {0, 1}∗ → {0, 1}`. Now, to increase the output-size, we can de-
fine H̃ : {0, 1}t` → {0, 1}t` by H̃(K) = H(H ′(K)||1), . . . ,H(H ′(K)||t). But, it
is clear that, if one leaks the `-bit value H ′(K1) used as sub-component of the key-
evolution computation K2 = H̃(K1), then one can compute all future keys Kj and
thus completely break the key-evolution scheme! Therefore, the scheme is not secure
with respect to even ` bits of leakage when instantiated with real-world hash functions.
Notice that the leakage-function does not perform any complicated computation; it just
leaks several consecutive bits of the internal state, corresponding to H ′(K), which is
computed as an intermediate value during the key-evolution computation.

So we see that, although the initial scheme of Kocher provides some intuitive leakage-
resilience properties, one runs into pitfalls when trying to model and quantify them. In
particular, by relying on the random-oracle model in an unintended way (assuming that
simple functions cannot make random oracle calls), and assuming that leakage on a
computation making random-oracle calls only gets the input and output of such calls,
one reaches a model that doesn’t correspond to reality in a meaningful way.

The scheme of Yu Yu et al. [40] In a recent important work Yu Yu et al. [40] propose
a practical scheme whose security is based on the assumptions that (1) the leakage
functions cannot be chosen adaptively, and (2) the leakage function cannot evaluate the
hash function (which is modeled as a random oracle). The security of the scheme that
we construct in this paper does not require these assumptions. On the other hand, from
the engineering point of view the assumptions made in [40] may look more attractive,
since they are easier to verify empirically.

Other Models of Leakage-Resilience. We note that several other models of leakage
resilience, with restricted leakage functions, have appeared in the literature. For ex-
ample, [24] assumes leakage functions that leak individual wires from a circuit that
performs a computation. Alternatively, Faust et al. [21] assume that leakage-function is
an AC0 circuit of the internal state. Several works consider computation that uses some
small/simple leak-free components [22,21,23,26].

1.2 Our Model: Space-Bounded Leakage

In this paper we propose a method for the key evolution that combines the advantages of
the Kocher’s practical scheme (efficiency and simplicity of model, scheme) with some



of the advantages of the theoretical scheme of [19] (provable security and scalability).
On a high level, we restrict the class of leakage functions to ones that are bounded in the
amount of “auxiliary work space” used during the computation of the output. In partic-
ular, this should model natural leakage which is unlikely to be sufficiently complex to
require much space to compute. We will analyze a variant of the Kocher key-evolution
scheme in the random-oracle model, but give all parties (including the leakage func-
tions) the ability to compute the random oracle. In particular, we define a deterministic
key-evolution function f that makes random-oracle calls to compute Ki+1 = f(Ki).
On a high level, pre-computation attacks will not be possible because the space allowed
to the leakage function is not sufficient to pre-compute Ki+1 from Ki.

In greater detail, we model the leakage process on the key evolution as follows.
We consider an adversary A = (Asmall,Abig) consisting of two parts: the adversary
Abig corresponds to the external real-world attacker that tries to break the scheme,
and Asmall corresponds to the “space-bounded” device which is storing and evolving
the secret key while leaking partial information to the external attacker Abig . We do
not assume anything about how the computation is implemented on the device, and
thus allow the computation Asmall itself to be adversarial. Initially, Asmall is given
the random starting key K1. Since key evolution is deterministic, this will completely
specify all future keys K2,K3, . . .. Of course, we need somehow to “force” Asmall to
perform the key evolution (if Asmall can completely “halt” the key evolution, then he
can simply keep K1 on M for a long time, and slowly retrieve it bit-by-bit). In the
passive case we could simply assume that, in time period i, the keyKi is fully stored on
the machine and therefore there is not enough memory on the machine to store much
information about any of the prior keys from earlier time periods. However, if Asmall
is active then this assumption could be completely unreasonable as the attacker could
just keep K1 on the machine for arbitrarily many time periods and leak it entirely.
Therefore, we will introduce a special procedure that we call Verifyi, and assume that
this procedure is called in each time period i to ensure that the device is storing the full
key Ki at that point in time.

During the entire key-evolution process, Asmall can communicate with Abig and
can perform arbitrary computation (in addition to / instead of computing Ki honestly)
including the ability to make random oracle calls. We only make three restrictions: (1)
the amount of data that Asmall can send to Abig in each period is bounded (2) the
space-complexity ofAsmall is bounded and not much larger then the space-complexity
of the honest computation of f , (3) the number of oracle-queries made by all parties is
polynomial (no other computational assumptions are made). (4) At the end of round i,
the machine Asmall stores the correct key Ki. We will allow unlimited communication
in the other direction Abig to Asmall.

Let us elaborate on the restrictions in more detail. Restriction (1) models the fact that
natural leakage is too simple to reveal too much data about any single computational
step. Restriction (2) models that fact that the complexity of natural leakage functions
is rather simple. In particular, the space-complexity of leaking on the internals of a
computation should not be much larger then the amount of space actually used by the
computation itself! This seems to be a rather conservative assumption. Lastly, restriction
(3) models that all parties run in polynomial time, as is standard in cryptography, and



restriction (4) models the fact that the device itself correctly computes the key Ki in
round i.

Now that we have explained the model, let us give some intuition why key-evolution
schemes are achievable in it. Firstly, note that, in round i, the adversary can (in prin-
ciple) pre-compute any future key Ki+t in the space it is allotted. However, we will
ensure that such computation would necessarily require the adversary to erase some
data about Ki (since it cannot store all of Ki and compute Ki+1 simultaneously with
limited space) and hence it will be unable to satisfy the requirement that Ki is stored
on the system at the end of round i.

1.3 Our Results

We construct a key-evolution function f that is secure in the model described above.
Let c be the amount of bits that the adversary can retrieve in each round, and let s be
the space that the adversary can use to compute the leakage function (including the |K|
bits needed to store the key K). We show that our scheme is secure as long as

4c+ s ≤ 3 · |K|/2 (1)

(cf. Theorem 1). Let us mention two applications of our construction.

Security against passive leakages Firstly, suppose that the evolving key Ki is stored on
some device (say, a smart-card) that may leak some information. Imagine that the device
is used for (message or entity) authentication with a trusted server that has his own copy
of Ki. Suppose the adversary can get a temporary access to the device, observe the
process of key evolution and learn some partial information about the keys. At some
later point the adversary looses access to the device. The properties of our function
f will guarantee that the future keys are unknown to the adversary assuming that the
leakage is bounded in the way described above. Since in this case the adversary is only
passive, there is no need to perform the procedure Verifyi. It may look like the model
described above is stronger than what we need for this application, since it seems too
pessimistic to assume that the adversary fully controls how the keysKi are computed on
the device. It may seem tempting to consider a weaker model, where the computation is
done is some honest way, and the adversary can apply the leakage functions during the
evolution process. We believe that such a restriction would not make the proof simpler
(while it would make the model more complicated). Moreover, going to the extreme
and allowing the adversary to control the computation has the advantage that it protects
us (to a certain extent) against implementation errors.

Security against active attacks in the BRM The second application of our construc-
tion concerns the bounded-retrieval model (BRM) [8,15]. In this model one constructs
schemes where the cryptographic key K is very large. The idea is that K can be stored
on a PC that can be infected by viruses, and, as long as the virus does not retrieve a
large portion of K, the scheme should remain secure. So far, all the work in the BRM
considered only the passive attacks, where the virus was not allowed to modify the data
on the machine. Now, consider the following problem: suppose we are using the BRM



scheme for the session-key agreement [15,6] (where a pair of users share a secret key
K), and we want to evolve the secret key K stored on the machine, so that in total over
a long period of time we can tolerate a leakage of more than |K| bits from the machine.
We show that f can be used as such a key-evolution function. The details of the model
are as follows. Suppose we store the keys Ki on the machineM, and assume that the
size of the local memory on M is s, and the amount of bits that can be retrieved in
each key-evolution round is c, and c and s are such that (1) holds. SupposeM wants
to authenticate to a trusted server that has his own copy of Ki. If there is a virus onM
then we can even allow him to modify the data stored onM. The restrictions that we
impose are as follows. First, we assume that any computation that the virus performs
has to be done withinM’s memory (of size s). Second, we somehow need to guarantee
that the verification procedure Verifyi can be performed. We do it by assuming thatM
is equipped with a small tamper-free component D that can periodically check if the
contents of the memory is “correct”. For example, D could store the values of some
hash function of K1,K2, . . . ,, and the Verifyi procedure would just consist of hashing
the contents of the memory whereKi is supposed to be stored, and comparing the result
with H(Ki).

1.4 Some implementation details

In this paper we do not define formally the security of the concrete schemes (like the
message authentication), since we are more interested in considering the key-evolution
as an abstract procedure. Every key Ki will consist of N − 1 blocks:
Ki = (K0

i , . . . ,K
N−1
i ), each of the blocks being an output of a hash function modeled

as a random oracle. Hence, we can simply say that Ki is secret if none of its blocks has
every been calculated by the random oracle (in our model calculating such a block will
correspond to “labeling” a vertex in some graph).

Of course, the key evolution scheme would be useless, if we could not use the
evolved key in some other application. In other words, after each round i, the key evo-
lution function should output some key κi, and in the formal model this κi should be
given to Abig “for free”. In our case we simply assume that κi is equal to one of the
blocks of Ki. Note, that it does not require any modification of the model, since we can
as well assume that κi is sent to Abig by Asmall.

The Verifyi procedure (that verifies the knowledge of Ki) can be implemented as
follows: (1) the verifier (that knows Ki) sends a random value c to the device, and (2)
the device replies with v = MAC(c,Ki) (where MAC is a tagging function of some
message authentication code scheme, c is treated as a key for the MAC, and Ki is
treated as a message), (3) the verifier checks if v = MAC(c,Ki), and if not then he
aborts. Note, that we cannot hope for more than only verifying the correctness, since in
the worst case an active adversary can anyway completely destroy the contents of the
device. In our model we will not assume anything about how MAC(c,Ki) is computed
by Asmall. For example, it will be possible that he partially “pre-computes” it before
learning c. The only property of MAC that we use is thatAsmall can compute the value
of MAC(c,Ki) only if each of the blocks of Ki were computed by him at some point
earlier.



1.5 Organization

Our key-evolution function is defined using a special type of a graph, that we call a
tower graph. The method of translating graphs into functions is described in Section
2. The tower-graphs and the function f are defined in Section 3. The main theorem is
stated in Section 4, which also introduces most of the tools needed for the proof. The
proof itself appears in Section 5.

1.6 Related Work

The theoretical countermeasures against the side-channel attacks were considered in
[19,1,35,27,32,10,39,11,12,20,4,3]. The schemes in the Bounded Retrieval Model were
constructed in [8,15,14,6,18,25,2]. We will use the technique called “graph pebbling”
(cf. e.g. [37]), that was already used in cryptography in [13]. Some of our techniques
(esp. those used in Sections 4.1 and 4.5) were introduced in [13] and recently extended
in [17]. We note that, although our techniques are quite similar, the application is com-
pletely different (the main application of [17] is a construction of a scheme for the
password-protected local storage). Unfortunately, it is impossible to use the theorems
from [13,17] in a black-box way, and therefore we needed to non-trivially extend them.
On a technical level, the main difference comes from the fact that in [17] the total
amount of leakage was bounded globally, and in our paper we need to consider contin-
ual leakage over an unbounded number of round.

2 Random-Oracle Labeling of a Graph.

Let G = (V,E) be a directed acyclic graph (DAG). A vertex v is a child of a vertex
v′ if there is an edge from v to v′. Let V0 be the set of its input vertices, i.e. the ver-
tices without children. A labeling of G is a function label(·), which assigns values
label(v) ∈ {0, 1}w to vertices v ∈ V . We call w the label-length. For any function
H : {0, 1}∗ → {0, 1}w and input-labels K = (K1, . . . ,KN ) with Ki ∈ {0, 1}w, we
define the (H,K)-labeling of G as follows:

– The labels of theN distinct input vertices v1, v2, . . . , vN are given by label(vi)
def
=

Ki.
– The label of every other vertex v is defined recursively by

label(v)
def
= H(label(v1), · · · , label(vj), v)

where v1, · · · , vj are the children of v.

A random oracle labeling of G is an (H,K)-labeling of G where H is a random-
function and K is chosen uniformly at random. For convenience, we also define
preLabel(v)

def
= (label(v1), . . . , label(vj), v), where v1, . . . , vj are the children of

v, so that label(v) = H(preLabel(v)).



3 Our Key-Evolution Scheme

In this section we define our key-evolution function f . We start with defining a special
type of graphs, that we call the “tower graphs”. A graph G = (V,E) is called an
(N,M)-tower graph if V = {0, . . . ,M − 1} × {0, . . . , N − 1} and E = {((i, j), (i+
1, j) : i ∈ {0, 1, . . . , }, j ∈ {0, . . . , N − 1}} ∪ {((i, j), (i + 1, (j − 1) mod N) : i ∈
{0, 1, . . .}, j ∈ {0, . . . , N − 1}} (cf. Figure in the appendix of extended version [16]).
For i = 0, . . . , t the set Vi = {(i, 0), . . . , (i,N − 1)} is called the ith line of G. Let V≥i
denote the set Vi ∪ Vi+1 ∪ · · · . Note that the set of the input vertices of G is equal to
V0. We will say that an (infinite) graph G is an N -tower graph if it is an (N,∞)-tower
graph.

We are now ready to define f . If we fix a hash functionH and label lengthw then the
(N,M)-tower graph G defines a function f : {0, 1}Nw → {0, 1}Nw in the following
way. On an input K the function f computes the (H,K)-labeling of G and it outputs
(K ′1, . . . ,K

′
N ), where each Ki is the label of (M − 1, i). The procedure for computing

f(K0, . . . ,KN−1) simply computes the labels bottom-up row-by-row in the following
way:

– Set (K0
0 , . . . ,K

0
N−1) := (K0, . . . ,KN−1).

– For j = 1, . . . ,M − 1 do
• For i = 0, . . . , N − 1 do Kj

i := H(Kj−1
i ,Kj−1

i+1 mod N , (i, j))

Observe that the time needed to compute f is roughly equal to N · M times the
time needed to compute H, and the space needed to compute f is only slightly larger
than the space needed to store K, since we can overwrite each (Kj

0 , . . . ,K
j
N−1) with

(Kj+1
0 , . . . ,Kj+1

N−1) and hence re-use the space.
It is also easy to see that iterating the computation of f on the same input a times, i.e.

computing K ′ = fa(K) can be seen as computing the labeling of an (N, aM)-tower
graph, and in particular, if we want to evolve the key K0 using the procedure Ki+1 =
f(Ki) (for i = 0, 1, . . .) then we can look at it as a labeling the tower infinite N -tower
graph, where the keysK1,K2, . . . appear as labels of the lines V1·M , V2·M , . . .. We will
call such lines the round-switching lines.

4 Games on Tower Graphs

We will show a connection between an adversary computing a “random oracle graph”
and a pebbling game for the corresponding graph. A similar connection appears in [13]
(and in [17], see Section 1.6 for more on relation between this work and [17]).

4.1 Model of Computation

Our main goal is to show that computing the labeling of a tower graph G requires a
large amount of resources in the random-oracle model, and is therefore difficult. To do
so, we must fix a model of computation in which we can make statements of the above
form precise. Recall that we will usually consider an adversary that consists of two
parts: a “space-bounded” component which gets access to the internals of an attacked



device and has “bounded communication” to an external, and otherwise unrestricted,
adversary.

We model such a adversaryA = (Abig,Asmall) as a pair of interactive algorithms4

with oracle-access to a random-oracle H(·). Let M be some natural number that we
will call the round length. While executing the algorithms the time is divided into
rounds. Initially the computation is in a round 1. The adversary Asmall is responsible
for switching to next round. Namely: the round is changed to k when Asmall calls spe-
cial function nextRoundk(label(a1) . . . label(an)), where {a1, . . . , an} is the kth
round-switching line Vk·M . A round k can be switched only to round k + 1, in other
words the order of the round-changing calls has to be nextRound1, nextRound2, . . ..
The period between the calls nextRoundi and nextRoundi+1 will be called the ith
round. The algorithm Abig will only be restricted in the number of oracle calls made.
On the other hand, we impose the following additional restrictions on Asmall:

– s-bounded space: The total amount of space used by Asmall is bounded by s. That
is, we can accurately describe the entire configuration of Asmall at any point in
time using s bits.5

– c-bounded communication: The total number of outgoing bits communicated by
Asmall in each round is bounded by c. 6

Note that these restrictions imply that he total number of outgoing bits commu-
nicated by Asmall in every round is bounded by c and there is no global bound for
communication. We use the notation AH(·)(K) =

(
AH(·)
big () � AH(·)

small(K)
)

to denote
the interactive execution of Abig and Asmall, where Asmall gets input K and both ma-
chines have access to the oracleH(·). In particular, we will usually (only) care about the
list of random-oracle calls made by Abig and Asmall during such an execution. We say
that an execution AH(·)(K) labels a vertex v, if a random-oracle call to preLabel(v)
is made by either Abig or Asmall. We are now ready to state our main theorem.

Theorem 1. Let G be a N -tower graph and λ > 0. Suppose c, s and q are such
that 4c+s+λ

w−log(q) ≤ N + N/2, and let T be an arbitrary natural number. Let A =

(Abig,Asmall) be an adversary with c-bounded communication and s-bounded stor-
age that makes at most q queries to H . The probability p (taken over the choice of
(H,K)) that there exists i = 1, . . . , T − 1 such that A labels the line V(i+1)·M of G in
round i is at most

q · 2−w + T · 21−λ (2)

The proof appears in Section 5. The necessary machinery is introduced in the next
sections.

4 Say ITMs, interactive RAMs, . . . The exact model will not matter.
5 This is somewhat different than standard space-complexity considered in complexity theory,

even when we restrict the discussion to ITMs. Firstly, the configuration of Asmall includes
the value of all tapes, including the input tape. Secondly, it includes the current state that the
machine is in and the position of all the tape heads.

6 To be precise, we assume that we can completely describe the patters of outgoing communi-
cation of Asmall using c bits. That is, Asmall cannot convey additional information in when
it sends these bits, how many bits are sent at a given time and so on. . .



4.2 Pebbling Games on Tower Graphs

We will consider a variant of the pebble game that we call the “red-black” pebble game
over an N -tower graph G = (V,E). Each vertex of the graph G can either be empty,
contain a red pebble, contain a black pebble, or contain both types of pebbles. More
precisely, if G is a tower graph, then a pebbling configuration on G is a function γ :
V → P({red, black}). Define Red(γ) := {v : red ∈ γ(v)}, and Black(γ) := {v :
black ∈ γ(v)}. If V ′ ⊆ V then define proj (V ′) := (|V ′ ∩ V1|, . . . , |V ′ ∩ Vt|).

For a set V ′ ⊆ V denote by [V ′] the closure of V defined recursively as follows:

– if v ∈ V ′ then v ∈ [V ′],
– if all the children of v′ are in [V ′] then v′ ∈ [V ′].

An initial configuration γ1 consists of (only) a black pebble placed on each input
vertex of G. The game proceeds in steps where, in the ith step, the configuration γi is
transformed into γi+1 using one of the following four actions:

1. A red pebble can be placed on any vertex already containing a black pebble.
2. If both children of a vertex v have a red pebble on them, a red pebble can be placed

on v.
3. If both children of v have some pebble on them (red or black), a black pebble can

be placed on v.
4. A black pebble can be removed from any vertex.

A pebbling game is a sequence γ1 → γ2 → · · · →` of configurations. The game is
— similarly to real computational model — divided into rounds. One starts a game in
round 1. A round may be switched to u in a configuration γi if all vertices from a line
Vu·M in γi are pebbled by some pebble (technically, a round is switched to u by issuing
a request nextRoundu). This switch is not obligatory when the specific row is pebbled.
However, we require that the order of the request is nextRound0, nextRound1, . . . ,.

We define the black-pebble complexity of a round k of a pebbling game to be the
maximum number of black pebbles on vertices in V≥k·M in use at any time of round
k. More precisely if γi → · · · → γj are the configurations in round k. Then the black
pebble complexity of k is equal to maxj`=i |Black(γ`) ∩ V≥k·M |. If γi, . . . , γj are as
above then the red pebble complexity of k is equal to the number of times in round k
in which Step 1 was applied. For a parameter X a pebbling game is X-bounded if for
every round k we have 2Rk + Bk < X , where Rk and Bk denote the red- and the
black-pebble complexities (resp.) of round k.

4.3 Auxiliary lemmata

We need some auxiliary definitions and lemmas. For (a0, . . . , at) ∈ {0, . . . , N}t+1

define the optimistic width of (a0, . . . , at) as: OptWidth(a0, . . . , at) := (b0, . . . , bt),
where

– b0 := a0, and



– for every i = 1, . . . , t we set

bi :=

{
N if bi−1 = N
min(N, bi−1 − 1 + ai) otherwise

Intuitively, the idea is that if (b1, . . . , bt) := OptWidth(a0, . . . , at) then bi’s give an
upper bound on the number of pebbles in the ith line of [V ′] (for any V ′ ⊆ V ), assuming
that ai is the number of pebbles in the ith line of V ′. Formally, this is shown in the
following lemma.

Lemma 1. Take any set V ′ ⊆ V and let (a0, . . . , at) := proj ([V ′]) and (b0, . . . , bt) :=
OptWidth(proj (V ′)). For every i we have that ai ≤ bi.

Proof. The proof goes by induction on i = 0, . . . , t. Case i = 0 follows immediately
from the fact that the closure operation does not change the configuration of the pebbles
on the bottom row (V0), and hence a0 = b0.

Now suppose the lemma holds for some i. The set of pebbles in the (i+1)st line of
[V ′] is equal to the sum of V ′i+1 and the pebbles P that were derived (using the closure
operation) from the pebbles in the ith line of [V ′]. By the induction hypothesis we get
that the number of pebbles in the ith line of [V ′] is at most bi−1. Now, consider the
case when bi−1 6= N . From the definition of the closure operation it follows that |P | ≤
bi−1−1. Therefore |V ′i+1∪P | ≤ |V ′i+1|+ |P | ≤ ai+bi−1−1. Since the maximal value
of ai+ bi−1− 1 cannot be greater than N we get |V ′i+1 ∪P | ≤ min(N, ai+ bi−1− 1).

The second case (bi−1 = N ) follows easily from the fact that in this case bi = N .

A sequence (a0, . . . , at) is called wide if for some i we have ai = N . A set V ′ ⊆ V
will be called wide if proj ([V ′]) is wide. We have the following simple observation.

Lemma 2. For U,W ⊆ V such that U ∪W is not wide define
(a0, . . . , at) := OptWidth(proj ([U∪W ])) and (b0, . . . , bt) := OptWidth(proj ([W ])).
Then, for every i we have bi ≤ ai − |W |. In other words: adding |W | elements to U
cannot increase the values on the coordinates in OptWidth(proj ([U ])) by more than
|W | (as long as the resulting set U ∪W is not wide).

Proof (sketch). Suppose we add the elements of W to U one-by-one. From the defini-
tion of the closure operation it easily follows that adding one element cannot increase
OptWidth(proj ([W ])) by more than on each coordinate (as long as the resulting set is
not wide). Hence the statement of the lemma follows.

A subgraphG′ of a tower graph is a pyramid graph (cf. Fig. in Appendix in extended
version [16]) if it is induced by the set of vertices: {(i+x mod N − 1, j+ y mod N) :
0 ≤ x + y ≤ N − 1} for some i and j. The vertex (i + N, j) will be call the root of
G′. We now have the following lemma whose proof appears in Appendix in extended
version [16].

Lemma 3. Consider a pebbling game for initially empty pyramid graph. If the root ver-
tex is pebbled at the end of the game then there exist a configuration γ of the considered
game with sum of red pebbles in the first row and the black pebbles is at least N .



4.4 The impossibility of pebbling

Our goal is to show that — with some restrictions on red and black pebble complexity
— it is impossible to pebble any vertex in V≥(u+2)·M in round u. Intuitively, it means
that we cannot get any information about pebbles from any line V≥(u+2)·M , before
switching to round u+ 1. More precisely, the following theorem holds:

Theorem 2. Let N,T and X be arbitrary natural numbers such that

X <
3N

2
.

Set M := 3N
2 . Suppose G is an N -tower graph. Then, for any X-bounded pebbling

game forG with round lengthM and any configuration γ that belongs to the uth round,
we have that in γ there are no pebbles on V≥(u+2)·M .

Proof. In an execution of a pebbling game a pebble will be called heavy if it is a black
pebble, or a red pebble placed on the graph using rule 1 (cf. Page 10). For a round u let
γiu be the last configuration of this round. We claim that in γiu there is no pebble on
V≥(u+2)·M . Let Au be the set of all pebbled vertices in the configuration γiu and let Qu
be the set of all pebbles in Au except of the black pebbles lying on the line u ·M . More
precisely: Qu = Au \ (Au ∩ Vu·M ∩ Black(γ)). Set Yu := V≥M ·u \ V≥M ·(u+1)

Lemma 4. For every u we have:

1. Au ∩ V≥(u+2)·M = ∅
2. OptWidth(proj ([Qu])) = (a0, . . . , aT ·M ) < (N, . . . , N︸ ︷︷ ︸

u·M

, N/2, . . . , N/2︸ ︷︷ ︸
M

, 1, . . . , 1),

in particular [Qu] is not wide.

After showing this we will be done with the proof since Point 1 of Lemma 4 clearly
implies that Theorem 2 holds.

Proof (Proof of Lemma 4). Induction on u = 1, 2, . . .. The base of the induction holds
trivially since in the initial configuration only the bottom line is pebbled. Let us now
assume the statement holds for some u. Now we prove the following claims for next
round u+ 1:

Claim. During the entire round u + 1 there must be at least N/2 heavy pebbles in the
subgraph Yu (i.e. the lines u ·M, . . . , (u+ 1) ·M − 1).

Proof. Let us consider any configuration γ from this round and denote the set of heavy
pebbles in X in γ by P . At the end of the round every vertex on the (u + 1)st round-
switching line V(u+1)·M will contain a pebble. Therefore the closure [P ] of heavy peb-
bles P from the current configuration and the pebbles from the previous rounds Qu
need to contain whole line V(u+1)·M . This is because otherwise one would never be
able to pebble V(u+1)·M in the future (this follows easily from the definition of closure
and the pebbling game). Hence [P ∪Qu] has to be wide and therefore (from Lemma 1)
OptWidth(P ∪Qu also has to be wide. On the other hand, by the induction hypothesis
we know that every coordinate of OptWidth(Qu) on positions u ·M, . . . is smaller than
N/2. Now, by Lemma 2 adding to Qu a set of cardinality |P | cannot increase any of
this coordinates by more than |P |. Hence |P | ≥ N/2.



Claim. Through the whole round u+ 1 no vertex in V≥(u+2)·M is pebbled.

Proof. For the sake of contradiction assume that the claim is not true. So, we have a con-
figuration γ from round u+1 with a pebble on some vertex v from set V≥(u+2)·M . De-
note by (V ′, E′)′ the subgraph forming the pyramid graph with root in vertex v. From
Lemma 3 we have that before γ there was a configuration γ′ that: had b black pebbles
on V ′ and had r red pebbles in bottom line of V ′ (which is the line V≥(u+2)·M−N+1 of
the tower graph) and b+ s ≥ N . However from Claim 4.4 there are at least N/2 heavy
pebbles on Yu, and Yu is disjoint with the pyramid (V ′, E′). The number of all heavy
pebbles is A := B + R < (N − R) + (N/2). Therefore in the set V≥M ·(u+1) ⊃ V ′

there are at most (N − R) heavy pebbles. Since b + s is bounded by the number of
heavy pebbles so we have a contradiction with the fact that b+ s ≥ N .

Claim. OptWidth(proj ([Qu+1])) = (a0, . . . , aT ·M ) < (N, . . . , N︸ ︷︷ ︸
u+1·M

, N/2, . . . , N/2)

Proof. Denote the configuration at the end of this round by γ and the set of heavy
pebbles in γ by P . Let P ′ denote P without black-pebbled vertices from (u + 1)th
finishing line. From definition, we have [Qu+1] = [Qu∪P ′]. In γ the (u+1)th finishing
line is pebbled. There at mostR red pebbles, so at leastN−R black pebbles are on this
line. So |P ′| is at most A − (N − R) = B + 2R −N < N/2. Similarly as at the end
of proof of the Claim 4.4 adding to Qu a set of cardinality |P ′| < N/2 cannot increase
any coordinate of OptWidth by more then |P ′|. This finishes the proof.

Claims 4.4 and 4.4 prove inductive hypothesis for u+ 1. Hence we are done.

4.5 Connection Between RO Labeling and the Pebbling Game

We now connect the random-oracle labeling of a tower graph G in our model of com-
putation to the red-black pebbling game on G (a similar connection appeared recently
in [17] and it is an extention of the technique from [13]). The idea is to show that from
any execution of A (with space bounded by some s, and communication bounded by
some c) we can construct some pebbling game for pebble game described before. Then,
we show that (with high probability) this game respects the rules of the game and is
(B,R)-bounded (for some B,R that will depend on c and s). We will then combine it
with Theorem 2 to conclude that some specific oracle calls are impossible.

The main fact about the connection is that — in every round — the black-pebble
complexity of the pebbling will correspond to the space-complexity of Asmall and the
red-pebble complexity corresponds to the communication-complexity of Asmall.

First, let us strictly define the method of translating an execution of A into a peb-
bling game. LetH : {0, 1}∗ → {0, 1}w be a random oracle, and letK = (K1, . . . ,KN )
be a labeling of the input-vertices ofG. For any algorithmsA = (Abig,Asmall) we can

use the execution AH(·)(K) =
(
AH(·)
big � AH(·)

small(K)
)

to construct a red-black peb-
bling of the graphG. In particular, we get a transcript listing all oracle calls made during
its entire execution, and whether they were made byAsmall orAbig and all nextRound
calls made by Asmall.



We fix some terminology about the transcript. Given (H,K), we say that an oracle
call of the formH(label1, label2, v) is correct if (label1, label2, v) = preLabel(v).
We call the children v1, v2 of v the input-vertices of the oracle call, and v is the output-
vertex of the oracle call.

Using the transcript (along with the description of H,K) we define the ex-post-
facto pebbling of the graph G. We do so by processing the random-oracle calls and
nextRound calls in the transcript one-by-one starting with the earliest one, and, for
each call, we take the following steps:

Change round: If Asmall calls nextRound, change round in the pebble game.
Place all necessary red pebbles: A vertex v is red-necessary if, looking at the entire

transcript of all oracle calls, there exists some correct oracle call made byAbig with
v as an input-vertex, which precedes all correct oracle calls made byAbig with v as
an output-vertex. If the call is taken in kth round and v ∈ V≥k·M then we say that
v is k-red-necessary.
Go through all red-necessary vertices v one-by-one and, for each one check if that
has a black pebble,but no red pebble. If so, put red pebble on v.7

Delete all unnecessary black pebbles: A vertex v is black-necessary if it is not red-
necessary and, in the remainder of the transcript of oracle-calls that have not yet
been processed (including the current call), there exists some correct oracle call
made by Asmall with v as an input-vertex such that:

– In the remainder of the transcript, there is no earlier correct oracle call made
by Asmall with v as an output-vertex.

– In the entire transcript, there is no earlier correct oracle call made by Abig
with v as an output-vertex.

Go through all vertices v which are not black-necessary but have a black pebble on
them, one-by-one, and remove the black pebble.8

Process oracle call: If the current oracle call is correct and made by Asmall (respec-
tively Abig) with output vertex v, we put a black (respectively red) pebble on v.

We notice that every vertex that is labeled by the execution ofAH(·)(K) gets a (red
or black) pebble placed on it in the corresponding ex-post-facto pebbling (although, of
course, this pebble may have been removed at some later point). Moreover, the order in
which vertices get red/black pebbles corresponds to the order in which the oracle calls
are made by A.

As mentioned before, we now show that, for any adversary A = (Asmall,Abig)
which is space/communication bounded, and which makes a bounded number of oracle

7 Note that the set of red-necessary vertices does not change throughout the process. Intuitively,
these are the vertices whose labels must be communicated by Asmall to Abig at some point in
time, and correspondingly for which we need to take pebbling-action 1 to place a red pebble
on them. We choose to take this action as early as legally possible, since it might allow us to
remove related black pebbles early.

8 Note that the set of black-necessary vertices can be different at different points in the process.
Intuitively, at any point in time, a black-necessary vertex is one whose label must be stored
in the memory of Asmall since it will not be re-computed by Asmall via oracle calls, it was
never communicated to Abig , nor will it be computed by Abig in time.



calls, the ex-post-facto pebbling is legal and has small space/communication complex-
ity.

Theorem 3. Let G be an N -tower graph. Let A = (Abig,Asmall) be any adversarial
labeling game in our restricted model of computation. Let (H,K) define a random-
oracle labeling of the graph G, with label-length w. Assume that A makes at most
q random-oracle queries during the execution. Then, the ex-post-facto pebbling of G
corresponding to an execution of AH(·)(K) has the following properties (for any k):

1. It is a legal pebbling (i.e. follows the rules of the red-black pebbling game and
changes round only when appropriate condition is hold) with probability 1 − q

2w

over the choice of (H,K).
2. Assuming thatAsmall has c-bounded communication and that in rounds 0, . . . , k−

2 no vertices from V≥k·M were pebbled in the ex-post-facto game then, for any
λ ≥ 0 the red-pebble complexity of the round k is at most 2c+λ

w−log(q) with probability
1− 2−λ over the choice of (H,K).

3. Assuming that Asmall has s-bounded storage and c-bounded communication and
that in rounds 0, . . . , k − 2 no vertices from V≥k·M were pebbled then, for any
λ > 0, the sum of the red-pebble complexity and the black-pebble complexity of the
round k is at most 2c+s+λ

w−log(q) with probability 1− 2−λ over the choice of (H,K).

The proof appears in Appendix in extended version [16].

5 Proof of Theorem 1

Consider an execution ofA and a corresponding ex-post-facto pebbling game G. Let X
denote an event that G is legal. For i = 1, . . . , T let Bi and Ri denote the respective
black- and red-pebble complexities of round i in G. Moreover, let Yi denote the event
that in the round i we have that (1)Bi+2Ri < N+N/2, and (2) no vertex in V(i+2)·M
has been pebbled. Recall that every vertex that is labeled gets also pebbled. Therefore
we have

1− p ≥ P (Y1 ∧ · · · ∧ YT−2)
≥ P (X ∧ Y1 ∧ · · · ∧ YT−2)
= P (X ) · P (Y1|X ) · P (Y2|Y1 ∧ X ) · · ·P (YT−2|Y1 ∧ · · · ∧ YT−3 ∧ X ) (3)

Let us look at a term P (Yi|Y1∧· · ·∧Yi−1∧X ). Suppose Y1∧· · ·∧Yi−1∧X occurred.
The events Y1, . . .Yi−2 together imply that until round i− 2 no pebble has been placed
on any vertex in V≥i·M . Hence:

– Ri ≤ 2c+λ
w−log(q) with probability at least 1− 2−λ (from Part 2 of Theorem 3), and

– Bi +Ri ≤ 2c+s+λ
w−log(q) with probability at least 1− 2−λ (from Part 3 of Theorem 3).

Therefore we get that Bi + 2Ri ≤ 4c+s+λ
w log(q) ≤ N + N/2 with probability at least

1−21−λ. Since the events Y1, . . .Yi−1 also imply thatBj+2Rj ≤ N +N/2 holds for
every j < i, therefore we can apply Theorem 2 and get that with probability 1 − 21−λ



no pebble is put on any vertex in V≥(i+1)·M in round i. Since we also know that the
pebbling is legal (because we assumed that X occurred), a vertex can be labeled by
A only if it is pebbled. Hence Yi holds (with probability at least 1 − 21−λ). From
Part 1 of Theorem 3 we have that P (X ) ≥ 1 − q

2w . Putting things together we get
P (Yi|Y1 ∧ · · · ∧ Yi−1 ∧ X ) ≥ 1− 21−λ. Hence (3) is at least equal to(

1− q

2w

)
·
(
1− 21−λ

)T−2
≥
(
1− q · 2−w

)
·
(
1− T · 21−λ

)
≥ 1− q · 2−w − T · 21−λ

Therefore p is at most (2).
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