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Abstract. In this paper, we initiate a study of zero knowledge proof
systems in the presence of side-channel attacks. Specifically, we consider
a setting where a cheating verifier is allowed to obtain arbitrary bounded
leakage on the entire state (including the witness and the random coins)
of the prover during the entire protocol execution. We formalize a mean-
ingful definition of leakage-resilient zero knowledge (LR-ZK) proof sys-
tem, that intuitively guarantees that the protocol does not yield anything
beyond the validity of the statement and the leakage obtained by the ver-
ifier.
We give a construction of LR-ZK interactive proof system based on stan-
dard general assumptions. To the best of our knowledge, this is the first
instance of a cryptographic interactive protocol where the adversary is
allowed to perform leakage attacks during the protocol execution on the
entire state of honest party (in contrast, prior work only considered leak-
age prior to the protocol execution, or very limited leakage during the
protocol execution). Next, we give an LR-NIZK proof system based on
standard number-theoretic assumptions.
Finally, we demonstrate the usefulness of our notions by giving two con-
crete applications:

– We initiate a new line of research to relax the assumption on the
“tamper-proofness” of hardware tokens used in the design of various
cryptographic protocols. In particular, we give a construction of a
universally composable multiparty computation protocol in the leaky
token model (where an adversary in possession of a token is allowed
to obtain arbitrary bounded leakage on the entire state of the token)
based on standard general assumptions.

– Next, we give simple, generic constructions of fully leakage-resilient
signatures in the bounded leakage model as well as the continual
leakage model. Unlike the recent constructions of such schemes, we
also obtain security in the “noisy leakage” model.

1 Introduction

Zero knowledge proof systems, introduced in the seminal work of Goldwasser,
Micali and Rackoff [31], have proven fundamental to cryptography. Very briefly,
a zero knowledge proof system is an interactive proof between two parties – a
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prover, and a verifier – with the remarkable property that the verifier does not
learn anything beyond the validity of the statement being proved. Subsequent
to their introduction, zero knowledge proofs have been studied in various adver-
sarial settings such as concurrency attacks [23], malleability attacks [22], to list
a few, with very successful results. Over the years, zero knowledge proofs (and
its various strengthened notions) have turned to be extremely useful, finding
numerous applications in the design of various cryptographic protocols.

We note that the standard definition of zero knowledge proofs, like most
classical security notions, assumes that an adversary is given only black-box ac-
cess to the honest party algorithms. Unfortunately, over the last two decades,
it has become increasingly evident that such an assumption may be unrealistic
when arguing security in the real world where the physical implementation (e.g.
on a smart card or a hardware token) of an algorithm is under attack. Moti-
vated by such a scenario, in this paper, we initiate a study of zero knowledge
proof systems in the presence of side-channel attacks [46, 5, 61, 28, 37]. Specifi-
cally, we study zero knowledge proofs in the intriguing setting where a cheating
verifier, in addition to receiving a proof of some statement, is able to obtain
arbitrary bounded leakage on the entire state (including the witness and the
random coins) of the prover during the entire protocol execution. We note that
while there has been an extensive amount of research work on leakage-resilient
cryptography in the past few years, to the best of our knowledge, almost all
prior work has either been on leakage resilient primitives such as encryption
and signature schemes [24, 2, 59, 21, 4, 56, 44, 18, 25, 3, 45, 10, 19, 20, 48, 51, 9, 47],
or leakage-resilient (and tamper-resilient) devices [41, 40, 26, 1], while very lim-
ited effort has been dedicated towards constructing leakage-resilient interactive
protocols. To the best of our knowledge, the recent works on correlation extrac-
tors [39], and leakage-resilient identification and authenticated key agreement
protocols [4, 20, 19] come closest to being considered in the latter category. How-
ever, we stress that in all these works, either leakage attacks are allowed only
prior to the protocol execution, or very limited leakage is allowed during the
protocol execution; in contrast, we consider the setting where the adversary can
obtain leakage on the entire state of the honest party during the protocol exe-
cution.

We find it imperative to stress that handling leakage attacks on interactive
protocols can be particularly challenging. On the one hand, for the leakage at-
tacks to be meaningful, we would want to allow leakage on the secret state of the
protocol participants. However, the state of a party typically includes a secret
value (witness and random coins of the prover in the case of zero knowledge
proofs) and any leakage on that secret value might immediately violate a secu-
rity property (e.g., the zero knowledge property) of the protocol. Then, coming
back to setting of zero knowledge proofs, it is not immediately clear how to even
define “leakage-resilient zero knowledge.”

How to define Leakage-Resilient Zero Knowledge? One possibility is to
pursue an assumption such as only computation leaks information [53] (i.e., as-
suming that there is no leakage in the absence of computation). While this is a



valuable and interesting approach, we note that this assumption is often prob-
lematic (e.g. cold-boot attacks [37]). In our work here, therefore, we do not make
any such assumption. We seek a general definition maximizing the potential ap-
plicability of that definition to different application scenarios.

Another possibility is to allow a “leakage-free pre-processing phase” prior to
the actual protocol execution, in an attempt to render the leakage attacks dur-
ing the protocol useless. We note, however, that allowing pre-processing would
limit the applicability of our notion. In particular, such a definition would be
problematic for scenarios where the statement to be proven is generated “on-
line” (thereby eliminating the possibility of pre-processing the witness “safely”).
Furthermore, we give strong evidence that such an approach is unlikely to yield
better guarantees than what we are able to achieve (see the full version for
further discussion on this issue).

Indeed, our goal is to obtain a meaningful and appropriate definition of zero
knowledge in the model where an adversarial verifier can obtain leakage on any
content (state) of the prover machine at any time. We do not consider any
“leakage-free” time-period; in particular, any pre-processing phase is subject to
leakage as well. However, in such a setting, it is important to note that since
the adversary could simply choose to leak on the witness (and no other prover
state), the zero knowledge simulator must be able to obtain similar amount of
leakage in order to perform correct simulation. We shall see that even with this
limitation, our notion turns out to be both quite nontrivial to obtain and very
useful in application scenarios.

Our Definition – Informally. To this end, we consider a definition of leakage-
resilient zero knowledge that provides the intuitive guarantee that the protocol
does not yield anything beyond the validity of the statement and the leakage ob-
tained by the adversary. In other words, whatever an adversary “learns” from
the protocol (with leakage) should be no more than what she can learn from
only the leakage without running the protocol. To formalize the above intuition,
as a first step, we consider a leakage oracle that gets as private input the witness
of the honest prover; the zero knowledge simulator is then given access to such a
leakage oracle. More concretely, we consider a parameter λ, and say that an in-
teractive proof system is λ-leakage-resilient zero knowledge (LR-ZK) if for every
cheating verifier, there exists a simulator with access to a leakage oracle (that
gets the honest prover’s witness as private input) that outputs a view of the ver-
ifier (indistinguishable from the real execution), with the following requirement.
Let ` bits be an upper bound on the total amount of leakage obtained by the
adversarial verifier. Then the simulator is allowed to obtain at most λ · ` bits of
leakage. (In the full version, we show that constructing an LR-ZK proof system
with λ < 1 is in fact impossible.)

Applications of Our Definition. Now that we have a definition for LR-ZK
proof system, one may question how meaningful it is. As we now discuss, the
above definition indeed turns out to be very useful. Intuitively, our definition is
appropriate for a scenario where a leakage-resilient primitive A is being used in
conjunction with a zero knowledge proof system (where the proof system is used



to prove some statement about A), in the design of another cryptographic pro-
tocol B. The reason for this is that our definition of LR-ZK allows us to directly
reduce the leakage-resilience property of B on the leakage-resilience property of
A.

As an application of our LR-ZK interactive proof system, we first construct
a universally composable (UC) multiparty computation protocol in the leaky
token model (which is a relaxation of the model of Katz [43] in that a malicious
token user is now allowed to leak arbitrary bounded information on the entire
state of the token). Very briefly, we use leakage-resilient hard relations [20] and
hardware tokens that implement the prover algorithm of our LR-ZK proof system
where we prove the validity of an instance of the hard relation; then the leakage
on the state of the token can be easily “reduced” to leakage on (the witness
corresponding to) an instance of the hard relation.

Next, we are able to extend the notion of LR-ZK to the non-interactive
setting in a natural way. Then, as an application of LR-NIZKs, we give generic
constructions of fully leakage-resilient (FLR) signature schemes (where leakage is
allowed on the entire state as opposed to only the secret key). Very briefly, we use
leakage-resilient hard relations in conjunction with “simulation-extractable” LR-
NIZKs (see below); we are then able to reduce the leakage-resilience property
of the signature scheme to that of the hard relation. We now summarize our
results.

1.1 Our Results

We first study the possibility of constructing leakage-resilient zero knowledge
protocols and obtain the following results:

– We construct a (1+ ε)-leakage-resilient zero knowledge interactive proof sys-
tem (where ε is any positive constant) based on standard general assumptions
(specifically, the existence of a statistically hiding commitment scheme that
is public-coin w.r.t. the receiver). To the best of our knowledge, this is the
first instance of a cryptographic interactive protocol where an adversary is
allowed to obtain arbitrary bounded leakage on the entire state of the honest
parties during the protocol execution.

– Next, we consider the non-interactive setting and show that any NIZK proof
system with honest prover state reconstruction property [36] is an LR-NIZK
proof system for λ = 1. As a corollary, we obtain an LR-NIZK proof system
from [36] based on the decisional linear assumption.

We supplement our above positive results by proving the impossibility of con-
structing an LR-ZK proof (or argument) system for λ < 1. Then, as applications
of leakage-resilient zero knowledge, we obtain the following results:

– We initiate a new line of research to relax the assumption on the “tamper-
proofness” of hardware tokens used in the design of various cryptographic
protocols. In particular, assuming semi-honest oblivious transfer, we give a



construction of a universally composable (UC) multiparty computation pro-
tocol in the leaky token model, where the token user is allowed to obtain
arbitrary bounded leakage on the entire state of the token. We stress that
all prior works on designing cryptographic protocols using hardware tokens,
including the work on UC secure computation [43, 14, 54, 15], made the im-
plicit assumption that the tokens are completely leakage-resilient.

– Next, we extend the notion of leakage-resilient NIZKs to incorporate the
property of simulation-extractability [63, 17] (also see [58] in the context of
interactive proofs), in particular, the “true” variant [20]. We are then able
to adapt the approach of Katz and Vaikuntanathan [44], and in particular,
Dodis et al [20, 19] (who use a leakage-resilient hard relation in conjunc-
tion with a true simulation-extractable NIZK argument system to construct
leakage-resilient signatures) to the setting of full leakage. As a result, we ob-
tain simple, generic constructions of fully leakage-resilient signature schemes
in the bounded leakage model as well as the continual leakage model. Simi-
lar to [20, 19], our signature scheme inherits the leakage-resilience properties
(and the leakage bounds) of the hard relation used in its construction.1 In
contrast to the recent constructions of FLR signature schemes by [51, 9, 47]
in the standard model2, our scheme is also secure in the noisy leakage model
[56]. We supplement our result by showing that a true simulation-extractable
leakage-resilient NIZK argument system is implied by the UC-NIZK of Groth
et al. [36], which can be based on the decisional linear assumption.

1.2 Our Techniques

We now briefly discuss the main techniques used to obtain our positive results on
leakage-resilient zero knowledge proof systems. Recall that our goal is to realize
a definition where a cheating verifier does not learn anything from the protocol
beyond the validity of the statement and the leakage information obtained from
the prover. Further, recall that in our definition, simulator is given access to a
leakage oracle that gets the honest prover’s witness as private input and accepts
leakage queries on the witness string. (In contrast, the verifier is allowed to make
leakage queries on the entire state, including the witness and the random coins
used by the prover thus far in the protocol execution.) Then, during the simu-
lation, on receiving a leakage query from the verifier, our simulator attempts to
convert it into a “valid” query to the leakage oracle. Now, note that the simulator
may be cheating in the protocol execution (which is typically the case since it
does not possess a valid witness); then, since the verifier can arbitrarily leak on
both the witness and the random coins (which completely determine the actions
of the prover thus far), at every point in the protocol execution, the simulator

1 As such, if we use the key pairs from the encryption scheme of Lewko et al [47] as
a hard relation, then our signature scheme can tolerate leakage during the update
process as well.

2 Earlier, FLR signature schemes were constructed either only in the random oracle
model [4, 20, 10], or were only “one-time” [44]



must find a way to “explain its actions so far”. Note that this is reminiscent of
adaptive security [7, 11, 13, 50] in the context of secure computation protocols.
We stress, however, that adaptive security does not suffice to achieve the prop-
erty of leakage-resilient zero knowledge in the interactive proofs setting, as we
explain below.

Recall that the notion of adaptive security corresponds to the setting where
an adversary is allowed to corrupt parties during the protocol execution (as
opposed to static corruption, where the parties can only be corrupted before the
protocol begins). Once a party is corrupted, the adversary learns the entire state
(including the input and random coins) of that party. The adversary may choose
to corrupt several parties (in the case of multi-party protocols) throughout the
course of the protocol. The notion of adaptive security guarantees security for
the remaining uncorrupted parties.

While adaptive corruption itself is not our focus, note that in our model, a
cheating verifier may obtain leakage on the prover’s state at several points during
the protocol execution. Furthermore, the honest prover may not even be aware
as to what was leaked. Our goal is to guarantee that the adversary does not
learn anything beyond the leaked information. Then, in order to provide such
a guarantee, note that our simulator must continue to simulate the prover even
after leakage happens, in a way that is consistent with the leaked information
even though it does not know the prover’s witness or what information was
leaked. In contrast, the simulator for adaptively secure protocols does not need
to simulate a party once it is corrupted.3 In summary, we wish to guarantee
some security for the honest party even after leakage happens, while adaptive
security does not provide any such guarantees. We stress that this difference is
crucial, and explains why known techniques for achieving adaptive security do
not suffice for our purposes. Nevertheless, as we explain below, adaptive security
serves as a good starting point for our purpose.

Recall that the main challenge in the setting of adaptive security is that
whenever an adversary chooses to corrupt a party, the simulator must be able to
explain its random coins, in a way that is consistent with the party’s input and
the messages it generated so far in the protocol. The main technique for over-
coming this challenge is to allow the simulator to equivocate. For our purposes,
we will also make use of equivocation so that the leakage queries can be answered
correctly by the simulator. However, since our simulator would need to simulate
the prover even after leakage happens (without the knowledge of the prover’s
witness or the information that was leaked), we do not want this equivocation
to interfere with the simulation of prover’s messages. In other words we want
to be able to simulate the prover’s messages independent of what information
is being leaked but still remain consistent with it. Our solution is to have two
separate and independent ways of cheating at the simulator’s disposal. It will
use one way to cheat in the protocol messages and the second way is reserved
for answering the leakage queries correctly. Furthermore, we would need to make

3 Indeed, for this reason, known adaptively secure ZK protocols are not leakage-
resilient.



sure that the simulator does not “step on its own toes” when using the two ways
to cheat simultaneously.

We now briefly discuss the actual construction of our protocol in order to il-
lustrate the above ideas. We recall two well-known ways of constructing constant-
round zero knowledge protocols – the Feige-Shamir [27] approach of using equiv-
ocal commitments (also used in adaptive security), and the Goldreich-Kahan [29]
approach of requiring the verifier to commit to its challenges in advance. Now,
armed with the intuition that our simulator will need two separate ways of cheat-
ing, we use both the above techniques together. Our protocol roughly consists of
two phases: in the first phase, the verifier commits to a challenge string using a
standard challenge-response based extractable commitment scheme (in a manner
similar to [62]); in the second phase, we execute the Blum-Hamiltonicity protocol
instantiated with an equivocal commitment scheme. While leakage during the
first phase can be handled easily by our simulator, handling leakage during the
second phase makes use of the ideas discussed above.

Unfortunately, although the above construction seems to satisfy most of our
requirements, it fails on the following account. Recall that our goal is to obtain
a leakage-resilient zero knowledge protocol with nearly optimal precision (i.e.,
λ = 1 + ε) with respect to the leakage queries of the simulator. Now note that
in the above construction, the simulator would need to extract the verifier’s
challenge in the first phase by means of rewinding before proceeding to phase
two of the protocol. Then, depending upon the verifier’s behavior, the simulator
may need to perform several rewinds in order to succeed in extraction. Now,
note that a cheating verifier may be able to make a different leakage query
during each rewind, thus forcing our simulator to make a new query as well to
its leakage oracle. As a result, depending upon the number of such rewinds, the
total leakage obtained by the simulator may potentially become a polynomial
factor of the leakage obtained by the adversary in a real execution.

In order to obtain a precision in the leakage queries of the simulator, we
borrow techniques from the work on precise zero knowledge pioneered by Micali
and Pass [52]. We remark that in the context of precise ZK, (for fundamental
reasons of modeling) it is typically not possible to obtain a precision of almost
1. In our case, however, we are able to achieve a precision of λ = 1 + ε (where ε
is any positive constant) with respect to the leakage queries of the simulator.

Finally, we note that in the case of non-interactive zero knowledge, since the
simulator does not need to simulate any “future messages” after the leakage,
we are indeed able to show that an adaptively secure NIZK is also a leakage-
resilient NIZK. Specifically, we show that any NIZK with honest prover state
reconstruction property, as defined by Groth et al. [36] (in the context of adaptive
security), is also a leakage-resilient NIZK with λ = 1.

Related Work. In a very recent and exciting concurrent work, Canetti et al.
consider a model of leakage in the context of UC protocols [8].



2 Leakage-Resilient Zero Knowledge: Interactive Case

We consider the scenario where a malicious verifier can obtain arbitrary bounded
leakage on the entire state (including the witness and the random coins) of the
prover during the protocol execution. We wish to give a meaningful definition
of zero knowledge interactive proofs in such a setting. To this end, we first
modify the standard model for zero knowledge interactive proof system in order
to incorporate leakage attacks and then proceed to give our definition.

We model the prover P and the verifier V as interactive turing machines that
have the ability to flip coins during the protocol execution (such that the random
coins used by a party in any round are determined only at the beginning of that
round). In order to incorporate leakage attacks, we allow a malicious verifier V ∗

to make adaptive leakage queries on the state of the prover during the protocol
execution. A leakage query to the prover consists of an efficiently computable
function fi (described as a circuit), to which the prover responds with fi(state),
where state is a variable that denotes the “current state” of the prover at any
point during the protocol execution. The variable state is initialized to the
witness of the prover. At the completion of each step of the protocol execution
(that corresponds to the prover sending a protocol message to the verifier), the
random coins used by the prover in that step are appended to state. That is,
state := state‖ri, where ri denote the random coins used by the prover in that
step. The verifier may make any arbitrary polynomial number of such leakage
queries during the protocol execution. Unlike prior works, we do not require an
a-priori bound on the total leakage obtained by the verifier in order to satisfy
our definition (described below). Nevertheless, in order for our definition to be
meaningful, we note that the total leakage obtained by the verifier must be
smaller than the witness size.

We model the zero knowledge simulator S as a ppt machine that has access
to a leakage oracle Lk,λw (·) that is parameterized by the honest prover’s witness
w, a leakage parameter λ (see below), and the security parameter k. A query to
the oracle consists of an efficiently computable function f(·), to which the oracle
answers with f(w). In order to bound the total leakage available to the simulator,
we consider a parameter λ and require that if the verifier obtains ` bits of total
leakage in the real execution, then the total leakage obtained by the simulator
(from the leakage oracle) must be bounded by λ · ` bits. Finally, we require that
the view output by the simulator be computationally indistinguishable from the
verifier’s view in the real execution. We formalize this in the definition below.

Definition 1 (Leakage-Resilient Zero Knowledge). An interactive proof
system 〈P, V 〉 for a language L with a witness relation R is said to be λ-leakage-
resilient zero knowledge if for every ppt machine V ∗ that makes any arbitrary
polynomial number of leakage queries on P ’s state (in the manner as described
above) with ` bits of total leakage, there exists a ppt algorithm S that obtains
at most λ · ` bits of total leakage from a leakage oracle Lk,λw (·) (as defined above)

such that for every (x,w) ∈ R, every z ∈ {0, 1}∗, viewV ∗(x, z) and SLk,λw (·)(x, z)
are computationally indistinguishable.



Some observations on the above definition are in order.

Leakage parameter λ. Note that when λ = 0, no leakage is available to the
simulator (as is the case for the standard zero knowledge simulator). In this
case, our definition guarantees the standard zero knowledge property. It is not
difficult to see that it is impossible to realize such a definition. In fact, as we
show in the full version, it is impossible to realize the above definition for any
λ < 1, where ε is any constant less than 1. On the other hand, in Section 2.1,
we give a positive result for λ = 1 + ε, where ε is any positive constant. The
meaningfulness of our positive result stems from the observation that when λ is
close to 1, very roughly, our definition guarantees that a malicious verifier does
not learn anything from the protocol beyond the validity of the statement being
proved and the leakage obtained from the prover.

Leakage-oblivious simulation. Note that in our definition of leakage resilient
zero-knowledge, (apart from the total output length) there is no restriction on
the nature of leakage queries that the simulator may make to the leakage oracle.
Then, since the simulator has indirect access to the honest prover’s witness (via
the leakage oracle), it may simply choose to leak on the witness (regardless of the
leakage queries of the verifier) in order to help with the simulation of protocol
messages instead of using the leakage oracle to only answer the leakage queries of
the verifier. We stress that this issue should not affect any potential application
of leakage resilient zero-knowledge that one may think of. Nonetheless, we think
that this is an important issue since it relates to the meaningfulness of the
definition. To this end, we note that this issue can easily handled by putting
a restriction on how the simulator accesses the leakage oracle. Specifically, we
can model the interaction between the simulation and the oracle such that the
simulator is not allowed to look at the oracle’s responses to its queries. The
simulator is still allowed to look at the leakage queries of the verifier, and use
them to create new queries for the oracle; however, the oracle’s responses are
sent directly to the verifier and the simulator does not get to seem them. We call
such simulators leakage-oblivious. We note that the simulator that we construct
for our protocol 〈P, V 〉 (described in the next subsection) is leakage-oblivious.4

2.1 Our Protocol

We now proceed to give our construction of a leakage-resilient zero knowledge
interactive proof system as per Definition 1. Very roughly speaking, our protocol
can be seen as a combination of Feige-Shamir [27] and Goldreich-Kahan [29], in
that we make use of equivocal commitments from the prover’s side, as well as
require the verifier to commit to all its challenges in advance. Note that while
either of the above techniques would suffice for standard simulation, interestingly,
we need to use them together to help the simulator handle leakage queries from
a cheating verifier. We now describe our protocol in more detail.

4 Indeed, since we cannot rule out of obfuscation of arbitrary functionalities, we do not
know how to obtain a formal proof without making the simulator leakage-oblivious.



Let P and V denote the prover and verifier respectively. Our protocol 〈P, V 〉
proceeds in three stages, described as follows. In Stage 1, V commits to its
challenge and a large random string r′ using a challenge-response based PRS [60]
style preamble instantiated with a public-coin statistically hiding commitment
scheme [57, 38, 16]. In Stage 2, P and V engage in coin-flipping (that was initiated
in Stage 1 when V committed to r′) to jointly compute a random string r. Finally,
in Stage 3, P and V run k (where k denotes the security parameter) parallel
repetitions of the 3-round Blum Hamiltonicity protocol, where P uses Naor’s
commitment scheme [55] to commit to the permuted graphs in the first round.
Here, for each bit commitment i, P uses a different substring ri (of appropriate
length) of r as the first message of Naor’s commitment scheme. Protocol 〈P, V 〉 is
described in Figure 1. Intuitively, the purpose of multiple challenge response slots
in Stage 1 is to allow the simulator to extract the values committed by V ∗ with
minimal use of the leakage oracle. With the knowledge of the extracted values,
the simulator can force the output of the coin-flipping to a specific distribution
of its choice. This, in turn, allows the simulator to convert Naor’s commitment
scheme into an equivocal commitment scheme during simulation.

Theorem 1. If public-coin statistically hiding commitment schemes exist, then
the protocol 〈P, V 〉, parameterized by ε, is a (1 + ε)-leakage-resilient zero knowl-
edge proof system.

We note that statistically hiding commitment schemes imply one-way func-
tions, which in turn suffice for Naor’s statistically binding commitment scheme
used in our construction. In the interest of space, we give a proof of Theorem 1
in the full version.

3 Leakage-Resilient NIZK

We now turn our attention to the setting of non-interactive zero knowledge proof
systems. We consider the scenario where a malicious verifier can obtain arbitrary
leakage on the witness and the random coins used by an honest prover to generate
the proof string. To model leakage attacks, we allow the cheating verifier to make
adaptive leakage queries on the honest prover’s witness and the random coins
used to generate the proof string. A leakage query to the prover consists of an
efficiently computable function f , to which the prover replies with f(w‖r), where
w and r denote the prover’s witness and random coins respectively. It is easy to
see that in the non-interactive proofs setting, a cheating verifier who is allowed
multiple leakage queries enjoys no additional power than one who is allowed
only one leakage query. Therefore, for simplicity of exposition, from now on, we
only consider cheating verifiers who make only one leakage query. We note that
our definition given below can be easily adapted to incorporate multiple leakage
queries.

We model the zero knowledge simulator S as a ppt machine that has access
to a leakage oracle Lkw(·) that is parameterized by the honest prover’s witness w
and the security parameter k. (Unlike the interactive proofs setting, here we do



Common Input: A k-vertex graph G.
Private Input to P : A Hamiltonian Cycle H in graph G.

Parameters: Security parameter 1k, n = ω(log(k)), t = 3k4, ε > 0. Without loss of
generality, we assume that 1

ε
is an integer.

Stage 1 (Commitment phase)

V � P : Commit to a t-bit random string r′ and (n
2

ε
)-pairs of random shares{

r′
0
i,j , r

′1
i,j

}i=n
ε
,j=n

i=1,j=1
(such that r′

0
i,j⊕r′

1
i,j = r′ for every i ∈ [n

ε
], j ∈ [n]) using

a public-coin statistically hiding commitment scheme. Similarly commit to a

k-bit random string ch and (n
2

ε
)-pairs of random shares

{
ch0
i,j , ch

1
i,j

}i=n
ε
,j=n

i=1,j=1

(such that ch0
i,j ⊕ ch1

i,j = ch for every i ∈ [n
ε
], j ∈ [n]) using a public-coin

statistically hiding commitment scheme.
Challenge-response slots: For every i ∈ [n

ε
],

P → V : Choose n-bit random strings αi = αi,1, . . . , αi,n and βi =
βi,1, . . . , βi,n. Send αi, βi to V .

V → P : For every j ∈ [n] , V ∗ decommits to r′
αi,j
i,j and ch

βi,j
i,j .

Stage 2 (Coin-flipping completion phase)
P → V : Choose a t-bit random string r′′ and send it to V .
V → P : Decommit to r′ and r′

0
i,j , r

′1
i,j for every i ∈ [n

ε
], j ∈ [n]. Let r = r′ ⊕ r′′.

Stage 3 (Blum Hamiltonicity protocol)
P → V : Let r = r1, . . . , rk3 , where |ri| = 3k for every i ∈ [k3]. For every i ∈ [k],

– Choose a random permutation πi and prepare an isomorphic copy of G,
denoted Gi = πi(G).

– For every j ∈ [k2], commit to bit bj in the adjacency matrix of Gi using
Naor’s commitment scheme with ri×j as the first message.

V → P : Decommit to ch and ch0
i,j , ch

1
i,j for every i ∈ [n

ε
], j ∈ [n].

P → V : Let ch = ch1, . . . , chk. For each i ∈ [k], if chi = 0, decommit to every
edge in Gi and reveal the permutation πi. Else, decommit to the edges in the
Hamiltonian Cycle in Gi.

Fig. 1. Protocol 〈P, V 〉

not consider the leakage parameter λ for simplicity of exposition.) The leakage
oracle accepts queries of the form f (where f(·) is an efficiently computable
function) and outputs f(w). In order to bound the total leakage available to
the simulator, we require that if the verifier obtains ` bits of total leakage from
the honest prover, then the total leakage obtained by the simulator (from the
leakage oracle) must be bounded by ` bits.

We now setup some notation. LetR be an efficiently computable relation that
consists of pairs (x,w), where x is called the statement and w is the witness.
Let L denote the language consisting of statements in R. Recall that a non-
interactive proof system for a language L consists of a setup algorithm K, a
prover P and a verifier V . The setup algorithm K generates a common reference
string σ. The prover P takes as input (σ, x, w) and checks whether (x,w) ∈ R;



if so, it produces a proof string π, else it outputs fail. The verifier V takes as
input (σ, x, π) and outputs 1 if the proof is valid, and 0 otherwise.

Definition 2 (LR-NIZK). A non-interactive proof system (K,P, V ) for a ppt
relation R is said to be a leakage-resilient NIZK if there exists a simulator S =
(S1,S2,S3) such that for all adversaries A,

Pr[σ ← K(1k) : APR(σ,·,·,·)(σ) = 1]
c≡ Pr[(σ, τ)← S1(1k) : ASR

Lkw(·)(σ,τ,·,·,·)(σ) = 1],

where PR(σ, x, w, f) computes r ← {0, 1}`P (k); π ← P (σ, x, w; r); y = f(w‖r)
and returns (π, y), while SRL

k
λ(·)w(σ, τ, x, w, f) computes r ← {0, 1}`S(k); π ←

S2(σ, τ, x; r); f ′ ← S3(σ, τ, x, r, f); y ← Lkw(f ′) and returns (π, y). Here, the
leakage query f ′ made to Lkw(·) is such that its output length is no more than
the output length of f . Both the oracles PR and SR output fail if (x,w) /∈ R.

3.1 Our Result

We now claim that every NIZK proof system with the honest prover state recon-
struction property5 is in fact a leakage-resilient NIZK. An immediate corollary
is that the Groth et al. [36] NIZK proof system is a leakage-resilient NIZK proof
system. We refer the reader to the full version for a formal proof.

Theorem 2. A NIZK proof system (K,P, V ) for a relation R with honest prover
state reconstruction is a leakage resilient NIZK for R.

4 Applications of Leakage-resilient Zero Knowledge

4.1 UC with Leaky Tokens

Starting with the work of Goldreich and Ostrovsky on software protection [30],
tamper-proof hardware tokens have been used for a variety of cryptographic tasks
such as achieving universal composability [43, 14, 54, 15], one-time-programs [32],
unconditionally secure protocols [35, 34], compilers for leakage-resilient computa-
tion [42, 33], etc. To the best of our knowledge, all prior works using tamper-proof
hardware tokens make the assumption that the tokens are completely leakage-
resilient (i.e., a token does not leak any information to an adversary who is in
possession of the token). Here, we start a new line of research to investigate
whether it is possible to relax this assumption for various cryptographic tasks.
In particular, we study the feasibility of doing universally composable secure
computation using “leaky” tokens. We start with the tamper-proof hardware
token model of Katz [43] and modify it appropriately to incorporate “bounded”

5 Very briefly, this property (also known as non-erasure zero knowledge) requires that
not only can we simulate an honest party making a proof, but also how it constructed
the proof (i.e., create convincing randomness so that it looks like the simulated proof
was constructed by an honest prover using this randomness). See [36] for a formal
definition.



leakage. Then, by making use of leakage-resilient hard relations [20] and our
leakage-resilient zero knowledge proof system, we give a construction for a uni-
versally composable multi-party computation protocol in the leaky token model.

The Leaky Token Model. We first briefly recall the hardware token model of Katz
[43]. In the model of [43], it is assumed that a party (referred to as the creator)
can take some software code and “seal” it inside a tamper-proof hardware token;
the party can then give this token to another party (referred to as the user),
who can then access the embedded software in a black-box manner. This setup is
modeled by a “wrapper” functionality Gwrap that accepts two types of messages:
the first type is used by a party P to “create” a hardware token (encapsulating
an interactive protocol M) and to “send” this token to another party P ′. On
receiving the token, P ′ can interact with it in an arbitrary black-box manner.
This is formalized by allowing P ′ to send messages of its choice to M via Gwrap.
Each time M is invoked, fresh random coins are chosen for M .

In order to incorporate leakage attacks, we consider a modified wrapper func-
tionality G`wrap parametrized by a leakage-parameter ` that defines the “total”
leakage available to a token user over all the executions of the token. More con-
cretely, the new wrapper functionality G`wrap is defined in the same manner as

Gwrap, except that G`wrap accepts special leak queries (from the token user) that

consist of a efficiently computable function fi : {0, 1}∗ → {0, 1}`i (described as a
circuit), to which the functionality answers with f(M, state), where M denotes
the code of the interactive Turing machine encapsulated in the token and state
denotes the current state of M consisting of all the protocol messages received
from the user and the random coins used so far by M in the current protocol
execution. The token user can make any arbitrary polynomial number of such
leakage queries over multiple protocol executions with M ; we only require that
the functions fi be efficiently computable, and the total number of bits leaked
(over all executions) is

∑
i `i = `. We stress that by allowing leakage on M , we

allow the token user to obtain leakage on any secret values hardwired into M .
In the interest of space, we defer formal description of G`wrap to the full version.

UC Security via UC-Puzzles. In order to obtain our positive result, we build on
the recent work of Lin et al. [49] which puts forward a unified framework for
designing UC secure protocols from known setup assumptions [12, 13, 43, 6]. Lin
et al. observe that a general technique for constructing UC secure protocols is to
have the simulator obtain a “trapdoor string” which is hard to compute for the
adversary. This is formalized in the form of (two party) “UC-puzzle” protocols
that enable the simulator to obtain such a trapdoor string (but prevent the
adversary from doing so). Following the work of [49], the task of constructing UC
secure protocols from any setup assumption reduces to the task of constructing
a UC-puzzle in the hybrid model of the corresponding setup.6 We obtain our

6 Very briefly, this is because Lin et al. show that a UC-puzzle can be used in con-
junction with a strongly non-malleable witness indistinguishable protocol in order
to construct a “concurrent simulation-sound” zero knowledge protocol with “UC



positive result by following the same route. Specifically, we construct a “family
of UC-puzzles” in the G`wrap-hybrid model.

Our Protocol. Recall that in the hardware token model, each pair of parties in
the system exchange hardware tokens with each other. Now consider a system
with m parties P1, . . . , Pm. For each pair of parties (Pi, Pj), we will construct
two different UC-puzzles in the G`wrap hybrid model, (a) one where Pi (resp., Pj)
acts as the puzzle sender (resp., receiver) and (b) the other where the roles of
Pi and Pj are reversed. This gives us a family of m2 UC-puzzles.

We now describe the construction of a family of protocol and relation pairs
(〈Sij , Rij〉,Rij), where i, j ∈ [m]. Here the choice of notation is to highlight
that party Pi (resp., Pj) plays the role of the sender (resp., receiver) in protocol
〈Sij , Rij〉. We will then prove that each pair (〈Sij , Rij〉,Rij) is a UC-puzzle in
the G`wrap-hybrid model. In our construction, we will use a (1 + ε)-LR-ZK proof
of knowledge system7 as well as an `′-leakage-resilient hard relation [20], where
`′ = (1 + ε) · `.
Description of 〈Sij , Rij〉. The interactive Turing machine Sij , when invoked with
the inputs the identity of the sender Pi, the identity of the receiver Pj and the
session id sid, proceeds as follows. It first checks whether this is the first time
interacting with party Pj . If so, it first samples a pair (x, y) from an `′-leakage
resilient hard relation R`′ and then “creates” and “gives” Pj a token (by sending
the “appropriate” message to G`wrap), which encapsulates the interactive Turing
machine M that gives a λ-LR-ZKPOK of the statement that there exists an x
such that (x, y) ∈ R`′ . To actually challenge Pj , Sij simply sends y as the puzzle
to the receiver.

The interactive Turing machine Rij , on receiving y from Sij , engages in an
execution of our λ-LR-ZKPOK protocol with M (via G`wrap) where M proves
that there exists an x such that (x, y) ∈ R`′ . An adversarial receiver Rij may
additionally send leakage queries (leak, f) to G`wrap, who responds with f(M‖r)
(where r denotes the random coins used by M “so far”) as long as the total
leakage (over all queries) is bounded by `.

Description of Rij. The puzzle relation Rij is simply {(x, y)|(x, y) ∈ R`′}.
This completes the description of the pair (〈Sij , Rij〉,Rij). We refer the

reader to the full version for a proof of our claim that (〈Sij , Rij〉,Rij) is a
UC-puzzle in the G`wrap-hybrid model.

4.2 Fully Leakage-Resilient Signatures

In this section, we give generic constructions of fully leakage-resilient (FLR) sig-
nature schemes in the bounded leakage model as well as the continual leakage

simulation” property, which in turn is known to be sufficient to construct UC secure
protocols (see e.g. [13]). We refer the reader to the full version for more details.

7 We note here that the LR-ZK proof system discussed in Section 2.1 is not a proof
of knowledge. However, it is easy to modify the construction to obtain a proof of
knowledge system by using a leakage-sound zero knowledge proof system. We refer
the reader to the full version for more details.



model. In order to obtain our results, we will adapt the approach of Katz and
Vaikuntnathan [44], and in particular, Dodis et al. [20, 19] (who used leakage-
resilient hard relations and tag-based true simulation-extractable (tSE) NIZK
argument systems to construct “standard” leakage-resilient signature schemes)
to the setting of full leakage (where the adversary can leak on the entire state, as
opposed to only the secret key). Specifically, we first extend our notion of leakage-
resilient NIZKs to incorporate the property of true simulation-extractability.
Then, by using a hard relation that is leakage-resilient in the bounded (resp., con-
tinual) leakage model along with our true simulation-extractable leakage-resilient
(tSE-LR) NIZK argument system, we obtain FLR signatures in the bounded
(resp., continual) leakage model. Somewhat interestingly, unlike the recent con-
structions of FLR signature schemes [51, 9], our constructions are also secure in
the noisy leakage model [56]. In interest of space, here we limit our discussion to
the construction of an FLR signature scheme in the bounded leakage model. We
refer the reader to the full version for further discussion on the continual leakage
model and the noisy leakage model.

True Simulation-Extractable Leakage-Resilient NIZK. We first (informally) de-
fine tag-based tSE-LR-NIZK argument system and give a construction for the
same. Let us first recall the notion of tSE-NIZK, as defined in [20]. Very roughly,
a NIZK proof system is true simulation extractable if there exists a ppt extrac-
tor which (when given an extraction trapdoor to the CRS) extracts a witness w∗

from any proof π∗ produced by an adversary A (using a tag tag∗), even if A has
previously seen some simulated proofs for other true statements (with different
tags). Our notion of tSE-LR-NIZK extends the notion of tSE-NIZK by allowing
the adversary to obtain (in addition to simulated proofs) leakage on the witness
and randomness used to generate the simulated proofs.

A tag based tSE-LR-NIZK argument system (K,P,V) follows directly from
the adaptively secure UC-NIZK of Groth et al. [36]. The complete construction
and proof is given in the full version.
Fully Leakage-Resilient Signatures in the Bounded Leakage Model. We will fol-
low the definition of FLR signature schemes due to Boyle et al [9]. Very roughly,
we say that a signature scheme is fully leakage-resilient in the bounded-leakage
model if it is existentially unforgeable against any ppt adversary that can obtain
polynomially many signatures over messages of her choice, as well as bounded
leakage information on the secret key and the randomness used by the signing
algorithm and the key generation algorithm) throughout the lifetime of the sys-
tem. Due to space constraints, we omit the formal definition of FLR signatures
from this manuscript. We now proceed to describe our construction. The security
proof is deferred to the full version.
Our Construction. Let R` be an `-leakage-resilient hard relation with a ppt
sampling algorithm kgen(·). Let (K,P, V ) be a tag-based tSE-LR-NIZK argu-
ment system for a relation R. The signature scheme (KeyGen, Sign, Verify) is
described as follows.

– KeyGen(1k, `): Sample (x, y) ← kgen(1k), σ ← K(1k). Output sk = x and
pk = (σ, y).



– Signsk(m): Output Φ = π, where π ← P (σ, y,m, x). (Here m is the tag in
the argument.)

– Verifypk(m,Φ): Output V (σ, y,m,Φ).

Theorem 3. If R` is an `-leakage-resilient hard relation and (K,P, V ) is a
tag-based true simulation-extractable leakage-resilient NIZK argument system,
then (KeyGen, Sign, Verify) is an `-fully-leakage-resilient signature scheme in
the bounded-leakage model.

5 Conclusions

In this paper, we give definitions and constructions of leakage-resilient zero
knowledge proof systems, where an adversarial verifier can obtain arbitrary
bounded leakage on the secret state of the prover. It is natural to consider the
(opposite) scenario where a malicious prover can obtain arbitrary leakage on the
random coins of the verifier during the protocol execution. The question that
we may ask is whether it is possible to construct interactive proofs that remain
sound in such a scenario. Going even further, we can consider the question of
constructing an interactive proof system that simultaneously satisfies the notions
of “leakage-soundness” and leakage-resilient zero knowledge. In the full version,
we give positive results for both these settings.

A natural question following our work is whether we can extend our notions
and results to the setting of secure two-party computation. We address this in
an upcoming work.
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