
Protocols for Multiparty Coin Toss With
Dishonest Majority

Amos Beimel1,?, Eran Omri2,??, and Ilan Orlov1,? ? ?

1 Dept. of Computer Science, Ben Gurion University, Be’er Sheva, Israel
2 Dept. of Computer Science, Bar Ilan University, Ramat Gan, Israel

Abstract. Coin-tossing protocols are protocols that generate a random
bit with uniform distribution. These protocols are used as a building
block in many cryptographic protocols. Cleve [STOC 1986] has shown
that if at least half of the parties can be malicious, then, in any r-round
coin-tossing protocol, the malicious parties can cause a bias of Ω(1/r)
to the bit that the honest parties output. However, for more than two
decades the best known protocols had bias t√

r
, where t is the number

of corrupted parties. Recently, in a surprising result, Moran, Naor, and
Segev [TCC 2009] have shown that there is an r-round two-party coin-
tossing protocol with the optimal bias of O(1/r). We extend Moran et
al. results to the multiparty model when less than 2/3 of the parties are
malicious. The bias of our protocol is proportional to 1/r and depends
on the gap between the number of malicious parties and the number
of honest parties in the protocol. Specifically, for a constant number of
parties or when the number of malicious parties is somewhat larger than
half, we present an r-round m-party coin-tossing protocol with optimal
bias of O(1/r).

1 Introduction

Secure multiparty computation in the malicious model allows distrustful parties
to compute a function securely. Designing such secure protocols is a delicate
task with a lot of subtleties. An interesting and basic functionality for secure
computation is coin tossing – generating a random bit with uniform distribution.
This is a simple task where the parties have no inputs. However, already this
task raises questions of fairness and how malicious parties can bias the output.
Understanding what can be achieved for coin tossing in various settings can be
considered as a step towards understanding general secure and fair multiparty
computation. Indeed, some of the early works on secure computation were on
coin tossing, e.g., [3, 4, 6]. Furthermore, coin tossing is used as a basic tool
in constructing many protocols that are secure in the malicious model. Secure
? Supported by ISF grant 938/09.

?? This research was generously supported by the European Research Council as part
of the ERC project “LAST”. Part of the research was done while the author was a
post-doctoral fellow at BGU supported by the ISF grant 860/06.

? ? ? Supported by ISF grant 938/09 and by the Frankel Center for Computer Science.

2 Amos Beimel, Eran Omri, and Ilan Orlov

protocols for coin tossing are a digital analogue of physical coin tossing, which
have been used throughout history to resolve disputes.

The main problem in designing coin-tossing protocols is the prevention of a
bias of the output. The bias of a coin-tossing protocol measures the maximum
influence of the adversary controlling a subset of malicious parties on the output
of the honest parties, where the bias is 0 if the output is always uniformly
distributed and the bias is 1/2 if the adversary can force the output to be always
(say) 1. To demonstrate the problems of designing a coin-tossing protocol, we
describe Blum’s two-party coin-tossing protocol [3].

Example 1 (Blum’s coin-tossing protocol [3]). To toss a coin, Alice and Bob
execute the following protocol.

– Alice chooses a random bit a and sends a commitment c = commit(a) to
Bob.

– Bob chooses a random bit b and sends it to Alice.
– Alice sends the bit a to Bob together with de-commit(c).
– If Bob does not abort during the protocol, Alice outputs a⊕ b, otherwise she

outputs a random bit.
– If Alice does not abort during the protocol and c is a commitment to a, then

Bob outputs a⊕ b, otherwise he outputs a random bit.

If Alice is malicious, then she can bias the output toward (say) 1. If a⊕b = 1, she
opens the commitment and Bob outputs 1. However, if a⊕ b = 0, Alice aborts,
and Bob outputs 1 with probability 1/2. All together, the probability that the
honest Bob outputs 1 is 3/4. It can be proved that this is the best that Alice
can do in this protocol, and hence, the bias of the protocol is 1/4. This protocol
demonstrates the problems caused by parties aborting the protocol and the need
to define how the output of the other parties is computed after such aborts.

While the above protocol is a significant improvement over naive protocols
whose bias is 1/2, the protocol still has a constant bias. If more than half of
the parties are honest, then, using general secure multiparty protocols there are
constant-round protocols with negligible bias (assuming a broadcast channel),
e.g., the protocol of [14]. Cleve [6] proved that when at least half of the parties can
be malicious, the bias of every protocol with r rounds is Ω(1/r). In particular,
this proves that without honest majority no protocol with polynomial number
of rounds (in the security parameter) can have negligible bias. On the positive
side, it was shown in [2, 6] that there is a two-party protocol with bias O(1/

√
r).

This can be generalized to an m-party protocol that tolerates any number of
malicious parties and has bias O(t/

√
r). Cleve and Impagliazzo [7] have shown

that, in a model where commitments are available only as black-box (and no
other assumptions are made), the bias of every coin-tossing protocol isΩ(1/

√
r).3

The protocols of [3, 2, 6] are in this model.
The question if there is a coin-tossing protocol without an honest majority

that has bias O(1/r) was open for many years. Recently, in a surprising and
3 The lowerbound of [7] holds in a stronger model which we will not discuss in this

paper.

Protocols for Multiparty Coin Toss With Dishonest Majority 3

elegant result, Moran, Naor, and Segev [12] have shown that there is an r-round
two-party coin-tossing protocol with bias O(1/r). Moran et al. ask the following
question:

“An interesting problem is to identify the optimal trade-off between the
number of parties, the round complexity, and the bias. Unfortunately, it
seems that several natural variations of our approach fail to extend to
the case of more than two parties. Informally, the main reason is that a
coalition of malicious parties can guess the threshold round with a pretty
good probability by simulating the protocol among themselves for any
possible subset.”

1.1 Our Results

Our main contribution is a multi-party coin-tossing protocol that has small bias
when less than 2/3 of the parties are malicious.

Theorem 1 (Informal). Let m, t, and r be integers such that m/2 ≤ t < 2m/3.
There exists an r-round m-party coin-tossing protocol tolerating t malicious par-
ties that has bias O(22k+1

/r′), where k = 2t−m and r′ = r −O(k + 1).

The above protocol nearly has the desired dependency on r, i.e., the dependency
implied by the lower bound of Cleve [6]. However, its dependency on k has, in
general, a prohibitive cost. Nevertheless, there are interesting cases where the
bias is O(1/r).

Corollary 1 (Informal). Let m, t be constants such that m/2 ≤ t < 2m/3 and
r be an integer. There exists an r-round m-party coin-tossing protocol tolerating
t malicious parties that has bias O(1/r).

For example, we construct an r-round 5-party coin-tossing protocol tolerating
3 malicious parties that has bias 8/(r − O(1)) (this follows from our general
construction in Sections 4–6).

Notice that the protocol of Theorem 2 depends on k and not on the number
of malicious parties t. Thus, it is efficient when k is small.

Corollary 2 (Informal). Let m, r be integers and t = m/2+O(1). There exists
an r-round m-party coin-tossing protocol tolerating t malicious parties that has
bias O(1/r).

For example, for any even m we construct an r-round m-party coin-tossing pro-
tocol tolerating m/2 malicious parties that has bias 1/(2r−O(1)). Furthermore,
even when t = 0.5m+ 0.5 log logm−1, the bias of our protocol is small, namely,
O(m/(r −O(log logm))).

We also reduce the bias compared to previous protocols when more than
2/3 of the parties are malicious. The bias of the m-party protocol of [2, 6] is
O(t/

√
r). We present a protocol whose bias is O(1/

√
r) when t/m is constant,

that is, when the fraction of malicious parties is constant we get rid of the factor
t in the bias.

4 Amos Beimel, Eran Omri, and Ilan Orlov

Communication Model. We consider a communication model where all par-
ties can only communicate through an authenticated broadcast channel. On one
hand, if a party broadcasts a message, then all other parties see the same mes-
sage. This ensures some consistency between the information the parties have.
On the other hand, there are no private channels and all parties see all messages.
We assume a synchronous model, however, the adversary is rushing.4

We note that our results can be translated to a model with authenticated
point-to-point channels with a PKI infrastructure (in an m-party protocol, the
translation will increase the number of rounds by a multiplicative factor of
O(m)). Thus, our results hold in the two most common models for secure mul-
tiparty computation.

The Idea of Our Protocol. We generalize the two-party protocol of Moran et
al. [12] to the multi-party setting. In the protocol of [12] in each round Alice and
Bob get bits that are their output if the other party aborts: If a party aborts in
round i, then the other party outputs the bit it got in round i− 1. Furthermore,
there is a special round i∗; prior to round i∗ the bits given to Alice and Bob are
random independent bits and from round i∗ onward the bits given to Alice and
Bob are the same fixed bit. The adversary can bias the output only if it guesses
i∗. In our protocol, in each round there are many bits. We define a collection of
subsets of the parties and each subset gets a bit. The bits are chosen similarly
to [12]: prior to i∗ they are independent and from i∗ onward they are fixed.
In our case we cannot give the bits themselves to the parties. We rather use a
few layers of secret-sharing schemes to store these bits. For every subset in the
collection, we use the first secret-sharing scheme to share the bit of the subset
among the parties of the subset. We use an additional secret-sharing scheme to
share the shares of the first secret-sharing scheme. The threshold in the latter
secret sharing scheme is chosen such that the protocol can proceed until enough
parties aborted. In the round when the number of aborted parties ensures that
there is an honest majority, an appropriate subset in the collection is chosen,
its bit is reconstructed, and this bit is the output of the honest parties. The
description of how to implement these ideas appears in Sections 4–6.

The construction of Moran et al. [12] is presented in two phases. In the first
phase they present a protocol with a trusted dealer, for which an adversary can
only inflict bias O(1/r). Then, they show how to implement this protocol in
the real-world, using a constant round secure-with-abort multiparty protocol,
as well as secret sharing and authentication schemes. This can be seen as a
general transformation from any two-party coin-tossing protocol with a trusted
dealer, into a real world two-party coin-tossing protocol. We observe that the
transformation of Moran et al. to a real-world protocol requires some further
care trying to generalize it for the multiparty case. We show how this can be
achieved by adopting the definition of secure multiparty computation of [1],
which requires the protocol to detect a cheating party, that is, at the end of

4 If there is synchronous broadcast without a rushing adversary then coin tossing is
trivial.

Protocols for Multiparty Coin Toss With Dishonest Majority 5

the protocol either the honest parties hold a correct output or all honest parties
agree on a party that cheated during the protocol.

2 Preliminaries

A multi-party coin-tossing protocol with m parties is defined using m probabilis-
tic polynomial-time Turing machines p1, . . . , pm having the security parameter
1n as their only input. The coin-tossing computation proceeds in rounds, in each
round, the parties broadcast and receive messages on a broadcast channel. The
number of rounds in the protocol is typically expressed as some polynomially-
bounded function r in the security parameter. At the end of protocol, the (hon-
est) parties should hold a common bit w. We denote by CoinToss() the ideal
functionality that gives the honest parties the same uniformly distributed bit w,
that is, Pr[w = 0] = Pr[w = 1] = 1/2. In our protocol, the output bit w will
have some bias.

In this work we consider a malicious static computationally-bounded (i.e.,
non-uniform probabilistic polynomial-time) adversary that is allowed to corrupt
some subset of parties. That is, before the beginning of the protocol, the ad-
versary corrupts a subset of the players that may deviate arbitrarily from the
protocol, and thereafter the adversary controls the messages sent by the cor-
rupted parties. The honest parties follow the instructions of the protocol.

The parties communicate in a synchronous network, using only a broadcast
channel. The adversary is rushing, that is, in each round the adversary hears the
messages sent by the honest parties before broadcasting the messages of the cor-
rupted parties for this round (thus, the messages broadcast by corrupted parties
can depend on the messages of the honest parties broadcast in this round).

The security of multiparty computation protocols is defined using the real
vs. ideal paradigm. In this paradigm, we consider the real-world model, in which
protocols are executed. We then formulate an ideal model for executing the
task at hand. This ideal model involves a trusted party whose functionality
captures the security requirements from the task. Finally, we show that the real-
world protocol “emulates” the ideal-world protocol: For any real-life adversary A
there should exist an ideal-model adversary S (also called simulator) such that
the global output of an execution of the protocol with A in the real-world model
is distributed similarly to the global output of running S in the ideal model.

1/p-Secure Computation. As explained in the introduction, the ideal func-
tionality CoinToss() cannot be implemented when there is no honest majority.
We use 1/p-secure computation, defined by [9, 10], to capture the divergence
from the ideal worlds. This notion applies to general secure computation. We
start with some notation.

Definition 1 (1/p-indistinguishability). A function µ(·) is negligible if for
every positive polynomial q(·) and all sufficiently large n it holds that µ(n) <
1/q(n). A distribution ensemble X = {Xn}n∈N is an infinite sequence of random
variables indexed by n ∈ N . For a fixed function p, two distribution ensembles
X = {Xn}n∈N and Y = {Yn}n∈N are computationally 1/p-indistinguishable,

6 Amos Beimel, Eran Omri, and Ilan Orlov

denoted X
1/p

≈ Y , if for every non-uniform polynomial-time algorithm D there
exists a negligible function µ(·) such that for every n,

|Pr[D(Xn) = 1]− Pr[D(Yn)) = 1]| ≤ 1
p(n)

+ µ(·).

We next define the notion of 1/p-secure computation [9, 10]. The definition uses
the standard real/ideal paradigm [8, 5], except that we consider a completely
fair ideal model (as typically considered in the setting of honest majority), and
require only 1/p-indistinguishability rather than indistinguishability. In the coin-
tossing protocol, the parties do not have inputs. Thus, to simplify the definitions,
we define secure computation without inputs (except for the security parame-
ters).

Definition 2 (1/p-secure computation [9, 10]). Let p = p(n) be a function.
An m-party protocol Π is said to 1/p-securely compute a functionality F if for
every non-uniform probabilistic polynomial-time adversary A in the real model,
there exists a non-uniform probabilistic polynomial-time adversary S in the ideal
model such that the following two distribution ensembles are computationally
1/p-indistinguishable

{
IDEALF,S(aux)(1n)

}
n∈N

1/p

≈
{

REALΠ,A(aux)(1n)
}
n∈N ,

where REALΠ,A(aux)(1n) is a random variable consisting of the view of the ad-
versary (i.e., its random input and the messages it got) and the output of the
honest parties following an execution of Π, and IDEALF,S(aux)(1n) is a random
variable consisting of the output of the adversary S in the ideal world execution
and the output of the honest parties in that execution.

Definition 3. We say that a protocol is a coin-tossing protocol with bias 1/p if
it is a 1/p-secure protocol for the functionality CoinToss().

2.1 The Two-Party Protocol of Moran et al.

Moran, Naor, and Segev [12] present a two-party coin-tossing protocol with
optimal bias with respect to round complexity (i.e., meeting the lowerbound
of Cleve [6]). We next briefly review their protocol, which later serves as the
basis for our construction. Following the presentation of [12], we first describe
a construction that uses an on-line trusted party acting as a dealer. Later, we
describe how the trusted party can be eliminated.

The main underlying idea is that the dealer chooses a special round during
which the parties actually unknowingly learn the output of the protocol. If the
adversary guesses this round, it can bias the output by aborting. If the adversary
aborts (or behaves maliciously) in any other time, then there is no bias. However,
this special round is uniformly selected (out of r possible rounds) and then
concealed such that the adversary is unable to guess it with probability exceeding
1/r. Therefore, the overall bias achievable by any adversary is O(1/r).

More specifically, for two parties Alice and Bob to jointly toss a random
coin, the protocol proceeds as follows. In a preprocessing phase, the trusted

Protocols for Multiparty Coin Toss With Dishonest Majority 7

party selects a special round number i∗ ∈ {1, . . . , r}, uniformly at random, and
selects bits a1, . . . , ai∗−1, b1, . . . , bi∗−1, independently, uniformly at random. It
then uniformly selects a bit w ∈ {0, 1} and sets ai = bi = w for all i∗ ≤ i ≤ r.
Thereafter, the protocol proceeds in rounds: In round i, the dealer gives Alice
the bit ai and Bob the bit bi. If none of the parties abort, then at the end of the
protocol both output ar = br = w. If a party prematurely aborts in some round
i, the honest party outputs the bit it received in the previous round (i.e., ai−1

or bi−1 respectively). If one party aborts before the other party received its first
bit (i.e., a1 or b1), then the other party outputs a random bit.

The security of the protocol follows from the fact that, unless the adversary
aborts in round i∗, it cannot bias the output of the protocol. The view of any
of the parties up to round i ≤ i∗ is independent of the value of i∗, hence, any
adversary corrupting a single party can guess i∗ with probability at most 1/r.

To eliminate the trusted party, Moran et al. first turn the trusted party from
an on-line dealer into an off-line dealer, i.e., one that computes some values in
a preprocessing phase, deals them to the parties, and halts. To achieve this,
they use a 2-out-of-2 secret-sharing scheme and an authentication scheme. The
trusted party selects i∗, bits a1, . . . , ai∗−1, b1, . . . , bi∗−1, and a bit w ∈ {0, 1} as
before. It then selects random shares for ai and bi for each i ∈ {1, . . . , r}. That is,
it computes shares a(A)

i ⊕a(B)
i = ai and b(A)

i ⊕ b(B)
i = bi. At the beginning of the

protocol, the trusted party sends to Alice her shares of the ai’s, that is a(A)
i , and

the shares b(A)
i together with an authentication of the b(A)

i (i.e., authenticated
shares of the bi’s), and sends to Bob his shares of the bi’s and authenticated
shares of the ai’s. The protocol now proceeds in rounds. In each round i Bob
sends to Alice his authenticated share of ai, so Alice can reconstruct the bit ai.
Alice then sends to Bob her authenticated share of bi. An adversary cannot forge
an authentication, and is, thus, essentially limited to aborting in deviating from
the prescribed protocol.

The off-line dealer is then replaced by a (constant round) secure-with-abort
two-party protocol [11] for computing the preprocessing functionality. That is, at
the end of the initialization protocol, the parties get the authenticated shares of
the ai’s and the bi’s, while the underlying i∗ and authentication keys stay secret.
The security of the 2-party preprocessing protocol guarantees that a bounded
adversary is essentially as powerful as in a computation with an off-line dealer.

3 Coin Tossing with Dishonest Majority – A Warm-Up

In this section we present two warm-up constructions for multiparty coin-tossing
with bias O(1/r) where r is the number of rounds in the protocol. The first
construction considers the case that at most half of the parties are malicious
(however, there is no majority of honest parties). The second construction solves
the problem of coin tossing with 5 parties, where at most 3 are malicious. These
two protocols demonstrate the main difficulties in constructing multiparty coin-
tossing protocols with dishonest majority, alongside the techniques we use to
overcome these difficulties. In Sections 4–6, we present a construction for the

8 Amos Beimel, Eran Omri, and Ilan Orlov

general case that combines ideas from the two constructions presented in this
section.

The main issue of any coin-tossing protocol is how to deal with premature
aborts. The protocol must instruct any large enough subset of parties (i.e., at
least as large as the set of honest parties) how to jointly reconstruct a bit if all
other parties abort the protocol. Since there is no honest majority, an adversary
controlling some set of parties can compute the output of this set assuming that
the other parties abort. The problem in designing a protocol is how to ensure
that this information does not enable the adversary to bias the output.

3.1 Multiparty Coin Tossing When Half of the Parties Can Be
Malicious

In this section we present a protocol with optimal (up to a small constant) bias
with respect to round complexity, when up to half the parties may be corrupt.
We next give an informal description of the protocol with an on-line trusted
party who acts as a dealer.

To construct a protocol for multiparty coin tossing for the case that up to
half the parties may be malicious, the parties simulate the 2-party protocol of
[12]. That is, we partition the parties into two sets A and B, one will simulate
Alice and the other will simulate Bob. The main difficulty is that the adversary
is not restricted to corrupting parties only in one of these sets. To overcome this
problem, in our partition A contains a single party p1, and the set B consists
of the parties p2, . . . , pm. If the adversary corrupts p1, it gains full access to the
view of Alice in the 2-party protocol; however, in this case a strict majority of
the parties simulating Bob is honest, and the adversary will gain no information
about the bits of Bob, i.e., the bi’s.

We next describe the protocol. In a preprocessing phase, the dealer uni-
formly selects i∗ ∈ {1, . . . , r} and then uniformly and independently selects
a1, . . . , ai∗−1, b1, . . . , bi∗−1. Finally, it uniformly selects w ∈ {0, 1} and sets ai =
bi = w for all i∗ ≤ i ≤ r. In each round i, the dealer sends ai to A, selects
random shares of bi in Shamir’s m/2-out-of-(m− 1) secret-sharing scheme, and
sends each share to the appropriate party in B. We stress that formally (to model
a rushing adversary), the dealer first sends the malicious parties their messages,
allows them to abort, and proceeds as described below.

During the execution some parties might abort; we say that a party is active
if it has not aborted. If a party pj prematurely aborts, then the trusted party
notifies all currently active parties that pj has aborted. We next describe the
actions when a party aborts:

– If p1 aborts in round i, then the parties in B reconstruct bi−1, output it, and
halt. In this case, since p1 is corrupt, at least m/2 honest parties exist in B
and, thus, they will be able to reconstruct the output.

– If in round i parties from B abort such that less than m/2 active parties
remain in B, then p1 broadcasts ai−1 to the remaining m/2− 1 parties in B
and all (honest) parties output ai−1 and halt. In this case p1 must be honest
and hence can be trusted to broadcast ai−1.

Protocols for Multiparty Coin Toss With Dishonest Majority 9

– While there are still at least m/2 active parties in B (i.e., at most m/2− 1
of them abort) and p1 is active, the protocol proceeds without a change.

To prevent cheating, the dealer needs to sign the messages given to the parties.
We omit these details in this section.

Recall that at most m/2 out of the m parties are malicious. Thus, if p1 is
corrupted, then at most (m/2)− 1 parties in B are corrupted, and they cannot
reconstruct bi. To see that the above protocol is O(1/r)-secure is now straight-
forward. An adversary wishing to bias the protocol must cause premature termi-
nation. To do so, it must either corrupt p1 (and gain no information on the bi’s)
or otherwise corrupt m/2 parties in B (hence, leaving p1 uncorrupted). Thus, for
any adversary in the multi-party protocol there is an adversary corrupting Alice
or Bob in the on-line setting of the two party protocol of [12] that is essentially
as powerful. An important feature that we exploit in our protocol is the fact
that in the two-party protocol Bob does not need its bit bi−1 if Alice does not
abort. Thus, in our protocol the parties in B do not reconstruct bi−1 unless p1

aborts in round i.
More work is required in order to eliminate the trusted dealer, however,

the arguments justifying such a move are a special case of those described in
Section 6.

3.2 A 5-Party Protocol that Tolerates up to 3 Malicious Parties

In this section we consider the case wherem = 5 and t = 3, i.e., a 5-party protocol
where up to 3 of the parties may be malicious. As in previous protocols, we first
sketch our construction assuming there is a special on-line trusted dealer. This
dealer interacts with the parties in rounds, sharing bits to subsets of parties, and
proceeds with the normal execution as long as at least 4 of the parties are still
active.

Denote the trusted dealer by T and the parties by p1, . . . , p5. Let S1, . . . , S10

be all possible triplets of parties, i.e., Sj ⊂ {p1, . . . , p5} such that |Sj | = 3.
Denote by σiSj

a bit to be recovered by Sj if the protocol terminates in round
i + 1. In a preprocessing phase, the dealer T selects uniformly at random i∗ ∈
{1, . . . , r}, indicating the special round in this five-party protocol. Then, for
every 0 ≤ i < i∗ it selects σiSj

independently and uniformly at random for each
j ∈ {1, . . . , 10}. Finally, it independently and uniformly selects a random bit w
and sets σiSj

= w, for every i ∈ {i∗, . . . , r} and for every j ∈ {1, . . . , 10}.
The dealer T interacts with p1, . . . , p5 in rounds, where round i, for 1 ≤ i ≤ r

consists of three phases:

First phase. The dealer sends to the adversary all the bits σiSj
such that there

is a majority of corrupted parties in Sj , i.e., at least 2 parties in Sj are
controlled by the adversary.

Second phase. The adversary sends to T a list of parties that abort in the
current round. If there are less than 4 active parties (i.e., there are either 2

10 Amos Beimel, Eran Omri, and Ilan Orlov

or 3 active parties),5 T sends σi−1
Sj

to the active parties, where Sj is the lex-
icographically first triplet that contains all of the active parties. The honest
parties output this bit and halt.

Third phase. If at least 4 parties are active, T notifies the active parties that
the protocol proceeds normally.

If after r rounds, there are at least 4 active parties, T simply sends w to all
active parties and the honest parties output this bit.

As an example of a possible execution of the protocol, assume that p1 aborts
in round 4 and p3 and p4 abort in round 26. In this case, T sends σ25

{p1,p2,p5} to
p2 and p5, which output this bit.

Recall that the adversary obtains the bit Sj if at least two parties in Sj are
malicious. If the adversary causes the dealer to halt, then, either there are two
active parties, both of them must be honest, or there are three active parties
and at most one of them is malicious. In either case, the adversary does not
know σi−1

Sj
in advance. Furthermore, the dealer reveals the appropriate bit σi−1

Sj

to the active parties. Jumping ahead, these properties are later preserved in a
real world protocol by using a 2-out-of-3 secret-sharing scheme.

We next argue that any adversary can bias the output of the above protocol
by at most O(1/r). As in the protocol of Moran et al., the adversary can only
bias the output by causing the protocol to terminate in round i∗. In contrast to
the protocol of [12], in our protocol if in some round there are two bits σiS and
σiS′ that the adversary can obtain such that σiS 6= σiS′ , then the adversary can
deduce that i 6= i∗. However, there are at most 7 bits that the adversary can
obtain in each round (i.e., the bits of sets S containing at least two malicious
parties). For a round i such that i < i∗, the probability that all these bits are
equal to (say) 0 is (1/2)7. Such rounds are indistinguishable to the adversary
from round i∗. Intuitively, the best an adversary can do is guess one of these
rounds, and therefore cannot succeed guessing with probability better than 1/27.
Thus, the bias the adversary can cause is 27/r.

Eliminating the Dealer of the 5-Party Protocol. We eliminate the trusted
on-line dealer in a few steps using a few layers of secret-sharing schemes. First,
we change the on-line dealer, so that in each round i it shares the bit σiS of
each subset S among the parties of S using a 2-out-of-3 secret-sharing scheme
– called inner secret-sharing scheme. The same requirement on σiS as in the
above protocol are preserved using this inner secret-sharing scheme. That is, the
adversary is able to obtain information on σiS only if it controls at least two of
the parties in S. On the other hand, if the adversary does not control at least
two parties in S (i.e., there is an honest majority in S), then, in round i, the
honest parties can reconstruct σi−1

S (if so instructed by the protocol).
Next we turn the on-line dealer into an off-line dealer. That is, we show that

it is possible for the dealer to only interact with the parties once, sending each
5 The reason for requiring that the dealer does not continue when at least two parties

abort will become clear when we transform the protocol to a protocol with an off-line
dealer.

Protocols for Multiparty Coin Toss With Dishonest Majority 11

party some input, so that thereafter, the parties interact in rounds (without the
dealer) and in each round i each party learns its shares in the ith inner secret-
sharing scheme. That is, in each round i, each party p learns a share of σiS in
a 2-out-of-3 secret-sharing scheme, for every triplet S such that p ∈ S. For this
purpose, the dealer computes, in a preprocessing phase, the appropriate shares
for the inner secret-sharing scheme. The shares of each round for each party p
are then shared in a 2-out-of-2 secret-sharing scheme, where p gets one of the
two shares (this serves as a mask, allowing only p to later reconstruct its shares
of the appropriate σiS ’s). All parties get shares in a 4-out-of-5 Shamir secret-
sharing scheme of the other share of the 2-out-of-2 secret sharing. We call the
resulting secret-sharing scheme the outer scheme.

The use of the 4-out-of-5 secret-sharing scheme plays a crucial role in elim-
inating the on-line dealer. On the one hand, it guarantees that an adversary,
corrupting at most three parties, cannot reconstruct the shares of round i before
round i. On the other hand, at least two parties must not reveal their shares
in order to prevent a reconstruction of the outer scheme (this is why we cannot
proceed after 2 parties aborted). Hence, the protocol proceed normally as long
as at least 4 parties are active. If, indeed, at least two parties abort (in round i),
then the remaining parties use their shares of the inner scheme to reconstruct
the bit σi−1

S for the appropriate triplet S.
To prevent malicious parties from cheating, by say, sending false shares and

causing reconstruction of wrong secrets, every message that a party should send
during the execution of the protocol is signed in the preprocessing phase (to-
gether with the appropriate round number and with the party’s index). In ad-
dition, the dealer sends a verification key to each of the parties. To conclude,
the off-line dealer gives each party the signed shares for the outer secret sharing
scheme together with the verification key.

The protocol with the off-line dealer proceeds in rounds. In round i of the pro-
tocol all parties broadcast their (signed) shares in the outer (4-out-of-5) secret-
sharing scheme. Thereafter, each party can unmask the message it receives (with
its share in the appropriate 2-out-of-2 secret-sharing scheme) to obtain its shares
in the 2-out-of-3 sharing of the bits σiS (for the appropriate sets S’s to which the
party belongs). If a party stops broadcasting messages or broadcasts improp-
erly signs messages, then all other parties consider it as aborted. If two or more
parties abort, the remaining parties reconstruct the bit of the lexicographically
first triplet that contains all of them, as described above. In the special case of
premature termination already in the first round, the remaining parties engage
in a fully secure protocol (with honest majority) to toss a completely random
coin.

Finally, we replace the off-line dealer by using a secure with abort protocol
with cheat detection computing the functionality computed by the dealer. The
details of this final step are given in Section 6.

The above construction can be generalized in a straightforward manner to
any number m of parties and any number t of malicious parties such that t <
2m/3. However, in the protocol described in Section 4 the bias on the output

12 Amos Beimel, Eran Omri, and Ilan Orlov

is substantially smaller; this is done using a better way for distributing bits to
subsets.

4 Coin-Tossing with Dishonest Majority – Our Main
Construction

In Sections 4–6 we present our main result – a coin-tossing protocol that has
nearly optimal bias and can tolerate up to 2/3 fraction of malicious parties. More
specifically, we prove the following theorem:

Theorem 2. If enhanced trap-door permutations exist, then for any m, t, and r
such that t < 2m/3, there is an r-round m-party coin-tossing protocol tolerating
up to t malicious parties and has bias O

(
22k+1

/r′
)

, where k = 2t − m and
r′ = r −O(k + 1).

In the above theorem k is the difference between the number of malicious parties
and the number of honest parties, i.e., k = t− (m− t) = 2t−m.

Following [12], we describe our protocol in two steps. In Section 5, we describe
Protocol CoinTossWithDealerr that uses an online trusted party. In Section 6, we
get rid of the on-line dealer. This simplifies the description and understanding of
our protocols. More importantly, we can prove the security of our main protocol
in a modular way. We first prove

Theorem 3. Protocol CoinTossWithDealerr is an r-round m-party coin-tossing
protocol with an on-line dealer tolerating up to t malicious parties that has bias
O
(

22k+1
/r
)

.

We then consider the on-line dealer of Protocol CoinTossWithDealerr as an ideal
functionality. In this protocol, the honest parties do not send any messages and
in each round the dealer sends messages to the parties; we consider an interactive
functionality sending the messages that the dealer sends. We prove

Theorem 4. Let t < 2m/3. If enhanced trap-door permutations exist, the pro-
tocol presented in Section 6 is a computationally-secure implementation with
r′+O(k+1) rounds of the dealer functionality in Protocol CoinTossWithDealerr′ .

The above theorem is proved using the hybrid model techniques of Canetti [5].
Theorem 2 follows from Theorem 3 and Theorem 4 by a composition argument.

We stress that constructing fair coin-tossing protocols assuming a trusted
dealer is an easy task, e.g., the trusted party can choose a random bit and send
it to each party. However, when considering a rushing adversary one cannot elim-
inate the trusted party in this protocol. The coin-tossing protocol we describe,
Protocol CoinTossWithDealerr, is designed such that it is possible to transform
it to a protocol with no trusted party.

Protocols for Multiparty Coin Toss With Dishonest Majority 13

5 Coin-Tossing with Dishonest Majority and an On-Line
Dealer

In this section we describe a protocol with a special trusted party T who acts
as an on-line dealer interacting with the parties in rounds. In the protocol we
describe, in every round the trusted party T chooses bits for some subsets of
parties (the collection of subsets that receive a bit is part of the design of the
protocol). Since, in the real world, the adversary can be rushing, the interaction
between the parties and T in each round has three phases. In the first phase, for
each set S that contains enough malicious parties, the trusted party sends the bit
of the set to the malicious parties in the subset S. In the second phase, malicious
parties may abort the computation (and by that prevent later reconstruction of
some of the information). To do so, these parties send to T an “abort” message.
Finally, in the third phase, the actual (ideal) secret sharing takes place.

Protocol CoinTossWithDealerr

Inputs: The input of each party pi is the security parameter 1n, a polynomial
r = r(n) specifying the number of rounds in the protocol, and an upper
bound t on the number of corrupted parties.

Underlying Subsets: Let Pj = {pj} for 1 ≤ j ≤ k+1 and Pk+2 = {pk+2, . . . , pm}.
Define QJ = ∪j∈JPj for each J ⊂ {1, . . . , k + 2}.
For each subset Pj define a reconstruction threshold value oj : For 1 ≤ j ≤
k + 1 define oj = 1 and define ok+2 = m− t. Finally, oJ =

∑
j∈J oj for each

J ⊂ {1, . . . , k + 2}.
Instructions for the (trusted) dealer:

The preprocessing phase: Select a bit σiJ for every subset QJ and every
round i as follows:
1. Select i∗ ∈ {1, . . . , r} and w ∈ {0, 1} independently with uniform

distribution.
2. For each J ⊂ {1, . . . , k + 2}, select σ0

J , . . . , σ
i∗−1
J independently with

uniform distribution.
3. For each J ⊂ {1, . . . , k + 2}, set σi

∗

J = . . . = σrJ = w for i∗ ≤ i ≤ r.
Interaction rounds: In each round 1 ≤ i ≤ r of the protocol, interact with

the parties in three phases:
– The peeking phase: For each J ⊂ {1, . . . , k + 2}, if QJ contains

at least oJ malicious parties, send the bit σiJ to all malicious parties
in QJ .

– The abort phase: Upon receiving an abortj message from party pj ,
remove party pj from the list of active parties and notify all parties
that party pj is inactive. (Ignore all other types of messages.)
If at least m− t parties have aborted so far, move to the premature
termination process.

– The main phase: Send “proceed” to all parties.
Premature termination process: This round consists of two phases, af-

ter which the protocol terminates and all honest parties hold the same
output.

14 Amos Beimel, Eran Omri, and Ilan Orlov

– The abort phase: Upon receiving an abortj message from party
pj , remove party pj from the list of active parties.

– The default output phase: Let D be the set of indices of parties
that aborted the protocol thus far, i.e., D = {j | pj has aborted}.
• If |D ∩ {k + 2, . . . ,m}| ≥ m− t then J = {1, . . . , k + 1} \D.
• If |D ∩ {k + 2, . . . ,m}| < m− t then J = ({1, . . . , k + 1} \D) ∪
{k + 2}.

• Send w′ = σi−1
J to all parties.

Normal termination: This phase is executed if the last round of the pro-
tocol is completed.
Send w to all parties.

Instructions for honest parties: Upon receiving output y from the dealer,
output y. (Honest parties do not send any message throughout the protocol.)

We next informally explain why the protocol has small bias, that is, we give
a sketch of the proof of Theorem 3. First, we claim that the adversary can bias
the output only if the premature termination occurs in round i∗:

1. If the premature termination round occurs after round i∗ (or does not occur
at all), then the output is already fixed.

2. If the premature termination round occurs before round i∗, then the adver-
sary does not know the random bit σi−1

J that the honest parties output:
(a) If |D ∩ {k + 2, . . . ,m}| ≥ m− t, then J = {1, . . . , k + 1} \ D and oJ =
|J |. There are at most t corrupt parties and at least m− t of them are in
Q{k+2}, thus, at most t− (m− t) = k in {p1, . . . , pk+1}. In other words,
there is at least one honest (and therefore active) party in QJ , and the
trusted party does not send the bit σi−1

J to the parties in QJ .
(b) If |D ∩ {k + 2, . . . ,m}| < m− t, then J = ({1, . . . , k + 1}\D)∪{k + 2}.

Let α = |D ∩ {1, . . . , k + 1}|. In this case, oJ = k+1−α+m−t = t+1−α.
The setQJ contains at most t−α < oJ corrupt parties, thus, these parties
do not get the bit σi−1

J from the trusted party.

Thus, the adversary can bias the output only if it guesses i∗. If σiJ 6= σiJ′ for
two bits that the adversary gets from the trusted party, then it can learn that
i < i∗. It can be shown that the adversary can get at most 2k+1 such bits (out
of the 2k+2 bits). With probability 1/22k+1

all these bits are all equal in a round
prior to i∗ and the adversary cannot distinguish such round from i∗. By Lemma
2 in [9], this implies that the adversary can guess i∗ with probability at most
22k+1

/r. Therefore, the bias is O(22k+1
/r).

Roughly speaking, transforming the above informal arguments into a formal
proof, which uses the real vs. ideal paradigm, works as follows. We define a
simulator S that for an adversary A, first uses the ideal CoinToss() functionality
to toss a completely fair coin wS (this coin is the output of the honest parties in
the simulated execution). Then, in order to simulate the view of A, the simulator
S runs A internally and interacts with A playing the role of T (with w = wS); the
only difference is that in the a premature termination, it always sends the parties
wS . The arguments of the above proof sketch show that view of A together with

Protocols for Multiparty Coin Toss With Dishonest Majority 15

the output of the honest parties are identically distributed whenever premature
termination does not occur in the special round i∗. The above bound on the
ability of any adversary to correctly guess i∗ finalizes the proof. The formal
proof will appear in the full version of this paper.

6 Omitting the On-Line Dealer

In this section we show how Protocol CoinTossWithDealerr, presented in Sec-
tion 5, can be transformed into a real-world protocol. That is, we present a
fully secure m-party protocol implementing the ideal functionality described
in Protocol CoinTossWithDealerr. The resulting protocol has r′ rounds, where
r′ = r + c(k + 1), for some constant c, and is executed in a network where the
parties communicate via an authenticated broadcast channel. Before formally
describing our construction, we outline its main components.

The inner secret-sharing scheme. To implement the ideal secret sharing func-
tionality of the trusted party T in the CoinTossWithDealerr protocol to share
the bits σiJ , we use an oJ -out-of-|QJ | Shamir secret-sharing scheme. That is,
in each round i, each party pj ∈ QJ obtains a share Si,Jj in a oJ -out-of-|QJ |
secret-sharing of σiJ . The same requirement on σiJ as in the ideal protocol are
preserved using this inner secret-sharing scheme. That is, the adversary is able
to obtain information on σiJ only if it controls at least oJ of the parties in QJ .
On the other hand, if, in a premature termination in round i, at least oJ parties
in QJ work together, then they can reconstruct σi−1

J .
The outer secret-sharing scheme. In the ideal protocol, the adversary never

learns anything about the bits σiJ before round i begins. To achieve this property
in the real-world protocol, the shares of the inner secret-sharing schemes of all
rounds are shared, in a preprocessing step, using a (t+1)-out-of-m secret-sharing
scheme. The t+ 1 threshold guarantees that the adversary cannot see the shares
of the inner secret-sharing scheme for a given round i without the help of honest
parties, which will not be given before round i.

In each round i the parties send messages so that each party can reconstruct
its shares in the inner secret-sharing schemes of round i. Since all messages are
broadcast and all parties can see them, the shares that party pj receives in round
i are masked by using yet another layer of secret-sharing. Specifically, a share
Si,Jj to be reconstructed by pj in round i is signed and shared (already in the
preprocessing phase) in a 2-out-of-2 secret sharing scheme, such that one share is
given to pj and the other is shared among all parties in a (t+1)-out-of-m secret-
sharing scheme. We refer to the combination of these two layers of secret-sharing
as the outer secret-sharing scheme.

Premature Termination. The t+1 threshold of the outer secret sharing scheme
allows a successful reconstruction (of the shares of the inner scheme) as long as
at least t+1 parties participate in the reconstruction. This allows the real-world
protocol to proceed with normal interaction rounds as long as less than m− t
parties have aborted (as does the ideal-world protocol). This property is crucial
to the success of the real world protocol, since in the complementary event

16 Amos Beimel, Eran Omri, and Ilan Orlov

that during round i the number of parties that have aborted is at least m− t,
then an honest majority is guaranteed (since t < 2m/3). Thus, in a premature
termination in round i, the active parties can engage in a fully secure multiparty
computation of the appropriate functionality, i.e., the CoinToss functionality in
the special case that i = 1 and a reconstruction functionality otherwise.

Signatures. In order to confine adversarial strategies to premature aborts, the
messages that the parties send are signed (together with the appropriate round
number and the index of the sending party), and a verification key is given to
all parties. Furthermore, all shares in the inner secret-sharing scheme are signed
(as they are used as messages if reconstruction is required). Any message failing
to comply with the prescribed protocol is considered an abort message. Since all
messages are publicly broadcast, all parties can keep record of all aborts.

The preliminary phase. The goal of the preliminary phase is to compute the
MultiShareGenr functionality, which computes the bits for the underlying sets
and the signed shares for the inner and outer secret-sharing schemes. As an
honest majority is not guaranteed, it is not possible to implement this function-
ality by a secure protocol with fairness. That is, we cannot implement an ideal
functionality where a trusted party computes the MultiShareGenr functionality
and sends the appropriate output to each party. However, since the outputs of
the MultiShareGenr functionality do not reveal any information regarding the
output of the protocol to any subset of size at most t, fairness is not essential for
this part of the computation. We use a protocol with cheat detection, that is, if
the protocols fails at least one corrupt party is identified by all honest parties.
The computation is then repeated without the detected malicious parties.

More formally, we compute the MultiShareGenr functionality using a multi-
party computation protocol that is secure-with-abort with cheat-detection. In-
formally, this means that we use a protocol that implements the following ideal
model: the trusted party computes the MultiShareGenr functionality and gives
the outputs of the corrupted parties to the adversary; the adversary either sends
“proceed”, in which case, the trusted party sends the appropriate output to
each honest party; otherwise, the adversary sends “abortj” (where, pj is in the
set of corrupted parties) to the trusted party, which in turn notifies the hon-
est parties that pj is malicious. Using methods from Pass [13], one can obtain
a constant-round multiparty protocol secure-with-abort with cheat-detection.
Since this protocol is repeated at most k + 1 times before an honest majority is
guaranteed, the round complexity of the preliminary phase is O(k).

We first present the initialization functionality of the protocol,

Functionality MultiShareGenr

Computing default bits
1. Choose w ∈ {0, 1} and i∗ ∈ {1, . . . , r} uniformly at random.
2. For each i ∈ {1, . . . , r} and for each J ⊂ {1, . . . , k + 2},

(a) if i ∈ {1, . . . , i∗ − 1}, then choose independently and uniformly at ran-
dom σiJ ∈ {0, 1}.

(b) if i ∈ {i∗, . . . , r}, then set σiJ = w.

Protocols for Multiparty Coin Toss With Dishonest Majority 17

Computing signed shares of the inner secret sharing scheme
3. Compute (Ksign,Kver)← Gen(1n).
4. For each i ∈ {1, . . . , r} and for each J ⊂ {1, . . . , k + 2}

(a) Choose random secret shares of σiJ in an oJ -out-of-|QJ | Shamir’s secret
sharing scheme for the parties in QJ .
For each party pj ∈ QJ , let Si,Jj be its share of σiJ .

(b) For each share Si,Jj , add the corresponding set index and the round
number and sign:
Ri,Jj ← (Si,Jj , J, i, Sign((Si,Jj , J, i),Ksign).

Computing shares of the outer secret sharing scheme
5. For each i ∈ {1, . . . , r}, for each J ⊂ {1, . . . , k + 2}, and for each pj ∈ QJ ,

share pj ’s signed share Ri,Jj using a 2-out-of-2 secret sharing scheme; one
share is given to pj (a private mask only pj obtains) and the other share is
shared among all parties in a (t+ 1)-out-of-m secret-sharing scheme.

Signing the messages of all parties
6. Compute the message m(q,i) that pq ∈ P broadcasts in round i by con-

catenating (1) pq’s identity, (2) the round number i, and (3) the shares of
Ri,Jj (for all J and for all j such that pj ∈ QJ) produced in Step 5 for pq
(excluding pq’s private masks).

7. Compute M(q,i) ← (m(q,i),Sign(m(q,i),Ksign)).
Outputs: Each party pj receives

– The verification key Kver.
– The messages M(j,1), . . . ,M(j,r) that pj broadcasts during the protocol.
– pj ’s private masks which were produced in Step 6 for each J ⊂ {1, . . . , k + 2}

such that pj ∈ QJ .

Next, we formally define the m-party coin-tossing protocol tolerating t <
2m/3 malicious parties without any dealer.

Protocol MultiPartyCoinTossr

Joint input: Security parameter 1n.
Preliminary phase:
– The parties execute a secure with abort protocol with cheat detection com-

puting Functionality MultiShareGenr.
– If a party aborts, then this phase is repeated without the parties that were

identified as cheaters so far.
– If the first phase was repeated k + 1 times (thus, an honest majority is

guaranteed), the parties use a multiparty secure protocol (with fairness) to
toss a fair coin, output this resulting bit, and halt.

– Denote the set of indices of inactive parties (i.e., parties that cheated or
aborted so far) by D.

In each round i = 1, . . . , r do:
– Each party pj ∈ P broadcasts M(j,i) (containing its shares in the outer

secret-sharing scheme).

18 Amos Beimel, Eran Omri, and Ilan Orlov

– If Ver(M(j,i),Kver) = 0 or if pj broadcasts an invalid or no message, then all
parties mark pj as inactive, i.e., set D ← D ∪ {j}. If |D| ≥ m− t, then the
premature termination step is executed.

Premature termination step
– If i = 1, then the active parties use a multiparty secure protocol (with

fairness) to toss a fair coin, output this resulting bit, and halt.
– Otherwise,

1. Each party pj reconstructs Ri−1,J
j , the signed share of the “inner secret

sharing scheme” produced in Step (4) of Functionality MultiShareGenr,
for every J ⊂ {1, . . . , k + 2} such that pj ∈ QJ .

2. The active parties execute a secure multiparty protocol with an honest
majority to compute Functionality Reconstruction, where the input of
each party pj is Ri−1,J

j for every J ⊂ {1, . . . , k + 2} such that pj ∈ QJ .
3. The active parties output the output of this protocol, and halt.

At the end of round r:
– Each active party pj broadcasts the signed shares Rr,Jj for each J such that
pj ∈ QJ .

– Each active party reconstructs the bit σrJ for the lexicographically first set J
such that at least oJ parties broadcast properly signed shares Rr,Jj , outputs
σrJ , and halts.

Functionality Reconstruction
Joint Input: The indices of inactive parties, D, and the verification key, Kver.
Private Input of pj: A set of signed shares Ri−1,J

j for each J ⊂ {1, . . . , k + 2}
such that pj ∈ QJ .

Computation:
1. For each pj , if pj sends a message that is not appropriately signed or

malformed, then D ← D ∪ {j}.
2. Define the set J :

– If |D ∩ {k + 2, . . . ,m}| ≥ m− t then J = {1, . . . , k + 1} \D.
– If |D ∩ {k + 2, . . . ,m}| < m− t then J = ({1, . . . , k + 1} \ D) ∪
{k + 2}.

3. Reconstruct σi−1
J from the shares of the active parties in QJ .

Outputs: Each honest party pj output the value σi−1
J .

We next claim that Functionality Reconstruction is well-defined, that is, if
the functionality is computed (after premature termination in round i > 1),
then, indeed, σi−1

J can be reconstructed. To see this, observe that the number of
parties in the appropriate set QJ that participate in the computation (i.e., not in
D) is at least the reconstruction threshold oJ : If |D ∩ {k + 2, . . . ,m}| ≥ m− t,
then QJ contains only active parties and |QJ | = oJ . Notice that we already
proved that in this case |QJ | ≥ 1. If |D ∩ {k + 2, . . . ,m}| ≤ m− t−1, then oJ =
|J |−1 +m− t and |QJ \ {pj : j ∈ D}| = |J |−1 + |{k + 2, . . . ,m} \D|. To prove
that |QJ \ {pj : j ∈ D}| ≥ oJ , it suffices to show that |{k + 2, . . . ,m} \D| ≥
(m− k − 1)− (m− t− 1) = t− k = t− (2t−m) = m− t.

Protocols for Multiparty Coin Toss With Dishonest Majority 19

7 Coin-Tossing Protocol for any Constant Fraction of
Corrupted Parties

In this section we describe an r-round m-party coin-tossing protocol that toler-
ates up to t dishonest parties, where t is some constant fraction of m, that is,
t = (1−ε)m, for some (constant) 0 < ε. The bias of our protocol is O

(
ε/
√
r − t

)
.

Before our work, the best known protocol for this scenario is an extension of
Blum’s two-party coin-tossing protocol [3] to an r-round m-party protocol that
has bias O

(
t/
√
r − t

)
[2, 6]. In this protocol, in each round i of the protocol, the

parties jointly select a random bit σi in two phases. In the first phase, each party
commits to a “private” random bit, and in the second phase the private bits are
all revealed and the output bit σi is taken to be the XOR of all private bits. The
output of the whole protocol is taken to be the value of the majority of the σi’s.
When there is a premature abort in round i, the remaining parties repeat the
computation of round i and continue with the prescribed computation.

Intuitively, the best strategy for a rushing adversary to bias the output of the
protocol, say toward 0, is in each round i to instruct a corrupted party to abort
before the completion of the revealing phase if σi = 1. This is possible, since
the rushing adversary learns σi before the completion of round i, specifically,
a corrupted party can delay its message until all honest parties reveal their
bit. This can go on at most t times, adding a total bias of O (t/

√
r), whenever

r = Ω(t2).
We use the notion of cheat detection to limit the adversary to abort in a con-

stant number of rounds. Roughly speaking, we follow the general structure of the
above protocol in computing the σi’s and taking the majority over them. How-
ever, we compute each σi using a secure with abort with cheat-detection protocol,
such that either the computation is completed or at least a constant fraction of
the malicious parties abort (specifically, m− t malicious parties abort). Next,
we briefly describe the computation of each σi in our protocol. That is, we show
how to obtain a constant round secure-with-abort with cheat detection protocol
to compute a random bit that identifies at least m− t cheating parties. Let mi

be the number of active parties at the beginning of round i and ti be a bound
on the number of active corrupted parties at the beginning of round i (that is,
if t′ parties have aborted in rounds 1, . . . , i− 1, then ti = t− t′). We assume the
existence of a constant round secure-with-abort with cheat detection protocol.

In the first phase, a preprocessing phase, active parties execute a constant
round secure-with-abort with cheat detection protocol to compute a (ti+1)-out-
of-mi secret sharing of a random bit σi. That is, at the end of this phase, each
party holds a share in a (ti + 1)-out-of-mi Shamir secret sharing scheme of σi.
To confine adversarial strategies to aborts, the share that each party receives
is signed and a verification key is given to all parties. In a second phase, a
revealing phase, all parties reveal their shares and reconstruct σi. Broadcasting
anything other than a signed share is treated as abort. To see that the above
protocol achieves the required properties, observe that after the first phase the
adversary cannot reconstruct σi. Thus, by aborting the preprocessing round,
malicious parties cannot bias the output. We stress that they are able to cause

20 Amos Beimel, Eran Omri, and Ilan Orlov

the preprocessing phase to fail, at the cost of at least one malicious party being
detected by all honest parties. in such a case, the preprocessing stage is repeated
without the detected party. This, however, can only happen at most t times in
total, throughout the whole protocol. In the revealing phase, a rushing adversary
is already able to learn σi before the corrupted parties broadcast their messages
and thus can bias the output by not broadcasting these messages. However, by
the properties of the secret sharing scheme, at least m− t parties will have to not
broadcast their message, and hence, effectively abort the computation. Hence,
the adversary can do this at most 1−2ε

ε times throughout the protocol, before an
honest majority among active parties is guaranteed. Thus, the majority function
is applied to Ω(r− t) random bits, of which the adversary can bias 1−2ε

ε . Thus,

the total bias of the protocol is O
(

1
ε
√
r−t

)
.

Acknowledgments. We are grateful to Yehuda Lindell for many helpful discus-
sions and great advice. We thank Oded Goldreich and Gil Segev for suggesting
this problem and for useful conversations.

References

[1] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. In Proc. of the Fourth TCC, pages 137–156, 2007.

[2] B. Averbuch, M. Blum, B. Chor, S. Goldwasser, and S. Micali. How to implement
Bracha’s O(logn) Byzantine agreement algorithm, 1985. Unpublishe manuscript.

[3] M. Blum. Coin flipping by telephone a protocol for solving impossible problems.
SIGACT News, 15(1):23–27, 1983.

[4] M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. on Computing, 13:850–864, 1984.

[5] R. Canetti. Security and composition of multiparty cryptographic protocols. J.
of Cryptology, 13(1):143–202, 2000.

[6] R. Cleve. Limits on the security of coin flips when half the processors are faulty.
In Proc. of the 18th STOC, pages 364–369, 1986.

[7] R. Cleve and R. Impagliazzo. Martingales, collective coin flipping and discrete
control processes. Manuscript, 1993.

[8] O. Goldreich. Foundations of Cryptography, Voume II Basic Applications. Cam-
bridge University Press, 2004.

[9] D. Gordon and J. Katz. Partial fairness in secure two-party computation. Cryp-
tology ePrint Archive, Report 2008/206, 2008. http://eprint.iacr.org/.

[10] J. Katz. On achieving the “best of both worlds” in secure multiparty computation.
In Proc. of the 39th STOC, pages 11–20. ACM, 2007.

[11] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computa-
tion. J. of Cryptology, 16(3):143–184, 2003.

[12] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In Proc. of the
Fifth Theory of Cryptography Conference – TCC 2009, pages 1–18, 2009.

[13] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In Proc. of the 36th STOC, pages 232–241, 2004.

[14] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In Proc. of the 21st STOC, pages 73–85, 1989.

