
Universally Composable In
oer
ibility⋆Dominique Unruh1 and Jörn Müller-Quade2
1 Saarland University

2 Karlsruhe Institute of Te
hnology (KIT)Abstra
t. We present the UC/
 framework, a general de�nition forse
ure and in
oer
ible multi-party proto
ols. Our framework allows tomodel arbitrary rea
tive proto
ol tasks (by spe
ifying an ideal fun
tion-ality) and 
omes with a universal 
omposition theorem. We show thatgiven natural setup assumptions, we 
an 
onstru
t in
oer
ible two-partyproto
ols realising arbitrary fun
tionalities (with respe
t to stati
 adver-saries).Keywords: In
oer
ibility, universal 
omposability, voting.1 Introdu
tionCommonly, se
urity of a 
ryptographi
 proto
ol en
ompasses (very roughly) twoaspe
ts: The proto
ol should guarantee that the private data of the partiesstays se
ret (priva
y), and it should ensure that all data transferred or 
om-puted is 
orre
t (integrity). Most se
urity de�nitions ensure one or both of theserequirements, and many proto
ols are known to satisfy these de�nitions (e.g.,[16,1,11,8,9℄).There is, however, a requirement that does not fall into either 
ategory: 
o-er
ion resistan
e (�rst noted by [17,2℄). To illustrate this property, we use theexample of a voting s
heme. In a voting s
heme, it might be possible for a voter toa
quire a re
eipt that he 
ast a spe
i�
 vote. This does not violate the anonymityof the voter sin
e the voter is not required to reveal or even a
quire su
h a re
eipt.Thus priva
y is maintained. And getting a re
eipt does not allow to falsify theout
ome of the ele
tion. Thus the integrity of the s
heme is maintained. Yet themere possibility of a
quiring a re
eipt may make a party 
oer
ible. A 
oer
iveadversary may threaten 
ertain reprisals if the party does not 
ast a spe
i�
 voteand proves this by delivering a re
eipt to the adversary. Thus su
h an ele
tionproto
ol would not be 
oer
ion resistant (short: in
oer
ible).In
oer
ibility is an important property in any setting in whi
h some mali
iousagent has the power to harm and thus threaten other proto
ol parti
ipants.Clearly, this is not restri
ted to the setting of voting but may be the 
ase inother settings, too (e.g., when �nan
ial transa
tions are involved). Unfortunately,in
oer
ibility turns out to be both di�
ult to de�ne and to a
hieve.
⋆ Partially funded by the Cluster of Ex
ellen
e �Multimodal Computing and Intera
-tion�.



Previous de�nitions of in
oer
ibility are usually restri
ted to spe
ial domainssu
h as voting (e.g., [2,19,13℄). An ex
eption are the models by Canetti and Gen-naro [4℄ and by Moran and Naor [20℄ whi
h give general de�nitions of in
oer
iblemulti-party 
omputation. Their de�nitions are, however, restri
ted to the 
aseof se
ure fun
tion evaluation. That is, they only 
onsider proto
ols in whi
hall parties need to �rst 
ontribute their inputs, and then from these inputs theoutputs for the parties are 
omputed. Rea
tive proto
ols, proto
ols that havemultiple phases and where the inputs in one phase 
an depend on the outputsof an earlier phase, are ex
luded. For example, the se
urity of a 
ommitmentproto
ol 
ould not be modelled in their settings.Besides the problem of rea
tive proto
ols, the issue of 
omposability arises.When building a 
omplex proto
ol, it is often ne
essary to abstra
t from 
ertainsubproto
ols in the analysis to make the analysis manageable. For example, onemight �rst analyse the proto
ol assuming a perfe
tly se
ure me
hanism for per-forming 
ommitments (modelled by a trusted ma
hine), and then later on provethe se
urity of the subproto
ol that is a
tually used for the 
ommitments. Todo so, and also to have a guarantee that the proto
ol does not be
ome inse
urewhen exe
uted together with other proto
ols or instan
es of itself, one needs ase
urity notion that 
omes with a 
omposition theorem.In the 
ase of normal se
ure multi-party 
omputation (i.e., without in
o-er
ibility) both the problem of modelling rea
tive proto
ols and of giving strong
ompositionality guarantees has been solved by Canetti's UC model [6℄. In thismodel, we 
an de�ne a proto
ol task by spe
ifying a trusted ma
hine, the idealfun
tionality, whi
h by de�nition performs the required proto
ol task. Sin
e thisma
hine 
an intera
t with its environment in arbitrary ways, the se
urity of verygeneral rea
tive proto
ols 
an be modelled. Furthermore, the UC model guar-antees that if a proto
ol is se
ure when using (as opposed to realising) an idealfun
tionality, then the proto
ol stays se
ure when instead of the ideal fun
tion-ality, a subproto
ol that se
urely realises the ideal fun
tionality is used. The UCmodel, however, does not guarantee in
oer
ibility.Our 
ontribution.We de�ne the Composable In
oer
ibility framework (UC/
)whi
h is an extension of the UC framework. Like UC, UC/
 allows to model verygeneral rea
tive proto
ol tasks and gives strong 
ompositionality guarantees (uni-versal 
omposition). Additionally, proto
ols se
ure with respe
t to UC/
 are in-
oer
ible. To illustrate the model, we show that a voting s
heme that is UC/
se
ure is also in
oer
ible with respe
t to a de�nition tailored spe
i�
ally to vot-ing. Finally, we show that in the restri
ted 
ase of stati
 
oer
ions/de
eptions(all 
orruptions and 
oer
ions happen at the beginning of the proto
ol), arbi-trary UC/
 se
ure two-party 
omputation is possible assuming the availabilityof se
ure 
hannels.Organisation. In Se
tion 1.1, we explain the intuition behind the UC/
 frame-work. In Se
tion 2 we de�ne the UC/
 framework and present the universal
omposition theorem. In Se
tion 3 we illustrate our model by applying it to thesetting of voting proto
ols. In Se
tion 4 we present general feasibility results fortwo-party proto
ols. In Se
tion 5 we give dire
tions for further work.



1.1 The intuition behind UC/
To understand the UC/
 model, we �rst need to get an intuition of how in
o-er
ibility is a
hieved. The goal of an in
oer
ible proto
ol is the following: Whenan adversary tries to 
oer
e a party into performing a 
ertain a
tion (su
h as
asting a parti
ular vote v∗), the party should be able to perform the a
tion itoriginally intended to perform (
asting a vote v) without the adversary noti
ing.That is, the adversary should not be able to tell the di�eren
e between a party Pthat follows the adversary's instru
tions (a 
orrupted party, 
asting the vote v∗)and a party P that only tries to make the adversary believe that it follows theadversary's instru
tions (a de
eiving party, 
asting the vote v and giving fakeeviden
e to the adversary that it 
ast the vote v∗).The most natural way to de�ne in
oer
ibility would be to require that theadversary 
annot distinguish between a 
oer
ed and a de
eiving party. This, how-ever, usually 
annot be a
hieved. For example, in a voting proto
ol the adversarywill eventually learn the tally. The distribution of the tally will, sin
e there areonly polynomially many voters, slightly but noti
eably 
hange when the voteof P 
hanges from v to v∗. The adversary 
an hen
e distinguish 
oer
ed andde
eiving parties by observing the tally.Thus, we have to weaken the requirement. The adversary should not be ableto distinguish a 
oer
ed and a de
eiving party any better than he 
ould do givenonly information that is �legally� available to him (the tally in our example). Ingeneral, however, it is not straightforward to de�ne what information is �legally�available to the adversary in any parti
ular situation. Neither is it straightfor-ward to determine how mu
h distinguishing advantage the adversary would getgiven only that information.In order to 
ir
umvent this problem, we use a slightly di�erent approa
h:We �rst de�ne an ideal model in whi
h the adversary has, by de�nition, onlya

ess to the �legally� available information. In the 
ase of voting, su
h an idealmodel would 
onsist of a trusted ma
hine (the ideal voting fun
tionality F) that
olle
ts the votes from all parties and gives only the tally to the adversary. In theideal model, the distinguishing advantage between a 
oer
ed party (that gives
v∗ to F) and a de
eiving party (that gives v to F) is, by de�nition, exa
tly theadvantage the adversary gets from the �legally� available information (the tally).To make this de�nition more formal, we introdu
e an additional entity, thede
eiver [14℄. The task of the de
eiver is to instru
t a de
eiving party what itshould do (i.e., how to de
eive the adversary). More formally, a de
eiving partywill not run any program of its own, but instead follow the instru
tions of thede
eiver. (In a sense, the de
eiver models the party's free will.) In parti
ular,the de
eiver may instru
t a party to 
ast a vote v and to send to the adversarythe fake noti�
ation that it 
ast vote v∗. (Sin
e we are in the ideal model, no
ryptographi
 re
eipts or similar need to be faked.) A 
orrupted party, on theother hand, will follow the adversaries instru
tions.The 
ombination of adversary and de
eiver in the ideal model now allows tomodel any 
oer
ion situation that 
an o

ur in the ideal model. To de�ne whatit means that the real proto
ol is in
oer
ible (or more pre
isely, as in
oer
ible



as the ideal model), we will use the 
on
ept of simulation that underlies many
ryptographi
 de�nitions su
h as multi-party 
omputation and zero-knowledge:We show that for any adversary in the real model that performs some 
oer-
ion atta
k, there is another adversary in the ideal model (
alled the adversary-simulator) that performs a 
orresponding atta
k with as mu
h su

ess. In otherwords, we require that for any de
eiver (spe
ifying what a party would ideallywant to do), and for any adversary in the real model (trying to 
oer
e parties),there is an adversary-simulator in the ideal model su
h that the real and theideal model are indistinguishable.We are, however, missing one ingredient: We need to spe
ify how the idealde
eptions (spe
i�ed in terms of inputs to the ideal fun
tionalities) translateinto real de
eptions (spe
i�ed in terms of faked messages et
.). This is done byintrodu
ing a de
eiver in the real model, too, 
alled the de
eiver-simulator. Wethen require that for any de
eiver in the ideal model (representing a possiblede
eption) there is a de
eiver-simulator in the real model (that performs the
orresponding real de
eptions) su
h that for any adversary in the real modelthere is a adversary-simulator in the ideal model su
h that the two models areindistinguishable.Finally, to model the indistinguishability of the two models, we follow theideas from the UC framework and introdu
e a further ma
hine, the environment,that either 
ommuni
ates with the ma
hines in the real model or with the ma-
hines in the ideal model and that has to guess whi
h model it is in. (For detailson how this indistinguishability a
tually ensures that the adversary's advantagein distinguishing 
orrupted and de
eiving parties 
arries over from the ideal tothe real model we refer to the example in Se
tion 3.)1.2 Related workWe are aware of only two works that ta
kle the problem of de�ning in
oer
ibilityor a similar property in a general fashion (i.e., not spe
ialised to a parti
ularproto
ol task su
h as voting).In
oer
ible se
ure fun
tion evaluation (Canetti-Gennaro, Moran-Naor). Canetti and Gennaro [4℄ present a model for de�ning in
oer
ible se-
ure fun
tion evaluation whi
h was subsequently re�ned by Moran and Naor[20℄. The model by Moran and Naor is based on the so-
alled stand-alone model[5,15, Ch. 7℄. In this model, one assumes that the inputs of all honest parties are�xed before the beginning of the proto
ol. This has several impli
ations: First,rea
tive proto
ols where parties may de
ide on their inputs in later phases 
an-not be modelled. Se
ond, when a
tually deploying the proto
ol, one would haveto ensure very strong syn
hronisation: In order not to introdu
e possibilities foratta
ks not 
overed by the model, we have to ensure that no proto
ol message issent until all honest parties have de
ided on their input. Third, the stand-alone



model only guarantees sequential 
omposability.3 That is, we have no guaranteethat the proto
ol stays se
ure when running 
on
urrently with other proto
ols(whi
h usually happens in real-life networks).Sin
e the model by Moran and Naor is based on the stand-alone model, in thismodel 
oer
ed parties only need to lie about their initial inputs. Be
ause of this,Moran and Naor do not need to introdu
e an expli
it de
eiver; any de
eption aparty might want to perform 
an be en
oded by spe
ifying a se
ond input, theso-
alled �fake input�. In 
ontrast, the more 
omplex de
eptions that are possiblein our setting ne
essitate the introdu
tion of an expli
it ma
hine, the de
eiver,to spe
ify the de
eptions.Everything we said about the work by Moran and Naor also applies to theearlier work by Canetti and Gennaro [4℄. Furthermore, the model by Canetti andGennaro only models a very weak form of 
oer
ion-resistan
e; the adversary mayinstru
t a 
oer
ed party to use a di�erent input, but he may not instru
t thatparty to deviate from the proto
ol. For a dis
ussion of the di�eren
e betweenthe models by Moran and Naor and by Canetti and Gennaro, we refer to [20℄.Externalized UC (deniability).Another approa
h to de�ne properties similarto in
oer
ibility for general proto
ols is the Externalized UC (EUC) frameworkproposed by Canetti, Dodis, Pass, andWal�sh [7℄ (also known as Generalized UC,UC with global setup, or, proposed independently by Hofheinz, Müller-Quade,and Unruh [18℄, UC with 
atalysts).This framework is, like ours, an extension of the UC framework and inheritsits support for rea
tive proto
ols and its universal 
omposition theorem. TheEUC framework di�ers from the UC framework by allowing the environment todire
tly a

ess the ideal fun
tionality used in the real proto
ol. As explained in[7℄, se
urity in the EUC framework implies a property 
alled deniability. Thismeans that no (mali
ious) proto
ol party P 
an 
olle
t any information duringthe proto
ol run that 
an later be used to prove to an outsider that some party
Q parti
ipated in the proto
ol. (An example for su
h in
riminating informationwould be a message signed by Q.) In other words, Q 
an plausibly 
laim thatthe whole proto
ol did not take pla
e. Obviously, su
h a 
laim is only realisti
with respe
t to an outsider who did not himself 
ommuni
ate with Q during theproto
ol exe
ution. In 
ontrast, in
oer
ibility as understood by this paper meansthat a party 
an lie about its a
tions towards an insider (e.g., a party 
ould lieeven towards another voter about the vote it has 
ast).Thus the two models (EUC and UC/
) have very di�erent aims. Te
hni
allythey are, however, related: In the full version [21℄ we show that under 
ertain
onditions, EUC se
urity implies UC/
 se
urity.3 Note that it has not been shown that the variant of the stand-alone model presentedby Moran and Naor does 
ompose sequentially. But it does not seem unlikely thatthis 
ould be shown.



2 The Composable In
oer
ibility Framework (UC/
)2.1 Review of the UC frameworkOur model is based on the Universal Composability (UC) framwork [6℄. For self
ontainment and to �x notation, we give a short overview over the UC framework.An intera
tive Turing ma
hine (ITM) is a Turing ma
hine that has additionaltapes for in
oming and for outgoing 
ommuni
ation. An ITM may be a
tivatedby a message on an in
oming 
ommuni
ation tape. At the end of an a
tivation,the ITM may send a message on an outgoing 
ommuni
ation tape to anotherITM. The re
ipient of a message is addressed by the unique identity of that ITM.The a
tions of an ITM may depend on a global parameter k ∈ N, the so-
alledse
urity parameter.A network is modeled as a (possibly in�nite) set of ITMs.4 We 
all a network
S exe
utable if it 
ontains an ITM Z with distinguished input and output tapeand with the spe
ial identity env. An exe
ution of S with input z ∈ {0, 1}∗ andse
urity parameter k ∈ N is the following random pro
ess: First, Z is a
tivatedwith the message z on its input tape. Whenever an ITM M1 ∈ S �nishes ana
tivation with an outgoing message m addressed to another ITM M2 ∈ S onits outgoing 
ommuni
ation tape, the other ITM M2 is invoked with in
omingmessage m on its in
oming 
ommuni
ation tape (tagged with the identity of thesender M1). If an ITM terminates its a
tivation without an outgoing messageor sends a message to a non-existing ITM, the ITM Z is a
tivated. When theITM Z sends a message on its output tape (not the 
ommuni
ation tape!), theexe
ution of S terminates. The output of Z we denote by EXECS(k, z). An ITM
Z with identity env we 
all an environment and an ITM A with identity adv we
all an adversary. A proto
ol is a network that does not 
ontain an environmentor an adversary.We 
all networks S, S′ indistinguishable if there is a negligible fun
tion µsu
h that for all k ∈ N, z ∈ {0, 1}∗, we have that |Pr[EXECS(k, z) = 1] −
Pr[EXECS′(k, z) = 1]| ≤ µ(k). We 
all S, S′ perfe
tly indistinguishable if µ = 0.Using the above network model, se
urity is de�ned by 
omparison. We �rstde�ne an ideal proto
ol ρ that spe
i�es the intended proto
ol behaviour. Thenwe de�ne what it means that another proto
ol π (se
urely) emulates ρ:De�nition 1 (UC [6℄). Let π and ρ be proto
ols. We say that π UC emulates ρif for any polynomial-time adversary A there exists a polynomial-time adversary
S (the adversary-simulator) su
h that for any polynomial-time environment Zthe networks π ∪ {A,Z} (
alled the real model) and ρ ∪ {S,Z} (
alled the idealmodel) are indistinguishable.In the UC framework, one 
an model se
ure 
hannels (that do not even leak thelength of the transmitted message) by dire
t 
ommuni
ation between the ITMs;inse
ure 
hannels 
an be modelled by sending messages to the adversary; se
ure4 In the 
ase of in�nite networks we require the network to be uniform in the sense thatgiven the identity of an ITM, we 
an 
ompute the 
ode of that ITM in deterministi
polynomial-time.




hannels that leak the length of the message, as well as authenti
ated 
hannels
an be modelled as an ideal fun
tionality.Corruptions are modelled as follows: The environment Z 
an send spe
ial
orruption requests to proto
ol parties (whi
h are ITMs in π). If a proto
ol partyre
eives su
h a request, it sends its 
urrent state to the adversary and from thenon is 
ontrolled by the adversary (i.e., it forwards all in
oming 
ommuni
ationto the adversary and vi
e versa).Usually, the ideal model will be des
ribed by a so-
alled ideal fun
tionality.Su
h an ideal fun
tionality is an in
orruptible ITM that 
an be seen as a trustedthird party a

essible to the proto
ol parties. The ideal proto
ol 
orrespondingto F 
onsists of F itself and a so-
alled dummy-party P̃ for ea
h party P inthe real model. The dummy-party P̃ simply forwards all messages re
eived fromthe environment to F and vi
e versa. In slight abuse of notation, we write Ffor the ideal proto
ol 
orresponding to F . Note that the dummy-parties 
anbe 
orrupted, hen
e the inputs and outputs to F from 
orrupted parties 
an bein�uen
ed by the adversary-simulator. Using the 
on
ept of an ideal fun
tionality,we 
an express many proto
ol tasks by �rst spe
ifying an ideal fun
tionality Fthat ful�ls the proto
ol task by de�nition, and then requiring that the proto
ol
π UC emulates F .We 
an also 
onsider real proto
ols π whi
h 
ontain ideal fun
tionalities
F (e.g., a fun
tionality modelling a CRS). These fun
tionalities 
an then bea

essed by all parties. We then say that π is a proto
ol in the F-hybrid model.For more details, we refer the reader to the full version of [6℄.2.2 The Composable In
oer
ibility framework (UC/
)In our framework (UC/
) the possibility of 
oer
ions is modelled by the presen
eof an additional adversarial entity, 
alled the de
eiver. Formally, a de
eiver is anITM D with the spe
ial identity dec. We further re�ne the notion of a proto
ol:A proto
ol is a network that does not 
ontain an environment, adversary, orde
eiver.A typi
al network would 
onsist of a proto
ol π, an adversary A, a de
eiver
D, and an environment Z (where the adversary and the de
eiver may also be
alled adversary-simulator and de
eiver-simulator for 
larity depending on theirrole in the proto
ol). We put no restri
tion on the 
ommuni
ation between ma-
hines, A,D,Z may all 
ommuni
ate with ea
h other. Both the adversary andthe de
eiver may 
ontrol parties. The exa
t me
hanism of this is the following:Corruption model. A proto
ol party may be in one of three 
orruption states:Un
ontrolled , 
orrupted , and de
eiving . We say a party is 
ontrolled if it is 
or-rupted or de
eiving. Initially, all ma
hines are un
ontrolled. Un
ontrolled partiesbehave a

ording to the proto
ol spe
i�
ation. If the environment Z sends a
orruption request to an un
ontrolled party, the party be
omes 
orrupted. If theenvironment sends a de
eption request to an un
ontrolled or a 
orrupted party,the party be
omes de
eiving. When a party be
omes 
orrupted or de
eiving, itsends its state to the adversary or the de
eiver, respe
tively. From then on, it



is 
ontrolled by the adversary or the de
eiver, respe
tively (that is, it forwardsall in
oming 
ommuni
ation to the 
ontrolling ma
hine and sends messages asinstru
ted by the 
ontrolling ma
hine). The only ex
eption is that if a 
orruptedma
hine re
eives a de
eption request, it will not forward that request to theadversary, be
ause in that moment, it will be
ome de
eiving and hen
e be underthe 
ontrol of the de
eiver. We stress that if a party is de
eiving, the adversary
annot even observe that party's 
ommuni
ation (unless the party 
ommuni
atesover an inse
ure 
hannel or with a 
orrupted party).We assume the existen
e of a globally readable register that 
ontains thestate of ea
h party (whether it is un
ontrolled, 
orrupted, or de
eiving). However,when the adversary reads this register, the state of any de
eiving ma
hine willbe reported as 
orrupted. (This re�e
ts the fa
t that the adversary should notbe able to know whi
h ma
hine is de
eiving.) Proto
ol parties will not usuallyread this register; in some 
ases, however, it might be useful if the behaviour ofan ideal fun
tionality 
an depend on whether a ma
hine is 
ontrolled or not.5Se
urity de�nition. We are now ready to spe
ify the notion of UC/
 se
urity.In this notion, we do not only require the adversary-simulator (in the ideal model)to simulate the adversary's a
tions (in the real model), but simultaneously re-quire that the de
eiver-simulator (in the real model) simulates the a
tions of thede
eiver (in the ideal model). The resulting notion is stri
tly stronger than UC.De�nition 2 (UC/
). Let π and ρ be proto
ols. We say that π UC/
 emulates
ρ if for any polynomial-time de
eiver D there exists a polynomial-time de
eiver
DS (the de
eiver-simulator) su
h that for any polynomial-time adversary A thereexists a polynomial-time adversary AS (the adversary-simulator) su
h that forany polynomial-time environment Z the following networks are indistinguishable:
π ∪ {A,DS,Z} and ρ ∪ {AS ,D,Z}.Where is the de
eption strategy? The existen
e of a de
eption strategy thathonest parties 
an follow when being 
oer
ed is an essential part of any notion ofin
oer
ibility. Su
h a de
eption strategy also exists in our model: if we 
onsiderthe de
eiver D̃ that simply obeys any 
ommands (su
h as �vote for Bob�) sentto it by the environment (we 
all su
h a de
eiver a dummy-de
eiver D̃S , seeSe
tion 2.4), then the 
orresponding de
eiver-simulator des
ribes how a 
oer
edparty should behave in any situation. For an example of how to derive a spe
ialpurpose de
eption strategy from D̃S , see the proof of Theorem 10.Why is the adversary not informed about de
eiving parties? The readermay noti
e an asymmetry in the de�nition: While the de
eiver learns whi
h partyis 
orrupted and whi
h party is de
eiving, the adversary will be told that a partyis 
orrupted even if it is de
eiving. This is ne
essary be
ause during a de
eption,the goal is to 
heat the adversary into thinking that one behaves as he instru
ts5 A typi
al example is the key ex
hange fun
tionality, whi
h returns a random keyfor both parties [6, full version℄. If one of the parties is 
orrupted, the key is instead
hosen by the adversary. Thus the fun
tionality needs to know whi
h parties are
orrupted.



(i.e., that one is 
orrupted). Therefore 
orrupted and de
eiving parties should beindistinguishable from the point of view of the adversary.Why 
an de
eiving party not be
ome 
orrupted? Another asymmetry isthat a 
orrupted party 
an later be
ome de
eiving while the model does notallow to 
orrupt parties that are de
eiving. Although formally both dire
tions
ould be allowed, we have ex
luded the latter be
ause we 
ould not �nd aninterpretation for su
h a s
enario. For an interpretation of the former dire
tion(bad-guy 
oer
ions), see the next se
tion.2.3 Corruption s
hedulesThe notion of UC/
 (De�nition 2) allows the environment to 
orrupt or 
oer
eany party at any point of time. This leads to a very stri
t de�nition. To get ade�nition that is more lenient but easier to ful�l, one 
an impose 
ertain restri
-tions on the 
orruption and de
eption requests performed by the environment.We 
all su
h a restri
tion a 
orruption s
hedule.Bad-guy 
oer
ions. There are no restri
tions on the environment (ex
ept thatthe environment 
annot 
orrupt a de
eiving party, this is impli
it in the mod-elling of the 
orruption me
hanism).We 
all this notion bad-guy 
oer
ions be
ause the environment may �rst 
or-rupt a party (make it a �bad-guy�) and then later 
oer
e it. It is very di�
ult todesign proto
ols that are se
ure against bad-guy 
oer
ions be
ause a 
orruptedparty may be instru
ted by the adversary to a
tively deviate from the proto
olto produ
e eviden
e against itself and thus thwart its own deniability. (In 
on-trast, a de
eiving party would, given the same instru
tions, only try to make theadversary believe that it follows these instru
tions.)For example, in some proto
ol the ability to de
eive the adversary (and thusthe in
oer
ibility of the proto
ol) might be based on the following fa
t: Whenthe adversary requests a private se
ret m of some party, that party may send adi�erent se
retm′ instead whi
h 
ontains a trapdoor. This trapdoor then is lateressential for a
hieving in
oer
ibility. In the setting of bad-guy 
oer
ions, a partymight �rst be 
orrupted and then reveal the true se
ret m to the adversary.This se
ret m does not 
ontain a trapdoor. Then later, if the party be
omesde
eiving, it will be unable to follow its de
eption strategy be
ause it does notknow any trapdoor for m. In a nutshell, while 
orrupted, a party may a
tivelytry to prevent its own in
oer
ibility. Thus we expe
t that UC/
 se
urity withrespe
t to bad-guy 
oer
ions is very hard to a
hieve.In pra
tise, bad-guy 
oer
ions are arguably a very rare event. A possible mo-tivation for bad-guy 
oer
ions is the following thought experiment: A member(say, Bob) of a 
riminal organisation is required by the rules of that organisationto a
tively produ
e and deliver some eviden
e (e.g., 
ertain keys) against himselfto that organisation. While Bob still works for the organisation, he will not tryto 
ir
umvent these rules and will deliver this eviden
e. But if Bob later de
idesto leave the 
riminal organisation and to 
ooperate with the poli
e (under
over),



Bob may have to 
onvin
ingly a
t as if he was still following the 
riminal or-ganisation's instru
tions. This is exa
tly the 
ase that is modelled by bad-guy
oer
ions.In most 
ases, however, UC/
 with bad-guy 
oer
ions will be mu
h to stronga notion, and the notion of good-guy 
oer
ions (below) will be preferred.Good-guy 
oer
ions. The environment may 
orrupt parties at any time andmay send de
eption requests to un
ontrolled parties at any time. The environ-ment may not send de
eption requests to 
orrupted parties.Re
eipt-freeness. The environment may 
orrupt parties at any time, and maysend de
eption requests to un
ontrolled parties after the end of the proto
ol (sothat the adversary gets their state). The environment may not send de
eptionrequests to a 
orrupted party. Re
eipt-freeness implies that an honest party doesnot learn any data during the proto
ol that 
ould later be used to prove after theproto
ol exe
ution that the party performed a 
ertain a
tion. (Note that witherasing parties, re
eipt-freeness is probably easy to a
hieve: an honest partysimply erases all intermediate proto
ol data.)Stati
 
orruptions/de
eptions. All 
orruption and de
eption requests mustbe sent at the very beginning of the proto
ol exe
ution. In parti
ular, this im-plies that the environment 
annot 
hoose whi
h parties to 
orrupt depending onmessages it observes during the proto
ol exe
ution.Combinations.The above 
orruptions s
hedules may be 
ombined by requiringthat the environment obeys a 
ertain s
hedule with respe
t to some parties andanother with respe
t to other parties. For example, one might have proto
olsthat are UC/
 se
ure with re
eipt-freeness for Ali
e and good-guy 
oer
ions forBob.2.4 Properties of UC/
 se
urityThe proofs in this se
tion are omitted for spa
e reasons. They 
an be found inthe full version [21℄.Dummy adversary and de
eiver. A dummy-adversary is an adversary thatjust follows the instru
tions of the environment. More pre
isely, it forwards allmessages it re
eives to the environment, and sends only the messages the en-vironment instru
ts it to send. It was shown by Canetti [6℄ in the UC settingthat the dummy-adversary is 
omplete, that is, without loss of generality we
an 
onsider only the dummy-adversary. Therefore we only have to spe
ify theadversary-simulator for the dummy-adversary instead of having to spe
ify theadversary-simulator for every possible adversary. This simpli�es proofs.In the setting of UC/
, we 
an additionally 
onsider the dummy-de
eiver thatjust follows the instru
tions of the environment. Below, we will show that boththe dummy-adversary and the dummy-de
eiver are 
omplete. Besides stronglysimplifying proofs, the 
ompleteness of the dummy-de
eiver has an additional
on
eptual advantage. The de
eiver-simulator 
orresponding to the dummy-de
eiver en
odes a universal de
eption strategy. That is, for any �ideal de
eption�,



it tells us how to perform this de
eption in the real proto
ol. The existen
e ofsu
h a universal de
eption strategy is very important in real life, proto
ol usersneed to have an expli
it strategy how to lie in whi
h situation; it is not su�
ientthat su
h a strategy exists for ea
h situation.De�nition 3 (Dummy-adversary, dummy-de
eiver). The dummy-adversary Ã is an adversary that, when re
eiving a message (id ,m) from theenvironment, sends m to the party with identity id , and that, when re
eiving mfrom a party with identity id , sends (id ,m) to the environment. The dummy-de
eiver D̃ is de�ned analogously.Lemma 4 (Completeness of dummy-adversary and dummy-de
eiver).Let π and ρ be proto
ols. Then π UC/
 emulates ρ i� π UC/
 emulates ρ withrespe
t to the dummy-adversary/de
eiver (i.e., when only 
onsidering adversary
Ã and de
eiver D̃ in De�nition 2).Universal 
omposition. One of the main advantages of the UC framework isthe universal 
omposition theorem. This theorem guarantees that a UC se
ureproto
ol π 
an be se
urely used as a subproto
ol of arbitrary other proto
ols σ,even when σ and polynomially many instan
es of π run 
on
urrently. The same
ompositionality result also holds for the UC/
 se
urity notion.To formulate the 
omposition theorem, we introdu
e some notation. Let πand σ be proto
ols. Then let σπ denote the proto
ol where σ invokes a polynomialnumber of instan
es of the subproto
ol π. That is, ma
hines in σ may give inputsto ma
hines in π, these inputs are treated by π as 
oming from the environment.When the ma
hines in π give output ba
k to the environment, these are sent tothe invoking ma
hines in σ. Thus, in a sense, in σπ, the proto
ol σ plays the roleof the environment for the instan
es of π. For example, if σF is a proto
ol usinga 
ommitment fun
tionality F (i.e., σF is a proto
ol in the F-hybrid model),then σπ would be the proto
ol that uses the subproto
ol π instead of using the
ommitment fun
tionality F . The following theorem guarantees that, if π UC/
emulates some other proto
ol ρ (e.g., ρ = F), we do not loose se
urity if werepla
e subproto
ol invo
ations of ρ by subproto
ol invo
ations of π.Theorem 5 (Universal 
omposition). Let π, ρ, and σ be polynomial-timeproto
ols. Assume that π UC/
 emulates ρ. Then σπ UC/
 emulates σρ.The most 
ommon use 
ase of the 
omposition theorem is given by the fol-lowing 
orollary:Corollary 6. Let π and σ be polynomial-time proto
ols, and F and G bepolynomial-time fun
tionalities. Assume that π UC/
 emulates F and that σFUC/
 emulates G. Then σπ UC/
 emulates G.3 Voting s
hemesIn this se
tion we illustrate the UC/
 se
urity notion by applying it to the spe
ial
ase of voting s
hemes. We give a de�nition of in
oer
ibility that is tailored to



the spe
i�
 
ase of voting proto
ols and show that this de�nition is implied bythe UC/
 se
urity notion.De�nition 7 (Voting s
heme). Fix sets V (the set of votes), T (the set of tal-lies), P (the set of voters). A tally fun
tion is an e�
iently 
omputable fun
tion
tally : (V ∪ {⊥})P → T .A voting s
heme for tally is a two-stage proto
ol. We 
all the stages votingphase and tallying phase. In su
h a proto
ol, ea
h party Pi ∈ P gets an input
vi ∈ V ∪ {⊥} (the vote of Pi). vi = ⊥ means that the Pi does not parti
ipate inthe proto
ol (abstention). In the end of the tallying phase a distinguished party
T outputs a value t ∈ T .Typi
ally, V would be the set of all 
andidates. In more 
omplex s
hemes,elements of V might be, e.g., ordered lists of 
andidates in order of de
reasingpre
eden
e. The set of tallies T usually is the set of all fun
tions V → N0.Alternatively, in a voting s
heme whi
h only announ
es the winner, we wouldhave have T = V . The tally fun
tion tally(v1, . . . , vn) spe
i�es what the 
orre
ttally is for the votes vi ∈ V ∪ {⊥} where vi = ⊥ denotes abstention.Note that we do not require that the parties Pi 6= T are aware whether theyare in the tallying or the voting phase. Su
h a requirement might be di�
ultto ensure in an asyn
hronous environment. In parti
ular, votes 
ast during thetallying phase (but before the tally is announ
ed) might or might not be 
ounted.An ideal voting s
heme is given by the following fun
tionality:De�nition 8 (Voting fun
tionality). The voting fun
tionality Fvote = F tally

voteexpe
ts (at most one) message vi ∈ V from ea
h party Pi ∈ P. When re
eiving
tally from T , Fvote sets vi := ⊥ for all Pi ∈ P from whi
h it did not re
eivea message vi ∈ V yet. Then Fvote 
omputes t := tally(vi, i ∈ P) (the tally) andsends t to the adversary. Then, when Fvote re
eives deliver from the adversary,it sends t to the party T .This fun
tionality models that the tally output by T is 
orre
tly 
omputedusing the tally fun
tion (as long as T itself is not 
orrupted) and that the indi-vidual votes are se
ret (even if T is 
orrupted).Natural properties of voting s
hemes are, e.g., 
orre
tness (the tally is 
orre
teven in the presen
e of an adversary) and anonymity (the adversary 
annot tellwho voted for whom, ex
ept as dedu
ible from the tally itself). We will notformalise these properties here, but it is easy to see that a voting s
heme thatUC emulates the voting fun
tionality Fvote satis�es reasonable formalisations ofthese properties. Sin
e the UC/
 se
urity notion is stronger than UC, this impliesthat these elementary properties are satis�ed by UC/
 se
ure voting s
heme, too.In our 
ontext, the most interesting property of a voting s
heme is in
o-er
ibility. We will �rst formalise what in
oer
ibility means for voting s
hemes(independently of our framework). Then we will show that in
oer
ibility of vot-ing s
hemes is implied by se
urity in the UC/
 framework. Assume some party
P that wants to 
ast a vote v. In an in
oer
ible voting s
heme, we expe
t thatif the adversary A for
es a party P to deviate from the proto
ol, A should not



be able to tell the di�eren
e between P obeying the adversary A, or the party
P 
asting the vote v anyway (we say P de
eives the adversary). Of 
ourse, sin
ethe adversary learns the tally, this goal is una
hievable � the tally always leaks anon-negligible amount of information about the vote of P (at least if the numberof voters is polynomial). We 
an only a
hieve the following: The adversary's ad-vantage in distinguishing between P obeying and P de
eiving is not greater thanthe advantage with whi
h the adversary 
ould distinguish these two 
ases givenonly the tally. To formulate this de�nition, we �rst introdu
e some notation:Fix a voter P ∈ P and a vote v ∈ V ∪ {⊥}. Fix a distribution B on (V ∪
{⊥})P\{P}. (B represents the distribution of the votes of the other voters.) Givena vote v, let Bv denote the distribution over (V ∪ {⊥})P that 
hooses the votesfor all Pi ∈ P \ {P} a

ording to B and uses the vote v for P . A

ordingly,
tally(Bv) denotes the tally resulting from votes 
hosen a

ording to Bv. Let
Advideal (B, v) := maxv∗ ∆(Bv,Bv∗) where v∗ ranges over V ∪{⊥} and ∆ denotesthe statisti
al distan
e. (Advideal des
ribes how well an adversary 
an distinguishbetween being obeyed and being de
eived using only the tally.)A voting adversary is an adversary that 
ontrols a party P (however, de-pending on the setting, P may 
hoose to ignore the instru
tions given by theadversary) and that may de
ide when the tallying phase starts. We require thata voting adversary eventually starts the tallying phase. Furthermore, when theparty T outputs the tally, the tally is given to the voting adversary. In the end,the voting adversary outputs a bit b.Given a voting adversary A, let Probey(A,B) be the probability that A out-puts 1 in the 
ase that the party P follows the instru
tions of the adversary (i.e.,
P is 
orrupted) and all other parties honestly follow the proto
ol (with inputs
hosen a

ording to B).Given some program 
ode d (the de
eption strategy for P ), let
Prdeceive(A, d,B) denote the probability that the adversary A outputs 1 if Pfollows the instru
tions in d and all other parties honestly follow the proto
ol(with inputs 
hosen a

ording to B). (Intuitively, d is a strategy that tells P howto vote for v and simultaneously make the adversary believe that P obeys theadversary.) We assume that d gets v and the identity of P as input. In the samesetting, let Tallydeceive(A, d,B) denote the tally output by T .De�nition 9 (In
oer
ible voting s
hemes). A voting s
heme is in
oer
ibleif there is a de
eption strategy d su
h that for every polynomial-time voting ad-versary, every voter P ∈ P, every vote v ∈ V, and every e�
iently sampleabledistribution B the following holds:� The de
eption strategy 
asts the right vote: The random variables

Tallydeceive(A, d,B) and tally(Bv) are 
omputationally indistinguishable.� The adversary 
annot distinguish between being obeyed and being de-
eived: For some negligible fun
tion µ we have that ∣

∣Probey(A,B) −

Prdeceive(A, d,B)
∣

∣ ≤ Advideal (B, v) + µ.Many variants of this de�nition are possible. For example, one 
ould allowthe voting adversary to 
orrupt additional parties from P \ {P}. (In this 
ase,



one would have to adapt the de�nition of Advideal .) For the sake of simpli
ity,we do not strive to �nd the most general formulation of De�nition 9, espe
iallyin view of the fa
t that the UC/
 framework already provides us with a verygeneral de�nition of in
oer
ibility.We will now show that in
oer
ibility in the sense of De�nition 9 is alreadyimplied by UC/
 se
urity. We �nd that the proof of the following theorem is veryinstru
tive be
ause it gives some intuition for the UC/
 framework, and be
auseit illustrates how appli
ation-spe
i�
 in
oer
ibility de�nitions (not restri
ted tothe appli
ation of voting) 
an be proven to be implied by UC/
 se
urity.Theorem 10. Let π be a voting s
heme for the tally fun
tion tally. Assumethat π UC/
 emulates F tally
vote with stati
 
orruption/de
eption. Then π is anin
oer
ible voting s
heme.Proof. Fix a voting adversary A. We de�ne the UC/
 adversary A′ to behavelike A, ex
ept that when A starts the tallying phase, A′ instead sends tally tothe environment. When A would give an output b, A′ sends b to the environment.We de�ne an environment Zobey := ZP,v,B

obey as follows: Initially, Zobey sends a
orruption request to the party P . Then Zobey 
hooses votes v1, . . . , vn a

ordingto the distribution B and gives these votes as input to the parties Pi ∈ P \ {P}(or, if vi = ⊥, sends no input to Pi). When the adversary sends tally to Zobey ,
Zobey sends tally to the party T . When the adversary sends b to Zobey , Zobeyterminates with output b.Furthermore, we de�ne Zdeceive := ZP,v,B

deceive as follows: Initially, Zdeceive sendsa de
eption request to the party P . Then Zdeceive 
hooses votes v1, . . . , vn a

ord-ing to the distribution B and gives these votes as input to the parties Pi ∈ P\{P}(or, if vi = ⊥, sends no input to Pi). Then it sends v to the de
eiver. (This willmake the de
eiver D de�ned below instru
t P to 
ast vote v.) When the adver-sary sends tally to Zdeceive, Zdeceive sends tally to the party T . When theadversary sends b to Zdeceive, Zdeceive terminates with output b.We de�ne the de
eiver D as follows: When re
eiving a state from party P , Dinstru
ts P to send this state to the adversary. (This is ne
essary only for formalreasons: sin
e the adversary should believe that P is 
orrupted, he expe
ts astate from P . Sin
e we are in the 
ase of stati
 
orruptions/de
eptions, the stateis only sent before the start of the proto
ol and is thus empty.) When D re
eives
v from the environment, D instru
ts P to send v to the fun
tionality Fvote. (I.e.,
P should 
ast the vote v.) Messages 
oming from the adversary are ignored.In parti
ular, when the adversary instru
ts P to 
ast some other vote, this isignored.Sin
e π UC/
 emulates Fvote := F tally

vote , there exist a polynomial-timede
eiver-simulator DS and a polynomial-time adversary-simulator A′
S su
h thatfor all polynomial-time environments Z, the networks π ∪ {A′,DS ,Z} and

Fvote ∪ {A′
S ,D,Z} are indistinguishable. (We write Fvote for the proto
ol 
on-taining Fvote and the dummy parties.)By 
onstru
tion,

Probey(A,B) = Pr[EXECπ∪{A′,DS,Zobey} = 1]. (1)



(We omit the arguments k, z from EXEC for brevity.) Note that sin
e no partyis de
eiving, the de
eiver-simulator DS does nothing.We de�ne the de
eption strategy d as follows: A party P following d andwishing to 
ast the vote v internally simulates DS . Then P sends the emptystate to DS . (This is done for formal reasons: in the UC/
 framework, DS wouldget su
h an empty state when P is de
eiving from the start. Hen
e this messageinforms DS that P is de
eiving.) Then P sends v to the internally simulated
DS as 
oming from the environment. Then P follows the instru
tions that DSgives to it. In the 
ase that only P is de
eiving, DS only sends instru
tions to
P . Thus it is not ne
essary that P simulates any other ma
hines 
ommuni
atingwith DS .Then, by 
onstru
tion,

Prdeceive(A, d,B) = Pr[EXECπ∪{A′,DS ,Zdeceive} = 1]. (2)Compare the networks Fvote ∪ {A′
S ,D,Zdeceive} and Fvote ∪ {A′

S ,D,Zobey}. Inthe �rst network, Zdeceive instru
ts the dummy-party P̃ (via the de
eiver D) tosend the vote v to Fvote. In the se
ond network, A′
S instru
ts P̃ to send someother vote v∗ to Fvote (where we write v∗ = ⊥ to indi
ate that A′

S does notinstru
t P̃ to vote before A′
S sends tally to the environment). In the idealmodel, P̃ does not re
eive any in
oming messages from other parties. Thus, inboth networks, A′

S does not get any messages from P̃ . Thus, A′
S 
an only use thetally to distinguish the networks. The distribution of the tally in the network

Fvote ∪ {A′
S,D,Zobey} is tally(Bv∗), and the distribution of the tally in thenetwork Fvote ∪ {A′

S ,D,Zdeceive} is tally(Bv). Sin
e Zobey and Zdeceive outputthe bit b re
eived from A′
S , it follows that

∣

∣Pr[EXECFvote∪{A′

S
,D,Zobey} = 1]− Pr[EXECFvote∪{A′

S
,D,Zdeceive} = 1]

∣

∣

≤ max
v∗∈V∪{⊥}

∆(Bv,Bv∗) = Advideal(B, v).Sin
e for all polynomial-time Z, the networks π ∪ {A′,DS ,Z} and Fvote ∪
{A′

S ,D,Z} are indistinguishable, it follows that
∣

∣Pr[EXECπ∪{A′,DS ,Zobey} = 1]−Pr[EXECπ∪{A′,DS ,Zdeceive} = 1]
∣

∣ ≤ Advideal(B, v)+µfor some negligible fun
tion µ. Then with (1) and (2) we get that
∣

∣Probey(A,B)− Prdeceive(A, d,B)
∣

∣ ≤ Advideal (B, v) + µ.This shows that the proto
ol π satis�es the se
ond 
ondition in De�nition 9.(Noti
e that the 
onstru
tion of the de
eption strategy d is independent of Aand B.)We are left to show that Tallydeceive(A, d,B) and tally(Bv) are indistinguish-able (�rst 
ondition of De�nition 9).Let t denote the message re
eived by Zdeceive from the party T (t is thetally). In the network Fvote ∪ {A′
S ,D,Zdeceive}, t is the output of Fvote. Thus



the distribution of t is tally(Bv): The party P is instru
ted by D to send thevote v, all other parties 
ast votes 
hosen a

ording to the distribution B.In the network π ∪ {A′,DS ,Zdeceive}, by 
onstru
tion of Zdeceive and of d,the distribution of t is Tallydeceive(A, d,B).For 
ontradi
tion, assume that Tallydeceive(A, d,B) and tally(Bv) were not
omputationally indistinguishable. Then there is an e�
iently 
omputablefun
tion f : {0, 1}∗ → {0, 1} su
h that |Pr[f(Tallydeceive(A, d,B)) = 1] −
Pr[f(tally(Bv)) = 1]| is not negligible. Then we de�ne Z∗

deceive like Zdeceive,ex
ept that Z∗
deceive outputs f(t). Then |Pr[EXECπ∪{A′,DS,Z∗

deceive
} = 1] −

Pr[EXECFvote∪{A′

S
,D,Z∗

deceive
} = 1]| is not negligible. This is a 
ontradi
tion tothe fa
t that for all polynomial-time Z, the networks π ∪ {A′,DS ,Z} and

Fvote∪{A′
S ,D,Z} are indistinguishable. Thus Tallydeceive(A, d,B) and tally(Bv)are 
omputationally indistinguishable and the �rst 
ondition of De�nition 9 issatis�ed by π. ⊓⊔The design of voting proto
ols that are UC/
 se
ure is, of 
ourse, an openproblem. We believe designing UC/
 se
ure remote voting s
hemes to be a 
hal-lenging problem that may involve novel 
ryptographi
 te
hniques. In the 
aseof non-remote voting (i.e., involving voting booths and other partially trustedsetup su
h as in, e.g., [10,12,20,3℄), realising UC/
 se
urity might be mu
h easier.We therefore parti
ularly propose UC/
 as a se
urity de�nition for that setting.4 In
oer
ible two-party proto
olsIn the previous se
tion, we have seen that UC/
 se
ure proto
ols are in
oer
ible.We have not, however, shown that su
h proto
ols exist at all. Fortunately, theproto
ols that were presented in [18,7℄ for general multi-party 
omputation in theexternalized UC (EUC) model are also se
ure in our UC/
 model in the two-party
ase and therefore enjoy in
oer
ibility in addition to the properties guaranteedby the EUC model. The proof that their proto
ols work in our setting is quitete
hni
al; we defer it to the full version [21℄. We only state the �nal result here.The proto
ols from [18,7℄ 
an be based on one of the following fun
tionalities:The key registeration with knowledge (KRK) fun
tionality Fkrk is a fun
-tionality where ea
h party may register a publi
 key/se
ret key pair and everyparty may request the publi
 keys of all parties and the se
ret key of itself. Theaugmented CRS (ACRS) fun
tionality Facrs 
hooses a publi
 key and a 
orre-sponding master se
ret key, and derives for ea
h party a 
orresponding individualse
ret key. The publi
 key is given to all parties, the se
ret key of ea
h partyis only given to that party. The signature 
ard fun
tionality Fsc with owner Ppi
ks a signing/veri�
ation key pair and reveals the veri�
ation key to all parties.The party P (the owner) may send arbitrary messages m to Fsc and re
eivessignatures of m ba
k. The signing key is never revealed.



Theorem 11 (UC/
 two-party 
omputation). Let F ∈ {Fkrk,Facrs,Fsc}.Let G be a well-formed silent 6 fun
tionality. Then there is a proto
ol π in the
F-hybrid model su
h that π UC/
 emulates G with stati
 
orruptions/de
eptions.5 Con
lusions and open problemsWe have presented the UC/
 framework. This framework enables us to modelthe in
oer
ibility of general multi-party proto
ols. The UC/
 framework 
omeswith a strong 
omposition theorem (universal 
omposition). We have shown thatwith respe
t to stati
 
oer
ions/de
eptions, arbitrary two-party proto
ol tasks
an be realised in the framework.Dire
tions for future work in
lude:� Good-guy/bad-guy 
oer
ions. Our feasibility results only hold for stati
 
o-er
ions/de
eptions. We believe that feasibility results similar to those pre-sented in Se
tion 4 
an be shown for good-guy 
oer
ions. To a
hieve proto-
ols that are se
ure with respe
t to bad-guy 
oer
ions, we believe that new
ryptographi
 te
hniques will have to be developed.� Inse
ure 
hannels.We assumed perfe
tly se
ure 
hannels, i.e., 
hannels wherethe adversary does not even noti
e that a message is sent. Can the resultsfrom Se
tion 4 be generalised to a setting with weaker assumptions on the
hannels?� Multi-party proto
ols. Our feasibility results are restri
ted to two-party pro-to
ols. To 
apture important 
ases like voting proto
ols we need to extendthis to multi-party proto
ols.� Impossibility results. Sin
e in
oer
ibility is a strong requirement, we also ex-pe
t that many proto
ol tasks 
annot be ful�lled. For example, is it possibleto realise a non-trivial proto
ol task using only a 
ommon referen
e string?� Not knowing who is 
oer
ed/
orrupted. In our setting, the de
eiver-simulator's strategy may depend on who is 
orrupted/
oer
ed. If we restri
tevery party's strategy to be independent of the other parties, 
an we still
onstru
t UC/
 se
ure proto
ols?A
knowledgements.We thank Yevgeniy Dodis and Daniel Wi
hs for extensivedis
ussions. We also thank the anonymous reviewers for helpful 
omments.
6 A well-formed fun
tionality is one whose behaviour does not depend on whi
h partiesare 
orrupted or de
eiving. We 
all G silent if it does not 
ommuni
ate with theadversary or de
eiver.



Referen
es1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
ryptographi
 fault-tolerant distributed 
omputation. In: STOC'88. pp. 1�10. ACM(1988)2. Benaloh, J., Tuinstra, D.: Re
eipt-free se
ret-ballot ele
tions (extended abstra
t).In: STOC '94. pp. 544�553. ACM (1994)3. Bohli, J.M., Müller-Quade, J., Röhri
h, S.: Bingo voting: Se
ure and 
oer
ion-freevoting using a trusted random number generator. In: E-Voting and Identity, VOTE-ID 2007. LNCS, vol. 4896, pp. 111�124. Springer (2007)4. Canetti, R., Gennaro, R.: In
oer
ible multiparty 
omputation. In: FOCS'96. p. 504.IEEE (1996)5. Canetti, R.: Se
urity and 
omposition of multi-party 
ryptographi
 proto
ols. Jour-nal of Cryptology 3(1), 143�202 (2000)6. Canetti, R.: Universally 
omposable se
urity: A new paradigm for 
ryptographi
proto
ols. In: FOCS'01. pp. 136�145. IEEE (2001), full version is IACR ePrint2000/0677. Canetti, R., Dodis, Y., Pass, R., Wal�sh, S.: Universally 
omposable se
urity withglobal setup. In: TCC'07. LNCS, vol. 4392, pp. 61�85. Springer (2007)8. Canetti, R., Feige, U., Goldrei
h, O., Naor, M.: Adaptively se
ure multi-party
omputation. In: STOC'95. pp. 639�648. ACM Press (1996)9. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally 
omposable two-partyand multi-party se
ure 
omputation. In: STOC'02. pp. 494�503. ACM (2002)10. Chaum, D.: Se
ret-ballot re
eipts: True voter-veri�able ele
tions. IEEE Se
urity &Priva
y 2(1), 38�47 (2004)11. Chaum, D., Crépeau, C., Damgård, I.: Multiparty un
onditionally se
ure proto
ols.In: STOC'88. pp. 11�19. ACM Press (1988)12. Chaum, D., Ryan, P.Y.A., S
hneider, S.A.: A pra
ti
al voter-veri�able ele
tions
heme. In: ESORICS'05. pp. 118�139 (2005)13. Delaune, S., Kremer, S., Ryan, M.D.: Verifying priva
y-type properties of ele
troni
voting proto
ols. Journal of Computer Se
urity 17(4), 435�487 (2009)14. Forsyth, F.: The De
eiver. Bantam Books (1991), summary available at http://tinyurl.
om/y
vhuod15. Goldrei
h, O.: Foundations of Cryptography � Volume 2 (Basi
 Appli
ations). Cam-bridge University Press (2004)16. Goldrei
h, O., Mi
ali, S., Wigderson, A.: How to play any mental game or a 
om-pleteness theorem for proto
ols with honest majority. In: STOC'87. pp. 218�229(1987)17. Herzberg, A.: Rumpsession, Crypto '91 (1991)18. Hofheinz, D., Unruh, D., Müller-Quade, J.: Universally 
omposable zero-knowledgearguments and 
ommitments from signature 
ards. Tatra Mt. Math. Pub. pp. 93�103 (2007)19. Juels, A., Catalano, D., Jakobsson, M.: Coer
ion-resistant ele
troni
 ele
tions. In:4nd ACM Workshop on Priva
y in the Ele
troni
 So
iety (WPES). pp. 61�70.ACM Press (2005)20. Moran, T., Naor, M.: Re
eipt-free universally-veri�able voting with everlastingpriva
y. In: CRYPTO'06. LNCS, vol. 4117, pp. 373�392. Springer (2006)21. Unruh, D., Müller-Quade, J.: Universally 
omposable in
oer
ibility. IACR ePrint2009/520 (O
tober 2009)

http://tinyurl.com/ycvhuod

	Universally Composable Incoercibility

