Universally Composable Incoercibility™

Dominique Unruh! and Jérn Miiller-Quade?

! Saarland University
% Karlsruhe Institute of Technology (KIT)

Abstract. We present the UC/c framework, a general definition for
secure and incoercible multi-party protocols. Our framework allows to
model arbitrary reactive protocol tasks (by specifying an ideal function-
ality) and comes with a universal composition theorem. We show that
given natural setup assumptions, we can construct incoercible two-party
protocols realising arbitrary functionalities (with respect to static adver-
saries).

Keywords: Incoercibility, universal composability, voting.

1 Introduction

Commonly, security of a cryptographic protocol encompasses (very roughly) two
aspects: The protocol should guarantee that the private data of the parties
stays secret (privacy), and it should ensure that all data transferred or com-
puted is correct (integrity). Most security definitions ensure one or both of these
requirements, and many protocols are known to satisfy these definitions (e.g.,
[L6UTIITIRIO]).

There is, however, a requirement that does not fall into either category: co-
ercion resistance (first noted by [1712]). To illustrate this property, we use the
example of a voting scheme. In a voting scheme, it might be possible for a voter to
acquire a receipt that he cast a specific vote. This does not violate the anonymity
of the voter since the voter is not required to reveal or even acquire such a receipt.
Thus privacy is maintained. And getting a receipt does not allow to falsify the
outcome of the election. Thus the integrity of the scheme is maintained. Yet the
mere possibility of acquiring a receipt may make a party coercible. A coercive
adversary may threaten certain reprisals if the party does not cast a specific vote
and proves this by delivering a receipt to the adversary. Thus such an election
protocol would not be coercion resistant (short: incoercible).

Incoercibility is an important property in any setting in which some malicious
agent has the power to harm and thus threaten other protocol participants.
Clearly, this is not restricted to the setting of voting but may be the case in
other settings, too (e.g., when financial transactions are involved). Unfortunately,
incoercibility turns out to be both difficult to define and to achieve.

* Partially funded by the Cluster of Excellence “Multimodal Computing and Interac-
tion”.

Previous definitions of incoercibility are usually restricted to special domains
such as voting (e.g., [2/T9I13]). An exception are the models by Canetti and Gen-
naro [4] and by Moran and Naor [20] which give general definitions of incoercible
multi-party computation. Their definitions are, however, restricted to the case
of secure function evaluation. That is, they only consider protocols in which
all parties need to first contribute their inputs, and then from these inputs the
outputs for the parties are computed. Reactive protocols, protocols that have
multiple phases and where the inputs in one phase can depend on the outputs
of an earlier phase, are excluded. For example, the security of a commitment
protocol could not be modelled in their settings.

Besides the problem of reactive protocols, the issue of composability arises.
When building a complex protocol, it is often necessary to abstract from certain
subprotocols in the analysis to make the analysis manageable. For example, one
might first analyse the protocol assuming a perfectly secure mechanism for per-
forming commitments (modelled by a trusted machine), and then later on prove
the security of the subprotocol that is actually used for the commitments. To
do so, and also to have a guarantee that the protocol does not become insecure
when executed together with other protocols or instances of itself, one needs a
security notion that comes with a composition theorem.

In the case of normal secure multi-party computation (i.e., without inco-
ercibility) both the problem of modelling reactive protocols and of giving strong
compositionality guarantees has been solved by Canetti’s UC model [6]. In this
model, we can define a protocol task by specifying a trusted machine, the ideal
functionality, which by definition performs the required protocol task. Since this
machine can interact with its environment in arbitrary ways, the security of very
general reactive protocols can be modelled. Furthermore, the UC model guar-
antees that if a protocol is secure when using (as opposed to realising) an ideal
functionality, then the protocol stays secure when instead of the ideal function-
ality, a subprotocol that securely realises the ideal functionality is used. The UC
model, however, does not guarantee incoercibility.

Our contribution. We define the Composable Incoercibility framework (UC/c)
which is an extension of the UC framework. Like UC, UC/c allows to model very
general reactive protocol tasks and gives strong compositionality guarantees (uni-
versal composition). Additionally, protocols secure with respect to UC/c are in-
coercible. To illustrate the model, we show that a voting scheme that is UC/c
secure is also incoercible with respect to a definition tailored specifically to vot-
ing. Finally, we show that in the restricted case of static coercions/deceptions
(all corruptions and coercions happen at the beginning of the protocol), arbi-
trary UC/c secure two-party computation is possible assuming the availability
of secure channels.

Organisation. In we explain the intuition behind the UC/c frame-
work. In we define the UC/c framework and present the universal
composition theorem. In we illustrate our model by applying it to the
setting of voting protocols. In we present general feasibility results for
two-party protocols. In we give directions for further work.

1.1 The intuition behind UC/c

To understand the UC/c model, we first need to get an intuition of how inco-
ercibility is achieved. The goal of an incoercible protocol is the following: When
an adversary tries to coerce a party into performing a certain action (such as
casting a particular vote v*), the party should be able to perform the action it
originally intended to perform (casting a vote v) without the adversary noticing.
That is, the adversary should not be able to tell the difference between a party P
that follows the adversary’s instructions (a corrupted party, casting the vote v*)
and a party P that only tries to make the adversary believe that it follows the
adversary’s instructions (a deceiving party, casting the vote v and giving fake
evidence to the adversary that it cast the vote v*).

The most natural way to define incoercibility would be to require that the
adversary cannot distinguish between a coerced and a deceiving party. This, how-
ever, usually cannot be achieved. For example, in a voting protocol the adversary
will eventually learn the tally. The distribution of the tally will, since there are
only polynomially many voters, slightly but noticeably change when the vote
of P changes from v to v*. The adversary can hence distinguish coerced and
deceiving parties by observing the tally.

Thus, we have to weaken the requirement. The adversary should not be able
to distinguish a coerced and a deceiving party any better than he could do given
only information that is “legally” available to him (the tally in our example). In
general, however, it is not straightforward to define what information is “legally”
available to the adversary in any particular situation. Neither is it straightfor-
ward to determine how much distinguishing advantage the adversary would get
given only that information.

In order to circumvent this problem, we use a slightly different approach:
We first define an ideal model in which the adversary has, by definition, only
access to the “legally” available information. In the case of voting, such an ideal
model would consist of a trusted machine (the ideal voting functionality F) that
collects the votes from all parties and gives only the tally to the adversary. In the
ideal model, the distinguishing advantage between a coerced party (that gives
v* to F) and a deceiving party (that gives v to F) is, by definition, exactly the
advantage the adversary gets from the “legally” available information (the tally).

To make this definition more formal, we introduce an additional entity, the
deceiver [14]. The task of the deceiver is to instruct a deceiving party what it
should do (i.e., how to deceive the adversary). More formally, a deceiving party
will not run any program of its own, but instead follow the instructions of the
deceiver. (In a sense, the deceiver models the party’s free will.) In particular,
the deceiver may instruct a party to cast a vote v and to send to the adversary
the fake notification that it cast vote v*. (Since we are in the ideal model, no
cryptographic receipts or similar need to be faked.) A corrupted party, on the
other hand, will follow the adversaries instructions.

The combination of adversary and deceiver in the ideal model now allows to
model any coercion situation that can occur in the ideal model. To define what
it means that the real protocol is incoercible (or more precisely, as incoercible

as the ideal model), we will use the concept of simulation that underlies many
cryptographic definitions such as multi-party computation and zero-knowledge:
We show that for any adversary in the real model that performs some coer-
cion attack, there is another adversary in the ideal model (called the adversary-
simulator) that performs a corresponding attack with as much success. In other
words, we require that for any deceiver (specifying what a party would ideally
want to do), and for any adversary in the real model (trying to coerce parties),
there is an adversary-simulator in the ideal model such that the real and the
ideal model are indistinguishable.

We are, however, missing one ingredient: We need to specify how the ideal
deceptions (specified in terms of inputs to the ideal functionalities) translate
into real deceptions (specified in terms of faked messages etc.). This is done by
introducing a deceiver in the real model, too, called the deceiver-simulator. We
then require that for any deceiver in the ideal model (representing a possible
deception) there is a deceiver-simulator in the real model (that performs the
corresponding real deceptions) such that for any adversary in the real model
there is a adversary-simulator in the ideal model such that the two models are
indistinguishable.

Finally, to model the indistinguishability of the two models, we follow the
ideas from the UC framework and introduce a further machine, the environment,
that either communicates with the machines in the real model or with the ma-
chines in the ideal model and that has to guess which model it is in. (For details
on how this indistinguishability actually ensures that the adversary’s advantage
in distinguishing corrupted and deceiving parties carries over from the ideal to
the real model we refer to the example in [Section 3})

1.2 Related work

We are aware of only two works that tackle the problem of defining incoercibility
or a similar property in a general fashion (i.e., not specialised to a particular
protocol task such as voting).

Incoercible secure function evaluation (Canetti-Gennaro, Moran-
Naor). Canetti and Gennaro [4] present a model for defining incoercible se-
cure function evaluation which was subsequently refined by Moran and Naor
[20]. The model by Moran and Naor is based on the so-called stand-alone model
[5/I5], Ch. 7]. In this model, one assumes that the inputs of all honest parties are
fixed before the beginning of the protocol. This has several implications: First,
reactive protocols where parties may decide on their inputs in later phases can-
not be modelled. Second, when actually deploying the protocol, one would have
to ensure very strong synchronisation: In order not to introduce possibilities for
attacks not covered by the model, we have to ensure that no protocol message is
sent until all honest parties have decided on their input. Third, the stand-alone

model only guarantees sequential composabilityﬁ That is, we have no guarantee
that the protocol stays secure when running concurrently with other protocols
(which usually happens in real-life networks).

Since the model by Moran and Naor is based on the stand-alone model, in this
model coerced parties only need to lie about their initial inputs. Because of this,
Moran and Naor do not need to introduce an explicit deceiver; any deception a
party might want to perform can be encoded by specifying a second input, the
so-called “fake input”. In contrast, the more complex deceptions that are possible
in our setting necessitate the introduction of an explicit machine, the deceiver,
to specify the deceptions.

Everything we said about the work by Moran and Naor also applies to the
earlier work by Canetti and Gennaro [4]. Furthermore, the model by Canetti and
Gennaro only models a very weak form of coercion-resistance; the adversary may
instruct a coerced party to use a different input, but he may not instruct that
party to deviate from the protocol. For a discussion of the difference between
the models by Moran and Naor and by Canetti and Gennaro, we refer to [20].

Externalized UC (deniability). Another approach to define properties similar
to incoercibility for general protocols is the Externalized UC (EUC) framework
proposed by Canetti, Dodis, Pass, and Walfish [7] (also known as Generalized UC,
UC with global setup, or, proposed independently by Hotheinz, Miiller-Quade,
and Unruh [I8], UC with catalysts).

This framework is, like ours, an extension of the UC framework and inherits
its support for reactive protocols and its universal composition theorem. The
EUC framework differs from the UC framework by allowing the environment to
directly access the ideal functionality used in the real protocol. As explained in
[7], security in the EUC framework implies a property called deniability. This
means that no (malicious) protocol party P can collect any information during
the protocol run that can later be used to prove to an outsider that some party
@ participated in the protocol. (An example for such incriminating information
would be a message signed by @.) In other words, @ can plausibly claim that
the whole protocol did not take place. Obviously, such a claim is only realistic
with respect to an outsider who did not himself communicate with) during the
protocol execution. In contrast, incoercibility as understood by this paper means
that a party can lie about its actions towards an insider (e.g., a party could lie
even towards another voter about the vote it has cast).

Thus the two models (EUC and UC/c) have very different aims. Technically
they are, however, related: In the full version [21I] we show that under certain
conditions, EUC security implies UC/c security.

3 Note that it has not been shown that the variant of the stand-alone model presented
by Moran and Naor does compose sequentially. But it does not seem unlikely that
this could be shown.

2 The Composable Incoercibility Framework (UC/c)

2.1 Review of the UC framework

Our model is based on the Universal Composability (UC) framwork [6]. For self
containment and to fix notation, we give a short overview over the UC framework.
An interactive Turing machine (ITM) is a Turing machine that has additional
tapes for incoming and for outgoing communication. An ITM may be activated
by a message on an incoming communication tape. At the end of an activation,
the ITM may send a message on an outgoing communication tape to another
ITM. The recipient of a message is addressed by the unique identity of that ITM.
The actions of an ITM may depend on a global parameter k£ € N, the so-called
security parameter.

A network is modeled as a (possibly infinite) set of ITMsH We call a network
S executable if it contains an ITM Z with distinguished input and output tape
and with the special identity env. An execution of S with input z € {0,1}* and
security parameter k € IN is the following random process: First, Z is activated
with the message z on its input tape. Whenever an ITM M; € S finishes an
activation with an outgoing message m addressed to another ITM My € S on
its outgoing communication tape, the other ITM M, is invoked with incoming
message m on its incoming communication tape (tagged with the identity of the
sender M;). If an ITM terminates its activation without an outgoing message
or sends a message to a non-existing ITM, the ITM Z is activated. When the
ITM Z sends a message on its output tape (not the communication tape!), the
execution of S terminates. The output of Z we denote by EXECg(k, z). An ITM
Z with identity env we call an environment and an ITM A with identity adv we
call an adversary. A protocol is a network that does not contain an environment
or an adversary.

We call networks S, S’ indistinguishable if there is a negligible function p
such that for all ¥ € N, z € {0,1}*, we have that |Pr[EXECg(k,2) = 1] —
PrEXECg (k,z) = 1]| < u(k). We call S, 5" perfectly indistinguishable if 1 = 0.

Using the above network model, security is defined by comparison. We first
define an ideal protocol p that specifies the intended protocol behaviour. Then
we define what it means that another protocol 7 (securely) emulates p:

Definition 1 (UC [6]). Let 7 and p be protocols. We say that m UC emulates p
if for any polynomial-time adversary A there exists a polynomial-time adversary
S (the adversary-simulator) such that for any polynomial-time environment Z
the networks m U {A, Z} (called the real model) and pU{S, Z} (called the ideal
model) are indistinguishable.

In the UC framework, one can model secure channels (that do not even leak the
length of the transmitted message) by direct communication between the ITMs;
insecure channels can be modelled by sending messages to the adversary; secure

* In the case of infinite networks we require the network to be uniform in the sense that
given the identity of an ITM, we can compute the code of that ITM in deterministic
polynomial-time.

channels that leak the length of the message, as well as authenticated channels
can be modelled as an ideal functionality.

Corruptions are modelled as follows: The environment Z can send special
corruption requests to protocol parties (which are ITMs in 7). If a protocol party
receives such a request, it sends its current state to the adversary and from then
on is controlled by the adversary (i.e., it forwards all incoming communication
to the adversary and vice versa).

Usually, the ideal model will be described by a so-called ideal functionality.
Such an ideal functionality is an incorruptible ITM that can be seen as a trusted
third party accessible to the protocol parties. The ideal protocol corresponding
to F consists of F itself and a so-called dummy-party P for each party P in
the real model. The dummy-party P simply forwards all messages received from
the environment to F and vice versa. In slight abuse of notation, we write F
for the ideal protocol corresponding to F. Note that the dummy-parties can
be corrupted, hence the inputs and outputs to F from corrupted parties can be
influenced by the adversary-simulator. Using the concept of an ideal functionality,
we can express many protocol tasks by first specifying an ideal functionality F
that fulfils the protocol task by definition, and then requiring that the protocol
7 UC emulates F.

We can also consider real protocols m which contain ideal functionalities
F (e.g., a functionality modelling a CRS). These functionalities can then be
accessed by all parties. We then say that 7 is a protocol in the F-hybrid model.

For more details, we refer the reader to the full version of [6].

2.2 The Composable Incoercibility framework (UC/c)

In our framework (UC/c) the possibility of coercions is modelled by the presence
of an additional adversarial entity, called the deceiver. Formally, a deceiver is an
ITM D with the special identity dec. We further refine the notion of a protocol:
A protocol is a network that does not contain an environment, adversary, or
deceiver.

A typical network would consist of a protocol 7, an adversary A, a deceiver
D, and an environment Z (where the adversary and the deceiver may also be
called adversary-simulator and deceiver-simulator for clarity depending on their
role in the protocol). We put no restriction on the communication between ma-
chines, A, D, Z may all communicate with each other. Both the adversary and
the deceiver may control parties. The exact mechanism of this is the following;:

Corruption model. A protocol party may be in one of three corruption states:
Uncontrolled, corrupted, and deceiving. We say a party is controlled if it is cor-
rupted or deceiving. Initially, all machines are uncontrolled. Uncontrolled parties
behave according to the protocol specification. If the environment Z sends a
corruption request to an uncontrolled party, the party becomes corrupted. If the
environment sends a deception request to an uncontrolled or a corrupted party,
the party becomes deceiving. When a party becomes corrupted or deceiving, it
sends its state to the adversary or the deceiver, respectively. From then on, it

is controlled by the adversary or the deceiver, respectively (that is, it forwards
all incoming communication to the controlling machine and sends messages as
instructed by the controlling machine). The only exception is that if a corrupted
machine receives a deception request, it will not forward that request to the
adversary, because in that moment, it will become deceiving and hence be under
the control of the deceiver. We stress that if a party is deceiving, the adversary
cannot even observe that party’s communication (unless the party communicates
over an insecure channel or with a corrupted party).

We assume the existence of a globally readable register that contains the
state of each party (whether it is uncontrolled, corrupted, or deceiving). However,
when the adversary reads this register, the state of any deceiving machine will
be reported as corrupted. (This reflects the fact that the adversary should not
be able to know which machine is deceiving.) Protocol parties will not usually
read this register; in some cases, however, it might be useful if the behaviour of
an ideal functionality can depend on whether a machine is controlled or notf

Security definition. We are now ready to specify the notion of UC/c security.
In this notion, we do not only require the adversary-simulator (in the ideal model)
to simulate the adversary’s actions (in the real model), but simultaneously re-
quire that the deceiver-simulator (in the real model) simulates the actions of the
deceiver (in the ideal model). The resulting notion is strictly stronger than UC.

Definition 2 (UC/c). Letw and p be protocols. We say that m UC/c emulates
p if for any polynomial-time deceiver D there exists a polynomial-time deceiver
Ds (the deceiver-simulator) such that for any polynomial-time adversary A there
exists a polynomial-time adversary Ag (the adversary-simulator) such that for

any polynomial-time environment Z the following networks are indistinguishable:
7 U{A,Ds, Z} and pU{As,D, Z}.

Where is the deception strategy? The existence of a deception strategy that
honest parties can follow when being coerced is an essential part of any notion of
incoercibility. Such a deception strategy also exists in our model: if we consider
the deceiver D that simply obeys any commands (such as “vote for Bob”) sent
to it by the environment (we call such a deceiver a dummy-deceiver Dg, see
[Section 2.4)), then the corresponding deceiver-simulator describes how a coerced
party should behave in any situation. For an example of how to derive a special
purpose deception strategy from Dg, see the proof of [Theorem 101

Why is the adversary not informed about deceiving parties? The reader
may notice an asymmetry in the definition: While the deceiver learns which party
is corrupted and which party is deceiving, the adversary will be told that a party
is corrupted even if it is deceiving. This is necessary because during a deception,
the goal is to cheat the adversary into thinking that one behaves as he instructs

5 A typical example is the key exchange functionality, which returns a random key
for both parties [6] full version|. If one of the parties is corrupted, the key is instead
chosen by the adversary. Thus the functionality needs to know which parties are
corrupted.

(i.e., that one is corrupted). Therefore corrupted and deceiving parties should be
indistinguishable from the point of view of the adversary.

Why can deceiving party not become corrupted? Another asymmetry is
that a corrupted party can later become deceiving while the model does not
allow to corrupt parties that are deceiving. Although formally both directions
could be allowed, we have excluded the latter because we could not find an
interpretation for such a scenario. For an interpretation of the former direction
(bad-guy coercions), see the next section.

2.3 Corruption schedules

The notion of UC/c (Definition 2) allows the environment to corrupt or coerce
any party at any point of time. This leads to a very strict definition. To get a
definition that is more lenient but easier to fulfil, one can impose certain restric-
tions on the corruption and deception requests performed by the environment.
We call such a restriction a corruption schedule.

Bad-guy coercions. There are no restrictions on the environment (except that
the environment cannot corrupt a deceiving party, this is implicit in the mod-
elling of the corruption mechanism).

We call this notion bad-guy coercions because the environment may first cor-
rupt a party (make it a “bad-guy”) and then later coerce it. It is very difficult to
design protocols that are secure against bad-guy coercions because a corrupted
party may be instructed by the adversary to actively deviate from the protocol
to produce evidence against itself and thus thwart its own deniability. (In con-
trast, a deceiving party would, given the same instructions, only try to make the
adversary believe that it follows these instructions.)

For example, in some protocol the ability to deceive the adversary (and thus
the incoercibility of the protocol) might be based on the following fact: When
the adversary requests a private secret m of some party, that party may send a
different secret m’ instead which contains a trapdoor. This trapdoor then is later
essential for achieving incoercibility. In the setting of bad-guy coercions, a party
might first be corrupted and then reveal the true secret m to the adversary.
This secret m does not contain a trapdoor. Then later, if the party becomes
deceiving, it will be unable to follow its deception strategy because it does not
know any trapdoor for m. In a nutshell, while corrupted, a party may actively
try to prevent its own incoercibility. Thus we expect that UC/c security with
respect to bad-guy coercions is very hard to achieve.

In practise, bad-guy coercions are arguably a very rare event. A possible mo-
tivation for bad-guy coercions is the following thought experiment: A member
(say, Bob) of a criminal organisation is required by the rules of that organisation
to actively produce and deliver some evidence (e.g., certain keys) against himself
to that organisation. While Bob still works for the organisation, he will not try
to circumvent these rules and will deliver this evidence. But if Bob later decides
to leave the criminal organisation and to cooperate with the police (undercover),

Bob may have to convincingly act as if he was still following the criminal or-
ganisation’s instructions. This is exactly the case that is modelled by bad-guy
coercions.

In most cases, however, UC/c with bad-guy coercions will be much to strong
a notion, and the notion of good-guy coercions (below) will be preferred.

Good-guy coercions. The environment may corrupt parties at any time and
may send deception requests to uncontrolled parties at any time. The environ-
ment may not send deception requests to corrupted parties.

Receipt-freeness. The environment may corrupt parties at any time, and may
send deception requests to uncontrolled parties after the end of the protocol (so
that the adversary gets their state). The environment may not send deception
requests to a corrupted party. Receipt-freeness implies that an honest party does
not learn any data during the protocol that could later be used to prove after the
protocol execution that the party performed a certain action. (Note that with
erasing parties, receipt-freeness is probably easy to achieve: an honest party
simply erases all intermediate protocol data.)

Static corruptions/deceptions. All corruption and deception requests must
be sent at the very beginning of the protocol execution. In particular, this im-
plies that the environment cannot choose which parties to corrupt depending on
messages it observes during the protocol execution.

Combinations. The above corruptions schedules may be combined by requiring
that the environment obeys a certain schedule with respect to some parties and
another with respect to other parties. For example, one might have protocols
that are UC/c secure with receipt-freeness for Alice and good-guy coercions for
Bob.

2.4 Properties of UC/c security

The proofs in this section are omitted for space reasons. They can be found in
the full version [21].

Dummy adversary and deceiver. A dummy-adversary is an adversary that
just follows the instructions of the environment. More precisely, it forwards all
messages it receives to the environment, and sends only the messages the en-
vironment instructs it to send. It was shown by Canetti [6] in the UC setting
that the dummy-adversary is complete, that is, without loss of generality we
can consider only the dummy-adversary. Therefore we only have to specify the
adversary-simulator for the dummy-adversary instead of having to specify the
adversary-simulator for every possible adversary. This simplifies proofs.

In the setting of UC/c, we can additionally consider the dummy-deceiver that
just follows the instructions of the environment. Below, we will show that both
the dummy-adversary and the dummy-deceiver are complete. Besides strongly
simplifying proofs, the completeness of the dummy-deceiver has an additional
conceptual advantage. The deceiver-simulator corresponding to the dummy-
deceiver encodes a universal deception strategy. That is, for any “ideal deception”,

it tells us how to perform this deception in the real protocol. The existence of
such a universal deception strategy is very important in real life, protocol users
need to have an explicit strategy how to lie in which situation; it is not sufficient
that such a strategy exists for each situation.

Definition 3 (Dummy-adversary, dummy-deceiver). The dummy-
adversary A is an adversary that, when receiving a message (id,m) from the
environment, sends m to the party with identity id, and that, when receiving m
from a party with identity id, sends (id,m) to the environment. The duminy-
deceiver D is defined analogously.

Lemma 4 (Completeness of dummy-adversary and dummy-deceiver).
Let m and p be protocols. Then m UC/c emulates p iff 7 UC/c emulates p with
respect to the dummy-adversary/deceiver (i.e., when only considering adversary

A and deceiver D in[Definition 3).

Universal composition. One of the main advantages of the UC framework is
the universal composition theorem. This theorem guarantees that a UC secure
protocol 7 can be securely used as a subprotocol of arbitrary other protocols o,
even when ¢ and polynomially many instances of 7 run concurrently. The same
compositionality result also holds for the UC/c security notion.

To formulate the composition theorem, we introduce some notation. Let 7
and o be protocols. Then let ¢™ denote the protocol where ¢ invokes a polynomial
number of instances of the subprotocol 7. That is, machines in o may give inputs
to machines in 7, these inputs are treated by 7 as coming from the environment.
When the machines in 7 give output back to the environment, these are sent to
the invoking machines in ¢. Thus, in a sense, in 0™, the protocol o plays the role
of the environment for the instances of 7. For example, if o7 is a protocol using
a commitment functionality F (i.e., 07 is a protocol in the F-hybrid model),
then o™ would be the protocol that uses the subprotocol 7 instead of using the
commitment functionality F. The following theorem guarantees that, if 7 UC/c
emulates some other protocol p (e.g., p = F), we do not loose security if we
replace subprotocol invocations of p by subprotocol invocations of 7.

Theorem 5 (Universal composition). Let w, p, and o be polynomial-time
protocols. Assume that m UC/c emulates p. Then o™ UC/c emulates o”.

The most common use case of the composition theorem is given by the fol-
lowing corollary:

Corollary 6. Let m and o be polynomial-time protocols, and F and G be
polynomial-time functionalities. Assume that # UC/c emulates F and that o7
UC/c emulates G. Then o™ UC/c emulates G.

3 Voting schemes

In this section we illustrate the UC/c security notion by applying it to the special
case of voting schemes. We give a definition of incoercibility that is tailored to

the specific case of voting protocols and show that this definition is implied by
the UC/c security notion.

Definition 7 (Voting scheme). Fiz sets V (the set of votes), T (the set of tal-
lies), P (the set of voters). A tally function is an efficiently computable function
tally : VU {L})? = T.

A woting scheme for tally is a two-stage protocol. We call the stages voting
phase and tallying phase. In such a protocol, each party P; € P gets an input
v; € VU{L} (the vote of P;). v; = L means that the P; does not participate in
the protocol (abstention). In the end of the tallying phase a distinguished party
T outputs a value t € T.

Typically, V would be the set of all candidates. In more complex schemes,
elements of V might be, e.g., ordered lists of candidates in order of decreasing
precedence. The set of tallies 7 usually is the set of all functions V — Ny.
Alternatively, in a voting scheme which only announces the winner, we would
have have 7 = V. The tally function tally(v1,...,v,) specifies what the correct
tally is for the votes v; € VU {L} where v; = L denotes abstention.

Note that we do not require that the parties P; # T are aware whether they
are in the tallying or the voting phase. Such a requirement might be difficult
to ensure in an asynchronous environment. In particular, votes cast during the
tallying phase (but before the tally is announced) might or might not be counted.

An ideal voting scheme is given by the following functionality:

Definition 8 (Voting functionality). The voting functionality Fyote = Fraly
expects (at most one) message v; €V from each party P; € P. When receiving
tally from T, Fiote sets v; := L for all P; € P from which it did not receive
a message v; € V yet. Then Fyore computes t := tally(v;,i € P) (the tally) and
sends t to the adversary. Then, when Fyote receives deliver from the adversary,

it sends t to the party T.

This functionality models that the tally output by T is correctly computed
using the tally function (as long as T itself is not corrupted) and that the indi-
vidual votes are secret (even if T' is corrupted).

Natural properties of voting schemes are, e.g., correctness (the tally is correct
even in the presence of an adversary) and anonymity (the adversary cannot tell
who voted for whom, except as deducible from the tally itself). We will not
formalise these properties here, but it is easy to see that a voting scheme that
UC emulates the voting functionality Fyote satisfies reasonable formalisations of
these properties. Since the UC/c security notion is stronger than UC, this implies
that these elementary properties are satisfied by UC/c secure voting scheme, too.

In our context, the most interesting property of a voting scheme is inco-
ercibility. We will first formalise what incoercibility means for voting schemes
(independently of our framework). Then we will show that incoercibility of vot-
ing schemes is implied by security in the UC/c framework. Assume some party
P that wants to cast a vote v. In an incoercible voting scheme, we expect that
if the adversary A forces a party P to deviate from the protocol, A should not

be able to tell the difference between P obeying the adversary A, or the party
P casting the vote v anyway (we say P deceives the adversary). Of course, since
the adversary learns the tally, this goal is unachievable — the tally always leaks a
non-negligible amount of information about the vote of P (at least if the number
of voters is polynomial). We can only achieve the following: The adversary’s ad-
vantage in distinguishing between P obeying and P deceiving is not greater than
the advantage with which the adversary could distinguish these two cases given
only the tally. To formulate this definition, we first introduce some notation:

Fix a voter P € P and a vote v € V U {L}. Fix a distribution B on (V U
{1L})PMP} (B represents the distribution of the votes of the other voters.) Given
a vote v, let B, denote the distribution over (VU {L})” that chooses the votes
for all P, € P\ {P} according to B and uses the vote v for P. Accordingly,
tally(B,) denotes the tally resulting from votes chosen according to B,. Let
Advigear (B, v) := max,« A(B,, By+) where v* ranges over VU{_L} and A denotes
the statistical distance. (Adv;4eq describes how well an adversary can distinguish
between being obeyed and being deceived using only the tally.)

A voting adversary is an adversary that controls a party P (however, de-
pending on the setting, P may choose to ignore the instructions given by the
adversary) and that may decide when the tallying phase starts. We require that
a voting adversary eventually starts the tallying phase. Furthermore, when the
party T outputs the tally, the tally is given to the voting adversary. In the end,
the voting adversary outputs a bit b.

Given a voting adversary A, let Prope, (A, B) be the probability that A out-
puts 1 in the case that the party P follows the instructions of the adversary (i.e.,
P is corrupted) and all other parties honestly follow the protocol (with inputs
chosen according to B).

Given some program code 0 (the deception strategy for P), let
Prieceive(A, 0, B) denote the probability that the adversary A outputs 1 if P
follows the instructions in 9 and all other parties honestly follow the protocol
(with inputs chosen according to B). (Intuitively, ? is a strategy that tells P how
to vote for v and simultaneously make the adversary believe that P obeys the
adversary.) We assume that 9 gets v and the identity of P as input. In the same
setting, let Tally ;..ci0e (A, 0, B) denote the tally output by 7.

Definition 9 (Incoercible voting schemes). A voting scheme is incoercible
if there is a deception strategy 0 such that for every polynomial-time voting ad-
versary, every voter P € P, every vote v € V, and every efficiently sampleable
distribution B the following holds:
— The deception strategy casts the right vote: The random wvariables
Tally joceive (A, 0, B) and tally(B,) are computationally indistinguishable.
— The adversary cannot distinguish between being obeyed and being de-
ceived: For some mnegligible function p we have that ‘Probey(A, B) —
Prdeceive (A7 aa B)’ S Advideal (Bu U) + M-

Many variants of this definition are possible. For example, one could allow
the voting adversary to corrupt additional parties from P \ {P}. (In this case,

one would have to adapt the definition of Adv;4eq-) For the sake of simplicity,
we do not strive to find the most general formulation of [Definition 9 especially
in view of the fact that the UC/c framework already provides us with a very
general definition of incoercibility.

We will now show that incoercibility in the sense of [Definition 9] is already
implied by UC/c security. We find that the proof of the following theorem is very
instructive because it gives some intuition for the UC/c framework, and because
it illustrates how application-specific incoercibility definitions (not restricted to
the application of voting) can be proven to be implied by UC/c security.

Theorem 10. Let m be a voting scheme for the tally function tally. Assume
that m UC/c emulates]-'f,gtlcy with static corruption/deception. Then 7 is an
incoercible voting scheme.

Proof. Fix a voting adversary A. We define the UC/c adversary A’ to behave
like A, except that when A starts the tallying phase, A’ instead sends tally to
the environment. When A would give an output b, A’ sends b to the environment.

We define an environment Z,pey 1= ZZ;Z?;B as follows: Initially, Z,pcy sends a
corruption request to the party P. Then Z,;., chooses votes v1, ..., v, according
to the distribution B and gives these votes as input to the parties P, € P\ {P}
(or, if v; = L, sends no input to P;). When the adversary sends tally to Zopey,
Zobey sends tally to the party 7. When the adversary sends b to Zopey, Zobey
terminates with output b.

Furthermore, we define Zgeceive := Z[I;e’:cjg)e as follows: Initially, Zjeceive sends
a deception request to the party P. Then Zgeceive chooses votes vy, ..., v, accord-
ing to the distribution B and gives these votes as input to the parties P; € P\{P}
(or, if v; = L, sends no input to P;). Then it sends v to the deceiver. (This will
make the deceiver D defined below instruct P to cast vote v.) When the adver-
sary sends tally to Zgeceive, Zdeceive Sends tally to the party 7. When the
adversary sends b t0 Zgeceive, Zdeceive terminates with output b.

We define the deceiver D as follows: When receiving a state from party P, D
instructs P to send this state to the adversary. (This is necessary only for formal
reasons: since the adversary should believe that P is corrupted, he expects a
state from P. Since we are in the case of static corruptions/deceptions, the state
is only sent before the start of the protocol and is thus empty.) When D receives
v from the environment, D instructs P to send v to the functionality Fyote. (L.e.,
P should cast the vote v.) Messages coming from the adversary are ignored.
In particular, when the adversary instructs P to cast some other vote, this is
ignored.

Since m UC/c emulates Fiote = f,gilg, there exist a polynomial-time
deceiver-simulator Dg and a polynomial-time adversary-simulator A such that
for all polynomial-time environments Z, the networks = U {A’, Dg, Z} and
Frote U{ A%, D, Z} are indistinguishable. (We write Fyote for the protocol con-
taining Fyote and the dummy parties.)

By construction,

Probey (A, B) = Pr[EXECT(U{A’,'DS,ZObEy} = 1] (].)

(We omit the arguments k, z from EXEC for brevity.) Note that since no party
is deceiving, the deceiver-simulator Dg does nothing.

We define the deception strategy 0 as follows: A party P following 0 and
wishing to cast the vote v internally simulates Dg. Then P sends the empty
state to Dg. (This is done for formal reasons: in the UC/c framework, Dg would
get such an empty state when P is deceiving from the start. Hence this message
informs Dg that P is deceiving.) Then P sends v to the internally simulated
Ds as coming from the environment. Then P follows the instructions that Dg
gives to it. In the case that only P is deceiving, Dg only sends instructions to
P. Thus it is not necessary that P simulates any other machines communicating
with Dg.

Then, by construction,

Prdeceive(AvavB) = Pr[EXECﬂ'U{A/vDS1Zdecewe} = 1]- (2)

Compare the networks Fyote U { A%, D, Zdeceive} and Fyote U { A%, D, Zobey }- In
the first network, Zjeceive instructs the dummy-party P (via the deceiver D) to
send the vote v to Fyote- In the second network, A instructs P to send some
other vote v* to Fyote (Where we write v* = L to indicate that Ay does not
instruct P to vote before Ay sends tally to the environment). In the ideal
model, P does not receive any incoming messages from other parties. Thus, in
both networks, A’y does not get any messages from P. Thus, A’ can only use the
tally to distinguish the networks. The distribution of the tally in the network
Frote U { A, D, Zopey} is tally(B,+), and the distribution of the tally in the
network Fuote U { A, D, Zicceive } 15 tally(By). Since Zopey and Zgeceive Output
the bit b received from A, it follows that

’PY[EXEC}—voth{A{g1szobey} = 1] - Pr[EXEC}—voth{Afg1D12dece'1ve} = 1”
< A Bvulgv* = Ad idea 87 .
S By A Ber) = Avitea(B,0)

Since for all polynomial-time Z, the networks m U {A’, Dg, Z} and Fyote U
{A%, D, Z} are indistinguishable, it follows that

|PrEXEC, U4, Ds, 2,0} = —PrEXECrupa, D5, Zpene}) = U| < AdVigear(B,v)+p
for some negligible function p. Then with () and (@) we get that
|Probey (Au B) - Prdeceive (Au 07 B)‘ S Advideal (Bu U) + 22

This shows that the protocol 7 satisfies the second condition in [Definition 9l
(Notice that the construction of the deception strategy 0 is independent of A
and B.)

We are left to show that Tally ;... (A, 9, B) and tally(B,) are indistinguish-
able (first condition of [Definition 9).

Let t denote the message received by Zjeceive from the party T (¢ is the
tally). In the network Fiote U { A, D, Zdcceive }; t is the output of Fyote. Thus

the distribution of ¢ is tally(B,): The party P is instructed by D to send the
vote v, all other parties cast votes chosen according to the distribution B.

In the network 7 U {A’, Ds, Zieceive}, by construction of Zjeceive and of 0,
the distribution of ¢ is Tally j.ceive (A, 0, B).

For contradiction, assume that Tally ;..cie(A,0,8) and tally(B,) were not
computationally indistinguishable. Then there is an efficiently computable
function f : {0,1}* — {0,1} such that |Pr[f(Tally j,eeie(A,0,8)) = 1] —
Pr[f(tally(B,)) = 1]| is not negligible. Then we define Z% like Zgeceive,
except that Zj, ... outputs f(). Then [PrEXEC. (a4 pgz: = 1] —
Pr[EXECg,, u{a,,p,2z; 3 = 1] is not negligible. This is a contradiction to
the fact that for all polynomial-time Z, the networks m U {A’,Dg, Z} and
Fuote U{ Ay, D, Z} are indistinguishable. Thus Tally ;... (A, 9, B) and tally(B,)
are computationally indistinguishable and the first condition of [Definition 9 is

satisfied by 7. a

The design of voting protocols that are UC/c secure is, of course, an open
problem. We believe designing UC/c secure remote voting schemes to be a chal-
lenging problem that may involve novel cryptographic techniques. In the case
of non-remote voting (i.e., involving voting booths and other partially trusted
setup such as in, e.g., [I0T2/20/3]), realising UC/c security might be much easier.
We therefore particularly propose UC/c as a security definition for that setting.

4 Incoercible two-party protocols

In the previous section, we have seen that UC/c secure protocols are incoercible.
We have not, however, shown that such protocols exist at all. Fortunately, the
protocols that were presented in [I8]7] for general multi-party computation in the
externalized UC (EUC) model are also secure in our UC/c model in the two-party
case and therefore enjoy incoercibility in addition to the properties guaranteed
by the EUC model. The proof that their protocols work in our setting is quite
technical; we defer it to the full version [2I]. We only state the final result here.
The protocols from [I8]7] can be based on one of the following functionalities:

The key registeration with knowledge (KRK) functionality Fix is a func-
tionality where each party may register a public key/secret key pair and every
party may request the public keys of all parties and the secret key of itself. The
augmented CRS (ACRS) functionality F,es chooses a public key and a corre-
sponding master secret key, and derives for each party a corresponding individual
secret key. The public key is given to all parties, the secret key of each party
is only given to that party. The signature card functionality Fy. with owner P
picks a signing/verification key pair and reveals the verification key to all parties.
The party P (the owner) may send arbitrary messages m to Fs and receives
signatures of m back. The signing key is never revealed.

Theorem 11 (UC/c two-party computation). Let F € {Firk, Facrs, Fsc) -
Let G be a well-formed silent[8 functionality. Then there is a protocol ™ in the
F-hybrid model such that m UC/c emulates G with static corruptions/deceptions.

5 Conclusions and open problems

We have presented the UC/c framework. This framework enables us to model
the incoercibility of general multi-party protocols. The UC/c framework comes
with a strong composition theorem (universal composition). We have shown that
with respect to static coercions/deceptions, arbitrary two-party protocol tasks
can be realised in the framework.

Directions for future work include:

— Good-guy/bad-guy coercions. Our feasibility results only hold for static co-
ercions/deceptions. We believe that feasibility results similar to those pre-
sented in can be shown for good-guy coercions. To achieve proto-
cols that are secure with respect to bad-guy coercions, we believe that new
cryptographic techniques will have to be developed.

— Insecure channels. We assumed perfectly secure channels, i.e., channels where
the adversary does not even notice that a message is sent. Can the results
from be generalised to a setting with weaker assumptions on the
channels?

— Multi-party protocols. Our feasibility results are restricted to two-party pro-
tocols. To capture important cases like voting protocols we need to extend
this to multi-party protocols.

— Impossibility results. Since incoercibility is a strong requirement, we also ex-
pect that many protocol tasks cannot be fulfilled. For example, is it possible
to realise a non-trivial protocol task using only a common reference string?

— Not knowing who is coerced/corrupted. In our setting, the deceiver-
simulator’s strategy may depend on who is corrupted/coerced. If we restrict
every party’s strategy to be independent of the other parties, can we still
construct UC/c secure protocols?

Acknowledgements. We thank Yevgeniy Dodis and Daniel Wichs for extensive
discussions. We also thank the anonymous reviewers for helpful comments.

5 A well-formed functionality is one whose behaviour does not depend on which parties
are corrupted or deceiving. We call G silent if it does not communicate with the
adversary or deceiver.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC’88. pp. 1-10. ACM
(1988)

. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract).

In: STOC '94. pp. 544-553. ACM (1994)

Bohli, J.M., Miiller-Quade, J., Rohrich, S.: Bingo voting: Secure and coercion-free
voting using a trusted random number generator. In: E-Voting and Identity, VOTE-
ID 2007. LNCS, vol. 4896, pp. 111-124. Springer (2007)

. Canetti, R., Gennaro, R.: Incoercible multiparty computation. In: FOCS’96. p. 504.

IEEE (1996)

Canetti, R.: Security and composition of multi-party cryptographic protocols. Jour-
nal of Cryptology 3(1), 143-202 (2000)

Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS’01. pp. 136-145. IEEE (2001), full version is IACR ePrint
2000/067

Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with
global setup. In: TCC’07. LNCS, vol. 4392, pp. 61-85. Springer (2007)

Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC’95. pp. 639-648. ACM Press (1996)

Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: STOC’02. pp. 494-503. ACM (2002)
Chaum, D.: Secret-ballot receipts: True voter-verifiable elections. IEEE Security &
Privacy 2(1), 38-47 (2004)

Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: STOC’88. pp. 11-19. ACM Press (1988)

Chaum, D., Ryan, P.Y.A.) Schneider, S.A.: A practical voter-verifiable election
scheme. In: ESORICS’05. pp. 118-139 (2005)

Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4), 435-487 (2009)

Forsyth, F.: The Deceiver. Bantam Books (1991), summary available at http://
tinyurl.com/ycvhuod

Goldreich, O.: Foundations of Cryptography — Volume 2 (Basic Applications). Cam-
bridge University Press (2004)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC’87. pp. 218-229
(1987)

Herzberg, A.: Rumpsession, Crypto '91 (1991)

Hotheinz, D., Unruh, D., Miiller-Quade, J.: Universally composable zero-knowledge
arguments and commitments from signature cards. Tatra Mt. Math. Pub. pp. 93—
103 (2007)

Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
4nd ACM Workshop on Privacy in the Electronic Society (WPES). pp. 61-70.
ACM Press (2005)

Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting
privacy. In: CRYPTO’06. LNCS, vol. 4117, pp. 373-392. Springer (2006)

Unruh, D., Miiller-Quade, J.: Universally composable incoercibility. IACR, ePrint
2009/520 (October 2009)

http://tinyurl.com/ycvhuod

	Universally Composable Incoercibility

