
Short and Stateless Signatures from the
RSA Assumption

Susan Hohenberger1,? and Brent Waters2,??

1 Johns Hopkins University, susan@cs.jhu.edu
2 University of Texas at Austin, bwaters@cs.utexas.edu

Abstract. We present the first signature scheme which is “short”, state-
less and secure under the RSA assumption in the standard model. Prior
short, standard model signatures in the RSA setting required either a
strong complexity assumption such as Strong RSA or (recently) that the
signer maintain state. A signature in our scheme is comprised of one ele-
ment in Z∗

N and one integer. The public key is also short, requiring only
the modulus N , one element of Z∗

N , one integer and one PRF seed.

To design our signature, we employ the known generic construction of
fully-secure signatures from weakly-secure signatures and a chameleon
hash. We then introduce a new proof technique for reasoning about
weakly-secure signatures. This technique enables the simulator to pre-
dict a prefix of the message on which the adversary will forge and to
use knowledge of this prefix to embed the challenge. This technique has
wider applications beyond RSA.

We use it to provide an entirely new analysis of the security of the Waters
signatures: the only short, stateless signatures known to be secure under
the Computational Diffie-Hellman assumption in the standard model.

1 Introduction

Signature schemes are a fundamental building block of modern cryptography. As
such, it is imperative to develop and to provide to practitioners efficient schemes
in which we have the highest confidence of security. The focus of this work
is, therefore, on designing “short” signatures secure under the weakest possible
complexity assumptions in the standard model.

Most of today’s short signature schemes can be divided into three categories:
schemes that use random oracles (e.g., [10, 26, 22, 2, 23, 4, 15, 14]), schemes that
require strong complexity assumptions (e.g., Strong RSA [13, 7], q-Strong Diffie-
Hellman [3] and LRSW [5]) and (recently) schemes where the signer must main-
tain state [18]. The one prior anomaly is the short and stateless signature scheme
? Supported by NSF grant CNS-0716142 and a Microsoft New Faculty Fellowship.

?? Supported by NSF CNS-0716199, Air Force Office of Scientific Research (AFOSR)
under the MURI award for “Collaborative policies and assured information sharing”
(Project PRESIDIO) and the U.S. Department of Homeland Security under Grant
Award Number 2006-CS-001-000001. Portions of this work were done while this
author was at SRI International.

due to Waters [29], which is secure under the Computational Diffie-Hellman
(CDH) assumption in bilinear groups in the standard model.

Our Contribution. We provide the first short and stateless signature scheme
secure under RSA in the standard model. While there are several “standard”
variants of the RSA assumption, the one we employ is that given a modulus N
(chosen as the product of two large safe primes), a random exponent e less than
and relatively prime to φ(N), and a random y ∈ Z∗N , it is hard to compute x
such that y = xe mod N . (The restriction to safe primes can be removed.)

In our scheme, a signature is comprised of one element of Z∗N and one integer.
This is roughly the same size as the Strong RSA signatures of Gennaro, Halevi
and Rabin [13]. The Strong RSA signatures of Cramer and Shoup [7] are even
larger, requiring two elements in Z∗N and one integer (for the basic scheme) or one
element in Z∗N , one prime and one integer (for the trapdoor hash scheme). (We
note that Fischlin [12] and Hofheinz-Kiltz [17] provide more efficient versions
of Cramer-Shoup signatures.) Our public keys are also short, requiring only the
modulus N , one element of Z∗N , one integer and one PRF seed. In contrast, the
Waters’ public keys are asymptotically larger, requiring O(λ) group elements,
where λ is the security parameter.

To realize our new construction, we introduce an entirely new proof technique
for digital signatures, which we’ll describe in detail shortly. We view this new
technique as a major contribution of the work. To demonstrate its usefulness
beyond RSA, we show that it can be applied in the CDH setting to obtain a
variant of the Waters signatures [29].

Both of these signatures are also online/offline signatures, where the ma-
jority of the signer’s computation can be performed offline before she knows
the message. In Section 5, we discuss further computational optimizations and
tradeoffs for our RSA scheme.

Intuition behind the Construction and Proof Technique. Our proof strategy be-
gins with the previously-known method for constructing fully-secure signatures
from weakly-secure signatures and a chameleon hash. Since chameleon hash func-
tions exist under the hardness of factoring [19] and the RSA assumption [1, 18],
one only needs to design an appropriate weakly-secure scheme under RSA. Al-
though, even this has proven an elusive task.

To design a weakly-secure scheme, we do as follows. Suppose the RSA chal-
lenge is (N, y, e∗) with the goal of computing y1/e∗ mod N . Suppose the adver-
sary provides us with the n-bit messages M1, . . . ,Mq. Denote as w the shortest
prefix of M∗, the message on which the adversary will later forge, that is differ-
ent from all other prefixes of M1, . . . ,Mq. Our strategy is to find w and then at
this “point” embed the challenge exponent e∗. Of course, until the end of the
game, the simulator does not know what M∗ will be.

To find w, the simulator takes a guess as follows. If q = 0, meaning the
adversary does not request any signatures, then the simulator only needs to
guess the first bit of M∗ and set w to this. If q ≥ 1, the simulator may simply
guess a pair (i∗, t∗), where 1 ≤ i∗ ≤ q and 1 ≤ t∗ ≤ n. Interpret this pair as

saying that Mi∗ is a message with the longest prefix in common with M∗ and
the first location at which these two strings differ is t∗. (There may be more
than one message in M1, . . . ,Mq containing the longest common prefix; guessing
any one of them will suffice for our analysis.) If q ≥ 1, then clearly, a valid pair
(i∗, t∗) must exist and indeed, the simulator will have at least a 1/(qn) chance
of guessing it.

Next we turn to embedding the challenge. We need to design a signature
scheme that depends on all prefixes of its message. Let the public key contain
the modulus N , a random h ∈ Z∗N and a hash function H that maps arbitrary
strings to prime numbers. Let M (i) denote the first i bits of M . For i = 1 to n,
compute ei = H(M (i)). Then let the signature be

σ = h
Qn
i=1 e

−1
i mod N.

In the security proof, the simulator selects H so that H(w) = e∗. In other
words, the simulator designs the public key so that the challenge exponent e∗ is
used in the forged signature on M∗, but in none of the signatures for M1, . . . ,Mq.
Thus, by properly setting h to be y raised to the product of all primes corre-
sponding to all prefixes of M1, . . . ,Mq, the simulator can answer its q signing
queries and yet extract from the forgery the RSA solution y1/e∗ mod N .

Brief Background on Short, Standard-Model Signatures. It is worthwhile to
briefly compare our results to some short schemes in the standard model.

First, Dwork and Naor [9] and Cramer and Damg̊ard [6] show how to make
tree-based signatures shorter by using a “wide” tree (i.e., a larger branching
factor) under the RSA assumption in the standard model. Roughly, there exists
a trade-off where the tree depth can be decreased by a factor of lgw if the size
of the public parameters is increased by a factor of w. However, the focus of this
work is on finding even shorter signatures.

One approach has been to consider schemes under stronger complexity as-
sumptions, such as Strong RSA [13, 7], q-Strong Diffie-Hellman [3] and LRSW [5].
All of these schemes rely on the hardness of problems which, for any given in-
stance, there are an exponential number of valid solutions. This stands in sharp
contrast to problems such as RSA and CDH, where for any given instance, there
is only one solution. Moreover, the latter two schemes require that the number
of elements in the problem input grows with the number of signing queries made
by the adversary. For instance, the q-Strong Diffie-Hellman assumption requires
that given a generator g of prime order p and the tuple (gx, gx

2
, . . . , gx

q

), it is
hard to compute (c, g1/(x+c)) for any c ∈ Z∗p. Thus, if the adversary asks for q
signatures, then the problem must remain hard when q powers of x are released.
In RSA and CDH (and Strong RSA), the number of input elements is always a
small constant, independent of the adversary’s behavior. To obtain high confi-
dence in the security of our schemes, we should based them on the simplest and
weakest assumptions possible. In fairness, these excellent works have laid the
foundation of our result and they are still unrivaled in their computational effi-
ciency by our RSA scheme. Now that we have “short” RSA signatures, it would
be of great interest to reduce the cost of signing and verification. See Section 5.

Another type of strong complexity assumption is to assume RSA is secure
against sub-exponential-time attackers and apply complexity leveraging tech-
niques. Micali, Rabin and Vadhan [20] did this to construct verifiable unpre-
dictable functions, which immediately admit a signature scheme. In contrast, we
only assume the RSA problem is hard for polynomial-time attackers; in other
words, all our reductions are polynomial in the security parameter.

Earlier this year, Hohenberger and Waters [18] presented short RSA and CDH
based schemes secure in the standard model, where the signer had to maintain a
counter value as state. This counter was incremented with each signature issued.
Unfortunately, their scheme was compromised if the signer accidentally issued
two signatures with the same counter value. Indeed, while early signatures, such
as those of Goldwasser, Micali and Rivest [16], were stateful, the concept of the
stateless signature has become so ingrained in practice that it is really more of
a requirement than an extra feature. Moreover, stateful signatures are harder
for systems designers to work with because, in addition to protecting the secret
key, they must also safeguard a counter value (in writable memory) from being
maliciously rolled back by an adversary.

2 Generic Transformation of Weakly-Secure Signatures
to Fully-Secure Signatures using Chameleon Hashes

2.1 Signature Schemes

A signature scheme is a tuple of the following algorithms:

KeyGen(1λ) : the key generation algorithm outputs a keypair (PK,SK).
Sign(SK,M) : the signing algorithm takes in a secret key SK, and a message

M , and produces a signature σ.
Verify(PK,M, σ) : the verification algorithm takes in a public key PK, a mes-

sage M , and a purported signature σ, and returns 1 if the signature is valid
and 0 otherwise.

2.2 GMR Unforgeability

The basic security notion for signatures is existential unforgeability with respect
to adaptive chosen-message attacks as formalized by Goldwasser, Micali and
Rivest [16]. It is defined using the following game between a challenger and an
adversary A over message space M:

Setup: The challenger runs the algorithm KeyGen(1λ) to obtain the public
key PK and the secret key SK, and gives PK to the adversary.

Queries: Proceeding adaptively, the adversary may request a signature on any
message M ∈ M and the challenger will respond with σ ← Sign(SK,M).
Let Q be the set of messages queried by the adversary.

Output: Eventually, the adversary will output a pair (M,σ) and is said to win
the game if M 6∈ Q and Verify(PK,M, σ) = 1.

We define AdvA to be the probability that adversary A wins in the above
game.

Definition 1 (Unforgeability against Adaptive Chosen Message At-
tacks [16]). A signature scheme (KeyGen,Sign,Verify) is existentially un-
forgeable with respect to adaptive chosen message attacks if for all probabilistic
polynomial time adversaries A, AdvA is negligible in λ.

2.3 Weak Unforgeability

Several works (e.g., [3]) consider a weaker definition called existential unforgeabil-
ity with respect to weak chosen-message attacks. It is defined using the following
game between a challenger and an adversary A over message space M:

Queries: The adversary sends the challenger a list Q of messages M1, . . . ,Mn ∈
M.

Response: The challenger runs the algorithm KeyGen(1λ) to obtain the pub-
lic key PK and the secret key SK. Next, the challenger signs each queried
message as σi ← Sign(SK,Mi) for i = 1 to n. The challenger then sends
PK, σ1, . . . , σn to the adversary.

Output: Eventually, the adversary will output a pair (M,σ) and is said to win
the game if M 6∈ Q and Verify(PK,M, σ) = 1.

We define AdvweakA to be the probability that adversary A wins in the above
game.

Definition 2 (Unforgeability against Weak Chosen Message Attacks).
A signature scheme (KeyGen,Sign,Verify) is existentially unforgeable with
respect to weak chosen message attacks if for all probabilistic polynomial time
adversaries A, AdvweakA is negligible in λ.

2.4 Chameleon Hashes

As formalized by Krawczyk and Rabin [19], a chameleon hash function H takes
two inputs: a message m and randomness r. It is collision-resistant with the
additional property that, given special trapdoor information, any target y and
any message m′, it is possible to efficiently find a value r′ such that H(m′, r′) = y.
Secure constructions exist in the standard model under the discrete logarithm
assumption [19], the hardness of factoring [19], and the RSA assumption [1, 18].

2.5 Generic Transformation

We now recall a generic construction for building unforgeable signatures out
of weak unforgeable signatures and chameleon hashes, as used in many prior
signature constructions such as [19, 28, 3, 18]. Let (G,S, V) be a weak unforgeable
scheme for n-bit messages. Let chameleon hash family H map inputs as {0, 1}`×
{0, 1}k → {0, 1}n. Consider a scheme for `-bit messages constructed as:

KeyGen(1λ): Select a random chameleon hash H ∈ H. Run G(1λ) to obtain
the keypair (pk , sk). The public key is PK = (pk , H) and the secret key is
SK = (sk , H).

Sign(SK,M ∈ {0, 1}`): Pick a random r ∈ {0, 1}k. Compute x = H(M, r), and
then σ′ ← S(sk , x). Output the signature σ = (σ′, r).

Verify(PK,M, σ): Parse σ as (σ′, r). Compute x = H(M, r) and then output
V (pk , x, σ′).

Lemma 1. If (G,S, V) is a weakly-secure scheme according to Definition 2 and
H is a secure chameleon hash family, then the above scheme is a fully-secure
scheme according to Definition 1.

While this construction is well known (e.g., [19, 28, 3, 18]), we provide an
explicit proof of the above lemma in the full version of this work.

3 Algebraic Settings and Complexity Assumptions

3.1 RSA Assumption and other Facts

We begin by recalling some basic facts and complexity assumptions.

Assumption 1 (RSA [25]) Let k be the security parameter. Let positive inte-
ger N be the product of two k-bit, distinct odd primes p, q. Let e be a randomly
chosen positive integer less than and relatively prime to φ(N) = (p− 1)(q − 1).
Given (N, e) and a random y ∈ Z∗N , it is hard to compute x such that xe ≡ y
mod N .

In the Strong RSA assumption, the adversary is given (N, y) and succeeds
by producing any integer pair (e, x) such that e > 1 and xe ≡ y mod N . The
standard RSA version is much more restrictive on the adversary.

In Section 4, we will restrict ourselves to the RSA assumption where N = pq
is the product of two safe primes p = 2p′ + 1 and q = 2q′ + 1. (Technically,
we will want that the prime exponents used during signing do not divide φ(N).
While safe primes will make this argument simpler, they are not necessary.)

Our RSA-based scheme will require a primality test, such as the efficient test
of Miller and Rabin [21, 24]. We will also use the following facts.

Lemma 2 (Shamir [27]). Given x, y ∈ Zn together with a, b ∈ Z such that
xa = yb and gcd(a, b) = 1, there is an efficient algorithm for computing z ∈ Zn
such that za = y.

Theorem 2 (Prime Number Theorem). Define π(x) as the number of primes
≤ x. For x > 1,

π(x) >
x

lg x
.

3.2 Bilinear Groups and the CDH Assumption

Let G and GT be groups of prime order p. A bilinear map is an efficient mapping
e : G×G→ GT which is both: (bilinear) for all g ∈ G and a, b← Zp, e(ga, gb) =
e(g, g)ab; and (non-degenerate) if g generates G, then e(g, g) 6= 1.

Assumption 3 (Computational Diffie-Hellman [8]) Let g generate a group
G of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following probability
is negligible in λ:

Pr[a, b,← Zp; z ← A(g, ga, gb) : z = gab].

4 An RSA-Based Construction

4.1 A Weakly-Secure Scheme

Setup(1λ) The setup algorithm chooses an RSA modulus N , such that 2` <
φ(N) < 2`+2, where ` is another security parameter derived from 1λ. It then
chooses a random value h ∈ Z∗N .

Next, it chooses a random key K for the PRF function F : {0, 1}∗ → {0, 1}`
and a random c ∈ {0, 1}`. It then establishes a function H(·) : {0, 1}∗ → {0, 1}`
as follows:

HK,c(z) = FK(i, z)⊕ c,

where i, called the resolving index for z, is the smallest i ≥ 1 such that FK(i, z)⊕c
is odd and prime.

The public key PK is (N,h, c,K), where anyone can compute H() using c
and K from the public key. The secret key SK is the factorization of N together
with the (public) values (c,K), which are necessary for the signer to compute
H().

Sign(SK,M ∈ {0, 1}n) To sign messages larger than n bits, one could first
apply a collision-resistant hash function to the message. Let M (i) denote the
first i bits of M ; that is, the length i prefix of M . For i = 1 to n, it computes
ei = HK,c(M (i)). Finally, it outputs the signature

σ = h
Qn
i=1 e

−1
i mod N.

Note: if any ei divides φ(N), then σ may not be defined. In this event, the
signer will output SK as the signature, since we are using safe primes and thus
2ei + 1 divides N . We will later argue that this event occurs with negligible
probability.

Verify(PK,M, σ) The verification algorithm first computes the appropriate primes
as follows: for i = 1 to n, it computes ei = HK,c(M (i)). The algorithm accepts
if and only if

σ
Qn
i=1 ei ≡ h mod N.

4.2 Proof of Security

Theorem 4 (Weak Security under RSA). If the RSA assumption holds
when N is the product of two safe primes, then the above signature scheme is
weakly unforgeable as in Definition 2.

Proof. As in the stateful signatures of [18], our reduction will disregard all RSA
challenges (N, e∗, y) where e∗ is not an odd prime less than 2`. We recall from [18]
that good challenges will occur with polynomial probability. By construction,
φ(N) < 2`+2. We also know, by Theorem 2, that the number of primes ≤ 2` is
≥ 2`

` . Thus, a loose bound on the probability of e∗ being a prime in the proper
range is (2`

`)/2`+2 = 1
4` .

Suppose there is an adversary A against the above signature scheme for n-bit
messages that makes at most q(λ) queries where q() is a polynomial and succeeds
in forging with probability ε. (We say q queries where it is clear from context.)
We show that this adversary can be used to break (good challenges for) RSA
with probability approximately ε/(qn`λ), where q, n, ` are all polynomial in the
security parameter λ. On input (N, e∗, y), where e∗ is an odd prime < 2`, our
RSA solver B proceeds as:

Setup: Adversary Amust first provide B with the messages M1, . . . ,Mq on which
it will request to see signatures. B wishes to guess the shortest prefix of M∗, the
message on which the adversary will later forge, that is different from all other
prefixes of M1, . . . ,Mq.

– If q = 0, B guesses w ∈ {0, 1} at random and sets value t∗ = 1. When A
does not ask for any signatures, then the first prefix (i.e., bit) of the forgery
message M∗ will be used later to embed the challenge, and B need only guess
it with probability 1/2.

– If q ≥ 1, the simulator guesses at random 1 ≤ i∗ ≤ q (a message with the
longest prefix in common with the forgery message3) and 1 ≤ t∗ ≤ n (the
length of the longest common prefix plus one). We will later argue that B’s
guesses are correct with probability ≥ 1/(qn). The values (i∗, t∗) define the
t∗-bit string w comprised of the first (t∗ − 1) bits of Mi∗ followed by the
complement of Mi∗ ’s t∗ bit. In other words, if B’s guesses are correct, then
we know that w is the t∗-bit prefix of the message on which the adversary
will forge, and moreover, that no other signatures will be issued with this
prefix.

Armed with this information, B proceeds to set up the public key as:

1. Select a random PRF seed K.
2. Select a random index 1 ≤ j ≤ `λ and set c = FK(j, w)⊕ e∗.
3. Abort if any of the following conditions hold:

(a) j is not the resolving index of HK,c(w).

3 More than one message in M1, . . . , Mq may share this longest common prefix. Guess-
ing any one of them will suffice for this analysis.

(b) Some prime is not locally unique or divides φ(N). Let P (Mi) be the
vector of n primes derived as HK,c(M

(k)
i) for k = 1 to n. Abort if, for

any i, P (Mi) contains a repeated prime or a prime that divides φ(N)
(i.e., a prime p such that 2p+ 1 divides N).

(c) e∗ ∈ S, where S is defined as the set of all unique primes across all
vectors P (Mi) for i = 1 to q.

4. Set
h = y

Q
ei∈S

ei mod N.

The maximum size of S is qn − 1. To A, h will appear to be distributed
randomly in Z∗N .

5. Send the public key PK = (N,h, c,K) to A.

Sign: B can create a signature on any message M provided during the Setup as
follows.

1. Compute the vector of n primes P (M) (i.e., the set HK,c(M
(k)
i) for k = 1

to n).
2. Compute the signature as

σ = y
Q
ei∈[S−P (M)] ei mod N.

Extract from Forgery: Eventually, A will output a forgery (M∗, σ). If M∗(t
∗) 6=

w, then abort; the Setup guess was not correct.
Now, we wish to extract the RSA solution. Consider the vector of primes

P (M∗). If any member of P (M∗) divides φ(N) (i.e., a prime p such that 2p+ 1
divides N), then B can factor N and compute the RSA solution y1/e∗ mod N .

Otherwise, let α be the number of times e∗ appears in P (M∗). We know from
our Setup that α ≥ 1. Now, consider the following settings:

x = σ(e∗)α−1 Q
ei∈P (M∗),ei 6=e∗

ei , y = y, a = e∗, b =
∏
ei∈S

ei

First, we see that xa = yb. Second, we know that gcd(a, b) = 1, since all values
are primes and e∗ 6∈ S. Thus, B can apply Lemma 2 to efficiently compute a
value z ∈ ZN such that za = y. B outputs z as the RSA solution.

Analysis. We now argue that any successful adversary A against our scheme will
have success in the game presented by B. To do this, we first define a sequence
of games, where the first game models the real security game and the final game
is exactly the view of the adversary when interacting with B. We then show via
a series of claims that if a A is successful against Game j, then it will also be
successful against Game j + 1.

Game 1: This game is defined to be the same as the security game of the
scheme.

Game 2: The same as Game 1, with the exception that A fails if some prime
is not locally unique or divides φ(N) (as described in Setup abort condition
(b)).

Game 3: The same as Game 2, with the exception that A fails if e∗ ∈ S.
Game 4: The same as Game 3, with the exception that at the beginning of the

game B guesses w as follows:
– if q = 0, w is chosen at random from {0, 1};
– else, a random pair (i∗, t∗) is chosen, where 1 ≤ i∗ ≤ q and 1 ≤ t∗ ≤ n.

Together with M1, . . . ,Mq, this defines the string w as comprised of the
first (t∗ − 1) bits of Mi∗ followed by the complement of Mi∗ ’s t∗th bit.

Now A fails if the message on which he forges does not have prefix w.
Game 5: The same as Game 4, with the exception that A fails if the resolving

index of HK,c(w) is greater than `λ.
Game 6: The same as Game 5, with the exception that at the beginning of the

game B guesses an index 1 ≤ j∗ ≤ `λ and A fails is the resolving index of
HK,c(w) is not j∗.

Game 7: The same as Game 6, with the exception that at the beginning of the
game B chooses a random PRF seed K (as before) and a random e ∈ {0, 1}`
and then sets c = FK(j∗, w)⊕ e.

Game 8: The same as Game 7, with the exception that c is set as c = FK(j∗, w)⊕
e∗, where e∗ is the `-bit prime from the RSA challenge.

Game 8 is exactly the view of the adversary when interacting with B. In the
full version of this paper, we complete this argument by linking the probability
of A’s success in these games via a series of claims. The only non-negligible
probability gaps come between Games 3 and 4, where there is a factor 1/(qn)
loss, and between Games 5 and 6, where there is a factor 1/(`λ) loss.

4.3 Short, Fully-Secure RSA Signatures

We obtain a fully-secure signature scheme by combining our RSA-based weakly
unforgeable signatures with any suitable chameleon hash function. Standard
model chameleon hashes exist under the hardness of factoring [19] and RSA [1,
18]. The following result is immediate from Theorem 4 and Lemma 1.

Corollary 1 (Full Security under RSA). Let (G′, S′, V ′) be the signature
scheme described in Section 4.1. Let H be a chameleon hash function family
secure under the RSA assumption. Let (G,S, V) be the signature scheme resulting
from the generic transformation in Section 2.5 on (G′, S′, V ′) and H. Then
(G,S, V) is a fully-secure signature scheme, according to Definition 1, under
the RSA assumption.

The resulting signatures are very short. A signature contains one element
from Z∗N and one k-bit integer, where k is derived from the security parameter
and the settings of the chameleon hash when using the standard model, RSA-
based hash in [1, 18]. We provide more details on this in the full version.

5 Optimizations for the RSA Construction

While the main efficiency focus of this work is on simultaneously achieving a
short public key and signature under RSA, we now briefly turn our attention
to methods for improving the computational efficiency of these signatures. A
significant computational overhead for both the signer and the verifier in our
RSA scheme is the generation and testing of primes necessary to compute the
hash function H(). The signer also must perform one exponentiation, where the
exponent may be reduced modulo φ(N), while the verification cost is roughly n
exponentiations of `-bit exponents.

5.1 Online/Offline Signatures

In an online/offline signature as introduced by Even, Goldreich and Micali [11],
the scheme is designed so that the signer can do the bulk of his computational
work before the message is known to him. This paradigm is extremely useful for
many applications which require a quick response time once a message comes
in, but where the device may otherwise have relatively longer periods of inactiv-
ity. Fortunately, our RSA scheme (as well as our later CDH scheme) have this
property.

To see this, recall the generic structure of our fully-secure signature scheme
from Section 2.5. The signer can, offline, choose a random n-bit message X,
sign X using the weakly-secure scheme, and then later use the trapdoor of the
chameleon hash to link this signature to any desired message M . Thus, all of the
expensive primality testing and the single exponentiation for our scheme can be
performed offline by the signer. Indeed, this use of a chameleon hash to obtain
online/offline signatures was previously suggested by Shamir and Tauman [28].

5.2 Send Resolving Indices with the Signature

One of the main verification costs is searching for the n resolving indices. Each
signature verification requires an expected n` primality tests; i.e., an expected `
per evaluation of HK,c(M (i)), for i = 1 to n. The number of primality tests could
be reduced to n by sending a vector of resolving indices along with the signature.
While the size of the signature would increase by roughly n · log(`λ) bits (i.e., the
number of resolving indices n by the representation of their maximum likely value
`λ), this is still considerably smaller than several prior tree-based approaches.

The danger of attack on this scheme is that a malicious signer will send
a higher index than the resolving index. However, suppose that a maximum
resolving index T = `λ is posted in the public key and that honest verifiers reject
if any of the sender’s indices exceed this value. Then we can alter our prior proof
to fit this variation as well. The simulator B behaves as before, except that she
guesses which resolving index the adversary A will choose for the evaluation of
w, between 1 and T = `λ, and later uses this value to extract the RSA solution.
As B is already guessing the resolving index in our current reduction (see Game
6), there is no additional concrete security loss.

5.3 Using a Larger Alphabet

In the current scheme, the message is broken up into n 1-bit chunks, which each
correspond to a prime exponent. Finding these n primes is costly for both the
signer and the verifier, and the verification then requires n exponentiations (of
one prime each). Suppose we break the message up into larger, k-bit chunks. The
benefit of this approach would be that only n/k primes need now be found and
used in verification. The drawback is that the concrete security of the scheme
would decrease by a factor of 1/(2k − 1), because now the simulator must guess
within the chunk pointed to by (i∗, t∗), which of the 2k − 1 values the forger
will later use. In the binary case, the bit pointed to by (i∗, t∗) was always the
complement of Mi∗ ’s t∗th bit.

Considering k = 2, however, we cut the cost of signature generation and ver-
ification in half, for only a 1/3 reduction in concrete security. In some scenarios,
this may be acceptable.

5.4 Using Smaller Prime Exponents

In the current scheme, primes are chosen to be of ` bits where 2` is roughly
the size of φ(N). We could instead select ` to be smaller, but where 2` is still
exponential in the security parameter. The main benefit of this approach would
be a slightly more efficient scheme at the cost of a security proof with respect to
a different variant of the RSA problem, namely, inverting RSA with a random
prime exponent of bit-length less than or equal to `.

6 A CDH-Based Construction

Our RSA proof techniques can be translated into the CDH setting as well. Inter-
estingly, this provides new insights about the security of the only prior (stateless)
scheme known to be secure under CDH in the standard model: the Waters sig-
natures [29]. We present an entirely new method for reasoning about the weak
unforgeability of these signatures under CDH. By adding a chameleon hash, we
obtain a fully-secure scheme which is a derivative of the Waters signatures. The
main contribution here is a much shorter, cleaner security argument as well as
a demonstration that our RSA proof techniques are likely to be useful in other
settings.

6.1 The Waters Signatures

Recall the Waters signature scheme [29], which is known to be fully-secure under
the Computational Diffie-Hellman assumption in the standard model.

Setup(1λ) The setup algorithm selects a bilinear group G of prime order p > 2λ.
It chooses a random exponent a ∈ Zp. Let n be a security parameter derived
from λ. It chooses random group elements g, v0, v1, . . . , vn ∈ G. The secret key
is a and the public key is output as:

g, v0, v1, . . . , vn, e(g, g)a.

Sign(SK,M ∈ {0, 1}n) The message space is treated as n-bits; to sign arbitrarily
long messages one could first apply a collision-resistant hash function. Here Mi

denotes the ith bit of M . The signer chooses a random r ∈ Zp and then outputs
the signature as:

σ1 = ga

(
v0

n∏
i=1

vMi
i

)r
, σ2 = gr.

Verify(PK,M ∈ {0, 1}n, σ = (σ1, σ2)) The verification algorithm uses the bilin-
ear map to verify the signature by checking that

e(σ1, g) = e(g, g)ae(v0
n∏
i=1

vMi
i , σ2).

6.2 Proof of Security

Theorem 5 (Weak Security under CDH). If the CDH assumption holds in
G, then the Waters signature scheme is weakly unforgeable as in Definition 2.

Proof. Suppose we have an adversary A against the above signature scheme that
makes at most q(λ) queries where q() is a polynomial and succeeds in forging
with probability ε. (We say q queries where it is clear from context.) We show
that this adversary can be used to break CDH with probability ≥ ε/(qn). On
input (g, ga, gb), our CDH solver B proceeds as follows:

Setup: Adversary Amust first provide B with the messages M1, . . . ,Mq on which
it will request to see signatures. B wishes to guess the shortest prefix of M∗, the
message on which the adversary will later forge, that is different from all other
prefixes of M1, . . . ,Mq.

– If q = 0, B guesses w ∈ {0, 1} at random and sets value t∗ = 1. When A
does not ask for any signatures, then the first prefix (i.e., bit) of the forgery
message M∗ will be used later to embed the challenge, and B need only guess
it with probability 1/2.

– If q ≥ 1, the simulator guesses at random 1 ≤ i∗ ≤ q (a message with the
longest prefix in common with the forgery message4) and 1 ≤ t∗ ≤ n (the
length of the longest common prefix plus one). We will later argue that B’s
guesses are correct with probability ≥ 1/(qn). The values (i∗, t∗) define the
t∗-bit string w comprised of the first (t∗ − 1) bits of Mi∗ followed by the
complement of Mi∗ ’s t∗ bit. In other words, if B’s guesses are correct, then
we know that w is the t∗-bit prefix of the message on which the adversary
will forge, and moreover, that no other signatures will be issued with this
prefix.

Armed with this information, B proceeds to set up the public key as:
4 More than one message in M1, . . . , Mq may share this longest common prefix. Guess-

ing any one of them will suffice for this analysis.

1. Set e(g, g)α = e(ga, gb), thus the secret key will implicitly be set to α = ab.
2. Pick random values y0, . . . , yn ∈ Zp.
3. Set v0 = gy0

∏t∗

i=1(ga)wi .
4. For i = 1 to n, set

vi =


gyi if i > t∗;
g−agyi else if wi = 1;
gagyi otherwise (wi = 0).

Here wi denotes the ith bit of w. The key observation here is that all ga

terms will cancel out for signatures with prefix w and that this won’t be
true for any other t∗-bit prefix.

5. Send PK = (g, v0, . . . , vn, e(g, g)α) to A.

Sign: B can create a signature on any message M provided during the Setup.
Let β =

∑t∗

i=1 wi be the number of 1’s in w. Let γ =
∑t∗

i=1mi(1 − 2wi), where
mi denotes the ith bit of M . Notice that β + γ =

∑t∗

i=1 wi + mi(1 − 2wi); this
is equal to the number of bits that differ between w and the first t∗ bits of M .
By our setup, β + γ 6= 0 for all messages provided by the adversary.

1. Select a random value r′ ∈ Zp.
2. Set σ2 = (g−b)1/(β+γ)gr

′
; this implicitly sets σ2 = gr with r = −b/(β+γ)+r′.

3. Set σ1 = σ
y0+

Pn
i=1miyi

2 gar
′(β+γ). To see that this is properly formed relative

to σ2, note that the value we want is:

σ1 = gab

(
v0

n∏
i=1

vmii

)r
= gab

(
gy0+βagγag

Pn
i=1miyi

)r
=

gab
(
ga(β+γ)

)r (
gy0

Pn
i=1miyi

)r
=
(
ga(β+γ)

)r′ (
gy0

Pn
i=1miyi

)r
=

σ
y0+

Pn
i=1miyi

2 gar
′(β+γ).

4. Output the signature (σ1, σ2).

Extract from Forgery: Eventually, A will output a forgery (M,σ = (σ1, σ2)). If
M (t∗) 6= w, then abort; the Setup guess was not correct. From the construction,
one can see that B’s guesses are correct with probability ≥ 1/(qn), because the
distribution of the public key and signature responses is the same for all possible
guesses. Now, to extract the CDH solution gab, the main idea is that the forgery
is of the form σ1 = gabgzr, σ2 = gr for a value z known to B, and thus it can
compute σ1/σ

z
2 = gab. To see this, let mi denote the ith bit of M and observe

that:

gz = v0

n∏
i=1

vmii = gy0+βa
t∗∏
i=1

gami(1−2wi)
n∏
i=1

gmiyi ,

and thus that

z = y0 +

(
β +

t∗∑
i=1

mi(1− 2wi)

)
a+

n∑
i=1

miyi.

Observe that up to t∗, it holds that mi = wi. Recall that β =
∑t∗

i=1 wi was
chosen as the number of 1’s in w. Thus, β +

∑t∗

i=1 wi(1− 2wi) = β −
∑t∗

i=1 wi is
equal to zero and z simplifies to y0 +

∏n
i=1 g

miyi .

6.3 Short, Fully-Secure CDH Signatures

We obtain a fully-secure signature scheme by combining the above CDH-based
weakly unforgeable signatures with any suitable chameleon hash function. Stan-
dard model chameleon hashes exist under the discrete-logarithm assumption [19]
(and thus under CDH). The following result is immediate from Theorem 5 and
Lemma 1.

Corollary 2 (Full Security under CDH). Let (G′, S′, V ′) be the signature
scheme described in Section 6.1. Let H be a chameleon hash function family
secure under the CDH assumption. Let (G,S, V) be the signature scheme result-
ing from the generic transformation in Section 2.5 on (G′, S′, V ′) and H. Then
(G,S, V) is a fully-secure signature scheme, according to Definition 1, under the
CDH assumption.

The resulting signatures are fairly short. A signature contains two elements
from G and one k-bit value, where k is derived from the security parameter
and the choice of the chameleon hash. Weak signing requires only two expo-
nentiations, since the signer can choose v0, . . . , vn such that she knows their
discrete logarithms base g. Verification requires only two pairings. Of course,
this is mostly a theoretical exercise as the Waters signatures are more efficient
on all counts.

7 Conclusion and Open Problems

In this work, we presented the first stateless signatures with short public keys and
short signatures secure under the RSA assumption in the standard model. This
answers a long-standing open problem as to whether or not such a construction
was possible. Indeed, this is the only known scheme to satisfy all of the above
requirements under a computational assumption with a short input and a single
valid output.

The construction requires a new proof technique for reasoning about the
security of signature schemes. We demonstrate that this technique is of broader
interest by showing how to apply it in the CDH setting to obtain a new security
proof for the Waters signatures [29]. Interestingly, both our constructions are also
online/offline signatures, where the vast majority of the signing computation can
be done offline before the signer knows the message.

We leave open several interesting problems. The Waters signatures and our
variant here offer short signatures, but a public key of O(λ) elements, where
λ is the security parameter. It is still unknown how to realize standard model
CDH signatures where both the signatures and the public key are short. While
we offer many computational optimizations for our RSA scheme in Section 5, it
would be of great practical significance to obtain faster signing and verification
times. Finally, given the usefulness of signatures in designing stronger encryption,
anonymous credentials, electronic cash, etc., it would be worthwhile to revisit
some of these systems and try to weaken the complexity assumptions on which
they are founded.

Acknowledgments

We thank Amit Sahai for helpful discussions and the anonymous reviewers for
their helpful comments.

References

1. Giuseppe Ateniese and Breno de Medeiros. Identity-based chameleon hash and
applications. In Financial Cryptography, volume 3110 of Lecture Notes in Computer
Science, pages 164–180. Springer, 2004.

2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM Conference on Computer and Communica-
tions Security (CCS), pages 62–73. ACM Press, 1993.

3. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Ad-
vances in Cryptology – EUROCRYPT ’04, volume 3027 of Lecture Notes in Com-
puter Science, pages 382–400. Springer, 2004.

4. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. Journal of Cryptology, 17(4):297–319, 2004.

5. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Advances in Cryptology – CRYPTO ’04, volume
3152 of Lecture Notes in Computer Science, pages 56–72. Springer, 2004.

6. Ronald Cramer and Ivan Damg̊ard. New generation of secure and practical RSA-
based signatures. In Advances in Cryptology – CRYPTO ’96, volume 1109 of
Lecture Notes in Computer Science, pages 173–185. Springer, 1996.

7. Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA
assumption. ACM Transactions on Information and System Security, 3(3):161–
185, 2000.

8. Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22:644–654, 1976.

9. Cynthia Dwork and Moni Naor. An efficient existentially unforgeable signature
scheme and its applications. In Advances in Cryptology – CRYPTO ’94, volume
839 of Lecture Notes in Computer Science, pages 234–246. Springer, 1994.

10. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in Cryptology — CRYPTO ’84, volume 196 of
Lecture Notes in Computer Science, pages 10–18. Springer, 1984.

11. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital schemes.
In CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 263–275.
Springer, 1990.

12. March Fischlin. The Cramer-Shoup Strong-RSA signature scheme revisited. In
Public Key Cryptography (PKC), volume 2567 of Lecture Notes in Computer Sci-
ence, pages 116–129. Springer, 2003.

13. Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures
without the random oracle. In Advances in Cryptology – EUROCRYPT ’99, volume
1592 of Lecture Notes in Computer Science, pages 123–139. Springer, 1999.

14. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In Symposium on the Theory of Com-
puting (STOC), pages 197–206, 2008.

15. Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient signature
schemes with tight reductions to the Diffie-Hellman problems. J. of Cryptology,
20(4):493–514, 2007.

16. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Computing, 17(2), 1988.

17. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applica-
tions. In Advances in Cryptology – CRYPTO ’08, volume 5157 of Lecture Notes
in Computer Science, pages 21–38. Springer, 2008.

18. Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under
standard assumptions. In Advances in Cryptology – EUROCRYPT ’09, volume
5479 of Lecture Notes in Computer Science, pages 333–350. Springer, 2009.

19. Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Network and Distributed
System Security Symposium, 2000.

20. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions.
In Symposium on Foundations of Computer Science (FOCS), pages 120–130. IEEE
Computer Society, 1999.

21. Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer
and System Sciences, 13:300–317, 1976.

22. Tatsuaki Okamoto. Provably secure and practical identification schemes and cor-
responding signature schemes. In Advances in Cryptology – CRYPTO ’92, volume
740 of Lecture Notes in Computer Science, pages 31–53. Springer, 1992.

23. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
Advances in Cryptology — EUROCRYPT ’96, volume 1070 of Lecture Notes in
Computer Science, pages 387–398. Springer, 1996.

24. Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of Number
Theory, 12:128–138, 1980.

25. Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Comm. of the ACM, 21(2):120–
126, February 1978.

26. Claus P. Schnorr. Efficient signature generation for smart cards. Journal of Cryp-
tology, 4(3):239–252, 1991.

27. Adi Shamir. On the generation of cryptographically strong pseudorandom se-
quences. ACM Transaction on Computer Systems, 1:38–44, 1983.

28. Adi Shamir and Yael Tauman. Improved online/offline signature schemes. In
Advances in Cryptology – CRYPTO ’01, volume 2139 of Lecture Notes in Computer
Science, pages 355–367. Springer, 2001.

29. Brent Waters. Efficient identity-based encryption without random oracles. In
Advances in Cryptology – EUROCRYPT ’05, volume 3494 of Lecture Notes in
Computer Science, pages 320–329. Springer, 2005.

