How Risky is the Random-Oracle Model?

Gaétan Leurent' and Phong Q. Nguyen?

! DGA and ENS, France. http://www.eleves.ens.fr/leurent/
2 INRIA and ENS, France. http://www.di.ens.fr/ pnguyen/

Abstract. RSA-FDH and many other schemes secure in the Random-
Oracle Model (ROM) require a hash function with output size larger than
standard sizes. We show that the random-oracle instantiations proposed
in the literature for such cases are weaker than a random oracle, including
the proposals by Bellare and Rogaway from 1993 and 1996, and the ones
implicit in IEEE P1363 and PKCS standards: for instance, we obtain
a 2% preimage attack on BR93 for 1024-bit digests. Next, we study
the security impact of hash function defects for ROM signatures. As an
extreme case, we note that any hash collision would suffice to disclose the
master key in the ID-based cryptosystem by Boneh et al. from FOCS 07,
and the secret key in the Rabin-Williams signature for which Bernstein
proved tight security at EUROCRYPT ’08. Interestingly, for both of
these schemes, a slight modification can prevent these attacks, while
preserving the ROM security result. We give evidence that in the case of
RSA and Rabin/Rabin-Williams, an appropriate PSS padding is more
robust than all other paddings known.

1 Introduction

The Random-Oracle Model (ROM), in which hash functions are viewed as ran-
dom oracles, goes back to at least Fiat and Shamir [17]. Popularized by Bellare
and Rogaway [1], it has been the subject of much debate. On the one hand, it is
widespread in research papers and standards, because ROM schemes are usually
more efficient, their security proofs can be based on well-studied assumptions,
and can sometimes be tight. In fact, many standardized public-key schemes are,
at best, only proven secure in the ROM, e.g. RSA-OAEP [2] and RSA-PSS [3].

On the other hand, the ROM is not an assumption (on the hash function):
there is no random-oracle definition which a public function can hope to satisfy. A
security proof in the standard model (SM) precisely gives assumptions which are
sufficient to ensure security properties. By contrast, a ROM security proof only
shows that an attack which does not break the proof assumptions must exploit a
property not satisfied by the random-oracle simulation of the security proof. This
allowed Canetti et al. [10] to build signature and encryption schemes which are
secure in the ROM, but insecure for any (efficient) implementation of the random
oracle, because such implementations can be simulated by a Universal Turing
machine, and therefore be distinguished [33] from a random oracle. However, the
constructions [10, 33, 20, 4] showing the limitations of the ROM are arguably “un-
natural” and significantly differ from real-world constructions. Still, one should



be careful with idealized security models: like all Merkle-Damgard /Davies-Meyer
hash functions, MD5 was provably collision-resistant [50, 7] (up to the birthday
bound) in the ideal cipher model (with respect to the block cipher underlying the
compression function); yet, computing MD5 collisions only costs a few seconds
now [43].

This stresses the importance of studying the actual security of schemes proven
in the ROM. Unfortunately, very few ROM schemes have also been proven secure
in the SM [42, 8]; and for several cases, there is evidence that a security proof
in the SM is unlikely [34, 39, 15, 28]. Recent breakthroughs in the cryptanalysis
of hash functions [48,47, 45] have shown that standard hash functions like MD5
or SHA-1 are far from behaving like random oracles. However, the impact on
the public-key world has been limited so far, with the exception of [45], which
constructs two colliding X.509 certificates for different identities and public keys,
and has recently been extended in [43] to construct a rogue CA certificate.

But to study the actual security, one needs to know how the random ora-
cle will be instantiated in practice, should the scheme ever be used. Often, the
random-oracle output size matches that of standard hash functions (like 160
bits for SHA-1) or the upcoming SHA-3. In this case, standard hash functions
are most likely to be used, despite well-known properties of MD-iterated hash
functions (such as the derivation of h(mq||msz) from h(m;) and ms) which make
them easily differentiable from random oracles. But RSA-FDH [3] and many
other ROM schemes (such as [24,12,13,27,6,19,9]) actually require a “non-
standard” hash function. First, the output may not be a uniformally distributed
bitstring: it could be residue classes, or elliptic curve points, etc., fortunately
it is known how to deal with such situations given an instantiation with arbi-
trary output {0,1}™. But if the output bit-length is larger than standard sizes
(e.g. RSA-FDH which needs at least 1024 bits), it is unclear how the oracle will
be instantiated. To the best of our knowledge, the only proposals of random-
oracle instantiations supporting arbitrary outbit bit-length are the following:
two historical instantiations proposed by Bellare and Rogaway in their seminal
papers [1] (on the ROM) and [3] (on FDH and PSS), recent constructions by
Coron et al. in the full version of [14], and the instantiations implicit in PKCS#1
v2.1 [41] and IEEE P1363 [23] standards. It seems that none of these instanti-
ations have been analyzed in the literature, except [14] in the indifferentiability
framework of Maurer et al. [33].

This also raises the question of the impact of potential defects in random-
oracle instantiations. When an article provides a ROM security proof, it usually
does not say how to instantiate the random oracle, neither what might happen
if the hash function does not behave like a random oracle. Assume that Alice
implements a scheme ROM-secure under a well-known computational assump-
tion. Several years later, the assumption still stands, but Alice learns that her
random-oracle implementation is not as perfect as she thought: Should Alice
worry? Are the risks confined to chosen-message existential forgery and cipher-
text distinguishability? If Alice had the choice between two (equally efficient)
schemes secure in the ROM under the same assumption, maybe Alice would



rather choose the least risky one, in terms of robustness to hash function de-
fects: the scheme with less stringent security requirements on the hash function,
and the least affected if ever the requirements are not satisfied.

OUR RESULTS. We analyze the main proposals [1,3,41,23] of random-oracle
instantiations supporting arbitrary output bit-length. While none of these pro-
posals made it clear what was exactly the expected security guarantee, one
might argue that an instantiation with output bit-length n should offer 27/2
resistance to collisions, and 2™ resistance to preimages, as required for SHA-3.
We show that the proposals fall short of those bounds: for instance, for 1024-bit
digests, we give a 2°7 preimage attack on BR93 [1] and a 2! collision attack on
BRY6 [3]. We note that the instantiations implicit in PKCS [41] and IEEE [23]
standards are not collision-resistant: independently of the output size, collisions
follow directly from SHA-1 collisions, which cost only 26! [26,47]. And we show
that when applied to the compression functions of MD5 or SHA-1, the theoret-
ical constructions of Coron et al. [14] are no more collision-resistant than MD5
or SHA-1 themselves. This highlights the difficulty of instantiating/simulating a
random oracle, and motivates the study of the impact of hash defects on schemes
secure in the ROM.

As a second contribution, we show that, while the ROM is useful to detect
structural flaws, it can hide very different security requirements on the hash
function, and very different damages in case of hash defects, independently of
the computational assumption and the tightness of the security reduction. We
illustrate this phenomenon with a well-known class of ROM schemes: padding-
based signatures from trapdoor one-way functions, such as RSA, Rabin, Rabin-
Williams and ESIGN. While it is often believed that a hash collision may at
worst give rise to an existential forgery, we show that for several secure signa-
tures proposed in the literature [3,24, 9,6, 19], collisions or slight hash function
defects can have much more dramatic consequences, namely key-recovery at-
tacks. However, this does not contradict the ROM security proofs, and does not
mean that such signatures cannot be secure with a proper hash function. Our
most interesting examples are related to Rabin and Rabin-Williams signatures,
but the issues are not restricted to factoring-based schemes: in the full version,
we show similar problems for a recent lattice-based signature scheme [19]. For
instance, we remark that any hash collision discloses the master key in the ID-
based cryptosystem of Boneh et al. [9], and the secret key in the Rabin-Williams
signature scheme for which Bernstein [6] recently proved tight security, which
was not mentioned in either [9, 6]. Interestingly, we show that a slight modifica-
tion of the signing process can prevent our collision-based key-recovery attacks,
while preserving the ROM security result. We give evidence that in the case of
RSA and Rabin/Rabin-Williams, an appropriate PSS padding (with large salt)
is more robust than all other paddings known, especially deterministic ones and
randomized paddings with small randomness, including Katz-Wang [27] which
achieve tightness.

To put things into perspective, consider the Rabin-Williams signature in-
cluded in the IEEE P1363 standard [23]: it can be optionally deterministic or



randomized, but the deterministic version has no tight reduction. Since tight-
ness was a key factor in standardizing RSA-PSS over RSA-FDH, one might
be tempted to replace this deterministic Rabin-Williams by its “tight” variant
analyzed by Bernstein [6], but doing so would have led to a chosen-message
key-recovery attack from any SHA-1 collision because such collisions provide
collisions on the RO-instantiation of the P1363 standard. Alternatively, there
would have also been a chosen-message key-recovery attack if IEEE P1363 had
simply used the BR93 RO-instantiation [1], due to the preimage attack.

Some of the problems we discuss are related to the issue of how to deran-
domize a signature scheme. As a side-remark, we show that the derandomization
technique proposed by Granboulan [22] to fix ESIGN during the NESSIE Euro-
pean project is not completely sound: when applied to ESIGN or DSA, it may
leak the secret key. Finally, while this paper focuses on the ROM, we believe
that in general, not just in the ROM, it is also interesting to identify necessary
(possibly minimal) assumptions for security, and to assess the security impact
when assumptions do not hold. This is useful when comparing cryptographic
schemes, and can complement provable security results.

RoAD MAP. We assume the reader is familiar with hash functions, the ROM [1]
and provable security for signatures [21]. In Sect. 2, we recall and analyze
random-oracle instantiations for large output size. Next, we study the impli-
cations of hash function defects for ROM signatures based on a trapdoor one-
way function and a padding: we recall such schemes in Sect. 3. In Sect. 4, we
study the robustness of derandomized Rabin/Rabin-Williams signatures, which
are used in [6] and the ID-based cryptosystem of [9]. In Sect. 5, we compare the
robustness of RSA and Rabin/Rabin-Williams.

2 Random-Oracle Instantiations for Large Output

In this section, we describe and analyze random-oracle instantiations supporting
arbitrary output bit-length that have been proposed in the literature, namely [1,
3, 14] and the instantiations implicit in the PKCS#1 v2.1 [41] and IEEE P1363 [23]
standards. For completeness, we also briefly discuss collision-resistant hash func-
tions such as [11,32]. While some of the instantiations make use of MD5, that
alone is insufficient to discard them. Indeed, though the collision-resistance of
MD?5 is seriously broken [48,29], many usages of MD5 are not threatened yet:
for instance, there is still no practical attack on HMAC-MD5.

2.1 The 1993 Instantiation by Bellare and Rogaway

Description. In their seminal paper on the ROM [1], Bellare and Rogaway gave
guidelines to instantiate a random oracle (see [1, Sect. 6]), but the only explicit
construction is the following one, which we call BR93:
— Let hy : {0,1}512 — {0,1}128 be the first compression function of MD5, that
is the compression function evaluated with the initial IV of MD5.



— Let B/ : {0,1}?% — {0,1}5 defined by h’(x) being the first 64 bits of
ha((zz) @ C), for a randomly chosen 512-bit constant C. The function A’
defines a pseudo-random number generator h”(z) : {0,1}1°? — {0,1}* by
counter as follows3: h”(z) = h/(x(0))||R/(z(1))||W/ (z(2)) ... where (i) is the
encoding of ¢ into 64 bits.

— Finally, the BR93 instantiation of the random oracle is the truncation (pre-
fix) of h(x) : {0,1}* — {0, 1}* defined as follows. First, one applies a padding
to x by adding a bit 1 and enough bits 0 to obtain a bitstring x’ whose bit-
length is a multiple of 128. Then, if we divide 2’ into 128-bit blocks as
o' =axf...x,_q, then h(x) = b’ (zp{(0)) A" (21 (1)) ®--- B A" (2], _1(n—1)),
that is, h(x) is the XOR of the n streams produced by each of the z.

Weaknesses. We claim that BR93 is much weaker than a random oracle with
respect to collision and preimage resistance, independently of the choice of the
underlying compression function (MD5 here): the main idea is to adapt Wagner’s
generalized birthday algorithm [46]. Concretely, we give:

— a collision attack on (k + 2)r bits with complexity 2" - 72" using messages of
2% blocks. For instance, a collision attack on 1024 bits with messages of 23°
blocks costs 230 -32-232 = 267 elementary operations. If we limit the message
size to 2! blocks, the complexity is 214 - 64 - 264 = 284, The complexity does
not depend on the size of the underlying compression function.

— a preimage attack on (k+ 1)r bits with complexity of 2% . 72" using messages
of 2% blocks. For instance, a preimage attack on 1024 bits with messages of
231 blocks costs 231 - 32 - 232 = 268 elementary operations.

Generalized birthday. Recall Wagner’s generalized birthday algorithm [46].
The basic operation is the general join b<;: L ba; L' consists of all elements of
L x L' such that their j least significant bits match:

Loy L' = {l ol (LY eLxL | (o)1= o-f’}.

Assume that we are given several lists Lg, L1, ..., each of size 2". Our goal is
to find Iy € Lo,l1 € L1, ... such that @{; = 0. The idea is to join the lists using
a binary tree. We build the first level with Loy = Lg >, L1, Lag = Lo <, L3,
and so on. By the birthday paradox, these new lists should still contain about 2"
elements. On the next level, we build Lg123 = Lg1 Mo, La3. Since the elements
of Ly and Log already agree on their r lower bits, we are only doing a birthday
paradox on the bits r to 2r, so we still expect to find 2" elements. If we start
with 2F lists, on the last level we end up with one list of 2" elements which all
begin with kr zeros. In this list, we expect to find two elements that agree on 2r
extra bits, so that we have a collision on (k + 2)r bits.

Collisions. We now use Wagner’s algorithm to find collisions on BR93. For each
message block z, we will consider 2" possible values, and build a list L; with the
resulting h”(x}(i)). Then we can use Wagner’s attack on these lists. A collision
attack on (k + 2)r bits will have a complexity of 2* - r2" using messages of 2*

3 The paper [1] actually says 224 instead of 192 for the input size of A’, but that would
be incompatible with the definition of k' as 224 + 64 = 288 > 256.



blocks. For instance, a collision attack on 1024 bits with messages of 23° blocks
costs 230 . 32 . 232 = 267 elementary operations. If we limit the message size to
214 blocks, the complexity is 214 - 64 - 264 = 284, Note that this complexity does
not depend on the size of the underlying hash function.

Preimages. We can also use Wagner’s algorithm to find preimages on BR93.
If we want a preimage of H, we first replace Ly by Ly @ H. On the last level
of the tree, we will still have one list of 2" elements which all begins with kr
zeros, but instead of looking for a collision on 2r extra bits, we look for an
element with r extra zeroes. This element corresponds to a message = such that
Hah(z)=Hah (z4(0)) @ h" (2} (1)) & ..h" (zhy (2% = 1)) =41y 0, i.e. the
(k+ 1)r first bits of h(x) agree with H. A preimage attack on (k + 1)r bits will
have a complexity of 2% - 2" using messages of 2¢ blocks. A preimage attack
on 1024 bits with messages of 23! blocks costs 23! - 32 - 232 = 208 elementary
operations.

2.2 The 1996 Instantiation by Bellare and Rogaway

Description. In their paper [3] on PSS, Bellare and Rogaway proposed another
instantiation [3, App. A], which we call BR96: let H = MD5 or SHA-1, and
define hpros(z) as the appropriate truncation (prefix) of:

H(const(0)x)||H (const(1l)z)||H (const(2)z)|| ...

where the constant const should be unique to h. If another instantiation is
needed, one should change const. BR96 is very close to a previous construc-
tion described in the OAEP paper [2] where H above is replaced by the 80-bit
truncation of SHA-1, but that construction was not explicitly recommended to
instantiate a random oracle, though it was used as a building block in an imple-
mentation of RSA-OAEP.
Weaknesses. We note that since H is a MD function, hgrgs can be viewed
as the concatenation of MD functions, where each H; :  — H(const(i)x) is a
distinct iterative hash function, which implies:
— hpros can be distinguished from a random oracle. More precisely, BR96
suffers from the same extension problems as any MD function: if the output
size of hprgs is an exact multiple of that of H, and if m, has appropriate
size, then hpros(m1||/ms) can be computed from hpgros(m1) and mo.
— hBroes is weaker than a random oracle with respect to collision and preim-
age resistance, independently of the choice of the underlying hash function
(except its output size), thanks to Joux’s multicollision technique [25].
Recall that Joux [25] showed that the concatenation of two or more MD-iterated
hash functions has roughly the same security as a single hash function. More
precisely, if one concatenates k iterated hash functions with an internal size of n
bits each, [25] finds a collision in the concatenation for a workload of n*~1 x 27/2,
and preimages for an imprecise workload of poly(n¥)2m.

A closer analysis of the collision attack shows that the cost nF~1 x 27/2
can actually be reduced to [(n/2)*~! + (n/2)¥=2 + .- 4+ 1] x 2/2 < (n/2) 1 x



(n/2)/(n/2—1) x2"/? ~ (n/2)~1 x 2"/2, And there seems to be a more efficient
preimage attack by generalizing the basic preimage attack against two hash
functions as follows. First, build a 27" /2 *_multicollision on the first hash
function Fi, and look for an extra block that maps this multicollision to the
target value of Fi. Then build a multicollision in F5 using the messages of the
first multicollision: each collision in F requires a set of 2"/2 messages, which
will be built from n/2 colliding pairs in F;. Thus we should get a 2"16_2/2’@*3—
multicollision in F;. We will also use the last n colliding pairs for a preimage
search on Fy. This gives us a 27"~ /2F=3-multicollision in Fy||F, which is also
a preimage. We apply the technique iteratively to build a 2"-multicollision for
Fy||Fy||...Fx—1 which is also a preimage. If we compute Fj on the set of 27
colliding messages, we expect to find one preimage against the full concatenation.
The most expensive steps of this attack are the preimage search, because the
collision finding steps all have complexity O(n* x 27/2). The preimage step on
F; requires to compute F; on 2™ messages, which are made of n block pairs
of length n*=2/2=2 and one block of length n=2/2i — 3. If we do an amortized
analysis, each computation requires to hash 2 blocks from message pairs, and the
final block, which gives a cost of ni=2/2i=% x 2", The cost of the full preimage
search is roughly equivalent to the cost of the last preimage search, which is
nk=2/2k=4 x on,

We now apply this to BR96. For instance, if H is MD5, we can find collisions
in 1024 bits of the output with a workload of essentially 647-264 = 2196 where the
colliding messages will be of length 647 = 242 blocks; and we can find preimages
of 1024 bits of the output with a workload of 1286/2% . 2128 = 2166  These
complexities are clearly impractical and do not threaten [3], but they are much
lower than the theoretical security of a 1024-bit random oracle.

For the same reason, BR96 is also malleable. For instance, we can create pairs
of messages xg, 1 such that H(const(i)zg) = H(const(i)z1) for all i’s except
the last one. We will build a multicollision set of 2*/# such messages, and we
expect to find one quadruplet such that H(xo) @ H(x1) ® H(z2) @ H(x3) = 0.
In the full version, we show how this kind of malleability can be exploited to
attack GPV [19].

As another example, consider the previous instantiation of BR96 for 1024-bit
digests, using MD5. We can find two near-collisions where the most significant
384 bits are equal, with of a workload of essentially 642 - 264 = 276, Such near-
collisions give existential forgeries for the historical version [37] of ESIGN.

2.3 Recent Instantiations by Coron et al. (CDMP)

Description. Coron et al. [14] (CDMP) proposed several variations of Merkle-
Damgéard to build a random oracle from an (ideal) compression function or an
(ideal) block-cipher using the Davies-Meyer mode. They proposed four variants
of MD for input domain extensions (namely, Prefiz-Free Encoding, Dropping
Some Output Bits, Using NMAC, and Using HMAC) and one scheme (only
in the full version of [14]) for output domain extension. The output extension



scheme is similar to BR96, but the counter is included after the message (which
is reminiscent of the MGF1 pseudo-random number generator used in several
standards [23, 41]):

hepap(x) = H(x(0)|[H (z(1)||H (z2)] .-

where H is one of the four input extension schemes. This choice is due to effi-
ciency considerations, but we will see that it has a strong security impact. The
main advantage of [14] is its security proof: all the constructions are proved in-
differentiable from a random oracle (in the sense of Maurer et al. [33]), if the
underlying compression function is a random oracle, or if it uses the Davies-
Meyer mode with an ideal block cipher. However, no recommendation is given
in [14] for the choice of the underlying compression function (or the underlying
block cipher for Davies-Meyer). So strictly speaking, unlike [1, 3], there was no
fully concrete proposal of a random-oracle instantiation: still, one may want to
apply the constructions to usual compression functions.
‘Weaknesses. One should be careful not to overestimate the significance of indif-
ferentiability security proofs: in practice, there is no ideal compression function.
It was shown by [5] that none of the CDMP constructions necessarily preserve
collision-resistance: they give (theoretical) examples of collision-resistant com-
pression functions for which the resulting hash function is not collision-resistant.
While [14] was presented as a fix to the MD construction, we show that if one
applies these fixes to MD5 or SHA-1, one can still find collisions in the new hash
function (independently of the chosen output length) with the same cost as the
original MD5 or SHA-1. This means that [14] does not address collision attacks
on MD5 and SHA-1. To see this, we first show that the four input extensions
are not collision resistant if applied to the compression functions of MD5 or
SHA-1. This is trivial for Dropping Some Output Bits, Using NMAC, and Using
HMAC, because these constructions are nested: an inner collision becomes an
outer collision. So the only potentially tricky case is Prefiz-Free Encoding, for
which [14] proposed only two instantiations:

— prepend the message size as the first block. It turns out that MD5/SHA-1
collision attacks [48,47] can be extended to this case, because the number
of blocks of colliding messages produced is equal and already known in ad-
vance, and it is well-known that existing MD5/SHA-1 collision attacks can
be extended to any given IV.

— use the first bit of each message block as a flag to distinguish the last mes-
sage block. Since the number of blocks in MD5/SHA-1 colliding messages is
very small, and the first bit of each block is random looking, we can simply
produce random collisions until one has the required form.

Now, because of the iterated structure of the four input extensions, these col-
lisions give rise to collisions in the output extension hcpyrp. More generally,
while hcparp is indifferentiable from a random oracle if H is also indifferen-
tiable, any collision in H becomes a collision in hcpap if H has an iterative
structure like MD or the four input extensions: namely, H(z¢) = H(x1) implies
H(xo(i)) = H(z1(i)) and therefore hepayp(zo) = hepamp(1).



Hence, we have shown that if the CDMP constructions are applied to the
compression functions of MD5 or SHA-1 for an arbitrary output size, the cost
of producing collisions remains essentially the same as for MD5 or SHA-1 [26].
Of course, one could try to use different compression functions, but no concrete
recommendation is given in [14].

2.4 Instantiations in PKCS and IEEE Standards

Description. No cryptographic standard currently specifies a random-oracle
instantiation for arbitrary size. However, several instantiations are implicit in
PKCS #1 v2.1 [41] and IEEE P1363 [23], because RSA-OAEP [2] and RSA-
PSS [3] are standardized:
— RSA-OAEP requires two random oracles G and H with small input size (less
than the RSA modulus), which are both instantiated in PKCS by the MGF1
pseudo-random number generator [41]. Recall that MGF1 is simply a hash
function in counter mode like hopyp, except that the counter is over four
bytes: MGF1(xz) = h(x(0))||h(x(1))||h(x(2))||..., where h is either SHA-1
or a SHA-2.
— RSA-PSS also requires two random oracles G and H, but while G still has
small input size, H has a small output size but possibly large inputs. In
PKCS, H is instantiated by SHA-1 or SHA-2, and G is instantiated by
MGF1.
Thus, none of the oracles required by RSA-OAEP and RSA-PSS have both
a large input and output as would be required by RSA-FDH. Still, MGF1 is a
potential random-oracle instantiation, because it supports arbitrarily large input
and output.

There is another implicit instantiation in IEEE P1363 [23]. Indeed, it includes
a Rabin-Williams signature using a variant of the PSS encoding [3] (as described
in [24]) called EMSA-PSS in [41] and EMSAA4 in [23]: the main difference between
EMSA-PSS and PSS [3] (described in Sect. 3.2) is that the message is first hashed
before going through the PSS encoding. But it is specified in [23] that the salt can
optionally be set to zero, in which case “the signature scheme is deterministic,
similar to Full-Domain Hashing”. Thus, one can view EMSA-PSS with zero salt
as an instantiation of a FDH: since the padding constants are zero, this amounts
to essentially hash the message twice in a row, then apply MGF1; concatenate
the output and the input of MGF1, and append the “BC” byte.
‘Weaknesses. The case of MGF1 has already been analyzed with the CDMP
case in the previous subsection: using SHA-1 or any MD-iterated hash function,
the cost of producing collisions in MGF1 remains as low as for the underly-
ing hash function. And EMSA-PSS with zero salt is clearly no more collision-
resistant than the underlying hash function. Note also that the “BC” byte makes
it differentiable from a random oracle. Hence, independently of the output size
chosen, finding collisions on the PKCS/IEEE instantiations costs as low as for
the underlying hash function MD5 or SHA-1.



2.5 Provably collision-resistant hash functions

To conclude this section, we briefly discuss the case of hash functions which
are provably collision-resistant under appropriate computational assumptions.
Though not designed nor recommended to instantiate random oracles, they
might be potential candidates since they usually support large output size. But
it is folklore that none should be viewed nor used as a random oracle, because
they have special properties which are not satisfied by a random oracle, typically
malleability. Consider for instance two recent collision-resistant hash functions:
— VSH [11], which is collision-resistant provided that a certain problem related
to factorization is hard. The output set is ZY;, where N is hard to factor.
— SWIFFT [32], which is (asymptotically) collision-resistant and one-way, pro-
vided that certain lattice approximation problems are hard. The smallest
output size is 528 bits, but larger sizes are possible.
These functions are malleable in the following sense. In [32], it is noted that for
any two inputs 1 and x5 such that z7 + 25 is a valid input, SWIFFT(x;) +
SWIFFT(z2) = SWIFFT(z; + 22). By definition of VSH [11], it is easy to
generate My # M; such that 4VSH(My) = VSH(M;) (mod N) where N is the
public modulus. More generally, for any product s > 1 of very small distinct
primes (chosen among the primes used by the VSH compression function), it is
easy to generate Mo # M such that s?VSH(M,) = VSH(M;) (mod N).

We will see that such malleability relationships can be exploited to attack
certain signature schemes. The malleability of SWIFFT can be exploited to
attack the GPV signature [19] (see the full version), and the malleability of
VSH can be exploited to attack Rabin and Rabin-Williams signatures. But we
stress that neither VSH or SWIFFT were recommended to be used with these
signatures.

3 Padding-based Signatures in the Random-Oracle Model

We study the impact of hash function defects for the class of ROM-secure sig-
natures obtained by combining a trapdoor one-way function/permutation and
a padding. More precisely, we consider secure versions of RSA, Rabin, Rabin-
Williams and ESIGN with appropriate paddings: FDH [1], PSS [3], PFDH [12]
and KW [27]. This section briefly recalls these components.

3.1 Signatures from Trapdoor One-Way Functions

Let o denote the raw signature algorithm which, given as input a message m €
M outputs a signature o(m) € S: the algorithm can be either deterministic
or probabilistic. We consider signatures based on a trapdoor one-way function
f:8—-M:
— If f is 1-to-1, we obtain a deterministic scheme with o(m) = f~1(m).
— If f is many-to-1, we obtain a probabilistic scheme with o(m) selected uni-
formly at random in the set f~(m) of preimages: we require that the trapdoor
enables such preimage sampling.



Verification checks that a given signature s belongs to S and that f(s) = m.
RSA. Let (N,e,d) be the usual RSA keys where the exponent d is secret. We
have M = 8§ = Zy, and take the RSA trapdoor permutation f(z) = z¢ defined
over M, whose inverse is f~!(z) = x%.

Rabin [40]. Let N = pq be a usual RSA modulus. Then we take the squaring
function f(z) = x?, which is a 4-to-1 mapping from S = ZY; to the subgroup M
of quadratic residues mod N. Inverting f is equivalent to factoring V.
Rabin-Williams [49]. This is a variation of Rabin signatures based on tweaks,
using a modulus N = pq such that p = 3 (mod 8) and ¢ = 7 (mod 8). This has
two notable features: one can take M = Zy (rather than having to deal with
quadratic residues), and one can obtain mappings onto M which are either 4-to-
1 or 1-to-1, and whose inversion is equivalent to factoring. For any m € M, there
are exactly four triplets (e, f,s) € S = {—1,1} x {1,2} x {0,..., N — 1} such
that m = efs?, and these so-called tweaked square roots can all be efficiently
computed using p and q. Furthermore, the principal tweaked square root is the
only square root such that e is 1 if m is a square modulo ¢, otherwise -1; f is 1
if em is a square modulo p, otherwise 2; and s is a square modulo N = pq. We
thus obtain two trapdoor one-way functions, depending on the choice of S:

— By taking the 4-to-1 mapping, we obtain the probabilistic signature scheme
PRW.

— By taking the 1-to-1 mapping where S is confined to principal tweaked square
roots, we obtain the deterministic signature scheme DRW. Ignoring technical
details, this is essentially the Rabin-Williams used in IEEE P1363 [23].

ESIGN [37,36]. We ounly give an informal description. ESIGN uses an RSA
modulus of the form N = p?q such that p, ¢ have bit-length %k, and N has bit-
length 3k. There is a small public exponent e > 8 not necessarily coprime with
@(N). The one-way function is the truncation of the RSA permutation f(z) = z°¢
to its & most significant bits. This is a many-to-one mapping from § = Zy to
M ={0,...,|N/2% |}, whose inversion problem is called AER. [36].

3.2 Paddings

A padding IT specifies how to sign arbitrary messages m € {0,1}*: it may be
deterministic or randomized. Then the signature is o(II(m)), with additional
data in the case of PFDH. With the exception of PSS, all the following paddings
use a full-domain hash A from {0,1}* to M.

FDH [1]. This deterministic padding is simply I1(m) = h(m).

PFDH [12]. One selects a salt r < {0, 1}, and let I1(m) = h(m||r) where h
is a random oracle from {0,1}* to M. The signature must include the salt 7.
KW [27]. If m has never been signed, select a one-bit salt r «x {0,1}, and let
II(m) = h(r|jm).

PSS [3]. Assume to simplify that M = {0,1}* where k > ko + k; for some
integers ko and k;. Two random oracles h : {0,1}* — {0,1}** and g : {0,1}}* —
{0, 1}*=F1 are used. We let g; be the function which on input w € {0, 1}** returns
the first ko bits of g(w), and let gy be the function which on input w € {0, 1}*
returns the remaining k — kg — k1 bits of g(w). For any message m € {0,1}*,



one selects 7 €g {0,1}% and let w = h(m|r) and r* = g;(w) @ r. Finally,
IT(m) = wlr*]|ga(w).

Standards. The PKCS [41] and IEEE P1363 [23] standards actually implement
a slightly different version of PSS, called EMSA-PSS [24]: the main difference
is that the message is first hashed before going through the PSS encoding. As
mentioned earlier in Sect. 2.4, Rabin-Williams in IEEE P1363 is implemented
as essentially DRW-PSS, but the salt can optionally be zero, in which case it
becomes DRW-FDH with a specific RO-instantiation.

3.3 Derandomization

Several schemes [27,6,9] crucially require to derandomize the signature or the
padding:

— The main scheme analyzed by Bernstein [6] is derandomized PRW-FDH with
the requirement that if ever the same message is submitted twice, the same
signature should be output.

— The ID-based cryptosystem of Boneh et al. [9] uses derandomized Rabin-
FDH for mapping identities to secret keys.

— To implement RSA-KW, Katz and Wang [27] suggested to select the one-bit
salt deterministically from a secret key and the message.

We will see that how the derandomization is performed has a big impact on
the security. Bernstein [6] did not specify how this derandomization should be
performed: he only mentioned that if ever the same message is submitted twice,
the same signature should be output, otherwise an attacker would be able to
compute two random tweaked square roots of the same element (by signing
twice the same message), which discloses the secret key. But Katz and Wang
discussed [27, Sect. 4.1] that issue in the context of RSA signatures, and proposed
the following methods:

— KW1: select the nonce as r = /(K ||m), where b’ is an independent random
oracle, K is an additional secret key and m is the message.

— KW2: select r = B/ (K||h(m)) with the same notations as KW1.

— KW3: select r = Fx(m) where F' is a PRF and K is an additional secret key.
This is the method used in the ID-based cryptosystem [9], which is shown
to preserve the ROM security proof.

In order to derandomize ESIGN to fix its security proof (see [44, 38]), Granboulan [22]
earlier proposed a slightly different method: select r = ¢(h(m)||K||c), where ¢ is

a one-way function with uniformly distributed output, K is an additional secret
key, and c¢ is an optional counter. The counter is necessary in ESIGN, because
the signature process may actually fail for certain nonces. This derandomization
technique was later adopted with a specific choice of ¢ in the revised submis-
sion [18] of ESIGN to the NESSIE European project.

3.4 Security Results

It is well-known that for any trapdoor permutation f, the signatures FDH,
PFDH and PSS are all provably secure in the ROM under the hardness of



inverting the permutation, but the security proof is loose [1,16]. In the par-
ticular case of RSA, all these security proofs can be improved, by exploiting
the multiplicativity of RSA: RSA-FDH remains loose [12, 1, 3], but RSA-PFDH
and RSA-PSS have a tight reduction provided that the salt is sufficiently large
(see [12,16]). Surprisingly, RSA-KW also has a tight reduction [27]. These secu-
rity results also apply to DRW (under the factoring assumption), because DRW
uses a 1-to-1 mapping which is homomorphic (see [24]).

The picture is a bit different with Rabin and PRW, since they use 4-to-1
mappings, but squaring is homomorphic. The derandomized versions of Rabin-
FDH and PRW-FDH have a tight reduction (see [9] for Rabin-FDH and [6] for
PRW-FDH). Rabin-PSS has a tight reduction (see [3]). For a complete picture
of the ROM security of all Rabin-Williams variants, see [6].

ESIGN-FDH [36] and ESIGN-PSS [30] both have a loose security proof under
the AER assumption, but the proof of ESIGN-FDH requires a more restricted
security model than usual (see [38,44]). There is no tightness because the one-
way function is not multiplicative.

4 Robustness of Derandomized Signatures

We now study the robustness of derandomized signatures described in Sect. 3,
for the derandomization methods proposed in [22,27,9], which we described in
Sect. 3.3. This derandomization is crucial for the tightness of certain security
proofs. We focus on derandomized Rabin-FDH and PRW-FDH.

4.1 Soundness

First of all, one should make sure that the derandomization technique does not
affect the security proof of the randomized scheme. For KW3, this was proved
in [9, App. B] using of course the PRF assumption. And a similar argument can
be proved for KW1 and KW2, but both require another random oracle, which
is debatable if the goal is to understand what are the minimal assumptions.

For the fourth randomization method however, Granboulan [22] only gave
an informal argument. In fact, we note that his method is not completely sound.
More precisely, if the informal argument was correct, it would also apply to
the choice r = ¢(m||K]|c). Now, assume that we take for ¢ an MD-iterated
function for which it is easy to find collisions, but still, the function is one-
way with uniformly distributed output: one potential example is SHA-1. Then
an adversary could create a collision (m,m’) where m and m’ have the same
length, which would imply that ¢(m||K||c) = ¢(m’||K]||c) for all K and c. This
means that by querying the signature of m and m/, the adversary would obtain
two pairs message-signature which both used the same nonce r: in the case of
ESIGN, this discloses the secret factorization of the modulus, and in the case
of DSA, this clearly discloses the secret key. This means that [22] did not give
the right assumption: instead of a one-way function with uniform output, one
should consider a PRF such as in KW3.



4.2 Robustness to Collisions

We now look at the security if the full-domain hash h has defects, namely col-
lisions. We show that any hash collision suffices to disclose the master key in
the ID-based cryptosystem of Boneh et al. [9], and the secret key in the Rabin-
Williams signature scheme for which Bernstein proved tight security [6], because
of the way derandomization is performed. But we also show that these attacks
can be prevented by slightly modifying the derandomization.

The idea is, of course, to obtain two random preimages of a known ele-
ment m € M. Doing so for the trapdoor one-way function f of Rabin and
PRW discloses the secret factorization of the modulus with probability 1/2. Let
h : {0,1}* — M be the random-oracle instantiation, to be paired with de-
randomized versions of Rabin or PRW. We have the following chosen-message
key-recovery attack:

— Assume that the attacker is able to generate a collision (Mg, M7) on h. Then

H(Mo) = H(Ml) with MO 7é Ml.

— The attacker queries the signing oracle on My and M7, and obtains the
signature sg and s1.

— Depending on how the derandomization is performed, we claim that sg and
s1 will be two random preimages of the same element h(My) = h(M;) € Zx,

in which case it is easy to obtain the factorization of N with probability 1/2.

This is true in either of the following cases:

e If one follows the informal method of Bernstein [6]: since My and M,
are different, the signer is not required to output the same preimage, so
each preimage will be chosen at random.

o If one follows KW1 [27], because h(My) = h(M;) is independent from
(K| My) = b/ (K||M;) where K denotes the secret key and ' is another
random oracle.

e If one follows KW3 [27] as in the ID-based cryptosystem [9], because
h(Mp) = h(Mj) is independent from Fx(My) = F(My).

But if one follows KW2 [27], the same preimage will be output, and the attack

will fail. An alternative method to prevent the attack is to use the following

variant of KW3: r = Fx(h(m)) so that collisions on h gives collisions on r.

For both variants, the previous key-recovery attacks no longer work, but that

does not mean that the schemes are immune to collisions: any hash collision

gives rise to an existential forgery. The interest of KW2 and the KW3 variant

is that they both decrease (but not remove) the security impact of collisions.
Independently of the random-oracle instantiation and the choice of the deran-
domization, these weaknesses also appear if one considers fault attacks. Indeed,
a similar attack works if the adversary is able to submit twice the same message,
and perturbate the calculation of the nonce, using fault attacks.

By contrast, the deterministic version DRW-FDH (and the one implemented
in IEEE P1363 [23]) is immune to such attacks. It might help to see a concrete
example. Assume that we plug the compression function of MD5 into the CDMP
random-oracle construction [14] (see Sect. 2.4), and that we use this instantia-
tion as a full-domain hash for DRW-FDH and derandomized PRW-FDH. Then,



because of the indifferentiability framework [33], both signature schemes become
provably secure under the factoring assumption, in the ideal cipher model (with
respect to the MD5 block cipher) or in the random oracle model (with respect
to the MD5 compression function). But in practice, there is an instant chosen-
message key-recovery attack on the PRW scheme, which fails on the DRW one.

4.3 Robustness to malleability

The previous key-recovery attack can be adapted to malleability variants of col-
lisions on the hash function. To simplify, consider first the case of derandomized
PRW-FDH: a similar attack works for derandomized Rabin-FDH. Assume that
the attacker is able to generate a pair (My, M7) of distinct messages such that:

4h(Mp) = h(M;) (mod N). 1)

From Sect. 2, we know that this is easy if ever h is VSH [11] using the same
modulus N, even though it might be hard to find collisions on VSH, but we stress
that it was never suggested to use VSH for Rabin/Rabin-Williams that way: we
give this example to show that solving (1) is not necessarily harder than finding
collisions. Solving (1) is also possible (with more effort) if & is BR93 [1]: select any
My then apply the preimage attack to find M; satisfying (1). Again, the attacker
queries the signing oracle on My and M7, which gives rise to tweaked square roots
(e, fiy8:) € {—1,1} x {1,2} x {0,..., N — 1} of h(M;). Note though that there
is a one-to-one correspondance between the four tweaked square roots of h(My)
and the four tweaked square roots of h(M;), thanks to (1). More precisely, if
(e, f,s) is a tweaked square root of h(Mj), then (e, f,2s mod N) is a tweaked
square root of h(Mj). This implies that (eq, fo,2s0 mod N) and (eq, f1, 1) are
two “independent” random tweaked square roots of h(M;), which means that
one can factor N with probability 1/2.

Obviously, this attack is independent of the way derandomization is per-
formed, and can be adapted to other malleability properties. For instance, simi-
lar attacks apply if one is able to find a pair (My, M7) of distinct messages such
that h(My) = —h(M;) (mod N), or k?h(Mgy) = h(M;) (mod N) for some known
kelZy.

Furthermore, as opposed to collision attacks, the previous attack can be
adapted to DRW-FDH. Starting again from (1), let (e;, fi, s;) € {—1,1} x{1,2} x
{0,..., N — 1} be the principal tweaked square root of h(M;). Because 4 is a
square mod p and ¢, (1) implies that ey = e; and fy = fi1. Since (eq, fo, 250 mod
N) is a tweaked square root of h(Mj), we have 4s% = s3 (mod N), and therefore
51 X (250) "t mod N is a square root of 1 mod N. But it must be a non-trivial
square root because it has different Legendre symbols mod p and ¢: indeed,
both sy and s; are squares mod N, while (%) =1 and (%) = —1. Hence, this
discloses the factorization of N. This attack can be generalized if congruence (1)
is replaced by k*h(My) = h(M;) (mod N) for any known k € ZY such that
(E) #+ (%), which is slightly more restrictive than the PRW case.

p
There are similar attacks for the Rabin case.



4.4 Robustness to preimages

The previous attacks also show that both derandomized PRW-FDH and DRW-
FDH become strongly insecure if the full-domain hash function h is not one-
way, like BR93 [1]. Alternatively, one can simply select (e, f,s) € {—1,1} x
{1,2} x {0,..., N — 1} uniformly at random, and compute m = efs? (mod NN).
By inverting h, one obtains a message M such that m = h(M). Finally, by
signing the message M with either DRW-FDH or derandomized PRW-FDH,
one will obtain another tweaked square root of m (principal or not), which will
disclose the factorization of N with probability at least 1/2 because (e, f, s) is a
random tweaked square root. A similar attack works for the Rabin case.

5 Compared Robustness of Signatures

5.1 RSA Signatures

The PKCS#1 v2.1 standard [41] uses RSA-PSS since Sept. 1999 (or more pre-
cisely, the variant RSA-EMSA-PSS [24] of RSA-PSS), and it has been reported
that one of the main reasons why RSA-PSS was selected over RSA-FDH was the
tightness of the security proof. If tightness was the main factor, one might now
be tempted to select RSA-KW over RSA-PSS, because the salt in RSA-KW
is reduced to one bit (which can be deterministically derived from the secret
key and the message). However, by comparing the robustness of RSA signatures
with respect to potential defects in the random-oracle instantiation, a different
picture emerges.

Robustness to collisions. Because RSA-FDH and RSA-EMSA-PSS are hash-
and-sign schemes, they do not tolerate collisions: any collision obviously leads to
a chosen-message existential forgery. Similarly, any collision leads to a chosen-
message existential forgery on RSA-KW, with probability 1/2 because of the
one-bit salt. One may think that the probabilistic schemes RSA-PFDH and RSA-
PSS are more robust. In this direction, Numayama et al. [35] showed that RSA-
PFDH tolerates collisions in a weakened ROM, but their model does not take
into account MD-iterated hash functions. We observe that if h is a MD-iterated
hash function, then any collision in ~A with the same number of blocks gives rise
to a chosen-message existential forgery on RSA-PFDH and RSA-PSS. This is
because RSA-PFDH and RSA-PSS both use h(m||r). And if h(my) = h(ms)
where m; and mgy have the same number of blocks, then h(mi||r) = h(ms]|r)
for any r. This implies that for both RSA-PFDH and RSA-PSS, any signature
of my is also valid for ms. It can be noted that if RSA-PFDH and RSA-PSS had
used h(r||m) instead of h(m||r), then the ROM security proofs would remain
valid, but the previous attack would fail.

Robustness to preimages. It is easy to prove that if the full-domain hash is
not one-way, then there are chosen-message universal forgery attacks on RSA-
FDH, RSA-PFDH and RSA-KW. On the other hand, preimages in h do not
seem to provide stronger attacks than chosen-message existential forgeries on
RSA-PSS.



Conclusion. While RSA-KW has a much better security reduction than RSA-
FDH, there are essentially the same attacks on both RSA-KW and RSA-FDH as
soon as there are defects in the full-domain hash. On the other hand, RSA-PSS
with a large salt seems more robust than all other paddings, especially if one
uses h(r||m) instead of h(m||r). This differs from the conclusion of [31], where
it was argued that RSA-FDH was the best method known to sign with RSA.

5.2 Rabin and Rabin-Williams

Based on Sect. 4, the advantages of Rabin over Rabin-Williams are unclear from a
security point of view. There are two benefits with Rabin-Williams: one can select
M = Zpy, and one can use a 1-to-1 mapping instead of a 4-to-1 mapping. This
1-to-1 mapping avoids collision attacks or the fault attacks on derandomization:
This suggests that DRW is preferable to both PRW and Rabin. And for the same
reason as for RSA, a PSS padding with large salt seems more robust than all
other paddings. Furthermore, when using Rabin or PRW, the size of the salt is
extremely important to avoid key-recovery replay attacks. By submitting many
times the same message, an adversary would obtain two random preimages of
the same element, hence the factorization. We illustrate this phenomenon in the
full version, with a converse to the security proof of [3].
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