
Efficient Constructions of Composable
Commitments and Zero-Knowledge Proofs

Yevgeniy Dodis1, Victor Shoup1, and Shabsi Walfish2

1 {dodis,shoup}@cs.nyu.edu. New York University.
2 walfish@cs.nyu.edu. Google.

Abstract. Canetti et al. [7] recently proposed a new framework —
termed Generalized Universal Composability (GUC) — for properly ana-
lyzing concurrent execution of cryptographic protocols in the presence of
a global setup, and constructed the first known GUC-secure implemen-
tations of commitment (GUCC) and zero-knowledge (GUC ZK), which
suffice to implement any two-party or multi-party functionality under
several natural and relatively mild setup assumptions. Unfortunately,
the feasibility results of [7] used rather inefficient constructions.
In this paper, we dramatically improve the efficiency of (adaptively-
secure) GUCC and GUC ZK assuming data erasures are allowed. Namely,
using the same minimal setup assumptions as those used by [7], we build

– a direct and efficient constant-round GUC ZK for R from any “dense”
Ω-protocol [21] for R. As a corollary, we get a semi-efficient con-
struction from any Σ-protocol for R (without doing the Cook-Levin
reduction), and a very efficient GUC ZK for proving knowledge of a
discrete log representation.

– the first constant-rate (and constant-round) GUCC scheme.

Additionally, we show how to properly model a random oracle in the
GUC framework without losing deniability, which is one of the attrac-
tive features of the GUC framework. In particular, by adding the random
oracle to the setup assumptions used by [7], we build the first two-round
(which we show is optimal), deniable, straight-line extractable and sim-
ulatable ZK proof for any NP relation R.

1 Introduction

UC Framework. The Universal Composability (UC) framework introduced by
Canetti [6] is an increasingly popular framework for analyzing cryptographic
protocols that are expected to be concurrently executed with other, possibly
malicious protocols. The UC framework has many attractive properties, one of
which is a powerful composition theorem enabling the design of complex proto-
cols to be split into simpler sub-protocols. In particular, Canetti, Lindell, Ostro-
vsky and Sahai [13] showed that, under well established cryptographic assump-
tions, UC-secure commitments and zero-knowledge (ZK) proofs are sufficient to
implement any other functionality, confirming our long-standing intuition that
commitments and ZK proofs are fundamental cryptographic primitives.3

3 Although [13] presented their results in the common reference string (CRS) model
using the JUC theorem [14], one can extract a general implication which is inde-
pendent of the CRS and does not use JUC. See page 131 of Walfish’s thesis [27] for
details.



2

Unfortunately, a series of sweeping impossibility results [6, 9, 12] showed that
most useful cryptographic functionalities, including commitment and ZK, are
impossible to realize in the “plain UC” framework. This means that some form
of a “trusted setup”, such as a common reference string (CRS) or a public-key
infrastructure (PKI), is necessary to build UC-secure protocols (unless one is
willing to relax some important properties of UC-security). To address this issue,
the original UC framework was augmented to allow trusted setup. However, until
the recent work of [7], this extension only allowed one to model such setup as
a local setup. This means that the setup cannot be seen by the environment or
other protocols, and, as a consequence, it only exists meaningfully in the real
model. In particular, the simulator had complete control over the setup in the
ideal model. For example, in the CRS model the simulator had the freedom
to choose its own CRS and embed some trapdoor information into it. As was
argued in a series of papers [9, 14, 3, 7], this modeling creates several serious
problems not present in the “plain UC” framework. Two of the most significant
such problems are lack of deniability and restrictive composition. For example,
an ideal ZK proof is “deniable”, since the verifier only learns that the statement
is true, but cannot reliably prove it to a third party. Unfortunately, it was argued
in [7] that any UC-secure realization of ZK in the CRS model is never deniable.
The composition problem is a bit more subtle to explain. In essence, one can
only compose several instances of specially-designed protocols. In particular, it is
not safe to use protocols which can depend on the setup information (e.g., the
CRS), even if these protocols are perfectly secure in the ideal model. We refer
the reader to [7, 27, 18] for more discussion of this issue.

GUC Framework. Motivated by solving the problems caused by modeling the
setup as a local subroutine, Canetti et al. [7] introduced a new extension of the
UC framework — termed Generalized Universal Composability (GUC) — for
properly analyzing concurrent execution of cryptographic protocols in the pres-
ence of a global setup. We stress that GUC is a general framework strictly more
powerful than UC. Namely, one can still model local setup as before. However,
the GUC framework also allows one to model global setup which is directly ac-
cessible to the environment. More precisely, the GUC framework allows one to
design protocols that share state via shared functionalities (such as a global CRS
or global PKI). Since the same shared functionality will exist in multiple ses-
sions, the environment effectively has direct access to the functionality, meaning
that the simulator cannot “tamper” with the setup in the ideal model. In fact,
the same setup exists both in the real and in the ideal models. As the result,
modeling the global setup in this manner regains the attractive properties of the
“plain UC”, including deniability and general composition. This was formally
shown by [7] for the case of composition, and informally argued for deniability
(since the simulator no longer has any “unfair” advantage over the real-model
attacker, so the real-model attacker can run the simulator “in its head” to make
up transcripts of conversation which never happened in real life). To put this
(convincing but) informal argument on firmer ground, in the full version [18] we
give a very strong definition of deniable zero-knowledge (much stronger than pre-



3

vious notions appearing in the literature), and show that GUC-security implies
this notion, as long as the setup is modeled as a shared functionality.

Of course, having introduced GUC, a natural question is whether one can
actually build GUC-secure protocols under natural setup assumptions. On the
positive side, one can always artificially model local setup as “global setup” by
ensuring that a fresh instance of a setup is run for every protocol instance, and,
more importantly, that only the participants of a given protocol have reliable
access to this setup information. For example, the CRS setup of UC could be
equivalently modeled in GUC as a kind of one-time “session reference string”
(SRS) functionality: the SRS will pick a fresh reference string for each protocol
instance, and will make this string available precisely to the parties running this
session (and the adversary), but nobody else. It is easily shown that UC+CRS
is equivalent to GUC+SRS, so the feasibility result of [13] would apply to the
“global SRS” setup. Of course, such a “session reference string” model is very
unrealistic and difficult to implement, and one may wonder if a truly global CRS
setup would suffice as well. Unfortunately, [7] showed that the (global) CRS
model (as well as other global setup which only provides public information,
such as the random oracle model [22]) is not enough to sidestep the impossibility
results of [6, 9, 12]. (In particular, the protocols of [13, 22] are insecure in the GUC
framework with the global CRS/random oracle.) This means that any setup
sufficient for GUC feasibility must provide some unpublished information, as was
the case with the SRS model (where the SRS was hidden from the environment
and other protocols).

ACRS model. Luckily, Canetti et al. [7] introduced a new setup assumption,
called Augmented CRS (ACRS), and showed that it can be used to GUC-realize
commitment and ZK (and, thus, any other functionality), even in the presence of
adaptive adversaries.4 The ACRS model is very close to the (global) CRS model,
but is (necessarily) augmented so as to circumvent the impossibility result for
plain CRS. As in the CRS setup, all parties have access to a short reference string
that is taken from a pre-determined distribution. In addition, the ACRS setup
allows corrupted parties to obtain “personalized” secret keys that are derived
from the reference string, their public identities, and some “global secret” that
is related to the public string and remains unknown. It is stressed that only
corrupted parties may obtain their secret keys. This may sound strange at first,
but is actually a huge advantage of the ACRS model over the more traditional
“identity-based” setup, where even honest parties need to obtain (and, therefore,
safeguard) their keys. Namely, the ACRS setup implies that the protocol may
not include instructions that require knowledge of the secret keys, and, thus,
honest parties do not need their secret keys. In fact, they can only lose their own
security by obtaining these keys and using them carelessly. This is consistent with
any secret-key cryptosystem, where a party will lose its security by publishing

4 [7] also showed similar results in a variant of a PKI-like “key registration with knowl-
edge (KRK)” setup from [3]. However, since the ACRS model is more minimal and
all our results easily extend to the KRK model, we only concentrate on the ACRS
model.



4

its secret key. Luckily, though, the ACRS model permits the luxury of never
worrying about losing one’s secret key, since one should not get it in the first
place. In contrast, malicious parties provably cannot gain anything by obtaining
their keys (i.e., they cannot break the security of honest parties). Hence, as
a practical matter, one expects that ACRS model is very similar to the CRS
model, where parties cannot access any secret information. However, the mere
ability to get such information is what gives us security, even though we expect
that a “rational” party, either honest or malicious, will not utilize this ability:
honest parties do not need it, and malicious parties do not gain from it.

Of course, one may justifiably criticize the ACRS model because of the need
for a trusted party who is always available, as opposed to the (global) CRS
model, where no party is needed after the CRS is generated. Indeed, it is a non-
trivial setup to realize (although much more natural than the SRS model, and
seemingly minimal in light of the impossibility result mentioned above). However,
as pointed out by [8], the ACRS model has the following “win-win” guarantee.
Assume that one proves some protocol secure in the GUC+ACRS model, but
in reality the trusted party will only generate a CRS, and will be unavailable
afterwards. Then, from a syntactic point of view, we are back in the (global) CRS
model. In particular, the protocol is still secure in the “old UC+CRS” setting!
On an intuitive level, however, it seems to be more secure than a protocol proven
secure in the “old UC+CRS” setting. This is because the simulator does not need
to know a global trapdoor (which is deadly for the security of honest parties in
the real model), but only the secret keys of the corrupted parties, which are
guaranteed to never hurt the security of honest parties in the real model. For
example, the CRS can be safely reused by other protocols, completely solving the
“restricted composition” problem of UC that we mentioned earlier. Essentially,
properties associated with deniability/non-transferability appear to be the only
security properties lost by “downgrading” ACRS into CRS.

Efficiency in the GUC Framework. Thus, from the security and function-
ality perspectives, the GUC+ACRS model appears to be strictly superior to the
UC+CRS model. The question, however, is what is the price in terms of effi-
ciency? Unfortunately, the GUC-feasibility results of [7] are quite inefficient: the
commitment scheme committed to the message in a bit-by-bit manner, while
the zero-knowledge proof for a relation R was implemented using the generic
Cook-Levin reduction to a canonical NP-complete problem. Thus, now that the
GUC-feasibility of secure computation has been established, it is natural to ask
if one can build efficient, GUC-secure commitment and ZK proofs in the ACRS
(resp. KRK; see Footnote 4) model. In this paper, we provide such efficient
GUC-secure commitment and ZK proofs which are secure against adaptive cor-
ruptions, therefore making the ARCS model an attractive alternative to the CRS
model on nearly (see below) all fronts.

The only drawback of our solution is that we rely on data erasures, which
is not the case for most efficient UC protocols, such as that of Damg̊ard and
Nielsen [17] (or the inefficient GUC feasibility results of [7]). However, unlike
sacrificing adaptive security, which is a critical concern (addressed in our work)



5

given the highly dynamic nature of protocols concurrently running on the Inter-
net,5 we believe that the assumption of data erasures is realistic. Furthermore,
this assumption is widely used in practice (for example, for analyzing most key
exchange protocols, such as Diffie-Hellman), and was already used in several
works on UC security as well (e.g., [11, 21, 24, 10], although it was often hidden
deep within the paper). Coupled with the fact that erasures allow us to obtain
dramatically more efficient (in fact, practical) protocols, we believe that use of
this assumption here is justified. Of course, we hope that future research will
remove/weaken this restriction, and comment on this more in the last paragraph
of the introduction, where we discuss the random oracle model.

Our Results on GUC ZK. We present an efficient compiler giving a direct,
efficient, constant-round and GUC-secure ZK proof (GUC ZK) for any NP re-
lation R from any “dense Ω-protocol” [21] for R. The notion of Ω-protocols
was introduced by Garay, MacKenzie and Yang [21]. Briefly, Ω-protocols are Σ-
protocols (i.e., they satisfy special soundness and ZK properties of Σ-protocols),
with an extra property that one can generate the public parameter ρ of the sys-
tem together with a trapdoor information τ , such that knowledge of τ allows one
to extract the witness from any valid conversation between the prover and the
verifier (as opposed to the usual special soundness, where one needs two differ-
ent transcripts with the same first flow). [21, 24] used Ω-protocols for the similar
task of building UC-secure ZK proofs in the CRS model, which are inherently
not GUC-secure. As a result, our compiler is considerably more involved than the
compiler of [21, 24] (which also used erasures). For example, in the GUC setting
the simulator is not allowed to know τ , so we have to sample the public ρ in the
ACRS model using a special coin-flipping protocol introduced by [7]. As a result,
our compiler requires Ω-protocols whose reference parameters are “dense” (i.e.,
indistinguishable from random), and none of the previous Ω-protocols of [21, 24]
are suitable for our purpose.

Thus, of independent interest, we show several novel dense Ω-protocols. First,
we show how to build a direct, but only semi-efficient dense Ω-protocol for any
NP relation R from any Σ-protocol for R. Although this Ω-protocol uses the
cut-and-choose technique (somewhat similar to the technique of Pass [26], but
in a very different setting), it is quite general and gives a much more efficient
Ω-protocol than the technique of [13, 7] which requires a generic Cook-Levin
reduction. Second, we show a very efficient number-theoretically based dense
Ω-protocol for proving knowledge of a discrete log representation. Once again,
this Ω-protocol had to use some interesting additional tools on top on the prior
“non-dense” Ω-protocol of [21], such as a special “projective Paillier encryption”
of Cramer and Shoup [15]. As a result, we get a semi-efficient GUC ZK for any
R having an efficient Σ-protocol, and a very efficient GUC ZK for proving the
knowledge of discrete log representation.

5 We remark that adaptive security with erasures trivially implies static security, and
is usually much harder to achieve than the latter.



6

Our Results on GUC Commitments. Using the techniques developed for
ZK, we proceed to build the first constant-rate (and constant-round) GUC-secure
commitments (GUCC) in the ACRS model. In spirit our result is similar to the
result of Damg̊ard and Nielsen [17], who constructed the first constant-rate UC-
secure commitments in the “old” CRS framework. However, our techniques are
very different, and it seems hopeless to adapt the protocol of [17] to the GUC
framework. Instead, we essentially notice that the required GUCC would easily
follow from our techniques for GUC ZK, provided we can build an efficient
Ω-protocol for a special relation on R on identity-based trapdoor commitments
(IBTCs) — a notion introduced by [7] to implement the ACRS setup. Intuitively,
a prover needs to show that he knows the message being committed by a value
c (w.r.t. a particular identity). In particular, if one can build an IBTC scheme
where the required relation R would involve the proof of knowledge of some
discrete log representation, our previous GUC ZK protocol would complete the
job. Unfortunately, the IBTCs constructed by [7] had a much more complicated
form. Therefore, of independent interest, we build a new IBTC scheme which is
based on Water’s signature [28]. The resulting IBTC not only has the needed
form for its relation R, but is also much simpler and more efficient than prior
IBTCs built in the standard model. Combining these results, we finally build
the required GUCC.

Results on modeling Random Oracle in GUC. Finally, we briefly com-
ment on using the random oracle (RO) model in conjunction with the GUC
framework. The RO is simply modeled as a shared functionality available both
in the real and in the ideal model. As such, the simulator cannot “reprogram”
the RO. Even more counter-intuitively, it cannot even “prematurely extract” the
values used by the real-model attacker! This is because we can assume that all
such queries are made by the environment (which the simulator cannot control),
and the inputs are only given to the attacker on a “need-to-know” basis. Cor-
respondingly, the RO model is much more restricted in the GUC framework (in
particular, by itself it is provably insufficient to GUC-realize most functionalities
[7, 8]). However, we still show that one can meaningfully use it in the conjunc-
tion with the ACRS model, because we are allowed to extract and reprogram the
RO in the proof of security. In particular, by applying the Fiat-Shamir heuristic
to our GUC ZK protocols, we obtain an efficient, two-round (which we show
is optimal; see Theorem 4), straight-line extractable and simulatable (in fact,
GUC-secure!) ZK proof for any relation R having an efficient dense Ω-protocol.
Moreover, in this protocol one only needs to erase some short data during a
local computation (i.e., no sensitive data needs to be stored while waiting for
some network traffic), making the need for data erasures extremely minimal. Of
course, we can get a less efficient 2-round GUC ZK protocol with these properties
that does not rely on data erasures at all, by applying the Fiat-Shamir heuristics
to the inefficient protocol of [7]. This means that we get a general feasibility of
round-optimal GUC ZK for NP in the ACRS+RO model which does not rely on
data erasures.



7

We briefly compare the resulting deniable ZK protocol to previous related
work on deniable ZK (e.g., [26, 23]) in Section 6.

2 Definitions and Tools

2.1 GUC security. At a high level, the UC security framework formalizes the
following emulation requirement:

A protocol π that emulates protocol φ does not affect the security of any-
thing else in the environment differently than φ would have – even when
π is composed with arbitrary other protocols that may run concurrently
with π.

Unfortunately, the UC security framework requires that parties running in a
session of π do not share state with any other protocol sessions at all, limiting
the legitimate applicability of that framework. In particular, global setups such as
a Common Reference String (CRS) or Public Key Infrastructure (PKI) are not
accurately modeled. The GUC security framework, introduced in [7], formalizes
the same intuitive emulation requirement as the UC framework. However, the
GUC framework does so even for protocols π that make use of shared state
information that is common to multiple sessions of π, as well as other protocols
in the environment (running concurrently with π).

More formally, the security framework of [6] defines a notion called “UC-
emulation”. A protocol π is said to UC-emulate another protocol φ if, for every
adversary A attacking φ, there exists a simulator S attacking π such that no
environment Z can distinguish between A attacking φ, and S attacking π. In
the distinguishing experiment, the environment is constrained to interact only
with parties participating in a single session of a challenge protocol (either π
or φ), along with its corresponding attacker (either A or S, respectively) in a
“black-box” manner. This limited interaction prevents the model from capturing
protocols that share state with other protocols running in the environment, since
the distinguishing experiment does not allow the environment to access any state
information used by the parties it is interacting with.

The Generalized Universal Composability (GUC) security framework of [7]
extends the original UC security framework of [6] to incorporate the modeling of
protocols that share state in an arbitrary fashion. In particular, the GUC frame-
work provides mechanisms to support direct modeling of global setups such as
a CRS or PKI. This is done by first defining the notion of shared functional-
ities that can maintain state and are accessible to any party, in any protocol
session. The distinguishing experiment of GUC allows the environment to access
any shared functionalities. GUC also removes the constraint on the protocols in-
voked by the environment, allowing it to interact with any (polynomial) number
of parties running arbitrary protocols, including multiple sessions of the proto-
col being attacked. That is, GUC allows the environment to directly invoke and
observe arbitrary protocols that run alongside the distinguishing “challenge pro-
tocol” – and those arbitrary protocols may even share state information with the
challenge protocol and with the environment itself (via shared functionalities). If



8

Functionality Gacrs

Initialization Phase: At the first activation, run an algorithm Setup to
generate a public key/master secret key pair (PK ,MSK ).

Providing the public value: When activated by any party requesting the
CRS, return PK to the requesting party and to the adversary.

Dormant Phase: Upon receipt of a message (retrieve, sid, ID) from
a corrupt party P whose identity is ID , return the value SK ID ←
Extract(PK , ID ,MSK ) to P . (Receipt of this message from honest parties
is ignored.)

Fig. 1. The Identity-Based Augmented CRS Functionality

a protocol π (that may share state in this fashion) “UC-emulates” a protocol φ
with respect to such unconstrained environments, we say that π GUC-emulates
φ. We say that a protocol π is a GUC-secure realization of a particular func-
tionality F if π GUC-emulates the ideal protocol for F . Further details of the
formal modeling for UC and GUC security can be found in [6] and [7, 27]. In this
work, we will focus on the construction of efficient GUC-secure realizations of
commitments and zero knowledge, with security even against adversaries capa-
ble of adaptive corruptions. As is common throughout the UC literature, we will
assume the availability of secure (i.e., private and authenticated) channels. The
realization of such secured channels over insecure networks (such as the Internet)
is a non-trivial problem studied in [27], but is beyond the scope of this work.

2.2 The ACRS model. Unfortunately, it is impossible to GUC-realize most
useful two-party functionalities in the plain model, or even in the CRS model (see
[7]). To avoid this impossibility, we make use of a special Augmented Common
Reference String (ACRS) trusted setup (which we denote by the functionality
Gacrs), as was first proposed in [7]. Another possible alternative would be to use
a PKI model supporting “Key Registration with Knowledge” [3, 7] (which we
denote by the functionality Gkrk) – indeed, our efficient protocols can easily be
transformed to use the Gkrk setup – but the more minimal ACRS model suffices
and is clearly less costly to implement than a PKI. Thus, we will focus on the
ACRS setting. The shared functionality Gacrs describing ACRS setup, which is
parameterized by the algorithms Setup and Extract, is given in Figure 1.

Intuitively, the ACRS setup provides a simple CRS to all parties, and also
agrees to supply an identity-based trapdoor for identity P to any “corrupt”
party P that asks for one. The provision that only corrupt parties can get their
trapdoors is used to model the restriction that protocols run by honest parties
should not use the trapdoor – i.e. honest parties should never have to obtain
their trapdoors in order to run protocols. In reality, a trusted party will perform
the ACRS initialization phase, and then supply the trapdoor for P to any party
P that asks for its trapdoor. Of course, in practice, most parties will never
bother to request their trapdoors since the trapdoors are not useful for running
protocols. (Ultimately, these trapdoors will be used to enable corrupt parties to
simulate attacks by using S, a task that no honest party should need to perform.)



9

In the following sections, we show how to construct efficient GUC-secure
realizations of commitments and zero knowledge using this instantiation of the
Gacrs shared functionality. (As explained in Section 4 of [8], this is enough to
GUC-realize any other well-formed functionality.) We then show how to optimize
the round complexity of these protocols by using Gacrs in conjunction with the
RO model.

2.3 Omega protocols. The notion of an Ω-protocol was introduced in [21],
and we recall the basic idea here. While our notion of an Ω-protocol is the same
in spirit as that in [21], we also introduce some new properties, and there are
a few points where the technical details of our definition differ. Details can be
found in the full version [18].

Let ParamGen be an efficient probabilistic algorithm that takes as input 1λ,
where λ is a security parameter, and outputs a system parameter Λ. The system
parameter Λ determines finite sets X, L ⊂ X, W , and a relation R ⊂ L ×W ,
where for all x ∈ L, we have (x,w) ∈ R for some w ∈W . The sets X and W , and
the relation R should be efficiently recognizable (given Λ). An element x ∈ X is
called an instance, and for (x,w) ∈ R, w is called a witness for x.

There is also an efficient probabilistic algorithm RefGen that takes as input
a system parameter Λ and outputs a pair (ρ, τ), where ρ is called a reference
parameter, and τ is called a trapdoor.

An Ω-protocol Π is played between a prover P and a verifier V . Both P and
V take as common input a system parameter Λ, a reference parameter ρ, and
an instance x ∈ X. An honest prover P is only run for x ∈ L, and always takes
a witness w for x as an additional, private input. Execution runs in three steps:
in the first step, P sends a message a to V ; in the second, V sends a random
challenge c to P ; in the third, P sends a response z to V , whereupon V either
accepts or rejects the conversation (a, c, z).

Of course, there is a basic completeness requirement, which says that if both
prover and verifier follow the protocol then the verifier always accepts.

We say that Π is trapdoor sound if there exists an efficient trapdoor extractor
algorithm Etd such that the following holds: for every efficient cheating prover
P̃ , it should be infeasible for P̃ (given input (Λ, ρ)) to make V (given input
(Λ, ρ, x)) accept a conversation (a, c, z) for an instance x such that execution of
Etd on input (Λ, τ, x, a, c, z) fails to produce witness w for x. Here, (Λ, ρ, τ) are
generated by the algorithms ParamGen and RefGen; c is generated by V ; and
x, a, and z are generated adversarially.

We shall also make use of the following variant of trapdoor soundness. Very
roughly, we say that Π is partial trapdoor sound for a function f , if it is a proof
of knowledge (in the traditional, rewinding sense) of a witness w of the instance
x, such that the value calculated by the trapdoor extractor Etd (on the same
inputs as above) is equal to f(w). As we will see, partial trapdoor soundness
is sufficient for some applications, and can be realized using a somewhat more
efficient protocol.

We say that Π is honest verifier zero-knowledge (HVZK) if there is a sim-
ulator algorithm ZKSim that on input (Λ, ρ, x, c) can produce a simulation of



10

the conversation (a, c, z) that would arise from an interaction between an hon-
est prover P with input (Λ, ρ, x, w), and a cheating verifier Ṽ , subject to the
constraint that Ṽ ’s challenge c must be generated before it sees a. Here, (Λ, ρ)
are generated by the algorithms ParamGen and RefGen; and x, w, and c are
generated by Ṽ . The requirement is that Ṽ should not be able to distinguish the
output of the simulator from the output of the real prover.

We note that the notion of an Ω-protocol extends that of a Σ-protocol ([16,
17]). The distinguishing feature is the reference parameter, and the trapdoor
soundness property that says that a witness may be extracted using a trapdoor
in the reference parameter, rather than by rewinding. The notion of trapdoor
soundness is closely related to that of verifiable encryption [1, 5]. Indeed, all
known constructions of Ω-protocols boil down to using a public key for a seman-
tically secure encryption scheme as reference parameter, where the trapdoor is
the secret key; the prover encrypts a witness, and then proves that it did so
using a Σ-protocol.

For our application to GUC ZK and GUC commitments, we introduce an
additional property that we require of an Ω-protocol. A given system parameter
Λ determines a set Φ̂ of possible reference parameters. Suppose there is some set
Φ that contains Φ̂, with the following properties: (i) the uniform distribution on
Φ is efficiently samplable; (ii) membership in Φ is efficiently determined; (iii) Φ
is an abelian group (which we write multiplicatively), such that the group and
group inverse operations are efficiently computable; (iv) it is hard to distinguish
a random element of Φ (generated uniformly), from a random element of Φ̂ (as
generated by RefGen). If all of these conditions obtain, we say Π has dense
reference parameters, and we call Φ the set of extended reference parameters.

2.4 Identity-based trapdoor commitments. The notion of an identity-
based trapdoor commitment scheme (IBTC) was introduced in [2] (as ID-based
Chameleon Hash functions), with some additional refinements appearing in [7].
We recall the basic idea here, leaving the formal definition to the full version
[18].

An IBTC scheme has a Setup algorithm that takes as input 1λ, where λ
is the security parameter, and outputs a public key PK and a master secret
key MSK . The public key PK determines a set D of decommitment values. To
generate a commitment to a message m, a user computes d $← D and κ ←
ComID(d,m). Here, ComID is a deterministic algorithm (which implicitly takes
PK as a parameter, but we shall in general omit this). The value κ is called a
commitment to m, while the pair (d,m) is called an opening of κ.

Like any commitment, a IBTC should be binding: it should be hard to open a
commitment under some ID to two different messages; that is, it should be hard
to find ID , d,m, d′,m′ such that m 6= m′ and ComID(d,m) = ComID(d′,m′). In
addition, there should be an identity-based trapdoor, which allows for identity-
based equivocation of commitments. More precisely, there are three algorithms
Extract, ECom, and Eqv, which work as follows. Given (PK , ID ,MSK ) as input,
Extract computes a trapdoor SK ID for the identity ID . Using this trapdoor,
algorithm ECom may be invoked with input (PK , ID ,SK ID) to produce a pair



11

Functionality FR
zk

Fzk, parameterized by a binary relation R and running with a prover P , a
verifier V , and an adversary S, proceeds as follows upon receipt of a message
(ZK-prover, sid, P, V, x, w) from the prover P :

If (x, w) ∈ R, then send (ZK-proof,sid, P, V, x) to V and S and halt.
Otherwise halt.

Fig. 2. The Zero-Knowledge Functionality for Relation R

(κ, α), where κ is a “fake” commitment, and α is a trapdoor specifically tuned
to κ. Finally, running algorithm Eqv on input (PK , ID ,SK ID , κ, α,m) for any
message m produces a decommitment d, such that (d,m) is an opening of κ. The
security property for equivocation is that is should be hard to distinguish a value
d produced in this way from a random decommitment. Moreover, this equivoca-
tion property should not interfere with the binding property for identities whose
trapdoors have not been extracted.

3 GUC Zero-Knowledge in the ACRS Model
The ideal Zero-Knowledge functionality for relation R, Fzk, is described in Fig-
ure 2.6

Here we give a general transformation from any Ω-protocol Π for a relation
R to a GUC-secure zero-knowledge proof for the relation R in the augmented
CRS (Gacrs) model. We need to assume that the Ω-protocol satisfies the correct-
ness, trapdoor soundness, honest verifier zero knowledge (HVZK), and dense
reference parameters properties. We denote by Φ the space of extended refer-
ence parameters for Π. We also need an identity-based trapdoor commitment
(IBTC) scheme. Commitments in this scheme are written ComID(d,m).

The augmented CRS is instantiated using the public key (and trapdoor ex-
tractor) of the IBTC. In addition, any system parameters Λ for the Ω-protocol
are placed in the public value of the augmented CRS. Note that there is no
trapdoor associated with the system parameter for the Ω-protocol, so this sys-
tem parameter is essentially a “standard” CRS. A critical difference between our
approach and that of Garay et al. [21] is that the reference parameter for the
Ω-protocol are not placed in the CRS; rather, a fresh reference parameter ρ is
generated with every run of the protocol using a three-move “coin toss” protocol
(which, in turn, makes use of the IBTC).

Here is how the GUC ZK protocol between a prover P and verifier V works.
The common input is an instance x (in addition to PK and the identities of the
players). Of course, P also has a witness w for x as a private input.

1. V computes ρ1
$← Φ, forms commitment κ1 = ComP (d1, ρ1), and sends κ1

to P .
2. P computes ρ2

$← Φ and sends ρ2 to V .
6 Technically, the relation R may be determined by system parameters, which form

part of a CRS. Here, we note that the same CRS must be used in both the “ideal”
and “real” settings.



12

3. V first verifies that ρ2 ∈ Φ, and then sends the opening (d1, ρ1) to P .
4. P verifies that (d1, ρ1) is a valid opening of κ1, and that ρ1 ∈ Φ.

Both P and V locally compute ρ← ρ1 · ρ2.
5. P initiates the Ω-protocol Π, in the role of prover, using its witness w for
x. P computes the first message a of that protocol, forms the commitment
κ′ = ComV (d′, a), and sends κ′ to V .

6. V sends P a challenge c for protocol Π.
7. P computes a response z to V ’s challenge c, and sends (d′, a, z) to V .
P then erases the random coins used by Π.

8. V verifies that (d′, a) is a valid opening of κ′ and that (a, c, z) is an accepting
conversation for Π.

Theorem 1. The protocol described above GUC-emulates the FR
zk functionality

in the secure-channels model, with security against adaptive corruptions (with
erasures).

Proof (sketch). We first observe that the protocol above only makes use of
a single shared functionality, Gacrs. Therefore, we are free to make use of the
equivalence theorem and EUC model of [7]. This allows us to prove the GUC
security of the protocol using the familiar techniques of the UC framework, with
only a single (but crucial) modification – we will allow the environment access
to the shared functionality.

Let A be any PPT adversary attacking the above protocol. We describe an
ideal adversary S attacking the ideal protocol for FR

zk that is indistinguishable
from A to any distinguishing environment Z, in the presence of a shared setup
Gacrs. In standard fashion, S will run a copy of A internally. We now formally
describe how S interacts with its internal copy of A. We focus here on the non-
trivial aspects of the simulator.

Simulating a proof between an honest P and corrupt V . The following
simulation strategy is employed whenever P is honest and V is corrupted at
any point prior to, or during, the execution of the protocol. S, upon notification
from FR

zk of a successful proof from P of statement x, proceeds as follows. First,
acting on behalf of the corrupt party V , S obtains the trapdoor SK V from Gacrs.
Next, S runs the coin-tossing phase of the protocol with the corrupt party V
(being controlled by S’s internal copy of A) normally. Upon completion of the
coin-tossing phase at Step 5, rather than sending a commitment to the first
message sent by Π (which would require the witness w as an input) as per the
protocol specification, S obeys the following procedure for the next 3 steps of
the protocol:

5. S computes (κ̂′, α) ← ECom(V,SK V ). S then sends the equivocable com-
mitment κ̂′ to the corrupt verifier V (which is part of S’s internal simulation
of A).

6. S receives a challenge c from the corrupt verifier V .
7. S runs the HVZK simulator ZKSim for protocol Π on input (Λ, ρ, x, c),

obtaining messages a and z. S then equivocates κ̂′, by computing d′ ←
Eqv(V,SK V , κ̂

′, α, a), and sends d′, a, z to the corrupt verifier V .



13

Observe that this simulation is done entirely in a straight-line fashion, and
requires only the trapdoor SK V belonging to corrupt party V .

If P is also corrupted at some point during this simulation, S must generate
P ’s internal state information and provide it to A. If P is corrupted prior to
Step 5, then S can easily provide the random coins used by P in all previous steps
of the protocol (since those are simply executed by S honestly). A corruption
after Step 5 but before Step 7 is handled by creating an honest run of protocol
Π using witness w (which was revealed to S immediately upon the corruption
of P ), and computing the internal value d′ via d′ ← Eqv(V,SK V , κ

′, α, a), where
a is now the honestly generated first message of Π. Finally, if corruption of P
occurs after Step 7 of the simulation, the internal state is easily generated to be
consistent with observed protocol flows, since they already contain all relevant
random coins, given the erasure that occurs at the end of Step 7.

Intuitively, the faithfulness of this simulation follows from the equivocability
and binding properties of commitments, and the HVZK and dense reference
parameters properties of the Ω-protocol Π. We stress that while the proof of
this requires a rewinding argument (see the full version [18]), the simulation
itself is straight-line.

Simulating a proof between a corrupt P and honest V . The following
simulation strategy is employed whenever V is honest, and P is corrupted at any
point prior to or during the execution of the protocol. First, acting on behalf of
the corrupt party P , S obtains the trapdoor SKP from Gacrs. Then S generates
a pair (ρ, τ) using the RefGen algorithm for Π, and “rigs” the coin-tossing
phase of the protocol by playing the role of V (communicating with the internal
simulation of the corrupt party P ) and modifying the initial steps of the protocol
as follows:
1. S computes (κ̂1, α)← ECom(P,SKP ), and sends κ̂1 to P .
2. P replies by sending some string ρ2 to V .
3. S computes ρ1 ← ρ · ρ−1

2 , and d1 ← Eqv(P,SKP , κ̂1, α, ρ1).
S first verifies that ρ2 ∈ Φ. Then S sends the opening (d1, ρ1) to P .

The remainder of the protocol is simulated honestly.
Observe that the outcome of this coin-flipping phase will be the same ρ

generated by S at the start of the protocol (along with its corresponding trapdoor
information τ). If and when the verifier accepts, S runs the trapdoor extractor
Etd for Π on input (Λ, τ, x, a, c, z) to obtain a witness w for x. S then sends the
pair (x,w) to the ideal functionality FR

zk on behalf of the corrupt prover P .
In the event that V is also corrupted at any point prior to completion of

the protocol, S simply produces internal state for V consistent with the visible
random coins in the transcript (none of the verifier’s random coins are hidden
by the honest protocol).

Intuitively, the faithfulness of this simulation follows from the equivocability
and binding properties of commitments, and the trapdoor soundness and dense
reference parameters properties of the Ω-protocol Π. Again, we stress that while
the proof of this requires a rewinding argument (e.g., the Reset Lemma of [4]),
the simulation itself is straight-line.



14

Functionality Fcom

Functionality Fcom proceeds as follows, with committer P and recipient V . .

Commit Phase: Upon receiving a message (commit, sid, P, V, m) from party
P , record the value m and send the message (receipt, sid, P, V ) to V and
the adversary. Ignore any future commit messages.

Reveal Phase: Upon receiving a message (reveal, sid) from P : If a value
m was previously recorded, then send the message (reveal, sid, m) to V
and the adversary and halt. Otherwise, ignore.

Fig. 3. The Commitment Functionality Fcom (see [9])

Now that we have fully described the behavior of S, it remains to prove that
S interacting with FR

zk (the ideal world interaction) is indistinguishable from A
interacting with the protocol (the real-world interaction), from the standpoint
of any environment Z with access to Gacrs. We stress that even Z cannot ob-
tain trapdoor information from Gacrs for any honest parties, since Gacrs will not
respond to requests for such trapdoors. The proof of indistinguishability follows
from a relatively straightforward argument, using the security properties of the
IBTC and Ω-protocol. See the full version [18].

4 GUC Commitments in the ACRS Model

The ideal functionality for a commitment scheme is shown in Figure 3. Messages
m may be restricted to some particular message space.

Our protocol makes use of an Ω-protocol for the IBTC opening relation; here,
a witness for a commitment κ with respect to an identity ID is a valid opening
(d,m) (i.e., ComID(d,m) = κ). Instead of trapdoor soundness, we only require
partial trapdoor soundness with respect to the function f(d,m) := m.

Our new GUC commitment protocol has two phases. The commit phase is
the same as the ZK protocol in the previous section, except that Step 5 now
runs as follows:

5.′ P generates a commitment κ = ComV (d,m), and then initiates the Ω-
protocol Π, in the role of prover, using its witness (d,m).
P computes the first message a of that protocol, forms the commitment
κ′ = ComV (d′, a), and sends κ and κ′ to V .

In the reveal phase, P simply sends the opening (d,m) to V , who verifies that
(d,m) is a valid opening of κ.

Theorem 2. The protocol described above GUC-emulates the Fcom functionality
in the secure-channels model, with security against adaptive corruptions (with
erasures).

The proof is analogous to that of our zero knowledge protocol, but entails
some minor changes that include the partial trapdoor soundness requirement for
Π. See [18] for more detail.



15

5 Efficient Implementations

5.1 Constructing Ω protocols from Σ protocols. We now briefly sketch
how to efficiently construct an Ω-protocol Π for a relation R, given any efficient
Σ-protocol Ψ for relation R. Intuitively, we must ensure that the dense reference
parameter and trapdoor extractability properties of Π will hold, in addition to
carrying over Σ-protocol Ψ ’s existing properties.

Let the reference parameter for Π be the public key pk for a “dense” seman-
tically secure encryption E (where the dense property of the encryption scheme
simply satisfies the requirements of the Dense Reference Parameter property of
Ω protocols). Standard El-Gamal encryption will suffice for this purpose (under
the DDH assumption). Let ψ = Epk (s,m) denote an encryption of message m
with random coins s.

Let a, zc denote the first and last messages (respectively) of the prover in
protocol Ψ when operating on input (x,w, r) and with challenge c, where (x,w) ∈
R and r denotes the random coins of the prover. The three messages to be sent
in protocol Π will be denoted as a′, c′, z′.

Intuitively, we will use a cut-and-choose technique to provide extractability,
and then amplify the soundness by parallel repetition k times. The first message
a′ of Π is constructed as follows:

1. For i = 1, . . . , k, choose random coins ri and compute ai, z0
i , and z1

i using
the prover input (x,w, ri).

2. For i = 1, . . . , k, compute ciphertexts ψ0
i = Epk (s0i , z

0
i ) and ψ1

i = Epk (s1i , z
1
i ).

3. Set a′ := (ψ0
1 , ψ

1
1 , . . . , ψ

0
k, ψ

1
k).

The challenge c′ sent to the prover in Π is a k-bit string c′ = c′1c
′
2 . . . c

′
k. The

last message z′ of protocol Π is then constructed as follows.

1. For i = 1, . . . , k, set z′i := (sc′
i

i , z
c′

i
i ).

2. Set z′ := (z′1, . . . , z
′
k).

The verifier’s algorithm for Π is simply constructed accordingly, verifying
that all the ciphertexts were correctly constructed, and that the corresponding
conversations for Ψ are valid. The proof of the following theorem is standard
and is therefore omitted.
Theorem 3. Π constructed as above is an Ω-protocol for relation R, provided
that Ψ is a Σ-protocol for relation R and E is a dense one-time semantically
secure public key encryption scheme.

5.2 An efficient identity-based trapdoor commitment with Ω-protocol.
While the protocol in §5.1 is certainly much more efficient than that in [7] (at
least for languages with efficient Σ-protocols), we would like to get an even more
efficient protocol that avoids the cut-and-choose paradigm altogether. In this sec-
tion, we briefly show how we can obtain such a protocol for GUC commitments.
Unlike the GUC commitment scheme in [7], which could commit bits, our GUC
commitment scheme can be used to commit to values in a much larger set. More-
over, because of the special algebraic structure of the scheme, our GUC com-
mitment protocol can be combined with other, well-known protocols for proving



16

properties on committed values (e.g., the that product of two committed integers
is equal to a third committed integer).

To achieve this goal, we need an IBTC scheme that supports an efficient
Ω-protocol, so that we can use this scheme as in §4. As observed in [7], based
on a variation of an idea in [19], to build an IBTC scheme, one can use a secure
signature scheme, along with a Σ-protocol for proof of knowledge of a signature
on a given message. Here, the message to be signed is an identity ID . Assuming
the Σ-protocol is HVZK, we can turn it into a commitment scheme, as follows.
For a conversation (a, c, z), the commitment is a, the value committed to is c, and
the decommitment is z. To commit to a value c, one runs the HVZK simulator.
The trapdoor for a given ID is a signature on ID , and using this signature, one
can generate equivocable commitments just by running the actual Σ-protocol.

For our purposes, we suggest using the Waters signature scheme [28]. Let
G and H be a groups of prime order q, let e : G → H be an efficiently com-
putable, non-degenerate bilinear map, and let G∗ := G \ {1}. A public reference
parameter consists of random group elements g1,g2,u0,u1, . . . ,uk ∈ G, a de-
scription of a collision-resistant hash function H : {0, 1}∗ → {0, 1}k, and a
group element h1. A signature on a message m is a pair (s1, s2) ∈ G × G, such
that e(s1, ũ−1

m ) · e(s2,g1) = e(h1,g2), where ũm := u0

∏
bi=1 ui and H(m) =

b1 · · · bk ∈ {0, 1}k. Waters’ signature is secure assuming the CDH for the group
G. With overwhelming probability, the signing algorithm will produce a signa-
ture (s1, s2) where neither s1 nor s2 are 1, so we can effectively assume this is
always the case.

To prove knowledge of a Waters signature (s1, s2) ∈ G × G on a message
m ∈ {0, 1}∗, we may use the following protocol. The prover chooses w1, w2 ∈ Z∗

q

at random, and computes s̄1 ← s1/w1
1 and s̄2 ← s1/w2

2 . The prover then sends
s̄1 and s̄2 to the verifier, and uses a standard Σ-protocol to prove knowledge
of exponents w1, w2 ∈ Zq such that γw1

1 γw2
2 = γ where γ1 := e(s̄1, ũ−1

m ), γ2 :=
e(s̄2,g1), and γ := e(h1,g2).

The identity-based commitment scheme derived from the above Σ-protocol
works as follows. Let ID ∈ {0, 1}∗ be the identity, and let m ∈ Zq be the
message to be committed. The commitment is computed as follows: s̄1, s̄2

$← G∗,
d1, d2

$← Zq, γ1 ← e(s̄1, ũ−1
ID ), γ2 ← e(s̄2,g1), γ ← e(h1,g2), γ̄ ← γd1

1 γd2
2 γm. The

commitment is (s̄1, s̄2, γ̄).
A commitment (s̄1, s̄2, γ̄) ∈ G∗ × G∗ × H is opened by revealing d1, d2,m

that satisfies the equation γd1
1 γd2

2 γm = γ̄, where γ1, γ2, γ are computed as in the
commitment algorithm, using the given values s̄1, s̄2.

The trapdoor for such a commitment is a Waters signature on the identity
ID . Using such a signature, one can just run the Σ-protocol, and open the
commitment to any value. The commitment will look the same as an ordinary
commitment, unless either component of the signature is the identity element,
which happens with negligible probability.

As the opening of a commitment is essentially just a representation of a
group element relative to three bases, there is a standard Σ-protocol for proving
knowledge of an opening of a given commitment. Moreover, using techniques



17

from Camenisch and Shoup [5], we can actually build an Ω-protocol for such a
proof of knowledge, which avoids the cut-and-choose paradigm.

Garay et al. [21] give an Ω-protocol for a very similar task, which could easily
be adapted for our purposes, except that the protocol in [21] does not satisfy
the dense reference parameters property, which is crucial for our construction
of a GUC commitment. To appreciate the technical difficulty, the MacKenzie
et al. protocol is based on Paillier encryption, using an RSA modulus N . The
secret key for this encryption scheme is the factorization of N , and this is used
as “global” trapdoor to a CRS in their proof of security in the UC/CRS model.
However, in the GUC framework, we cannot have such a global trapdoor, which
is why we make use of Camenisch and Shoup’s approach.7

The Camenisch and Shoup approach is based on a variant of Paillier encryp-
tion, introduced in Cramer and Shoup [15], which we call here projective Paillier
encryption. While the goal in [5] and [15] was to build a chosen ciphertext secure
encryption scheme, and we only require semantic security, it turns out that their
schemes do not require the factorization of the RSA modulus N to be a part of
the secret key. Indeed, the modulus N can be generated by a trusted party, who
then erases the factorization and goes away, leaving N to be used as a shared
system parameter. We can easily “strip down” the scheme in [5], so that it only
provides semantic security. The resulting Ω-protocol will satisfy all the prop-
erties we need to build a GUC commitment, under standard assumptions (the
Quadratic Residuosity, Decision Composite Residuosity, and Strong RSA).

Due to lack of space, all the remaining details for the IBTC scheme and the
Ω-protocol for proof of knowledge of a representation are relegated to the full
version [18].

6 Achieving Optimal Round Complexity with Random
Oracles

While our constructions for GUC zero knowledge and commitments are efficient
in both computational and communication complexity, and the constant round
complexity of 6 messages is reasonable, it would be nice improve the round
complexity, and possibly weaken the data erasure assumption. In this section we
address the question if such improvements are possible in the random oracle (RO)
model. We first remark that even the RO model, without any additional setup,
does not suffice for realizing GUC commitments or zero knowledge (see [7, 8]).
However, we may still obtain some additional efficiency benefits by combining
the ACRS and RO models. Ideally, we would like to achieve non-interactive zero
knowledge (NIZK), and, similarly, a non-interactive commitment. Unfortunately,
this is not possible if we insist upon adaptive security, even if we combine the
ACRS or KRK setup models with a random oracle.

Theorem 4. There do not exist adaptively secure and non-interactive protocols
for GUC-realizing Fcom and FR

zk (for most natural and non-trivial NP relations

7 It should be noted that the “mixed commitments” of Damg̊ard and Nielsen [17] also
have a very similar global extraction trapdoor, which is why we also cannot use them
to build GUC commitments.



18

R) in the ACRS or KRK setup models. This impossibility holds even if we com-
bine the setup with the random oracle model, and even if we allow erasures.

We give a more formal statement and proof of this result in the full version [18].
Intuitively, there are two conflicting simulation requirements for GUC-secure
commitments/ZK proofs that pose a difficulty here: a) given knowledge of the
sender/prover’s secret key, they must be “extractable” to the simulator, yet b)
given knowledge of the recipient/verifier’s secret key, they must be “simulatable”
by the simulator. It is impossible for a single fixed message to simultaneously
satisfy both of these conflicting requirements, so an adversary who can later
obtain both of the relevant secret keys via an adaptive corruption will be able
to test them and see which of these requirements was satisfied. This reveals
a distinction between simulated interactions and real interactions, so we must
resort to an interactive protocol if we wish to prevent the adversary from being
able to detect this distinction. Accordingly, we will now show that it is possible
to achieve optimal 2-round ZK and commitment protocols in the GUC setting
using both the ACRS and RO setups.

Round-Optimal ZK using Random Oracles. We achieve our goal by sim-
ply applying the Fiat-Shamir heuristic [20] to our efficient zero knowledge and
commitment protocols, replacing the first three and last three messages of each
protocol with a single message. We defer a more formal discussion and analysis
of GUC security in the combined ACRS and RO model with the Fiat-Shamir
heuristic to the full version [18] (additional details can be also be found in [27]),
but briefly comment on three important points. First, note that the only erasure
required by our protocols now occurs entirely during a single local computation,
without delay – namely, during the computation of the second message, where
an entire run of three-round protocol is computed and the local randomness
used to generate that run is then immediately erased. Thus, the need for data
erasures is really minimal for these protocols.

Second, the proof of security for the modified protocols is virtually unaltered
by the use of the Fiat-Shamir heuristic. In particular, observe that the GUC sim-
ulator S uses identical simulation strategies, and does not need to have access to
a transcript of oracle queries, nor does it require the ability to “program” ora-
cle responses. Thus, only in the proof of security (namely, that the environment
cannot tell the real and the ideal worlds) do we use the usual “extractability”
and “programmability” tricks conventionally used in the RO model.

Third, we stress that since the GUC modeling of a random oracle (accu-
rately) allows the oracle to be accessed directly by all entities – including the
environment – the aforementioned feature that S does not require a transcript
of all oracle queries, nor the ability to program oracle responses, is crucial for
deniability. It was already observed by Pass [26] that deniable zero knowledge
simulators must not program oracle queries. However, we observe that even us-
ing a “non-programmable random oracle” for the simulator is still not sufficient
to ensure truly deniable zero knowledge. In particular, if the modeling allows the
simulator to observe interactions with the random oracle (even without altering
any responses to oracle queries), this can lead to attacks on deniability. In fact,



19

there is a very practical attack (sketched in Appendix A) stemming from pre-
cisely this issue that will break the deniability of the protocols proposed by Pass
[26]. Our GUC security modeling precludes the possibility of any such attacks.

Of course, unlike the model of [26], we superimpose the ACRS model on the
RO model, providing all parties with implicit secret keys. This bears a strong
resemblance to the model of [23], which employs the following intuitive approach
to provide deniability for the prover P : instead proving the statement, P will
prove “either the statement is true, or I know the verifier’s secret key”. Indeed,
our approach is quite similar in spirit. However, we achieve a much stronger
notion of deniability than that of [23]. Our zero knowledge protocols are the first
constant round protocols to simultaneously achieve straight-line extractability
(required for concurrent composability) and deniability against an adversary who
can perform adaptive corruptions. In contrast, the protocol of [23] is not straight-
line extractable, and is not deniable against adaptive corruptions (this is easy
to see directly, but also follows from Theorem 4, by applying the Fiat-Shamir
heuristics to the 3-round protocol of [23]).

Finally, if one does not care about efficiency, applying our techniques to the
inefficient protocols of [7], we get a general, round-optimal feasibility result for
all of NP:
Theorem 5. Under standard cryptographic assumptions, there exists a (deni-
able) 2-round GUC ZK protocol for any language in NP in the ACRS+RO model,
which does not rely on data erasures.

References
1. N. Asokan, V. Shoup, and M. Waidner. Optimistic Fair Exchange of Digital Sig-

natures. In Proc. of Eurocrypyt, 1998.
2. G. Ateniese and B. de Medeiros. Identity-based Chameleon Hash and Applications.

In Proc. of Financial Cryptography, 2004.
3. B. Barak, R. Canetti, J. Nielsen, and R. Pass. Universally Composable Protocols

with Relaxed Set-up Assumptions. In Proc. of FOCS, 2004.
4. M. Bellare and A. Palacio. GQ and Schnorr Identification Schemes: Proofs of Se-

curity against Impersonation under Active and Concurrent Attacks. In Proc. of
Crypto, 2002.

5. J. Camenisch and V. Shoup. Practical Verifiable Encryption and Decryption of
Discrete Logarithms. In Proc. of Crypto, 2003.

6. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In Proc. of FOCS, 2001.

7. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universal Composability with Global
Setup. In Proc. of TCC, 2007.

8. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universal Composability with Global
Setup (full version). Available at Eprint Archive,
http://eprint.iacr.org/2006/432.

9. R. Canetti and M. Fischlin. Universally Composable Commitments. In Proc. of
Crypto, 2001.

10. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally Compos-
able Password-Based Key Exchange. In Proc. of Eurocrypt, 2005.

11. R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange
and Secure Channels. In Proc. of Eurocrypt, 2002.



20

12. R. Canetti, E. Kushilevitz, and Y. Lindell. On the Limitations of Universally Com-
posable Two-Party Computation Without Set-Up Assumptions. In Proc. of Euro-
crypt, 2003.

13. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-
Party and Multi-Party Secure Computation. In Proc. of STOC, 2002.

14. R. Canetti and T. Rabin. Universal Composition with Joint State. In Proc. of
Crypto, 2003.

15. R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public Key Encryption. In Proc. of Eurocrypt, 2002.

16. I. Damg̊ard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In Proc. of Eurocrypt, 2000.

17. I. Damg̊ard and J. Nielsen. Perfect Hiding and Perfect Binding Universally Com-
posable Commitment Schemes with Constant Expansion Factor. In Proc. of
Crypto, 2002.

18. Y. Dodis, V. Shoup, and S. Walfish. Efficient Constructions of Composable Com-
mitments and Zero-Knowledge Proofs (full version). Available at
http://www.shoup.net/papers/gucc.pdf.

19. U. Feige. Alternative Models for Zero Knowledge Interactive Proofs. Ph.D. thesis,
Weizmann Institute of Science, Rehovot, Israel, 1990.

20. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Proc. of Crypto, 1987.

21. J. Garay, P. MacKenzie, and K. Yang. Strengthening Zero-Knowledge Protocols
Using Signatures. In Proc. of Eurocrypt, 2003.

22. D. Hofheinz and J. Muller-Quade. Universally Composable Commitments Using
Random Oracles. In Proc. of TCC, 2004.

23. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs and their
Applications. In Proc. of Eurocrypt, 1996.

24. P. MacKenzie and K. Yang. On Simulation-Sound Trapdoor Commitments. In
Proc. of Eurocrypt, 2004.

25. P. Paillier. Public-key Cryptosystems Based on Composite Degree Residuosity
Classes. In Proc. Eurocrypt, 1999.

26. R. Pass. On Deniabililty in the Common Reference String and Random Oracle
Model. In Proc. of Crypto, 2003.

27. S. Walfish. Enhanced Security Models for Network Protocols. Ph.D. thesis, New
York University, 2007. Available online at
http://www.cs.nyu.edu/web/Research/Theses/walfish_shabsi.pdf.

28. B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In Proc.
of Eurocrypt, 2005.

A An Attack on “Deniable” ZK Protocol of [26]
Consider a prover P , a verifier V , and a third party Z who wishes to obtain
evidence that P has interacted with V in the 2-round “deniable” ZK protocol
of [26]. The third party Z uses RO to prepare a valid verifier’s first message α
for the protocol, asks V to forward α to P , and then relay back P ’s response β.
In this case, its clear that V cannot know the transcript of RO queries issued
by Z during the creation of α, and therefore V cannot run the zero knowledge
simulator of [26]. In fact, the soundness of the protocol ensures that V cannot
efficiently construct an accepting reply β to α without P ’s help. Therefore, if V
is later able to obtain a valid response β, Z is correctly convinced that P has
interacted with V , and P cannot deny that the interaction took place. Thus, the
protocol is not deniable in “real life”, despite meeting the definition of [26].


