
Efficient Secure Linear Algebra in the Presence
of Covert or Computationally Unbounded

Adversaries

Payman Mohassel? and Enav Weinreb??

Abstract. In this work we study the design of secure protocols for linear
algebra problems. All current solutions to the problem are either ineffi-
cient in terms of communication complexity or assume that the adversary
is honest but curious. We design protocols for two different adversarial
settings: First, we achieve security in the presence of a covert adversary, a
notion recently introduced by [Aumann and Lindell, TCC 2007]. Roughly
speaking, this guarantees that if the adversary deviates from the proto-
col in a way that allows him to cheat, then he will be caught with good
probability. Second, we achieve security against arbitrary malicious be-
haviour in the presence of a computationally unbounded adversary that
controls less than a third of the parties. Our main result is a new up-
per bound of O(n2+1/t) communication for testing singularity of a shared
n×n matrix in constant round, for any constant t in both of these adver-
sarial environments. We use this construction to design secure protocols
for computing the rank of a shared matrix and solving a shared linear
system of equations with similar efficiency.
We use different techniques from computer algebra, together with re-
cent ideas from [Cramer, Kiltz, and Padró, CRYPTO 2007], to reduce
the problem of securely deciding singularity to the problem of securely
computing matrix product. We then design new and efficient protocols
for secure matrix product in both adversarial settings. In the two-party
setting, we combine cut-and-choose techniques on random additive de-
composition of the input, with a careful use of the random strings of
a homomorphic encryption scheme to achieve simulation-based security.
Thus, our protocol avoids general zero-knowledge proofs and only makes
a black-box use of a homomorphic encryption scheme.

1 Introduction

Solving a set of linear equations is one of the most basic algorithmic tasks,
with numerous applications to various fields. In a distributed system, lin-
ear constraints may reflect sensitive information and thus parties who
wish to solve a joint set of equations are interested in revealing as lit-
tle information as possible on their input. Research in secure multiparty
? Department of Computer Science, UC Davis. pmohassel@ucdavis.edu.

?? CWI, Amsterdam, The Netherlands. e.n.weinreb@cwi.nl.

computation (MPC) has been impressively successful in allowing secure
computation of every function with efficiency that is proportional to its
circuit complexity [BGW88,CCD88,Yao86,GMW87]. However, for vari-
ous linear algebraic tasks, these general constructions fall well short of
giving optimal protocols in terms of communication and round complex-
ity. Starting with the work of Cramer and Damg̊ard [CD01], the task of
designing secure protocols for linear algebraic problems has been the focus
of several recent works in secure computation [NW06,KMWF07,CKP07].

We focus on the problem of deciding the singularity of a shared ma-
trix M ∈ Fn×n, where F is a finite field. Many linear algebraic tasks, e.g.
solving a joint set of linear equations and computing the rank of a shared
matrix, are efficiently reducible to this task. When no honest majority is
assumed, as in the classic two-party setting, our protocols are secure in the
presence of a covert adversary [AL07], assuming the existence of public
key homomorphic encryption schemes. Previous communication efficient
secure protocols for linear algebra were known only in the honest but cu-
rious setting. In case there is a guarantee that the adversary controls less
than one third (one half) of the parties, our protocols are secure against
malicious (honest but curious) behaviour relying on no computational as-
sumptions. Our protocols are constant round and achieve communication
complexity of O(n2+1/t) for every constant t. This is the first constant
round construction for secure linear algebra with nearly linear communi-
cation complexity in the input size.

Applying General Results Fails. Unfortunately, general results in MPC do
not yield efficient protocols for linear algebra. This is due to the fact that
the communication complexity linearly depends on the Boolean circuit
complexity of the function to be computed (or on the number of multi-
plication gates in case of information theoretic security). Alas, the circuit
complexity of matrix singularity, as well as that of many other linear alge-
braic problem, is tightly related to that of matrix product [BCS97]. The
best known upper bound for circuits for matrix product is O(nω) [CW87]
with ω ∼= 2.38, which is significantly larger than the input size. Moreover,
in the information theoretic setting the round complexity of the proto-
cols is related to the multiplicative depth of the corresponding circuit,
preventing these general construction from yielding constant round pro-
tocols. This leads to the following approach: Design efficient protocols for
matrix product and then use them to achieve protocols for other linear
algebraic tasks.

Matrix Product in Realistic Adversary Models. Therefore, our first step is
to design constant round secure protocols for matrix product in the covert

setting and in the information theoretic malicious setting with commu-
nication complexity O(n2). In the honest but curious setting, simple so-
lutions for this problems are achieved using homomorphic encryption in
the computational setting and linear secret sharing schemes in the infor-
mation theoretic setting. However, when arbitrary adversarial behavior
is considered, this task becomes more involved. Since very few efficient
secure protocols for interesting problems are known in the malicious set-
ting when no honest majority is assumed, Aumann and Lindell [AL07]
have defined an interesting compromise: protocols that are secure in the
presence of a covert adversary. Roughly speaking, the security guarantee
is that if the adversary deviates from the protocol in a way that allows
him to ”cheat”, then the honest parties are guaranteed to detect this
cheating with good probability (e.g. 1/2). The ability to tolerate cheating
with some fixed probability turns out useful for secure computation of
matrix product and, consequently, for other secure linear algebraic tasks.
Techniques for Matrix Product. The general idea behind our secure pro-
tocol for matrix product in the covert setting, is to compute a decom-
position of the input matrices into additive shares and then use homo-
morphic encryption to perform the computation on these shares. We use
the random strings of the encryption scheme to prove that the addi-
tive shares indeed sum up to the input matrix, avoiding expensive zero
knowledge proofs. Towards this goal, we need the homomorphic encryp-
tion scheme to have a property that all the known schemes enjoy: when
computing C = E(m1, r1) + E(m2, r2), one can compute a string r such
that C = E(m1 + m2, r). We note that although not every homomor-
phic encryption scheme has this property, some well known encryption
schemes, such as the one by Paillier [Pal99], are suitable for our purposes.
After the computations take place, the parties reveal parts of their addi-
tive sharing of the input, catching cheating adversaries1 with probability
1/2. Revealing parts of the decomposition of the input enables easy input
extraction, which makes the simulation go through.
Constant Round Reduction From Singularity to Matrix Product. Unfor-
tunately, in spite of the tight connection of matrix product and linear
algebraic problems such as matrix singularity, efficient protocols for the
former does not immediately imply efficient protocols for the latter. The
reason is that the known reductions do not translate to protocols with
constant round complexity. Therefore, we need to design a special pur-
pose protocol for matrix singularity, equipped with our secure protocol
1 the cheating probability can be reduced to 1/k paying a factor of k in the commu-

nication complexity.

for matrix product. We use ideas from [Wie86], [KP91], and [KS91] to
reduce the problem of deciding the singularity of a general matrix M into
deciding the singularity of a related Toeplitz matrix T . We then use a
lemma by Leverrier [JáJ92] which reduces the problem into computing
the traces of powers of T . Finally, we define the Toeplitz matrix of poly-
nomials (I − λT) and use the Gohberg-Semencul formula for the inverse
of a Toeplitz matrix, to compute the above traces efficiently. We rely on
techniques for iterated matrix product [CKP07] (which, in turn, is based
on techniques from [BIB89]), combined with some simple linear algebraic
manipulations, to translate the above algorithmic ideas into a constant
round secure protocol for matrix singularity with the above mentioned
communication complexity.

1.1 Related Work

Information theoretic setting. Cramer and Damg̊ard initiated the study of
secure protocols for solving various linear algebra problems [CD01]. Their
work was done in the information theoretic multi-party setting, with the
main focus on achieving constant round complexity. The communication
complexity2 of their protocols is Ω(n4) while the size of the inputs is
just O(n2). Cramer et al. [CKP07] designed a constant round protocol
for solving m equations in n variables with communication complexity
O(m4 + n2m) which improves on [CD01] for small values of m. The only
protocol applicable to the information theoretical setting with communi-
cation complexity of roughlyO(n2) is that of Nissim and Weinreb [NW06].
However, this protocol has polynomial round complexity (Ω(n0.27)) and
is proved secure only in the honest but curious model. (The protocols
of [CD01] and [CKP07] are secure in the malicious model, assuming the
adversary controls less that a third of the parties.)

Computational Setting. As previously noted, using the general well-known
garbled circuit method of Yao [Yao82], one can get a constant round
protocol for various linear algebraic problems with communication com-
plexity that is proportional to the Boolean circuit complexity of matrix
multiplication, for which the best upper bound known is O(nω) [CW87]
for ω ∼= 2.38. As discussed above, the protocol of [NW06] was the first to
improve the communication complexity to roughly O(n2), in the price of
large round complexity. Later, Kiltz et al. [KMWF07] improved on the
2 The complexity of their protocols can be reduced to O(n3) using the matrix product

protocol from this paper.

round complexity to get a protocol with O(log n) rounds and communi-
cation complexity of roughly O(n2). However, this protocol is secure only
in the honest but curious setting.

Organization In section 2 we introduce the necessary definitions and prim-
itives. In sections 3 and 4, we design secure and efficient protocols for
matrix product in the covert setting and information theoretic setting
respectively. In section 5, we reduce the problem of securely testing sin-
gularity of a matrix to a secure matrix product, put everything together,
give our main theorem and explain how to extend our results to other
linear algebra problems.

2 Preliminaries

Notation. Our protocols work with elements over a finite field, which we
denote by F. We guarantee the security with probability 1− O(n2)/|F|,
where |F| is size of the field and n is the size of matrices we deal with in
our linear algebra problems. Letting |F| be superpolynomial in n, we can
achieve protocols with negligible error probability.3 We count the commu-
nication complexity of our protocols in terms of number of field elements
communicated. By default, a vector v ∈ Fn is regarded as a column vec-
tor. By F[x] we refer to the ring of polynomials over F, and by F[[x]]
to the field of rational functions over F. Given a collection of matrices
C1, . . . , Cp over F where all the Ci’s have the same number of rows, we
denote by |C1|C2| . . . |Cp| the block matrix resulted by concatenating the
C1, . . . , Cp.

2.1 Definitions For Security Against Covert Adversaries

Aumann and Lindell, [AL07], give a formal definition of security against
covert adversaries in the ideal/real simulation paradigm. This notion of
adversary lies somewhere between those of semi-honest and malicious
adversaries. Loosely speaking, the definition provides the following guar-
antee: Let 0 ≤ ε ≤ 1 be a value (called the deterrence factor). Then any
attempts to cheat by an adversary is detected by the honest parties with
probability at least ε. Thus provided that ε is sufficiently large, an adver-
sary that wishes not to get caught cheating will refrain from attempting
to cheat, lest it be caught doing so. Furthermore, in the strongest version
of security against covert adversaries introduced in [AL07], the adversary
3 For smaller fields, one can pay a polylogarithmic factor in the communication com-

plexity and work in an extension field.

will not learn any information about the honest parties’ inputs if he gets
caught. Please see [AL07] for the detailed definitions.

Homomorphic Encryption We use a semantically-secure public-key en-
cryption scheme that allows for simple computations on encrypted data.
In particular, we use encryption schemes where given two encryptions
E(m1) and E(m2), we can efficiently compute a random encryption of
m1+m2. We denote this by E(m1+m2) = E(m1)+hE(m2). Note that this
implies that given an encryption E(m) and c ∈ F, we can efficiently com-
pute a random encryption E(cm); we denote this by E(cm) = c×hE(m).
For a matrix M We denote by E(M) an entry-wise encryption of the
matrix. Note that the above implies that two encrypted matrices can be
added, and that we can compute a multiplication of an encrypted matrix
by a matrix in the clear.

As an example for a homomorphic encryption scheme, we can use
Pallier’s [Pal99] cryptosystem. One minor issue is that the domain of
Pallier’s cryptosystem is the ring Zn, where n is the product of two large
and secret primes. Though Zn is in fact not a field, any operation which
separates it from a field leads to a factoring of n, and thus is unlikely to
occur during a computation.

2.2 Definitions for the Information Theoretic Model

Linear Secret Sharing Schemes. To design our secure multiparty proto-
cols, we use a linear secret sharing scheme (LSSS) to share values over a
finite field F. Each party receives a share that contains one or more field
elements from the dealer. Each share is computed as a fixed linear func-
tion of the secret and some random field elements chosen by the dealer.
The size of an LSSS is the total number of field elements distributed by
the dealer. We denote by [a] a secret sharing of a ∈ F. For a vector v ∈ Fn,
we denote by [v] a coordinate-wise sharing of the vector. Similarly, for a
matrix M ∈ Fn×n we denote by [M] an entry-wise sharing of the matrix,
and for a polynomial p(x) ∈ F[x] we denote by [p] a coefficient-wise secret
sharing of the polynomial.

Due to the linearity of the secret sharing, given secret shares of [a]
and [b] and a third field element c ∈ F, parties can compute secret shares
of [a+ b] and [ca] non-interactively. Furthermore, we require the LSSS to
be multiplicative. Roughly speaking, this means that party Pi can use his
shares of [a] and [b] to non-interactively compute a value ci. The product
ab can then be computed from ci’s using a fixed reconstruction vector

(r1, . . . , rk), where k is the number of parties4. In [CDM00], it is shown
how to construct a multiplicative LSSS scheme from any LSSS scheme
without sacrificing efficiency.

3 Matrix Product Secure Against Covert Adversaries

Given shares of two n×n matrices, we design a protocol for securely com-
puting shares of the product matrix in the presence of a covert adversary
in a small constant number of rounds and communication complexity
O(n2). It is possible to compile a O(n2) communication matrix product
protocol that is secure against semi-honest adversaries into a protocol
that is secure against malicious adversaries using generic (or specially de-
signed) zero knowledge proofs. However, we do not know how to do so
without adding a significant overhead to the communication complexity
of the original protocol.

The main idea is to break the input matrices into multiple additive
shares and use a homomorphic encryption along with cut-and-choose tech-
niques to perform the required computation on the shares. We further use
the random strings of the encryption scheme to prove that the additive
shares in fact add up to the original inputs. For this purpose, we need
the homomorphic encryption to have an extra property: If one knows the
random strings that correspond to the encryptions E(m1), and E(m2),
one can efficiently compute the random string that corresponds to the
encryption E(m1 +m2) = E(m1) +h E(m2).

We proceed to discuss the way in which a shared matrix is held in our
protocols. In a sharing of a matrixM ∈ Fn×n, Alice holds (A,Eb(B, rb), ra)
and Bob holds (B,Ea(A, ra), rb), where A and B are random matrices
subject to the condition that A+ B = M , the strings ra and rb are uni-
formly random strings, and Ea(·, ·) (Eb(·, ·)) denotes encryption under
Alice’s (Bob’s) public key. The remainder of this section is organized as
follows: We start by formally defining the matrix product functionality in
terms of the above secret sharing representation of the matrices. Then,
we present our protocol for efficiently implementing this functionality.

Definition 1 (Matrix Multiplication Functionality). The matrix
multiplication functionality (MatMul) is defined as follows:
Input to Alice: A1, A2, ra1 , ra2 , Eb(B1, rb1), Eb(B2, rb2), Eb(C, rc), ra′

4 For ease of composition, we assume that each party holds a single field element as
his share but note that our techniques automatically generalize to the case where
the share sizes are larger.

Input to Bob: B1, B2, C, rb1 , rb2 , rc, Ea(A1, ra1), Ea(A2, ra2)
Output of Alice: (A1 +B1)(A2 +B2) + C
Output of Bob: Ea((A1 +B1)(A2 +B2) + C, ra′)

A few remarks on this definition are in place. The inputs to the players
contain two shared matrices (A1 +B1) and (A2 +B2), together with the
matrix C (which is also Bob’s share of the output) and the string ra′ ,
which is the random string according to which Alice encrypts her output.
That is, we choose not to introduce randomness into the definition and
leave the choices of C and ra′ to the protocols that use matrix product as
a sub-protocol. This design choice was made to simplify the presentation
of the protocol. But, it is not hard to construct on top of our protocol for
this functionality, a protocol for a functionality with random C and ra′

as outputs. Hence we assume that we have access to a secure coin-tossing
protocol such as the one given in [Lin01].

To simplify the composition, we divide the protocol into several parts,
where the parts will be performed sequentially one after the other.

Alice’s Computation

1. Alice writes her inputs as sums. For each i ∈ {1, 2}, Alice chooses two
random matrices Ai,1 and Ai,2 such that Ai,1 + Ai,2 = Ai, and generates

two random strings ri,1 and ri,2. For each j ∈ {1, 2}, Alice sends Di,j
def
=

Ea(Ai,j , ri,j) to Bob.
2. Alice proves her sums. For each i ∈ {1, 2}, Alice computes a string

r0,i, such that

Ea(0, r0,i) = Ea(Ai, rai)−h Di,1 −h Di,2.

Alice sends r0,1 and r0,2 to Bob.
3. Alice sends output parts that depend only on her input. For

every i1, i2 ∈ {1, 2}2, Alice generates a random element si1,i2 and sends

Bob Hi1,i2
def
= A1,i1 ×h D2,i2 +h E(0, si1,i2).

4. Bob’s challenge. Bob chooses a random number c ∈ {1, 2} and sends it
to Alice.

5. Alice proves knowledge of encrypted data. For every i ∈ {1, 2}
Alice sends Bob Ai,c, ri,c. Moreover, Alice sends Bob sc,1 and sc,2 chosen
at step 3.

6. Bob verifies Alice’s data
(a) Alice’s encryptions indeed sum to Ea(Ai, rai) For each i ∈ {1, 2},

Bob verifies that indeed E(0, r0) = E(Ai, rac)−h Di,1 −h Di,2.
(b) Alice knows her encrypted data For each i ∈ {1, 2}, Bob verifies

that Di,c = Ea(Ai,c, ri,c).
(c) The computations that depend only on Alice were performed

correctly. Bob verifies that indeed Hc,j = A1,c ×h D2,j +h E(0, sc,j)
for j ∈ {1, 2}.

Bob’s Computation

1. Bob writes his inputs as sums. For each i ∈ {1, 2}, Bob randomly
chooses two random matrices Bi,1 and Bi,2 such that Bi,1+Bi,2 = Bi, and
generates two random strings qi,1 and qi,2. For each j ∈ {1, 2}, Bob sends

Fi,j
def
= Eb(Bi,j , qi,j) to Alice. Similarly, Bob Chooses 12 random matrices

Ci1,i2 , C′i1,i2 and C′′i1,i2 for every i1, i2 ∈ {1, 2}2, such that
∑

i1,i2
Ci1,i2 +∑

i1,i2
C′i1,i2 = C, and 12 random strings ti1,i2 , t′i1,i2 , and t′′i1,i2 , and sends

Alice Gi1,i2 = Eb(Ci1,i2 , ti1,i2), G′i1,i2 = Eb(C′i1,i2 , t
′
i1,i2), and G′′i1,i2 =

Eb(C′′i1,i2 , t
′′
i1,i2), for every i1, i2 ∈ {1, 2}2.

2. Bob proves his sums. For each i ∈ {1, 2}, Bob computes a string q0,
such that

Eb(0, q0) = E(Bi, rbi)−h Fi,1 −h Fi,2.

Bob sends q0 to Alice. Similarly, Bob computes a string t0 such that

Eb(0, t0) = E(C, rc)−h

∑
i1,i2

Gi1,i2 −h

∑
i1,i2

G′i1,i2 −h

∑
i1,i2

G′′i1,i2 .

Bob sends t0 to Alice.
3. Bob sends information that depends only on his input For every

i1, i2 ∈ {1, 2}2, Bob sends Alice Li1,i2 = B1,i1B2,i2 + C′′i1,i2 .
4. Bob performs computations on Alice’s inputs For every i1, i2 ∈
{1, 2}, computes Ki1,i2 = D1,i1B2,i2 + Ci1,i2 and K′i1,i2 = D2,i1B1,i2 +

C′i1,i2 . Bob sends Ki1,i2 and K′i1,i2 to Alice for every i1, i2 ∈ {1, 2}2.

5. Alice’s challenge. Alice chooses a two random numbers d1, d2 ∈ {1, 2}2
and sends them to Bob.

6. Bob proves knowledge of encrypted data. For every i ∈ {1, 2} Bob
sends Alice Bi,di and qi,di . Moreover for every j ∈ {1, 2} Bob sends Alice
the matrices Cj,dj , C′j,dj

, and C′′j,dj
and the strings tj,dj , t′j,dj

, and t′′j,dj
.

7. Alice verifies Bob’s data

(a) Bob’s encryptions indeed sum to Ea(Bi, rbi). For every i ∈ {1, 2},
Alice verifies that indeed Eb(0, q0) = Eb(Bi, rbdi

)− Fi,1 − Fi,2.
(b) Bob’s encryptions indeed sum to Ea(C, rc). Alice verifies that

indeed Eb(0, t0) = Eb(C, rc)−
∑

i1,i2
Gi1,i2 −

∑
i1,i2

G′i1,i2 .

(c) Bob knows his encrypted data. For each i ∈ {1, 2}, Alice veri-
fies that Fi,di = Eb(Bi,di , qi,di). Moreover, for every j ∈ {1, 2} Alice
verifies that Gj,dj = Eb(Cj,dj , tj,dj) and that G′j,dj

= Eb(C′j,dj
, t′j,dj

).
(d) The computations that depend only on Bob were computed

correctly Alice verifies that Ld1,d2 = B1,d1B2,d2 + C′′d1,d2

(e) Bob’s homomorphic computations were correct For every j ∈
{1, 2}, Alice verifies that indeedKj,d = Ea(A1,j)B2,d+Cj,d andK′j,d =
Ea(A2,j)B1,d + C′j,d.

Output Computation

1. Output computation. Alice decrypts all the values, sums everything up
to get (A1+B1)(A2+B2)+C and computes OA = Ea((A1+B1)(A2+B2)+
C, ra′). Bob on his side, computes OB = Ea((A1 +B1)(A2 +B2) +C, ra′′)
using homomorphic operations on the shares that he holds. Bob performs
these computation in a deterministic way, such that Alice knows ra′′ .

2. Output Delivery Alice chooses two random matrix X1 and X2 such that
X1 + X2 = (A1 + B1)(A2 + B2) + C. Alice chooses a random string x1,
and set the string x2 to satisfy Ea(X1, x1) +h Ea(X2, x2) = OA. Alice
sends Ea(X1, x1) and Ea(X2, x2) to Bob, together with a random string
x0 satisfying OB −h OA = Ea(0, x0).

3. Output Challenge Bob chooses a random number y ∈ {0, 1} and sends
it to Alice.

4. Output Response Alice sends Bob Xy and xy.
5. Bob’s output Bob verifies the encryption Ea(Xy, xy) and that OB −h

Ea(X1, x1) −h Ea(X2, x2) = Ea(0, x0). If this is the case, he outputs
Ea(X1, x1) +h Ea(X2, x2).

6. Alice’s output Alice outputs (A1 +B1)(A2 +B2) + C.

The following theorem summarizes the results of this section.

Theorem 1. Let n be a positive integer and consider matrices of dimen-
sion n × n. Given a secure coin-tossing functionality, the above protocol
securely realizes the matrix product functionality, in presence of a covert
adversary with deterrence probability ε = 1/4. The protocol is constant
round and requires O(n2) communication.

Due to lack of space, details of the simulators and proof of security
appear in the full version. The above protocol in its current form is not
secure under parallel composition due to the rewinding nature of the
simulator in the proof. However, we can securely run many instances of
the matrix product in parallel if (i) the same public key and encryption
scheme is used for all instances and (2) the same challenges are used in all
instances of the matrix product protocol. In fact, the description of the
simulator in the proof for security of the parallel matrix product protocol
will be almost identical to the simulator for the original protocol.

4 Secure Matrix Product in the Information Theoretic
Model

Using standard techniques for multiplying two shared values leads to a
simple protocol for matrix product in the information theoretic setting
that requires O(n3) communication.

However, one can think of our element-wise secret sharing of the ma-
trices as a secret sharing scheme over the matrix ring. In light of this
observation, we can efficiently generalize the committed multiplication
protocol of [CDM00] to a constant round committed matrix multiplica-
tion protocol that is secure against active adversaries, with O(n2) com-
munication. A more detailed description of the protocols is deferred to
the full version. The following theorem summarizes the result:

Theorem 2. Given two shared matrices [A] and [B] where A,B ∈ Fn×n,
there exists a multiparty protocol, secure against a malicious adversary
that corrupts less than a third of the parties, for computing a secret shar-
ing of the product [C] = [AB] in a constant number of rounds and with
O(n2) communication.

As we will see in future sections, secure computation of other linear
algebra problems is reduced to a secure matrix product protocol. The
guaranteed security is in part due to the existing general composition
theorems in the information-theoretic setting [KLR06].5

5 From Matrix Singularity to Matrix Product

In this section we design a secure protocol for deciding singularity of
a shared matrix given an efficient implementation of a secure protocol
for matrix product. Our techniques apply to both two-party protocols
secure against covert adversaries and multiparty protocols secure against
computationally unbounded malicious adversaries.

In Section 5.1, we design a constant round protocol for computing
shares of the linearly recurrent sequence v,Mv, . . . ,M2n−1v, given shares
of a square matrix M and a vector v. Later, in Section 5.2, we apply this
protocol to M and a random shared vector v, to reduce the problem of
deciding the singularity of M into the problem of deciding the singular-
ity of a related Toeplitz matrix T . In Section 5.3 we design a protocol
for deciding singularity of a Toeplitz matrix, by applying the protocol
for the linearly recurrent sequence on a different set of inputs. Finally,
in Section 5.4, we connect all the above to get our main result: a se-
cure constant round protocol for deciding shared matrix singularity with
communication complexity O(n2+1/t) for every positive integer t.
5 The general composition theorem we use from [KLR06], requires the composed pro-

tocols to perform an initial synchronization step. This synchronization step can
easily be added to all of our protocols without any asymptotic overhead.

5.1 Secure Computation of the Sequence {M iv}

Given secret shares of a matrix M ∈ Fn×n and a vector v ∈ Fn, our
goal is to design a secure protocol for computing shares of the vector
sequence {M iv}1≤i≤2n. This construction is an important building block
for the design of our matrix singularity protocol. Using the methods of
[CKP07] for computing powers of a matrix, one can securely compute the
sequence {M iv}1≤i≤2n in constant round and with O(n4) communication.
In this section, we design a constant round protocol for the same task with
communication complexity of O(n2+1/t) for any arbitrary constant t.

In [CKP07], the problem of computing sharings of I,M,M2, . . . ,Md

is reduced into (i) generating a sharing of O(d) random matrices and
their inverses, and (ii) executing O(d) parallel6 matrix multiplications.
Using standard techniques that are available in both settings, both steps
can be computed by performing O(d) matrix multiplications of n × n
matrices. Thus, using a constant round secure protocol for matrix product
we get a secure protocol for computing these with O(dn2) communication
which we refer to as POWERSd(M). The following lemma summarizes
this improvement.

Lemma 1 (POWERSd(M)). Given shares of a matrix M ∈ Fn×n, there
exist a protocol for securely computing shares of {I,M,M2, . . . ,Md} in
constant round and with O(dn2) communication.

We are now ready to describe our protocol for computing shares of the se-
quence {M iv}1≤i≤2n. We introduce some notation. Denote ` def=

⌈
(2n)1/s

⌉
,

and for 0 ≤ i ≤ s−1, denote by POWi
M , the following set of `+ 1 powers

of M : POWi
M

def= {I,M `i ,M2`i , . . . ,M `i+1}. The following observation is
easy to verify.

Observation 3 For every 1 ≤ t ≤ 2n, the matrix M t can be represented
as a product of s matrices M t =

∏
0≤j≤s−1Mt,j, where Mt,j ∈ POW j

M

for every 0 ≤ j ≤ s− 1.
6 Both in the covert setting and in the information theoretical setting, a secure pro-

tocol for computing d matrix products in parallel in constant round and communi-
cation complexity O(dn2) is a straightforward generalization of our matrix product
protocols.

Protocol LIN-SEQn(M, v)

Input: Shares of a matrix [M] ∈ Fn×n, and vector [v] ∈ Fn

Output: Shares of 2n vectors [Mv], [M2v], . . . , [M2nv]

1. Parties agree on a positive integer s, and let ` =
⌈
(2n)1/s

⌉
2. Parties securely compute shares of the sets

POW 1
M , POW 2

M , . . . , POW s
M by sequentially running

POWERS`(M),POWERS`(M
`), . . . ,POWERS`(M

`s−1
) (See Lemma 1.)

3. Let B0 = v
4. For i = 0 to s− 1:

(a) For j = 1, . . . , `− 1, parties compute [Cj] = [M j`i

][Bi] by performing
the secure matrix product protocol of section 2.

(b) As a result, parties hold secret shares of the n× `i+1 matrix Bi+1 =
|C`−1|C`−2| · · · |C1|Bi|.

5. Parties hold shares of the n × `s matrix Bs which contains the sequence
M iv as its columns, for 1 ≤ i ≤ ls.

Lemma 2. Given a shared matrix [M] ∈ Fn×n and a shared vector [v] ∈
F
n, for any positive integer s, there exist a multiparty protocol for securely

computing shares of the sequence {M iv}0≤i≤2n in O(s) rounds and with
O(sn2+1/s) communication.

Proof. In view of Claim 3, it is easy to verify that after s iterations
of the for loop, the matrix Bs contains the 2n vectors in the sequence
{M iv}0≤i≤2n as its columns. Based on Lemma 1, step 2 can be performed
in O(s) rounds and with O(sn1/sn2) communication. In each iteration,
step 4a requires ` multiplication of an (n×n) by an (n×`i) matrix. Using
an efficient matrix product protocol this requires only O(n2) communi-
cation, and leads to a total of O(s`n2) = O(sn1/sn2) communication for
the s iterations of the loop.

5.2 From General Matrix Singularity to Toeplitz Matrix
Singularity

In this section we reduce the problem of securely deciding the singularity
of a general shared matrix M into the problem of securely deciding the
singularity of a related shared matrix T .

Theorem 4. For every integer s, there is an O(s) rounds protocol that
securely transforms a sharing of a matrix M ∈ Fn×n into a sharing of
a Toeplitz matrix T ∈ Fn×n, such that, with probability 1 − O(n2)/|F|,
matrix M is singular iff the matrix T is singular. The communication
complexity of the protocol is O(sn2+1/s).

The proof of Theorem 4 relies on the following Lemmata. Due to lack
of space, the full proof is defered to the final version of the paper.

Lemma 3 ([KS91]). Consider the matrix M ∈ Fn×n of rank r (un-
known), and random non-singular matrices V,W ∈ F

n×n, let M ′ =
VMW . Then, with probability greater than 1−n(n+1)/|F|, the upper-left
i× i submatrices of M ′ are invertible for 1 ≤ i ≤ r.

Lemma 4 ([KS91]). Let B ∈ Fn×n be a matrix with invertible upper
left i× i submatrices for 1 ≤ i ≤ r, where r < n is the rank of B. Let D
be a randomly chosen diagonal matrix in Fn×n. Then, r = deg(mDB)− 1
with probability greater than 1− n2/|F|.

Lemma 5 ([Wie86]). Let A ∈ Fn×n and let mA be the minimal poly-
nomial of A. For u,v ∈ Fn chosen uniformly at random, consider the
linearly recurrent sequence {ai} = {utAiv}. We have that the minimal
polynomial of the sequence {ai} is equal to mA with probability at least
1− 2 deg(mA)/|F|.

For a linearly recurrent sequence {ai}∞i=0, and α > 0, denote by Tα
the following Toeplitz matrix:

Tα =



aα−1 aα−2 · · · a1 a0

aα aα−1 · · · a2 a1
... aα

. . .
... a2

...
...

a2α−3 aα−1

a2α−2 a2α−3 · · · aα aα−1



Lemma 6 ([KP91]). Let {ai} be a linearly recurrent sequence, and let
d be the degree of its minimum polynomial. For any α ≥ 0, let Tα be
the Toeplitz matrix constructed as above. Then, Det(Td) 6= 0 and for all
α > d, Det(Tα) = 0.

5.3 Deciding the Singularity of a Toeplitz Matrix

We test the singularity of a Toeplitz matrix by first computing its charac-
teristic polynomial and then determining whether its constant coefficient
is equal to zero or not. The well known lemma of Leverrier, connects
the characteristic polynomial of a matrix to solution of a linear system
that depends on the trace of powers of the matrix (see Appendix A).

Particularly, if we compute the traces of matrices T 1, . . . , Tn, computing
the characteristic polynomial reduces to inverting an invertible matrix for
which there exist simple and efficient protocols in both settings. Hence,
our main challenge remains to compute traces of powers of T in a round
and communication efficient manner.

Denote by X ∈ F[λ]n×n the matrix X = I +λT +λ2T 2 + . . .+λnTn.
Note that entries of X are polynomials of degree at most n in F[λ].
Therefore, the trace of the matrix X is also a polynomial of degree at
most n in λ. It is easy to see that coefficients of this trace polynomial are
in fact the traces of powers of T . Hence, our goal is to compute the trace
of X. However, as the näıve representation of the matrix X consists of n3

field elements, we need to compute the trace of X in a more clever way.
Consider the matrix (I−λT) ∈ F[λ]n×n. Since T is a Toeplitz matrix,

the matrix (I−λT) is Toeplitz as well. One may compute the power series
extension

(I − λT)−1 = I + λT + λ2T 2 + . . . ∈ F[[λ]]n×n

Note that X ≡ (I−λT)−1(mod λn+1). Hence, the matrix X is equivalent
modulo λn+1 to the inverse of a Toeplitz matrix from F[[λ]]n×n.

The following Lemma, based on the Gohberg-Semencul formula (e.g.
see [GS72,FMKL79,BGY80]), shows that X can be represented using only
its first and last columns:

Lemma 7. For any Toeplitz matrix T ∈ Fn×n, it holds that

X
def
= (I − λT)−1 mod λn+1 = I + λT + λ2T 2 + . . .+ λnTn

=
1

u1
(


u1

u2 u1

u3 u2 u1

...
. . .

. . .

un un−1 ... u2 u1



v1 v2 · · · vn

u1 v2 vn−1

. . .
. . .

...
v1 v2

v1



−


0
vn 0
vn−1 vn 0

...
. . .

. . .

v2 v3 ... vn 0




0 un un−1 ... u2

0 un u3

. . .
. . .

...
0 vn

0

) mod λn

(1)

where u = (u1, . . . , un)t and v = (v1, . . . , vn)t are the first and last
columns of (I − λT)−1 respectively.

This brief representation of X allows for an efficient computation of the
trace of X. Particularly, we get the following equation from (1):

Trace(X) ≡ Trace((I−λT)−1) ≡ 1
u1

(nu1v1+(n−2)u2v2+. . .+(−n+2)unvn)

(2)
To compute Trace(X), it is sufficient to perform the following two steps
(i) Compute the first and last columns of X: We apply Lemma 2 to com-
pute the two sequences {T ie1}1≤i≤n and {T ien}1 ≤ i ≤ n where e1 and
en are column vectors of 〈1, 0, . . . , 0〉 and 〈0, . . . , 0, 1〉, respectively. This
automatically gives us the first and last columns of X, and requires O(s)
rounds and O(sn2+1/s) communication. (ii) Compute the trace of X us-
ing these two columns: This can be done based on Equation 2. Since every
polynomial among u1 . . . , un, v1, . . . , vn is of degree at most n, multiplying
two of these polynomials can be done in constant round and communica-
tion O(n) in both settings (see [MF06]). Finally, dividing by u1, which is
invertible modulo λn+1 (since its constant coefficient is 1), can be done in
constant round and with communication complexity O(n) (see [MF06]).
Hence, we conclude that computation of traces of T, T 2, . . . , Tn can be
done in O(s) rounds and communication complexity O(sn2+1/s).

5.4 The Protocol for Matrix Singularity

The following protocol for testing singularity of a matrix combines all the
techniques discussed in this section:
Input: Shares of a matrix [M] ∈ Fn×n
Output: Shares of a bit [b], where b = 1 if M is singular and 0 otherwise.

1. Compute shares of the Toeplitz matrix [T], as described in Section 5.2.
2. Execute LIN-SEQn(T, (1, 0, . . . , 0)t) and LIN-SEQn(T, (0, 0, . . . , 0, 1)t).

The output of these two executions yield shares of the first and last
columns ([u] and [v] respectively) of the matrix X.

3. Given shares of [u] and [v], compute shares of TRACE(X), as de-
scribed in Section 5.3.

4. Construct the matrix S from equation 3 without any interaction and
solve the linear system of equation 3 using the protocol for inverting
an invertible matrix (see e.g. [BIB89])7. As a result, they hold shares
of coefficients of characteristic polynomial of T .

5. Securely test whether the constant coefficient of the characteristic
polynomial of T is 0 using an equality testing protocol (e.g. [DFKNT06,Yao86]).

7 Entries of S are traces of T is which are computed in step 3.

Theorem 5. Let n and s < n be a positive integers and consider ma-
trices of dimension n × n. There exist secure protocols that realizes the
Matrix Singularity functionality in the covert adversarial model, and the
information-theoretic model in O(s) rounds and with O(sn2+1/s) commu-
nication.

Other Linear algebra problems Using existing techniques, one can effi-
ciently and in constant round, reduce the task of secure computation of
rank of a matrix and solving a linear system of equation to testing sin-
gularity of a matrix. It is easy to verify that the reductions will apply
to both settings we considered in this paper. See [KMWF07] or the full
version of this paper for more detail.

Acknowledgment We would like to thank the anonymous reviewers for
their helpful comments and suggestions.

References

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. In TCC, pages 137–156, 2007.

[BCS97] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity
theory. Springer-Verlag, Berlin, 1997.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
noncryptographic fault-tolerant distributed computations. In STOC, pages
1–10, 1988.

[BGY80] RP. Brent, FG Gustavson, and DYY Yun. Fast solution of Toeplitz systems
of equations and computation of pade approximants. In J. Algorithms,
pages 259–295, 1980.

[BIB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In PODC, pages 201–209, New
York, NY, USA, 1989. ACM Press.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure
protocols. In STOC, pages 11–19, 1988.

[CD01] R. Cramer and I. Damgaard. Secure distributed linear algebra in a constant
number of rounds. In CRYPTO, pages 119–136. Springer-Verlag, 2001.

[CDM00] R. Cramer, I. Damg̊ard, and U. Maurer. General secure multi-party com-
putation from any linear secret-sharing scheme. In EUROCRYPT, pages
316–334. Springer-Verlag, 2000.

[CKP07] R. Cramer, E. Kiltz, and C. Padró. A note on secure computation of the
Moore-Penrose pseudo-inverse and its application to secure linear algebra.
In CRYPTO, volume 4622, page 613, 2007.

[CW87] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. In STOC, pages 1–6. ACM Press, 1987.

[FMKL79] B. Friedlander, M. Morf, T. Kailath, and L. Ljung. New inversion formulas
for matrices classified in terms of their distance from Toeplitz matrices. In
Linear Algebra and Appl, volume 27, pages 31–60, 1979.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game.
In STOC, pages 218–229, 1987.

[GS72] I. Gohberg and A. Semencul. On the inversion of finite Toeplitz matrices
and their continuous analogs. In Math Issl, pages 201–233, 1972.

[JáJ92] J. JáJá. An introduction to parallel algorithms. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1992.

[KLR06] E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure
protocols and security under composition. STOC, pages 109–118, 2006.

[KMWF07] E. Kiltz, P. Mohassel, E. Weinreb, and M. Franklin. Secure linear algebra
using linearly recurrent sequences. In TCC pages 291–310. Springer, 2007.

[KP91] E. Kaltofen and V. Pan. Processor efficient parallel solution of linear sys-
tems over an abstract field. In SPAA, pages 180–191. ACM Press, 1991.

[KS91] E. Kaltofen and D. Saunders. On Wiedemann’s method of solving sparse
linear systems. In AAECC-9, pages 29–38, London, UK, 1991.

[DFKNT06] I. Damgaard and Matthias Fitzi and Eike Kiltz and Jesper Buus Nielsen
and Tomas Toft. Unconditionally Secure Constant-Rounds Multi-Party
Computation for Equality, Comparison, Bits and Exponentiation. Pro-
ceedings of the third Theory of Cryptography Conference, TCC, 2006,
pages = 285–304.

[Lin01] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party
Computation. Crypto, pages 171–189, 2001.

[MF06] P. Mohassel and M. Franklin. Efficient Polynomial Operations in the
Shared-Coefficient Setting, Proc. of Public Key Cryptography coference,
PKC, pages 44–57, 2006.

[NW06] K. Nissim and E. Weinreb. Communication efficient secure linear algebra.
In TCC, pages 522–541, 2006.

[Pal99] P. Pallier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, pages 223–238, 1999.

[Wie86] D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE
Trans. Inf. Theor., 32(1):54–62, 1986.

[Yao82] A. C. Yao. Protocols for secure computations. In FOCS, pages 160–164,
1982.

[Yao86] A. C. Yao. How to generate and exchange secrets. In FOCS, pages 162–167,
1986.

A Leverrier’s Lemma

Lemma 8 (Leverrier’s Lemma). The coefficients c1, . . . , cn of the char-
acteristic polynomial of an n× n matrix T satisfies the following system
of equations:

S.


c1
c2
c3
...
cn

 =


s1
s2
s3
...
sn

where, S =


1 0 0 ... 0
s1 2 0 ... 0
s2 s3 3 ... 0
...

...
...

...
...

sn−1 sn−2 sn−3 ... n

 (3)

and si = tr(T i) for 1 ≤ i ≤ n

