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Abstract. We examine the combination of two directions in the field of
privacy concerning computations over distributed private inputs – secure
function evaluation (SFE) and differential privacy. While in both the goal
is to privately evaluate some function of the individual inputs, the privacy
requirements are significantly different. The general feasibility results for
SFE suggest a natural paradigm for implementing differentially private
analyses distributively: First choose what to compute, i.e., a differentially
private analysis; Then decide how to compute it, i.e., construct an SFE
protocol for this analysis. We initiate an examination whether there are
advantages to a paradigm where both decisions are made simultaneously.
In particular, we investigate under which accuracy requirements it is
beneficial to adapt this paradigm for computing a collection of functions
including Binary Sum, Gap Threshold, and Approximate Median queries.
Our results yield new separations between the local and global models
of computations for private data analysis.

1 Introduction

We examine the combination of two directions in the field of privacy concerning
distributed private inputs – secure function evaluation [18, 13, 3, 1] and differen-
tial privacy [9, 7]. While in both the goal is to privately evaluate some function
of individual inputs, the privacy requirements are significantly different.

Secure function evaluation (SFE) allows n parties p1, . . . , pn, sharing a com-
mon interest in distributively computing a function f(·) of their inputs x =
(xi, . . . , xn), to compute f(x) while making sure that no coalition of t or less
curious parties learns anymore than the outcome of f(x). I.e., for every such
coalition, executing the SFE protocol is equivalent to communicating with a
trusted party that is given the private inputs x and releases f(x). SFE has been
the subject of extensive cryptographic research (initiated in [18, 13, 3, 1]), and
SFE protocols exist for any feasible function f(·) in a variety of general settings.

SFE is an important tool for achieving privacy of individual entries – no
information about these entries is leaked beyond the outcome f(x). However this
guarantee is insufficient in many applications, and care must be taken in choosing
the function f(·) to be computed – any implementation, no matter how secure, of
a function f(·) that leaks individual information would not preserve individual
privacy. A criterion for functions that preserve privacy of individual entries,



2 Amos Beimel, Kobbi Nissim, and Eran Omri

differential privacy, has evolved in a sequence of recent works [6, 12, 11, 2, 9, 7,
8]. Alongside, techniques have been developed for constructing a differentially
private analysis f̂(·) approximating a desired analysis f(·), by means of adding
carefully chosen random noise that conceals any single individual’s contribution
to f(·) [9, 2, 16, 15].

Combining these two lines of research – SFE and differential privacy – we
get a very natural paradigm for constructing protocols that preserve differential
privacy, making use of the generality of SFE:

1. Decide on what to compute, i.e., a differentially private analysis f̂(·) that
approximates a desired analysis f(·). This can be done while abstracting
out all implementation issues, assuming the computation is performed by a
trusted party that only announces the outcome of the analysis.

2. Decide on how to compute f̂(·), i.e., construct an SFE protocol for computing
f̂(x) either by using one of the generic transformations of the feasibility
results mentioned above, or by crafting an efficient protocol that utilizes the
properties of f̂(·).
This natural paradigm yields a conceptually simple recipe for constructing

distributed analyses preserving differential privacy, and, furthermore, allows a
valuable separation of our examinations of the what and how questions. How-
ever, comparing the privacy requirements from SFE protocols with differential
privacy suggests that this combination may result in sub-optimal protocols. For
example, differential privacy is only concerned with how the view of a coalition
changes when one (or only few) of the inputs are changed, whereas SFE protocols
are required to keep these views indistinguishable even when significant changes
occur, if these changes do not affect the function’s outcome. Hence, it is inter-
esting to learn whether there are advantages to a paradigm where the analysis
to be computed and the protocol for computing it are chosen simultaneously.

The main model of distribution we consider is of semi-honest parties p1, . . . , pn

that perform a computation over their private inputs x1, . . . , xn, while maintain-
ing differential privacy with respect to coalitions of size up to t (see Definition 2
below). This model has been examined thoroughly in cryptography, and was
shown to enable SFE in a variety of settings [18, 13, 1, 3]. We note that while it
is probably most natural to consider a setting where the players are computa-
tionally limited, we present our results in an information theoretic setting, as
this setting allows us to prove lowerbounds on protocols, and hence demonstrate
rigorously when constructing differentially private protocols is better than using
the natural paradigm.

The second model we consider is the local model1. Protocols executing in the
local model have a very simple communication structure, where each party pi

can only communicate with a designated semi-honest party C, referred to as
a curator. The communication can either be non-interactive, where each party
1 Also refereed to in the literature as randomized response and input perturbation. This

model was originally introduced by Warner [17] to encourage survey responders to
answer truthfully, and has been studied extensively since.
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sends a single message to the curator which replies with the protocol’s outcome,
or interactive, where several rounds of communication may take place.

1.1 Our Results

We initiate an examination of the paradigm where an analysis and the protocol
for computing it are chosen simultaneously. We begin with two examples that
present the potential benefits of using this paradigm: it can lead to simpler
protocols, and more importantly it can lead to more efficient protocols. The
latter example is of the Binary Sum function, SUM(x1, . . . , xn) =

∑n
i=1 xi for

xi ∈ {0, 1}.
The major part of this work examines whether constructing protocols for

computing an approximation f̂(·) to SUM(·), that are not SFE protocols for f̂(·),
yields an efficiency gain2. Ignoring the dependency on the privacy parameter,
our first observation is that for approximations with additive error ≈ √

n there
is a gain – for a natural class of symmetric approximation functions (informally,
functions where the outcome does not depend on the order of inputs), it is
possible to construct differentially private protocols that are much more efficient
than any SFE protocol for a function in this class. Moreover, these differentially
private protocols are secure against coalitions of size up to t = n− 1, and need
not rely on secure channels.

The picture changes when we consider additive error smaller than
√

n. This
follows from a sequence of results. We prove first that no such local non-interactive
protocols exist (by itself, this contribution is not new, see below). Furthermore,
no local protocols with ` ≤ √

n rounds and additive error
√

n/Õ(`) exist. In
particular, no local interactive protocol with o(

√
n/ log(n)) rounds exists for

computing SUM(·) within constant additive error3. Finally, the bounds on lo-
cal protocols imply that no distributed protocols exist that use o(nt) messages,
and approximates SUM(·) within additive error

√
n/Õ(`) in ` rounds. Consider-

ing the natural paradigm, i.e., computing a differentially-private approximation
to SUM(·) using SFE, we get a protocol for approximating SUM(·) with O(1)
additive error, and sending O(nt) messages.

1.2 Techniques

We prove our lowerbound in sequence of reductions. We begin with a simple
reduction from any differentially private protocol for SUM to a gap version of the
threshold function GAP-TR. Henceforth, it is enough to prove our lowerbound
for GAP-TR.

In the heart of our lowerbound for GAP-TR is a transformation from efficient
distributed protocols into local interactive protocols, showing that if there are

2 We only consider oblivious protocols where the communication pattern is independent
of input and randomness (see Section 2.2).

3 This is in contrast to the centralized setup where SUM(·) can be computed within
O(1) additive error.
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distributed differentially-private protocols for GAP-TR(·) in which half of the
parties interact with less than t + 1 other parties, then there exist differentially-
private protocol for GAP-TR(·) in the local interactive model. This allows us to
prove our impossibility results in the local model, a model which is considerably
simpler to analyze.

In analyzing the local non-interactive model, we prove lowerbounds borrow-
ing from analyses in [6, 11]. The main technical difference is that our analysis
holds for general protocols, whereas the work in [6, 11] was concerned with prov-
ing feasibility of privacy preserving computations, and hence the analysis of very
specific protocols.

To extend our lowerbounds from the local non-interactive to interactive pro-
tocols, we decompose an `-round interactive protocol to ` one-round protocols,
analyze the ` protocols, and use composition to obtain the lowerbound.

1.3 Related Work

Secure function evaluation and private data analysis were first tied together in
the Our Data, Ourselves (ODO) protocols [8]. Their constructions – distributed
SFE protocols for generating shares of random noise used in private data analyses
– follow the natural paradigm discussed above. They do, however, avoid utilizing
generic SFE feasibility results to gain on efficiency. We note that a point of
difference between the protocols in [8] and the discussion herein is that ODO
protocols are secure against malicious parties, in a computational setup, whereas
we deal with semi-honest parties in an information theoretic setup.

Lowerbounds on the local non-interactive model were previously presented
implicitly in [9, 14], and explicitly in [6, 10]. The two latter works are mainly
concerned with what is called the global (or centralized) interactive setup, but
have also implications to approximation to SUM in the local non-interactive
model, namely, that it is impossible to approximate it within additive error
o(
√

n), a similar consequence to our analysis of local non-interactive protocols.
However (to the best of our understanding), these implications of [6, 10] do not
imply the lowerbounds we get for local interactive protocols.

Chor and Kushilevitz [4] consider the problem of securely computing modular
sum when the inputs are distributed. They show that this task can be done while
sending roughly n(t + 1)/2 messages. Furthermore, they prove that this number
of messages is optimal for a family of protocols that they call oblivious. These
are protocols where the communication pattern is fixed and does not depend on
the inputs or random inputs. In our work we also only prove lowerbounds for
oblivious protocols.

2 Preliminaries

Notation. D denotes an arbitrary domain. A vector x = (x1, . . . , xn) is an or-
dered sequence of n elements of D. Vectors x,x′ are neighboring if they differ on
exactly one entry, and are T -neighboring if they differ on a single entry, whose
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index is not in T ⊂ [n]. The Laplace distribution, Lap(λ), is the continuous prob-
ability distribution with probability density function h(y) = exp(−|y|/λ)

2λ (hence,
E[Y ] = 0, Var[Y ] = 2λ2, and Pr[|Y | > kλ] = e−k).

2.1 Differential Privacy

Our privacy definition (Definition 2 below) can be viewed as a distributed variant
of ε-differential privacy (a.k.a. ε-indistinguishability). Informally, a computation
is differentially private if any change in a single private input may only induce
a small change in the distribution on its outcomes.

Definition 1 ([9]). Let f̂ : Dn → R be a randomized function from domain
Dn to range R. We say that f̂(·) is ε-differentially private if for all neighboring
vectors x,x′, and for all possible sets of outcomes V ⊆ R it holds that Pr[f̂(x) ∈
V] ≤ eε · Pr[f̂(x′) ∈ V]. The probability is taken over the randomness of f̂(·).

Several frameworks for constructing differentially private functions by means
of perturbation are presented in the literature (see [9, 2, 16, 15]). The most basic
transformation on a function f that yields a differentially private function is via
the framework of global sensitivity [9], where the outcome f(x) is modified by
the addition of noise sampled from the Laplace distribution, calibrated to the
global sensitivity of f ,

f̂(x) = f(x) + Y, (1)

where Y ∼ Lap(GSf/ε), and GSf = max |f(x) − f(x′)|, with the maximum
taken over neighboring x,x′.

Example 1. The binary sum function SUM : {0, 1}n → R is defined as SUM(x) =∑n
i=1 xi. For every two neighboring x,x′ ∈ {0, 1}n we have that | SUM(x) −

SUM(x′)| = 1 and hence GSSUM = 1. Applying (1), we get an ε-differentially
private approximation, f̂(x) = SUM(x) + Y , where Y ∼ Lap(1/ε).

2.2 Differentially Private Protocols

We consider a distributed setting, where semi-honest parties p1, . . . , pn hold
private inputs x1, . . . , xn respectively and engage in a protocol Π in order to
compute (or approximate) a function f(·) of their joint inputs. The protocol Π is
executed in a synchronous environment with point-to-point secure (untappable)
communication channels, and is required to preserve privacy with respect to
coalitions of size up to t. Following [4], we only consider a fixed-communication
protocol Π (also called an oblivious protocol) where every channel is either (i)
active in every run of Π (i.e., at least one bit is sent over the channel), or (ii)
never used4. Parties that are adjacent to at least t+1 active channels are called
popular other parties are called lonely.
4 Our proofs also work in a relaxed setting where every channel is either (i) used in at

least a constant fraction of the runs of Π (where the probability is taken over the
coins of Π), or (ii) is never used.



6 Amos Beimel, Kobbi Nissim, and Eran Omri

The main definition we will work with is an extension of Definition 1 to a
distributed setting. Informally, we require that differential privacy is preserved
with respect to any coalition of size up to t.

Definition 2. Let Π be a protocol between n (semi-honest) parties. For a set
T ⊆ [n], let ViewT (x1, . . . , xn) be the random variable containing the inputs of
the parties in T (i.e. {xi}i∈T ), the random coins of the parties in T , and the
messages that the parties in T received during the execution of the protocol with
private inputs x = (x1, . . . , xn).

We say that Π is (t, ε)-differentially private if for all T ⊂ [n], where |T | ≤ t,
for all T -neighboring x,x′, and for all possible sets VT of views of parties in T :

Pr[ViewT (x) ∈ VT ] ≤ eε · Pr[ViewT (x′) ∈ VT ], (2)

where the probability is taken over the randomness of the protocol Π.

It is possible to relax this definition by replacing (2) by a requirement that
ViewT is statistically close, or computationally close to some ε-differentially pri-
vate computation. The exact definition of differential privacy in the computa-
tional model requires some care; this definition will be given in the full version
of the paper. The following informal lemma applies for such relaxations:

Lemma 1 (Informal). Let f̂ be ε-differentially private, and let Π be a t-secure
protocol computing f̂ , then Π is (t, ε)-differentially private.

Note 1. While a computational definition of differentially private protocols is
probably the most appealing, we chose to present our work with Definition 2 –
an information theoretic definition of differentially private protocols – because
it allows us to prove bounds on protocols, demonstrating when constructing
differentially private protocols is better than using the natural paradigm.

Note 2. We will only consider protocols computing a (randomized) function
f̂(·) resulting in all parties computing the same outcome of f̂(x). This can be
achieved, e.g., by having one party compute the f̂(x) and send the outcome to
all other parties.

2.3 The Local Model

The local model (previously discussed in [9, 14]) is a simplified distributed com-
munication model where the parties communicate via a designated party – a
curator – denoted C (with no local input). We will consider two types of dif-
ferentially private local protocols. In non-interactive local protocols each party
pi applies an ε-differentially private algorithm Ai on its private input xi and
randomness ri, and sends Ai(xi; ri) to C that then performs an arbitrary com-
putation and publishes its result.

In interactive local protocols the input to each algorithm Ai includes xi, ri,
and the history of messages received from the curator. The protocol proceeds in
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iterations where in each iteration C sends to party pi a “query” message qi,j and
party pi responds with Ai(xi; qi,1, . . . , qi,j ; ri). It is required that the overall pro-
tocol preserves differential privacy, i.e., that the randomized function correspond-
ing to the curator’s viewAi(·; qi,1; ri)◦Ai(·; qi,1, qi,2; ri)◦· · ·◦Ai(·; qi,1, . . . , qi,j ; ri)
preserves ε-differential privacy for every query messages qi,1, . . . , qi,j possible in
the protocol. An immediate corollary is that Ai(·; qi,1, . . . , qi,j ; ri) should be ε-
differentially private for all j.

2.4 Approximation

We will construct protocols whose outcome approximates a function f : Dn → R
by a probabilistic function. We say that a randomized function f̂ : Dn → R is
an additive (γ, τ)-approximation of f if Pr

[
|f(x)− f̂(x)| > τ(n)

]
< γ(n) for

all x ∈ Dn. For example, Equation (1) yields an additive (O(1), O(GSf/ε))-
approximation to f .

3 Motivating Examples

We begin with two observations manifesting benefits of choosing an analysis
together with a differentially private protocol for computing it. In the first ex-
ample, this paradigm yields more efficient protocols than the natural paradigm;
In the second example, it yields simpler protocols.

Binary Sum –
√

n Additive Error. We begin with a simple observation regarding
the binary sum function of Example 1: a very efficient (n−1, ε)-differentially pri-
vate protocol for approximating SUM(x) =

∑n
i=1 xi (where xi ∈ {0, 1}) within

O(
√

n/ε)-additive approximation.
Let flip(x) be a randomized bit flipping operator returning x with probability

0.5 + α and 1− x otherwise (α will be determined later). Our protocol proceeds
as follows: (i) Each party pi with private input xi ∈ {0, 1} sends zi = flip(xi) to
party p1; (ii) Party p1 sends k =

∑n
i=1 zi to all parties; (iii) Each party pi locally

outputs f̂ = (k + (0.5−α)n)/2α. In this protocol, a total of O(n) messages and
O(n log n) bits of communication are exchanged.

To satisfy Definition 2, set α = ε
4+2ε , yielding Pr[zi = xi]/ Pr[zi = 1− xi] =

(0.5 + α)/(0.5− α) = 1 + ε ≤ eε.
Note that E[k] = (0.5+α) SUM(x)+(0.5−α)(n−SUM(x)) = 2α SUM(x)+

n(0.5−α), and hence, E[f̂ ] = SUM(x). By an application of the Chernoff bound,
we get that f̂ is an additive (O(1), O(

√
n/ε))-approximation to SUM(·).

It is natural to choose a symmetric approximation to SUM(·) that only de-
pends on SUM(·). While the construction above yields an efficient protocol for
such a function, we prove (using ideas from [4]) that no efficient SFE protocols
for such functions exist. We leave the details for the full version.
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Lemma 2. Let f̂ be a symmetric additive (O(1), n/10)-approximation to SUM(·).
Then any oblivious t-secure protocol computing f̂ uses Ω(nt) messages5.

Distance from a Long Subsequence of 0’s. Our second function measures how
many bits in a sequence x of n bits should be set to zero to get an all-zero
subsequence of length nα. In other words, the minimum weight over all substrings
of x of length nα bits: DISTα(x) = mini(

∑i+nα−1
j=i xj). For t ≤ n/2, we present

a (t, ε, δ)-differentially private protocol6 approximating DISTα(x) with additive
error Õ(nα/3/ε).

In our protocol, we treat the n-bit string x (where xi is held by party pi) as
a sequence of n1−α/3 disjoint intervals, each nα/3 bit long. Let i1, . . . , in1−α/3 be
the indices of the first bit in each interval, and observe that minik

(
∑ik+nα−1

j=ik
xj)

is an nα/3 additive approximation of DISTα. The protocol for computing an
approximation f̂ to DISTα is sketched below.

1. Every party pi generates a random variable Yi distributed according to the
normal distribution N(µ = 0, σ2 = 2R/n) where R = 2 log ( 2

δ )

ε2 , and shares
xi + Yi between parties p1, . . . , pt+1 using an additive (t + 1)-out-of-(t + 1)
secret sharing scheme.

2. Every party pi, where 1 ≤ i ≤ t + 1, sums, for every interval of length nα/3,
the shares it got from the parties in the interval and sends this sum to p1.

3. For every interval of length nα/3, party p1 computes the sum of the t + 1
sums it got for the interval. By the additivity of the secret sharing scheme,
this sum is equal to Sk =

∑ik+nα/3−1
j=ik

(xj +Yj) =
∑ik+nα/3−1

j=ik
xj +Zk where

Zk =
∑ik+nα/3−1

j=ik
Yj (notice that Zk ∼ N(µ = 0, σ2 = 2R)).

4. p1 computes mink

∑k+n2α/3

j=k Sk and sends this output to all parties.

Using the analysis of [8], this protocol is a (t, ε, δ)-differentially private protocol
when 2t < n. Furthermore, it can be shown that with high probability the
additive error is Õ(nα/3/ε). To conclude, we showed a simple 3 round protocol
for DISTα.

This protocol demonstrates two advantages of the paradigm of choosing what
and how together. First, we choose an approximation of DISTα (i.e., we com-
pute the minimum of subsequences starting at a beginning of an interval). This
approximation reduces the communication in the protocol. Second, we leak in-
formation beyond the output of the protocol, as p1 learns the sums Sk’s.7

5 We note that the lemma does not hold for non-symmetric functions. For example,
we can modify the bit flip protocol above to an SFE protocol for a non-symmetric
function, retaining the number of messages sent (but not their length): in step (iii)
let p1 send z = (z1, . . . , zn), and in step (iv) let pi locally output f̂ + z2−n, treating
z as an n-bit binary number.

6 (ε, δ)-differential privacy is a generalization, defined in [8], of ε-differential privacy
where it is only required that Pr[f̂(x) ∈ V] ≤ eε · Pr[f̂(x′) ∈ V] + δ .

7 One can use the techniques of [5] to avoid leaking these sums while maintaining a
constant number of rounds, however the resulting protocol is less efficient.
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4 Binary Sum – Below
√

n Additive Error

We prove that in any `-round, fixed-communication, (t, ε)-differentially private
protocol computing the binary sum with additive error less than

√
n/Õ(`), the

number of messages sent in the protocol is Ω(nt).

Theorem 1. In any `-round, fixed-communication, (t, ε)-differentially private
protocol for approximating SUMn that sends at most n(t + 1)/4 messages the
error is Ω(

√
n/(ε`

√
log `)) with constant probability.

We prove this lowerbound in steps. We first define a gap version of the threshold
function, denoted GAP-TR, and observe that any differentially private protocol
for SUM with error τ implies a differentially-private protocol for GAP-TR with
gap τ/2. Therefore, we prove impossibility of differentially-private computation
of GAP-TR with small gap. In Section 4.1, we prove that if there is a protocol
computing the GAP-TR function with at most nt/4 messages, then there is
a protocol in the local model (i.e., with a curator) computing the GAP-TR
function with the same gap. Thereafter, we prove that such a protocol in the
local model has can only compute GAP-TR with gap Ω(

√
n). In Section 4.2, we

analyze properties of non-interactive protocols in the local model that compute
GAP-TR and in Section 4.3 we generalize this analysis to interactive protocols
in the local model that compute GAP-TR. In Section 4.4, we complete the proof
of the lowerbound on the gap in the local model. Theorem 1 follows from the
combination the transformation of the distributed protocol to the protocol in
local model proved in Lemma 4 and the lowerbound for protocols in the local
model proved in Theorem 2.

Theorem 1 suggests that whenever we require that the error of a differentially-
private protocol for approximating SUM(·) to be of magnitude smaller than√

n/ε, there is no reason to relinquish the simplicity of the natural paradigm for
constructing protocols. In this case, it is possible to construct relatively simple
efficient SFE protocols, which use O(nt) messages, and compute an additive
(O(1/ε), O(1))-approximation of SUM(·).

We next define the gap version of the threshold function:

Definition 3 (Gap Threshold Function). We define the gap threshold func-
tion as follows: If SUMn(x1, . . . , xn) ≤ κ then GAP-TRκ,τ (x1, . . . , xn) = 0 and
if SUMn(x1, . . . , xn) ≥ κ + τ then GAP-TRκ,τ (x1, . . . , xn) = 1.

In the above definition we consider a gap version of the threshold func-
tion and there are no requirements on the output of GAP-TRκ,τ when κ <
SUMn(x1, . . . , xn) < κ + τ .

Claim. If there exists an `-round, fixed-communication, (t, ε)-differentially pri-
vate protocol that (γ, τ)-approximates SUMn sending at most n(t + 1)/4 mes-
sages, then for every κ there exists an `-round, (t, ε)-differentially private proto-
col that correctly computes GAP-TRκ,τ/2 with probability at least γ sending at
most n(t + 1)/4 messages.

Similarly, using “padding” arguments
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Claim. If for some 0 ≤ κ ≤ n− τ there exists an `-round, fixed-communication,
(t, ε)-differentially private n party protocol that correctly computes GAP-TRκ,τ

with probability at least γ sending at most n(t + 1)/4 messages, then there
exists an `-round, (t, ε)-differentially private n/2-party protocol that correctly
computes GAP-TR0,τ with probability at least γ sending at most n(t + 1)/4
messages.

4.1 Moving to the Local Model

We start with the transformation of a distributed protocol to a protocol in the
local model. To analyze this transformation we will need the following simple
lemma:

Lemma 3. Fix a 3-party randomized protocol, assume that each pi holds an
inputs xi, and fix some communication transcript c. Define αi as the overall
probability that in each round pi with input xi sends messages according to c
provided that in previous rounds it gets messages according to c. Then, the prob-
ability that c is exchanged is α1 · α2 · α3.

Lemma 4. If there exists an `-round, (t, ε)-differentially private protocol that
correctly computes GAP-TRκ,τ with probability at least γ sending at most n(t +
1)/4 messages, then there exists a 2`-round, ε-differentially private protocol in
the local model that correctly computes GAP-TRκ,τ with probability at least γ.

Proof. Assume that there is a distributed protocol Π satisfying the conditions
in the lemma. Recall that a party in Π is lonely if it has at most t neighbors
and it is popular otherwise. As the protocol sends at most n(t + 1)/4 messages,
the protocol uses at most n(t + 1)/4 channels. Since each channel connects two
parties, there are at least n/2 lonely parties. We will construct a protocol in the
local model which computes GAP-TRκ,τ for n/2 parties in two stages: (i) We
first construct a protocol P in the local model which computes GAP-TRκ,τ for
n parties and only protects the privacy of the lonely parties. (ii) We next fix
the inputs of the popular parties and obtain a protocol P ′ for n/2 parties that
protects the privacy of all parties.

First Stage. We convert the distributed protocol Π to a protocol P in the local
model as follows: We have two rounds in P for every round of Π. For every
message m that Party pj sends to Party pk in round i in Protocol Π, Party pj

sends m to the curator in round 2i− 1 and the curator sends m to Party pk in
round 2i. Finally, at the end of the protocol Party p1 sends the output to the
curator.

We next prove that P protects the privacy of lonely parties. Without loss of
generality, let p1 be a lonely party, T be the set of size at most t containing the
neighbors of p1, and R = {p1, . . . , pn} \ (T ∪ {p1}). Fix any neighboring vectors
of inputs x and x′ which differ on x1. The view of the curator in P contains all
messages sent in the protocol. It suffices to prove that for every view v,

Pr[ViewC(x) = v] ≤ eε · Pr[ViewC(x′) = v]
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(by simple summation it will follow for every set of views V).
Fix a view v of the curator. For a set A, define αA and α′A as the probabilities

in Π that in each round the set A with inputs from x and x′ respectively sends
messages according to v if it gets messages according to v in previous rounds
(these probabilities are taken over the random inputs of the parties in A). Ob-
serve that if p1 /∈ A, then αA = α′A. By simulating p1, T , R by three parties and
applying Lemma 3, and by the construction of P from Π

Pr
[
ViewPC (x) = v

]
= α{p1} · αT · αR, and

Pr
[
ViewPC (x′) = v

]
= α′{p1} · α′T · α′R = α′{p1} · αT · αR.

Thus, we need to prove that

α{p1} ≤ eεα′{p1}. (3)

We use the (t, ε) privacy of protocol Π to prove (3). Let vT be the messages
sent and received by the parties in T in v. As T separates p1 from R, the
messages in vT are all messages in v except for the messages exchanged between
parties in R. The view of T includes the inputs of T in x, the messages vT ,
and the random inputs rT = {ri : pi ∈ T}. For a set A, define βA and β′A as
the probabilities that in Π in each round the set A with inputs from x and x′

respectively sends messages according to vT if it gets messages according to vT

in previous rounds. Note that β{p1} = α{p1} and β′{p1} = α′{p1} by the definition
of P. By simulating p1, T , R by three parties, where the random inputs of T are
fixed to rT, and by Lemma 3,

Pr[ViewΠ
T (x) = (xT, rT, vT )] = α{p1} · βR, and

Pr[ViewΠ
T (x′) = (xT, rT, vT )] = β′{p1} · β′R = α′{p1} · βR.

(recalling that xT = x′T). The above probabilities are taken over the random
strings of R and p1 when the random strings of T are fixed to rT. Therefore,
the (t, ε) differential privacy of Π implies (3), and, thus, that P is ε-differentially
private with respect to inputs of lonely parties.

Second Stage. There are at least n/2 lonely parties in Π, thus, w.l.o.g., parties
p1, . . . , pn/2 are lonely. We construct a protocol P ′ for computing GAP-TRκ,τ

for n/2 parties by executing Protocol P where (i) Party pi, where 1 ≤ i ≤ n/2,
with input xi sends messages in P ′ as Party pi with input xi sends them in P;
and (ii) Party p1 in P ′ simulates all other n/2 parties in P, that is, for every
n/2 < i ≤ n, it chooses a random input ri for pi and in every round it sends
to the curator the same messages as pi would send with xi = 0 and ri. Since
the curator sees the same view in P and P ′ and the privacy of lonely parties
is protected in P, the privacy of each of the n/2 parties in P ′ is protected.
Protocol P ′ correctly computes GAP-TRκ,τ with probability at least γ since we
fixed xi = 0 for i < n/2 ≤ n and P ′ returns the same output distribution of Π,
which correctly computes GAP-TRκ,τ with probability at least γ. ¤

By Lemma 4 it suffices to prove lowerbounds on the gap τ for protocols in
the local model.
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4.2 GAP-TR in the Non-Interactive Local Model

We consider the non-interactive local model where each party holds an input
xi ∈ {0, 1} and independently applies an algorithm Ai (also called a sanitizer)
before sending the sanitized result ci to the curator. We consider a differentially-
private protocol computing GAP-TR0,τ in this model and we wish to prove
lowerbounds on τ . Notice that we take κ = 0, namely, we want to prove that the
curator cannot distinguish between the all-zero input and inputs of weight at
least τ (for small values of τ). More formally, we want to prove that if each Ai

is ε-differentially private, then the curator errs with constant probability when
computing GAP-TR0,τ for τ = O(

√
n). Towards this goal, we show that there

are two inputs for which the curator sees similar distributions on the messages,
thus, has to return similar answers. However, one input contains Ω(

√
n) ones

and the other is the all-zero input, and the algorithm errs on at least one of
the inputs. We will prove the existence of such input with Ω(

√
n) ones, by

considering a distribution A on inputs and later proving that such input taken
from the distribution A exists.

We note that in the local model randomness for the curator can be sup-
plied by the parties and hence we assume, w.l.o.g., that the curator is deter-
ministic. Thus, the curator, having received the sanitized input c = S(x) ∆=
(A1(x1), . . . , An(xn)), applies a deterministic algorithm G to c, where G(c) is
supposed to answer GAP-TRκ,τ (x1, . . . , xn) correctly.

Let α
∆= 1

ε

√
d
n for d to be determined later. We consider two distributions

over which the input is chosen.

– Distribution A: xi = 1 with probability α, xi = 0 with probability (1 − α)
(the inputs of the different parties are chosen independently).

– Distribution B: xi = 0 with probability 1 (that is, B always chooses the
all-zero input vector).

From here on, we use X to identify the random variable representing the
input and Xi for its ith coordinate. When considering the random variable over
A (respectively, B), we use the notation PrA[·] (respectively, PrB[·]). For a set
D, we use the notation PrA[D] (respectively, PrB[D]) to denote the probability
of the event that Ai(Xi) ∈ D when Xi is generated according to the probability
distribution A (respectively, B).

We denote for every possible output c = (c1, . . . , cn) of S,

r(c) ∆=
PrA

[
S(X) = c

]

PrB
[
S(X) = c

] and ri(ci)
∆=

PrA
[
Ai(Xi) = ci

]

PrB
[
Ai(Xi) = ci

] . (4)

Define a random variable C = (C1, . . . , Cn) where Ci = Ai(Xi) and Xi is
chosen according to the distribution A. We next bound PrA[r(C) > δ].

Lemma 5. PrA[r(C) > exp (νd)] < exp
(−(ν − 8)2d/8

)
for every ν > 8.
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We prove Lemma 5 using the Hoeffding bound. Define the random variables
Vi

∆= ln ri(Ci). For every η > 0, we have that

Pr
A

[r(C) > η] = Pr
A

[
n∏

i=1

ri(Ci) > η

]
= Pr

A

[
n∑

i=1

Vi > ln η

]
, (5)

where the first equality holds since the Xis are chosen independently. To apply
the Hoeffding bound, we need to compute bounds on each variable Vi, and to
compute the expectation of Vi. Both tasks are achieved using the ε-differential
privacy of the sanitizers, that is,

e−ε ≤ Pr[Ai(1) = ci]
Pr[Ai(0) = ci]

≤ eε. (6)

Lemma 6. −2αε ≤ Vi ≤ 2αε for every i.

Proof. For every i and every value ci,

ri(ci) =
α Pr[Ai(1) = ci] + (1− α) Pr[Ai(0) = ci]

Pr[Ai(0) = ci]

= 1 + α
Pr[Ai(1) = ci]− Pr[Ai(0) = ci]

Pr[Ai(0) = ci]
.

Using Pr[Ai(1) = ci] ≤ eε Pr[Ai(0) = ci] we get on one hand that

ri(ci) ≤ 1 + α
Pr[Ai(0) = ci]eε − Pr[Ai(0) = ci]

Pr[Ai(0) = ci]
= 1 + α(eε − 1) ≤ 1 + 2αε

(since eε < 1+2ε for every 0 < ε ≤ 1). Thus, Vi = ln ri(Ci) ≤ ln(1+2αε) ≤ 2αε,
since ln(1+x) ≤ x for every 0 ≤ x ≤ 1. Using e−ε Pr[Ai(0) = ci] ≤ Pr[Ai(1) = ci]
we get on the other hand that

ri(ci) ≥ 1 + α
Pr[Ai(0) = ci]e−ε − Pr[Ai(0) = ci]

Pr[Ai(0) = ci]
= 1 + α(e−ε − 1) ≥ 1− αε.

Thus, Vi = ln ri(Ci) ≥ ln(1 − αε) ≥ −2αε, since ln(1 − x) ≥ −2x for every
0 ≤ x ≤ 0.5. ¤

Lemma 7. E[Vi] ≤ 8α2ε2.

Proof. In this proof we assume that the output of Ai is a countable set. Denote
Bb

∆= {ci : ri(ci) = 1 + b} for every −αε ≤ b ≤ 2αε (by Lemma 6, these are the
only values possible for b). Note that by the definition of ri, for every ci ∈ Bb

PrA[Ai(Xi) = ci]/ PrB[Ai(Xi) = ci] = 1 + b, thus, PrB[Bb] = PrA[Bb]
1+b ≤ (1− b +



14 Amos Beimel, Kobbi Nissim, and Eran Omri

2b2) PrA[Bb]. Let β = αε. We next bound E[Vi].

E[Vi] = EA[ln r(Ci)] =
∑

−β≤b≤2β

Pr
A

[Bb] ln(1 + b) ≤
∑

−β≤b≤2β

Pr
A

[Bb]b

=
∑

−β≤b≤2β

Pr
A

[Bb]−
∑

−β≤b≤2β

Pr
A

[Bb](1− b + 2b2) +
∑

−β≤b≤2β

Pr
A

[Bb](2b2)

≤
∑

−β≤b≤2β

Pr
A

[Bb]−
∑

−β≤b≤2β

Pr
B

[Bb] +
∑

−β≤b≤2β

Pr
A

[Bb](2b2)

≤ 1− 1 + 8β2
∑

−β≤b≤2β

Pr
A

[Bb] = 8β2 = 8α2ε2. ¤

From Lemma 7, E(
∑n

i=1 Vi) ≤ 8α2ε2n = 8d. We next prove Lemma 5 which
shows that

∑n
i=1 Vi is concentrated around this value.

Proof (of Lemma 5). We apply the Hoeffding bound: Let V1, . . . , Vn be inde-
pendent random variables such that Vi ∈ [a, b]. Then, Pr [

∑n
i=1 Vi − µ ≥ t] ≤

exp
(
− 2 t2

n(b−a)2

)
for every t > 0 (where µ =

∑n
i=1 E[Xi]).

By (5), Lemma 6, and Lemma 7:

Pr
A

[r(C) > exp (νd)] = Pr
A

[
n∑

i=1

Vi > νd

]
= Pr

A

[
n∑

i=1

Vi −
n∑

i=1

EVi > νd−
n∑

i=1

EVi

]

≤ Pr
A

[
n∑

i=1

Vi −
n∑

i=1

EVi > νd− n · 8α2ε2

]

≤ exp
(
−2 (νd− n · 8α2ε2)2

16 nα2 ε2

)
< exp

(−(ν − 8)2d/8
)

¤

The following corollary is a rephrasing of Lemma 5 that follows from the
definition of r in (4) and the fact that distribution B picks the all-zero input
with probability 1.

Corollary 1. Assume we sample X according to distribution A and compute
c = S(X). Then, for every ν > 8 with probability at least 1−exp

(−(ν − 8)2d/8
)

Pr
A

[S(Z) = c] ≤ exp (−νd) Pr[S(0n) = c] ,

where in the left hand side the probability is taken over the choice of Z according
to the distribution A and the randomness of the sanitizers and in the right hand
side the probability is taken over the randomness of the sanitizers.

4.3 GAP-TRκ,τ in the Interactive Local Model

In this section we generalize Corollary 1 to interactive local protocols where each
party holds an input xi ∈ {0, 1} and communicates with the curator in rounds.
To achieve this goal, we decompose a 2`-round ε/2-differentially private protocol
into ` protocols, and prove that each protocol is ε-differentially private. Thus, we
can apply Corollary 1 to each protocol, and then apply a composition lemma.
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Lemma 8. Suppose we execute a `-round, local, ε/2-differentially private proto-
col and we sample a vector X according to distribution A and compute c = S(X)
(where S(X) is the communication in the 2` rounds). Then, for every ν > 8 with
probability at least 1− ` exp

(−(ν − 8)2d/8
)

Pr
A

[S(Z) = c] ≤ exp (−`νd) Pr[S(0n) = c] ,

where in the left side the probability is taken over the choice of Z according to
the distribution A and the randomness of the sanitizers and in the right side the
probability is taken over the randomness of the sanitizers.

Proof (Sketch). Fix a 2`-round, ε
2 -differentially private, local protocol P. In the

interactive local model, a protocol is composed of `-interactions where in each
interaction the curator sends a query to each party and the party sends an
answer.

Our first goal is to make the parties stateless. Consider a party pi. First, we
assume that in interaction j the curator sends all queries and answers qi,1, ai,1,
. . . , ai,j−1, qi,j it sent and received from pi in previous rounds. Second, we assume
that party pi chooses a fresh random string in each round, that is, in round j,
party pi chooses with uniform distribution a random string that is consistent
with the queries and answers it got in the previous rounds, (since we assume that
the parties are unbounded, such choice is possible). Party pi uses this random
string to answer the jth query. In other words, we can consider pi as applying
an algorithm Ai,j to compute the jth answer; this algorithm depends on the
previous queries and answers and uses an independent random string.

We next claim that Ai,j is ε-differentially private. That is, we claim that
the probability that qi,j is generated given the previous queries and answers
is roughly the same when pi holds the bit 0 and when pi holds the bit 1. This
follows from the following tow facts: (1) the probability of qi,1, ai,1, . . . , ai,j−1, qi,j

is roughly the same when pi holds the bit 0 and when pi holds the bit 1. (2)
the probability of qi,1, ai,1, . . . , ai,j−1 is roughly the same when pi holds the bit
0 and when pi holds the bit 1. The exact details are omitted. Thus, the answers
of the n parties in interaction j are ε-private, and we can apply Corollary 1 to
the concatenation of the n answers.

We now use the above protocol to construct a protocol P1 between a single
party, holding a one bit input x and a curator. Throughout the execution of the
protocol the party simulates all n parties as specified by the original protocol
(i.e., sends messages to the curator with the same distribution as the n parties
send them). If the bit of the party in P1 is 1 it chooses the n input bits of the n
parties in P according to distributionA. If the bit of the party in P1 is 0 it chooses
the n input bits of the n parties in P to be the all-zero vector. By Corollary 1
we can apply the composition lemma – Lemma 10 – to the composition of the `
non-interactive protocols and the lemma follows. ¤
Corollary 2. For every ν > 8 and for every set D of views in a 2`-round
protocol,

Pr
B

[D] ≥ PrA[D]− ` exp
(−(ν − 8)2d/8

)

exp (`νd)
.



16 Amos Beimel, Kobbi Nissim, and Eran Omri

Proof. Let

D1 =
{
c ∈ D : Pr

A
[S(X) = c] ≤ exp (`νd) Pr

B
[S(X) = c]

}

and
D2 =

{
c ∈ D : Pr

A
[S(X) = c] > exp (`νd) Pr

B
[S(X) = c]

}
.

By Lemma 8, PrA[D2] ≤ ` exp
(−(ν − 8)2d/8

)
. Furthermore, PrB[D1] ≥ PrA[D1]

exp(`νd) .

Thus,

Pr
B

[D] ≥ Pr
B

[D1] ≥ PrA[D1]
e`νd

=
PrA[D]− PrA[D2]

e`νd
≥ PrA[D]− `e−(ν−8)2d/8

e`νd
. ¤

4.4 Completing the Lowerbound for GAP-TR0,τ in the Local Model

In this section we complete the proof that in any `-round, local, ε-differentially
private protocols for the gap-threshold function, namely, GAP-TR0,τ , the cura-
tor errs with constant probability when ` ¿ √

n and τ is small. For proving this
result, we defined a distribution A which chooses each bit in the input indepen-
dently at random where it is one with probability α and zero with probability
1−α. Lemma 9, which follows from a standard Chernoff bound argument, states
that when generating a vector (X1, . . . , Xn) according to A, the sum

∑n
i=1 Xi

is concentrated around its expected value, which is αn.

Lemma 9. PrA [
∑n

i=1 Xi ≤ (1− γ)αn] < exp
(
−
√

dnγ2/(2ε)
)

for every 0 ≤
γ < 1.

By Corollary 2 the distributions on the outputs when the inputs are taken from
A or B are not far apart. By Lemma 9, with high probability the number of ones
in the inputs distributed according to A is fairly big, while in B the number of
ones is zero. These facts are used in Theorem 2 to prove the lowerbound.

Theorem 2. In any `-round, local, ε-differentially private protocol for comput-
ing GAP-TR0,τ for τ = O(

√
n/(ε`

√
log `)) the curator errs with constant prob-

ability,

Proof. Fix any `-round, local, ε-differentially private protocol, and let G be the
algorithm of the curator that given the communication computes the output of
the protocol. Let τ = 0.5αn =

√
dn/ε. We denote D

∆= {c : G(c) = 1}, that
is, D contains all vectors of communication for which the curator answers 1.
There are two cases. If the probability of D under the distribution A is small,
then the curator has a big error when the inputs are distributed according to A.
Otherwise, by Corollary 2, the probability of D under the distribution B is big,
and the curator has a big error when the inputs are distributed according to B.
Formally, there are two cases:
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Case 1: PrA[D] < 0.99. We consider the event that the sum of the inputs is at
least τ = 0.5αn and the curator returns an answer 0, that is, the curator errs. We
next prove that when the inputs are distributed according to A the probability
of the complementary of this event is bounded away from 1. By the union bound
the probability of the complementary event is at most PrA [

∑n
i=1 Xi < 0.5αn]+

PrA[D]. By Lemma 9,

Pr
A

[D] + Pr
A

[
n∑

i=1

Xi < 0.5αn

]
≤ 0.99 + exp

(
−0.25

√
dn/(2ε)

)
≈ 0.99.

Thus, in this case, with probability ≈ 0.01 the curator errs.

Case 2: PrA[D] ≥ 0.99. In this case, we consider the event that the input is the
all-zero string and the curator answers 1, that is, the curator errs. We next prove
using Corollary 2 that when the inputs are distributed according to B (that is,
they are the all-zero string), the probability of this event is bounded away from
0, that is, taking ν = θ(` log `) and d = 1/(`ν) = θ(1/(`2 log `),

Pr
B

[D] ≥ PrA[D]− ` exp
(−(ν − 8)2d/8

)

exp (`νd)
>

0.99− 0.5
exp (1)

> 0.01.

Thus, in this case, with probability at least 0.01, the curator errs. As d =
θ(1/(`2 log `)), we get that τ =

√
dn/ε = θ(

√
n/(ε`

√
log `)). ¤
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A A Composition Lemma

Assume an interactive protocol where a (deterministic) curator C makes adaptive
queries to a party p holding a private input x ∈ {0, 1}. I.e., for 0 ≤ i ≤ `, in
round 2i the curator sends p a message Ai = C(i,V1, . . . ,Vi−1) computed over
the transcript of messages V1, . . . ,Vi−1 already received from p, and specifying
a randomized algorithm Ai; in round 2i + 1 party p computes Vi = Ai(x) (using
fresh random coins for each Ai) and sends Vi to C.

Definition 4. A possible outcome V is ε-good for algorithm A if Pr[A(1) =
V] ≤ eε Pr[A(0) = V], where the probabilities are taken over the randomness of
algorithm A. An algorithm A is (ε, δ)-good if Pr[A(1) is ε-good for A] ≥ 1− δ,
where the probability is taken over the randomness of A.

Assume that the range of C only includes (ε, δ)-good algorithms. Define a
randomized algorithm Â that simulates the interaction between p and C, i.e.,
given input x ∈ {0, 1} it outputs a transcript (A1,V1, A2,V2, . . . , A`,V`) sampled
according to the protocol above.

Lemma 10. Â is (`ε, 1− (1− δ)`)-good.

Proof. Note first, that with probability at least (1− δ)`, the result of Â(1) is a
transcript V̂ = (A1,V1, A2,V2, . . . , A`,V`) such that Vi is ε-good for Ai for all i ≤
`. It suffices, hence, to prove that when that happens the transcript V̂ is `ε-good
for Â, and indeed: Pr[Â(1) = (A1,V1, A2,V2, . . . , A`,V`)] =

∏`
i=1 Pr[Ai(1) =

Vi] ≤
∏`

i=1 eε · Pr[Ai(0) = Vi] = e`ε · Pr[Â(0) = (A1,V1, A2,V2, . . . , A`,V`)] . ¤


