Compression from Collisions,
or why CRHF Combiners have a Long Output

Krzysztof Pietrzak

CWI Amsterdam, The Netherlands

Abstract. A black-box combiner for collision resistant hash functions
(CRHF) is a construction which given black-box access to two hash func-
tions is collision resistant if at least one of the components is collision
resistant.

In this paper we prove a lower bound on the output length of black-box
combiners for CRHFs. The bound we prove is basically tight as it is
achieved by a recent construction of Canetti et al [Crypto’07]. The best
previously known lower bounds only ruled out a very restricted class of
combiners having a very strong security reduction: the reduction was re-
quired to output collisions for both underlying candidate hash-functions
given a single collision for the combiner (Canetti et al [Crypto’07] build-
ing on Boneh and Boyen [Crypto’06] and Pietrzak [Eurocrypt’07]).

Our proof uses a lemma similar to the elegant “reconstruction lemma” of
Gennaro and Trevisan [FOCS’00], which states that any function which
is not one-way is compressible (and thus uniformly random function must
be one-way). In a similar vein we show that a function which is not colli-
sion resistant is compressible. We also borrow ideas from recent work by
Haitner et al. [FOCS’07], who show that one can prove the reconstruc-
tion lemma even relative to some very powerful oracles (in our case this
will be an exponential time collision-finding oracle).

1 Introduction

Combiners. A robust black-box (1, 2)-combiner for some cryptographic prim-
itive «v is a construction, which given black-box access to two components, se-
curely implements « if either of the two components securely implements c.
More generally, for k& < ¢, one can consider black-box (k,£)-combiners which
securely implement «, if at least k of the £ components the combiner has access
to securely implement «. In this introduction, we will mostly talk about (1,2)-
combiners (and simply call them combiners), but the results in the paper are
stated for general (k,£)-combiners.

Combiners for CRHFs. Combiners can be used as a hedge against the
failure of a concrete construction: the combiner remains secure as long as at
least one of the two combined constructions is not broken. In light of the many
recent attacks on popular collision resistant hash functions [20,21], combiners
for CRHF's are of particular practical interest. A function H : {0,1}* — {0,1}"

is collision-resistant, if no efficient algorithm can find two inputs M # M’ where
H(M) = H(M'"), such a pair (M, M’) is called a collision for H.!

One trivially gets a (1,2)-combiner for CRHF by simply concatenating the
outputs of the components:

Ot (X) = Hy(X)|| Ha(X). (1)

This is a robust combiner for any reasonable definition of “robust”, as a collision
for CH1:H2() is also a collision for Hy(.) and Ha(.). Unfortunately the output
length ¢S, of CH1:H2 is twice the output length ¢, of its components, which
makes this combiner not very useful for practical applications, where the output
length is usually a crucial parameter, and doubling it is not an option. The
existence of black-box combiners for CRHF's with “short” output length has first
been investigated by Boneh and Boyen [2] who showed that no “highly efficient”
robust combiner with output length (5, < 202, exists. Here “highly efficient”
means that the combiner is allowed only one query to each of its components
(thus the combiner (1) who achieves ¢S , = 2¢H is the best “highly efficient”
black-box combiner one can hope for). Subsequently, for the more general case
where one allows the combiner C' any number g¢ of oracle gates, a lower bound
of 1§, > 20", — O(log qc) was proven [16].

In [2,16] a combiner is defined as a pair (C, P), where the oracle circuit C
defines the construction of the combiner, and the oracle PPTM P is the “security
proof” for C'. The security definition requires that for any hash functions Hy, Ho,
and any collision M, M’ (i.e. M # M’ and CHvHz2 (M) = CHuH2 (M), we have
that PHvH2 (M M') finds a collision for Hy and Hy (here we say that a collision
for H; is found if P makes two queries X # X’ to H; where H;(X) = H;(X")).
This is a good definition, as such a (C, P) clearly achieves what one intuitively
would require from a robust combiner. But when proving impossibility results,
one should try to use a definition which is as general as possible, and ideally
should cover (and thus rule out) any black-box construction which would satisfy
what one intuitively would consider a robust combiner. In this paper we consider

what is arguably the most general definition of black-box combiners for CRHF's.

A General Definition. Informally, we define a randomized black-box com-
biner for CRHFs as a pair (C, P), where C is a randomized oracle circuit, and
the oracle PPTM P is the security reduction. For 0 < p < 1, we say that an
oracle B p-breaks CH1-#2 if on input some randomness R the oracle B outputs a
collision for CH1:H2 (R) for at least a p fraction of the R’s. The combiner (C, P)
is p-robust if for any H;, H, and any B which p-breaks CH1:H2 the PPTM P
in the random experiment P5-H1:H2 (let us stress that P can query its oracles
B, Hy, Hy adaptively) finds a collision for H; and a collision for Hy with high
probability.

! This definition is intentionally kept informal as there are some issues which make it
tricky to have a definition for collision-resistant hash-functions which is theoretically
and practically satisfying, see e.g. [18] for a discussion.

Thus if (C, P) is p-robust, by picking the randomness for C*-2 uniformly
at random, with probability at least 1 — p we will get a construction which is
secure if either Hy or Hs is. A combiner (C, P) is efficient, if C' and P make a
polynomial number of oracle queries, and robust if it is p-robust with p € o(1).2

Remark 1 (on the definition). In practice it’s not enough to require that C and
P make a polynomial number of queries, one would require that their total running
time is polynomial. One would also require p-security where p is negligible, not only
p € o(1). But keep in mind that we want to prove an impossibility result, so using such
an “undemanding” definition makes the impossibility result actually stronger.

The Main Result. Theorem 1 in this paper states that no black-box combiners
exist whose output length ¢S, is significantly smaller than what can be achieved
by concatenation. For the special case of (1,2)-combiners, where concatenation
achieves a length of 2¢% ., this means that no efficient and robust combiner

exists whose output length satisfies /S, = 205 —w(log 2 ,). This result is tight

out out
because £€ , = 202, — O(log (% ,) is achievable as we'll explain in Section 2.

u out out

Combining CRHF Families. In our definition, the (randomized) combiner is
instantiated with two hash-functions Hy, Ho. A seemingly more general definition
would allow an instantiation of the combiner with two families H1, Ho of hash
functions, and only require that the reduction PB*1:M2 outputs a collision for
some hi € H; and some hy € Ho. Here the combiner C7*+M2(R, M) can query
different, adaptively chosen functions from H; and Hy. Our impossibility also
rules out the case where one considers combiners for families as just described,
the reason is that we can always view a single hash function Hp : {0,1}* —
{0,1}? as a family H, = {0,1}* x {0,1}* — {0,1}? (where the first k bits K €
{0, 1}* of the input define the hash function h* € Hy, as b (M) = H, (K| M)).

Note that a collision M, M’ for any h)* (.) = Hy(K]||.) € H, directly gives a
collision K||M, K||M' for Hy. Thus if (C, P) is not a black-box combiner in our
sense, which we prove by showing that there exist H;, Ho, B where PB-71:H2 does
not output collisions for both, H; and Hsy (except with negligible probability),
it directly follows that PB1:*> will not be able to output collisions for some
hE € H, and some hl € Hy either.

The Canetti et al Lower Bound. Randomized combiners for CRHFs have
recently been considered by Canetti et al.[3],> who proved a basically tight ¢5, >
202 . — O(log (% ,) lower bound on the output length for randomized combiners
using a definition which is basically equivalent to the one in this paper, but with
the restriction, that the reduction P is only allowed a single query to the breaking

oracle B. We see no good reason to motivate this restriction on the reduction,

2 By p € o(1) we mean that p € o(¢Z,)/¢E,, i.e. p drops below any constant for a

sufficiently large security parameter which w.l.o.g. will be the output length ¢2,, of
the components H;

3 Let us mention that the main topic of their paper is security amplification, not
combiners, for CRHF's.

except for the fact that the existing combiners are of this form. In particular,
a reduction which needs, say, any two different collisions* for the combiner in
order to break the components, would still be perfectly convincing.

Related Work We only consider black-box combiners, and not general combin-
ers, where the combiner gets a full description (e.g. as a circuit) of the underlying
primitives and thus is not limited to access the primitives in a black-box manner.
This can be justified by noticing that most known cryptographic constructions
(not only of combiners) are black-box, which means that the construction only
uses the input/output behaviour of the underlying components, and moreover
the security proof is black-box, which means that the reduction only uses a
successful adversary against the construction in a black-box fashion in order
to break the security assumption on the underlying component, such construc-
tions are called “fully black-box” in the taxonomy of [17]. The few exceptions of
non black-box constructions (notably the GMW construction of zero-knowledge
proofs for NP [6] and Barak’s work [1]), are very inefficient. Thus even if non
black-box combiners with short output should exist, it would be very surpris-
ing if they actually were of any practical relevance. The motivation to restrict
oneself to black-box constructions is that it is often feasible to rule out such
constructions, by using the fact that a black-box reduction is relativizing, i.e. it
holds relative to any oracle. Thus a way to rule out the existence of a black-box
construction of some primitive o from some primitive 3, is to come up with
a hypothetical (usually non-efficient) oracle, such that relative to this oracle
exists, but « does not. This technique was first used in the context of crypto-
graphic reductions by Impagliazzo and Rudich, who in their seminal paper [10]
prove the impossibility of a black-box construction of key-agreement from one-
way functions. Another classical result along this line due to Simon [19] proves
the impossibility of constructing CRHFs from one way functions, the breaking
oracle in this paper is inspired by this work.

Kim et al. [11] were the first to consider lower bound on the efficiency (as op-
posed to mere feasibility) of black-box constructions. They prove a lower bound
on the number of calls to a one-way permutation needed to implement a pseu-
dorandom generator (a thigh bound was subsequently proven in [5]).

The concept of a combiners has first been explicitly considered by Herzberg
[9] (who called them “tolerant constructions”) and later by Harnik et al. [8], who
coined the term “robust combiner”. For many natural cryptographic primitives
like one-way functions, PRGs or CRHFs (1,2)-combiners are trivially seen to
exist. For other primitives like commitments and oblivious transfer the question
is open [8,9, 13, 14].

As mentioned already in the introduction, combiners for CRHF's have been
investigated by [2,3,16]. Fischlin and Lehmann [4] consider CRHFs combiners
in an ideal setting, and in this setting are able to give a construction which

* Here “different collision” can either mean two different collisions for C*1"#2(R,.) and
any randomness R, or a collision for CHl’Hz(R7 .) and (a not necessarily different
one) for C*1H2(R') where R # R'.

is more secure than any of its components. Fischlin, Lehmann and Pietrzak
recently constructed a robust (1,2)-combiner for hash-functions with output
length 2¢% . which simultaneously combines several properties, namely collision-
resistance, target collision-resistance, message authentication, pseudorandom-
ness, one-wayness and — at the price of a slightly longer output — indifferentia-

bility from a random oracle [12].

2 Combiners for CRHFs: Definition and Constructions

Notation and some Basic Definitions For X,Y € {0,1}* we denote with
X|IY the concatenation of X and Y. For a € N we denote with [a] the set
{0,1,...,a — 1} and (a), denotes the binary representation of a, padded with
0’s to length b, e.g. (5)¢ = 000101. A pair M, M’ is a collision for a function
Fif F(M) = F(M') and M # M'. We call M, M’ a pseudocollision for F if
F(M) = F(M'") (but not necessarily M # M'). With X < X we denote that X
is assigned a value chosen uniformly at random from the set X.

PPTM stands for Probabilistic Polynomial time Turing Machine. An ora-
cle PPTM A (oPPTM for short) is a PPTM with an extra oracle tape, where
AO1:0= denotes the random experiment where A runs having access to the
oracles Oq,...,0, via its oracle tape: A can write a query (i, X) on the tape,
and in the next step the value O;(X) is written on the tape. Let

ary % (A9 9%)

denote the queries that A makes to the oracle O;. In this paper, the oracles
will always be hash functions Hi, Ho, ... and possibly a breaking oracle B. The
collision predicate col’ is defined for the random experiment AH1-He and
holds if A finds a collision for H;, i.e. A makes two distinct queries X, X’ to H;
where H;(X) = H;(X'), formally®

coli(AtrHe)y s 3X X' € qryfli (AT He) o X £ X' A Hy(X) = Hy(X)
More generally, for H C {H;,...,H,;} we define the predicate
col(AHv-H2y — VH; € H : coli (AT Hx)
which holds if A finds a collisions for all H; in H. Finally
coly(AH1He) = FH C{H,,...,H},|H| =1t : col”(AH1Hz)

holds if A finds collisions for at least ¢ of the H;’s.

Definition 1 (Randomized Black-Box Combiner For CRHFs). CON-
STRUCTION: A randomized (k,£)-combiner for CRHFs is a pair (C, P) where C
is an oracle circuit C : R x {0,1}™ — {0,1}™ and P is an oracle PPTM.

5 Note that we e.g. write simply coIH(AH) to denote “the predicate col” is satisfied in
the random experiment A””, with —col” (A") we denote the complementary event.

REDUCTION: An oracle B p-breaks CHv-He if B(R) outputs a collision for
CHu-He(R) for at least a p-fraction of the possible choices of the randomness
R e R, and L on the remaining inputs.

(C, P) is p-robust (where p can be a function of v € N) if for all Hy, ..., Hy :
{0,1}* — {0,1}" and any oracle B which p-breaks CH1--He the PPTM P in
the random experiment P51 He finds collisions for at least £ — k + 1 of the
H;’s with probability at least .9, i.e.

B,Hi,...,Hs

Hl,...,Hgl,DII;’s coins[couikJrl(P)] Z 9 (2)
EFFICIENCY: Let qc denote the number of oracle gates in C, and qp be an
upper bound on the number of oracle queries made by P, where we do not count
oracle queries to B where the answer is L (as we want to prove a negative result,
not accounting for such queries makes the negative result stronger). Then the
combiner (C, P) is efficient if q¢ and qp are polynomial in v.
SECURITY: An efficient combiner (C, P) is robust, if it is p-robust where p =
p(v) is smaller than any positive constant for sufficiently large v.

Remark 2 (on the constant .9). The probability .9 in (2) is over the random coins
of P. We chose to fix this probability to the arbitrary constant .9 instead of adding an
additional parameter in the security definition, as the constant .9 can be replaced with
any value e where ¢ is noticeable® and bounded away from 1 by some exponentially
small amount, by changing the running time of P only by a polynomial factor. The
reason is that if some efficient combiner (C, P) satisfies (2) for some ¢ (instead .9),
then for any z = poly(v), we get an efficient combiner (C, P.) which satisfies (2) with
probability 1 — (1 —€)*, where P, simply simulates P z times using fresh random coins
for each run.

Concatenation Combiner. We trivially get a robust and very efficient (k, £)-
combiner, by concatenating the output of any £ — k + 1 of the components.

CHuHoy(R M) = Hy (M)||Ho(M)]| ... | Ho— g1 (M). (3)

This combiner is an p-robust (k, ¢)-combiner for any p > 0, where
n=C—-k+1v go=0—k+1 gp =1

The reduction P achieving the above parameters, simply queries the oracle B on
distinct R € R until it gets a collision (as p > 0, there will be at least one).

Random Concatenation Combiner As a generalization of the previous com-
biner, we can consider the combiner C : [(ﬁ)] x {0,1}" — {0,1}"™ where we
concatenate the output of ¢ randomly chosen components. For ¢ < £ —k+ 1 this
combiner has shorter output than (3), but also is only p-robust for a p which is
bounded away from 0 by a constant, and thus is not a “robust combiner”. The
only reason we mention this construction here is to make clear, that the upper
bound on p which we will need in our impossibility result is necessary.

S i.e. at least 1/poly(v) for some positive polynomial poly.

Below each R in the randomness space [(ﬁ)] is parsed as a c element subset
1<Ri<Ry<...<R.<[lof[l.

CHv TR, M) = Hp,(M)||Hp,(M)| ... | Hr, (M)

In the full version of the paper we prove that this combiner is a p-robust (k, £)-

combiner for any p > (é;k') / (ﬁ) with parameters

n=cv qc =c¢ qgp=f—-k+2—c

Thus efficient p-robust (k,¢)-combiners with output length (¢ — k 4+ 1)v exists
for any p > 0, on the other extreme, we can get (by setting ¢ = 1 in the above
construction) p-robust combiners for any p > 1 — k/¢ with an output length of
only v. This can be slightly improved as we’ll describe now.

The Canetti et al (1,1)-Combiner. A remarkable construction of Canetti et
al [3] is a (1, 1) black-box Combiner S which, from any CRHF H with range v,
constructs a CRHF S¥ with range v — A. Unfortunately, for efficient combiners,
A must be logarithmic, as the running time of .S increases exponentially in A.

We will shortly sketch the idea of the Canetti et al. combiner, for the detailed
construction of that combiner we refer the reader to the original paper [3]. Let
H :{0,1}* — {0,1}? be a hash function. First one finds a string v € {0,1}4
where for a random z, the prefix of H(z) is v with good probability.” Let ﬂ(z)
denote H(z) but with the first A bits deleted, and let

Z :={2€{0,1}" : the prefix of H(z) is v}
Note that any collision z, 2z’ for H where 2,72 € Z is also a collision for H, as
H(z) =~||H(z) = 7| H(z') = H(2)

Thus we have constructed a CRHF H : Z — {0,1}*~2 from a CRHF H :
{0,1}* — {0,1}". This is almost a (1, 1)-combiner with output length v — A,
except that the domain is some strange set Z. We must somehow map {0, 1}“’/
where w’ > v injectively to a (subset) of Z in order to get a CRHF {0,1}*" —
{0,1}7. As shown in [3] this can be achieved, albeit inefficiently in time 24.
One can replace the H;’s with S in the combiners considered before in
order to get shorter output, e.g. for the concatenation combiner (3) we get

“Shrinked” Concatenation Combiner: The combiner (with S as above)
Ot (R, M) = ST (M) ST (M) ||+ (M) (4)
satisfies for any p > 0
n=C-k+1)w-A4) q=22dU-k+1) qp=0(2%)

" The expected probability for a random ~ is 274, we're fine with anything not much
smaller than that, say 2727, such a good ~ can be found by sampling.

Main Theorem. In this paper we’ll prove that the bound achieved by the
combiners (4) is basically tight.

Theorem 1 (Main). If (C, P), where
C:{0,1}™ —{0,1}"

is an efficient and robust randomized (k,L)-combiner for CRHFs with range
{0,1}?, then
n> (£~ k+1)v - O(log(qc)).

This theorem is stated in asymptotic terms so it is easy to parse, but we prove
a quantitative statement. The quantitative statements are given by Proposition
3 for the special case of (1,1)-combiners, and in Proposition 4 for general (k, £)-
combiner. In particular, the exact meaning of “efficient” in the theorem above
is given by equation (30), where qIBD and ¢Z denote an upper bound on the
number of oracle queries the reduction P makes to the breaking oracle and to
the candidate hash functions respectively, so ¢p = qg + qg . Throughout the
paper we assume w.l.o.g. that qg, qg and g¢ are at least one.

Lower Bounds for Restricted Combiners. A result analogous to the state-
ment of Theorem 1 has been proven for restricted cases of combiners. Starting
with [2], who proved it for deterministic combiners (i.e. where R in Definition 1
is empty), and where the construction C' was only allowed to query each H;
exactly once. A simpler proof without the latter restriction (but still determinis-
tic) was subsequently given in [16]. The proof was further simplified in [3], who
also for the first time considered the randomized case, but under the restriction
that the reduction P queries the breaking oracle at most once. This special case
seems much easier to prove than the general one. As the main idea behind the
proof of the special case, which is a probabilistic argument, is also used in the
proof of the general case, we give the full statement and proof of the special case
below.

Proposition 1 (following [3]). For some n,m,v with m > n, assume that
(C, P) where
C:{0,1}™ —{0,1}"

is a 1-robust (k,£)-combiner for CRHFs with range {0,1}", with the additional
constraint that P is querying the breaking oracle only once. Let € denote the
success probability (over P’s random coins) of P, i.e. for any breaking oracle B
which on input R outputs a collision for CHu--He(R) 8

VHy,...,Hy: Pr [C0|k+1(PB’H1""7H1)] >

P’s coins

8 Here Remark 2 (after Def.1) does not apply, as now we can’t run P several times to
amplify e as we’re only allowed one query to B. So unlike in the general case where
we arbitrarily set € = .9, here it is necessary to keep € as a parameter.

Then the output length n of C' satisfies

nz(€—k+1)(v+1—210gqp)—log(())—l—log(e)—i—l (5)

¢
{—k+1
Before we prove the proposition, let us remark that for the practically relevant
case where P is efficient and ¢ is noticeable, (5) can be written as

n>{—k+1)(v—0(logv))

which, up to the constant hidden in the O term, matches parameters of the
combiner (4).

Proof. We will only prove the case for k = 1 and £ = 2 and explain at the end
how to adapt the proof for the general k and /.

Let A be any oracle PPTM making at most g4 oracle queries and H :
{0,1}* — {0,1}" be uniformly random. The probability that any two (distinct)
queries made by A to H give a collision for H is 1/2”, taking the union bound
over all ga(ga — 1)/2 possible pairs of queries

P ool (AT)] < qalga —1)/27 < g /20 (6)
Now consider an oracle PPTM A which expects two oracles, making at most g4
queries to each of them. Let Hy, Hy : {0,1}* — {0,1}" be uniformly random
and independent. As the H;’s are independent, the probability that P will find
collisions for both is the product of what we had in eq.(6).

P |H17H2 AHl,Hz < 2 2’U+1 2
o Pr ool (AT < (g5 /20 ")
Now let (C, P) be a combiner as in the statement of the proposition. Let A be
an oracle PPTM where A7z gimulates PB-H1:H2 but answers the (single) B
query R made by P with random M < {0,1}, M’ < {0,1}™. Note that P
will output collisions for Hy, Hy with probability € conditioned on the event that
M, M’ is a collision for CH1-H2 (R).
Pr [col 1 H2 (g H1 Ha)

H,,H3,A’s coins
Pr[coltH2(pBHLH2)] pr[N £ M A CHVH2(R M) = CHUVH2 (R M)

2
Z €- (2—n _ 2—m> Z €- 2—n+1 (8)

Where in the last step we used m > n which holds as C' is shrinking. Now by
(7) and (8) we must have € - 2771 < (g3, /2°T1)2, solving for n gives
n>2(v+1—2loggp) + log(e) +1

which is (5) for the case where k = 1,/ = 2. For the general case of (k,{)-
combiners, we can similarly upper and lower bound the probability of a PPTM
A in finding collision for at least £ — k + 1 of its ¢ oracles as

o 14 S
€27t < Pr [coly_jr1 (AT He)] < (f k4t 1) (gp/2°th) ikt

Hy,...,H;,A’s coins

Solving this inequality for n then gives

>) + log(e). O

n—lz(£—k+1)(v+1—210gqp)—log(<£_£+1

3 Proof Outline

We will prove our main result gradually, introducing new techniques and ideas
in each step. First, in Lemma 1 we show that a uniformly random function is
collision resistant, using the fact that such a function cannot be compressed.
Based on this technique, we then prove Proposition 3 which implies Theorem 1
for the special case £ = ¢ = 1. Finally, Proposition 4 proves the general case.
Due to space reasons, the proof of Proposition 4 is only given in the full version
of the paper [15].

Collisions imply Compressibility, Section 4. Gennaro and Trevisan [5] give
a very elegant proof that a uniformly random permutation 7 : {0,1}* — {0,1}?
is one-way against poly-size, non-uniform adversaries. On a high level, they show
that if P is an efficient® adversary which inverts 7 on many inputs, i.e. for many
x we have A7 (w(z)) = z, then 7 has a “short” description relative to P. This
is impossible as a uniformly random 7 is incompressible, and thus such an P
cannot exist (i.e. 7 is one-way).

We adapt this proof in order to show that a uniformly random function H :
{0,1}* — {0,1}" is collision resistant. This has been independently discovered
by the authors of 7], the proof given in this paper is due to Thomas Holenstein
(via personal communication with Iftach Haitner), and is much simpler than the
one we had originally.

Lower Bounds for Black-Box Combiners via Incompressibility. The just
sketched proof is by no means the easiest way to show that a uniformly random
function is collisions resistant.'°

The advantage of such a “incompressibility based” proof is that it extends to
the case where P additionally gets access to a carefully defined “combiner break-
ing” oracle B, which itself can make much more queries to the hash function(s)
than what is needed to find collisions for uniformly random functions with out-
put length v bits (which means roughly Qu/2 queries), as we’ll explain below. This
approach is inspired by a recent work of Haitner et al [7], the Gennaro-Trevisan
reconstruction lemma [5] and Simon’s breaking oracle [19].

9 Here efficient means that the number of oracle queries made by P must be much
smaller than what would be required to invert 7 by brute force search (but can still
be exponential).

10 The straight forward way to prove this, is to argue that for any two distinct queries
Xa, Xy made by P we have Pr[H(X,) = H(Xp)] = 27", and thus by taking the
union bound over all g(g — 1)/2 pairs of queries, the probability that there exist any
X, Xy, where H(X,) = H(Xp) is at most g(q — 1)/2°".

Lower bound for (1,1)-combiners, Section 5. In order to rule out the
existence of an efficient p-robust black-box combiner (C, P) with output length
n = v — w(logv), one must come up with oracles H, B such that

— CH : {0,1}" x {0,1}™ — {0,1}" is not collision resistant, in the sense
that B(R) outputs a collision for C*(R,.) on at least a p-fraction of the
Re{0,1}.

— H:{0,1} — {0,1}"? is collision resistant (even relative to B), in the sense
that the probability that P8 finds a collision (where the probability is over
the random coins of P) is small, which means < 0.9 (cf. Remark 2).

The oracle hash function H : {0,1}* — {0,1}" is chosen uniformly at random.
The breaking oracle B samples, for each possible input R € {0,1}", a random
pseudocollision Zg, Z} for CH(R,.). On input R the oracle B outputs Zg, Z4 if
this is a “safe” collision, by which we mean that the H queries needed in order
to evaluate CH (R, Zg) and CH (R, Z}) do not contain a collision for H. If the
collision is not safe, then B(R) outputs L.

Using the fact that the output length n of C* is by w(logv) bits shorter than
the output length of H, one can show (using a probabilistic argument like in the
proof of Proposition 1), that with high probability most collisions Zg, Zf will
be safe, and thus B will p-break CH for a p which is exponentially close to 1.
This is the only part of the proof where we use the fact that C' has short output.

It remains to prove that P cannot find collisions for H, even with the powerful
combiner breaking oracle B. Intuitively, B should not be of much help in finding
collision for H, as it only returns random collisions for C* (R, .) which are “safe”
(as described above), and thus do not (at least trivially) give collisions for H. To
actually prove this, we show that if P8 finds collisions with high probability,
then we can use P to compress H, which is impossible as H is uniformly random,
thus such a P cannot exist.

Lower bound for (k,{)-combiners, Section 5. To rule out the existence of
an efficient p-robust (k,¢)-black-box combiner (C, P) with output length n =
(0 — k+1)v — w(logv), we will construct ¢ hash functions Hy, ..., Hy = H* and
a breaking oracle B which p-breaks C'* é, but at least k of the H;’s are collision
resistant even relative to B. The p we achieve will be exponentially close to 1/ (i),
which is tight because (as explained in the last section) for p > 1/ (ﬁ) combiners
with output length only (¢ — k + 1)v exist. The H® = Hy,..., Hy : {0,1}* —
{0,1}? are chosen uniformly at random. The breaking oracle B samples, for each
R € {0,1}" a collision Zg, Z}, for cH' (R,.) (or, a pseudocollision to be precise,
as there’s a tiny 27" probability that Zr = Z};). We say that Zg, Z}; is a safe
collision for Hj, if the evaluation of C'H" (R,.) on inputs Zg, Z}, does not contain
a collision of H;. By a probabilistic argument, one can show that with high
probability a random collision will be safe for at least k of the H;’s (here we
need the fact that the output length of C' is short). This again implies that there
exists a subset I' C {1,...,¢} of size k, such that for (almost) a 1/(,‘;) fraction
of the R’s, let’s call it R, the collision Zg, Z7, is safe for all the H; with ¢ € I

Now B on input R outputs Zg, Z, if R € Rp, and L otherwise. Intuitively, the
H; where i € I" should be still be collision resistant even relative to B. To prove
this we show that if an efficient P exists where PBH" finds a collision for any
H; where ¢ € I' with high probability, then this H; can be compressed, which is
impossible as H; is uniformly random, and thus such a P cannot exist.

4 Collisions imply Compressibility

For a function H : {0,1}* — {0,1}", we denote with H € {0,1}2"? the function
table of H, which is a binary 2 x v matrix. We number the rows from 0 to
2% — 1, thus the i’th row contains the value H (). Such a function table can be
uniquely encoded by a bit-string of length 2%v.

A random variable H can be compressed to s bits, if there exists a pair
com, dec of functions (possibly probabilistic using joint randomness) such that

for any t € N and Hy, ..., H; being independent instantiations of H, we have
E_[lcom(Hy,....Hy)|| <t-s (9)
Hy,...,Hy
_ Pr_[dec(com(Hy,...,H;))=Hy,...,H] =1 (10)
Hy,...,Hy

As already proved by Shannon, a function table which is chosen uniformly at
random, cannot be compressed, i.e.

Proposition 2. A uniformly random function H : {0,1}* — {0,1}" cannot be
compressed to less than 2%v bits.

By the following proposition, any function H for which there exists an efficient
collision finding algorithm P, can be compressed.

Lemma 1. Let P be an oracle PPTM which makes at most qp oracle queries.
Let H be a random variable taking as value functions {0,1}* — {0,1}". For
0<0<1,if P finds a collision with probability 0:

Pr [col®(PH)] =3¢ (11)

H,P's coins
then H can be compressed to
14 2% —d(v —2log(gp)) bits. (12)
Using Proposition 2 we get the following Corollary

Corollary 1. Let H : {0,1}* — {0,1}" be uniformly random, then any P which
for some 6 > 0 satisfies eq. (11) makes at least gp > 2v/2=1/20 oracle queries.

Proof (of Corollary). If H is uniformly random, then by Proposition 2 expression
(12) is at least 2*v which means 1 > §(v—2log(gp)), or equivalently v/2—1/26 <
log ¢p which implies gp > 2v/271/2% by exponentiating on both sides. O

Proof (of Lemma 1). Consider a variable H taking as values functions {0, 1}* —
{0,1}V and any PPTM P making at most gp oracle queries. If P# does not
find a collision for H, then we do not compress at all, in this case col(fl) is
simply a 0 followed by H. Otherwise let X 1, X2, ... denote the oracle queries
made by PH and let Xc,, Xc, where ¢; < cy denote the collision found. Let
H~ € {0,1}2"~<)? denote H with the rows X;,..., X,, (containing the value
H(X1),...,H(X,,)) deleted. Now com(H) is a 1 followed by an encoding of the
indices ¢y, co followed by the first ¢; — 1 oracle answers H(X1),..., H(X.-1)
and finally I;f_, ie.

_ (om _if —col(PH)
omi = {1|<c1>logqp I {ezhio, IO [H(Xes 1) [3 col(PF)

On input more than one function table, com simply compresses each function
table separately, and then concatenates the outputs, i.e.

com(Hy, ..., H;) = com(Hy)|| ... ||com(H,)

Before we describe the decompression algorithm, let us check that this compres-
sion really achieves the length as claimed in eq.(12). The output length of com(H)
is 1+ 2% if P does not find a collision for H, which by assumption happens with
probability 1 — §. Otherwise the length is 1+ (co — 1)v + (2%v — c2)v + 2log qp,
which gives an expected length of

E[jcomH|] = 1+ (1—8)2%v+0 (2% — 1)v + 2loggp) = 1+2%v— (v —2log gp)

as claimed. The decompression algorithm dec, on input T = com(fNIl, .. .,I;Tt)
first parses T into com(H;) to com(H;) which can be done as the length (there
are only 2 possibilities) of com(H;) can be uniquely determined reading only
the first bit. We can then strip off com(H;), the first bit of the remaining string
determines the length of com(H;), and so on. We thus must only show how

to decompress a single compressed function table T = com(H). On input T =

com(H), dec parses T as b||T’, where b € {0,1}. If b = 0 the output is 7" and
we are done. Otherwise parse T” as

(e1)0g,, lI(e2tog, IH (X0 - [H(Xep) | H™

Now simulate P up to the point where P asks the cy’th oracle query X.,.!!
Note that we can answer the first co — 1 oracle queries made by P as we know
H(X41),...,H(X.,—1). Now, by construction we also know H(X,,), as it is equal
to H(X,,). We can now reconstruct (and output) H from the reduced table H~
as we know all missing values H(X;) to H(X.,) and also the positions X; to
X., where to insert them in H~ in order to get H.

11 As P can be probabilistic, we need com and dec to use the same random coins for
P. Alternatively, we can just fix the randomness of P as to maximize Pr[col” (P™)].

Before we continue proving Theorem 1, we need a few more definitions.

Definition 2 (safe collisions, the predicate safeCol). Let H* = Hy,..., H,
be £ hash functions and A be an oPPTM. We say that Z,Z’ is a safe collision
for H; (with respect to AHZ)

1. AHZ(Z) = AHZ(Z') (but not necessarily Z + 7')
2. during the evaluation of AHZ(.) on inputs Z and Z', there are no two queries
X # X' to H; where H;(X) = H;(X').

4
We have safeColgi{ (Z,Z") if Z,Z" is a safe collision. For any 1 < k < ¢,
14

£
safeCoI;?H (Z,Z") holds if for at least k different i’s, safeCoIf; (Z,Z") holds.

£
Intuitively, when given Z # Z’ where safeColfIf (Z,Z"), one learns a collision

for AH", but this collision does not (at least trivially) give us a collision for H;.

Definition 3 (<). If we consider a random experiment where some oPPTM
runs making queries to its oracle(s). Then for two queries X, Y (not necessarily
to the same oracle) we denote by X <Y that the query X is made before the
query Y s made.

5 Lower bounds

Lower bound for (1,1)-combiners. In this section we prove a Proposition
which implies Theorem 1 for the special case k = £ = 1. The word “combiner” is
a bit misleading in this case, “shrinker” would be more appropriate, as we ask
for a construction which given access to a hash function H with range {0,1}",
gives a hash function whose output length n is “significantly” shorter than v.

Proposition 3 (implies Thm.1 for the special case k = ¢ = 1). Let C :
{0,1}" x {0,1}™ — {0,1}™ be an oracle circuit with input range m := v+ 1 bits
and with qc oracle gates, where for somet > 0

n:=uv—2log(qc) —t (13)

then, if for some oracle PPTM P (which makes qg oracle calls to the breaking
oracle and q¥ oracle calls to the components) it is the case that (C,P) is a
p-robust (1,1)-combiner with p := 1 — 273 then for some constant a > 0

v < log qp +log gc + 2(log(qf + aqoqp)) +6 (14)

or equivalently,
2" < qf-qc - (¢F - ageqp)? - 64

in particular, (C, P) is not efficient, as by the above, either C or P must make
an exponential number of queries.

Remark 3 (on the constant «). A concrete bound on « in (14) can be determined
from the proof of Lemma 4 given in the full version of the paper. A rough estimate
suggests that setting a = 1000 is far on the safe side. This seems large, but note that
only the logarithm of a appears in the expression.

Remark 4 (on the input length). Proposition 3 only rules out combiners which hash
their input down by m — n = t 4+ 2logqp + 1 bits. This implies impossibility for
the general case, where the input length can be arbitrary as long as the combiner is
shrinking. The reason is that using the Merkle-Damgard construction, one can get a
CRHF with any input length from a CRHF which hashes down only one bit.

The Oracle. We now define the oracles, which consist of the hash function H
and the breaking oracle B. The oracle H is sampled uniformly at random from
all functions {0,1}* — {0,1}". The oracle B will be completely defined by a
function ¢ : {0,1}* — {0,1}™ which we sample uniformly at random. This ¢
defines for each randomness R € {0,1}" a pseudocollision'? Zg, Z% for C*(R,.)
as follows: Zp := ¢(R) and Z}, := ¢(R||(i)), where 7 is the smallest integer such
that CH(R, Zg) = CH(R, Z};). The input/output behavior of oracle B is now
defined as

H
B(R) = | Zr: 2y if safeCol,) (Zg, 7},
1 otherwise

So B(R) outputs Zg, Zy only if this is a safe collision.

To prove that B breaks the security of any combiner, we’ll need the following
technical lemma (for the special case £ = 1), which states that a randomly sam-
pled collision for a combiner CH" will be safe for many of the H, = Hy, ..., Hy.
For how many exactly of course depends on the output length of C. For space
reasons we only prove this lemma in the full version.

Lemma 2. For any oracle circuit C' : {0,1}™ — {0,1}™ with qc oracle gates,
and ¢ independent uniformly random functions H® = Hy,...,Hy : {0,1}* —
{0,1}v. For X, X', sampled as X < {0,1}" and X' & CHK(X)’l, then for
k<t

74
PrisafeCol” (X, X')] > 1—2"""— (qo(ge — 1)) F+- (4 B Ii N 1) gn—((=k+1)-v

B 1—27"3 breaks CH. Let Ip = 1if B(R) # L and Ir = 0 otherwise. From
Lemma 2 (for £ = 1) if follows that (recall that ¢ is the randomness used by B)

Prile=0] < 2" 4 go(go — 1) - 2"V < g - 2n ! (15)

Note that B p-breaks CH, where p is the fraction of R’s for which B(R) # L.
By (15) p is a random variable with expectation
Enolpl =277 > Prlilpg=1>1-g3 2" """ =1-27""
Re{0,1}" "’

2 Recall that X, X’ is a pseudocollision for F if F(X) = F(X’) but (unlike for colli-
sions) we must not necessarily have X # X'.

where in the last step we used (13). Applying the Markov inequality,'® we get
Prip <1 —~27t"1] < 1/~ for any v > 0, we will use this bound with v = 4, i.e.

__ o—t+3 <
Prip<1-27"<1/4 (16)

Hard to find collisions for H relative to B. We will now show that one
cannot find collisions in H even relative to the powerful oracle B.

Lemma 3. Let (C, P) be as in the statement of Proposition 3 where

v > log ¢% +log gc + 2(log(qf + ageqh)) + 6 (17)

and

H(pHB >
H,¢,P|’Dsrcoins[C0| (P)] > .675 (18)

then H can be compressed below 2%v bits.
Before we prove this lemma, we first how it implies Proposition 3.

Proof (of Proposition 3). let £ denote the event that B p-breaks CH with p >
1 — 2713 using (16) and the 1 — 273 security of (C, P) in the last step

Pr [col? (PBH)] > Pr &l Pr [col? (PBHY)E] > 2. 0.9

H,$,P’'s coins H,p,P’s coins H,p,P’s coins

] w

Assume H is uniformly random, then by Lemma 3 the function table of H can
be compressed below 2%v bits, which contradicts Proposition 2, thus (17) must
be wrong. O

We split the proof of Lemma 3 into two parts. First, Lemma 4 below states
that from an oPPTM which finds collisions with high probability as required by
eq.(18), we can construct another oPPTM which finds collisions of a special kind,
called “very good collisions”.!* Second, Lemma, 5 below states that any oPPTM
which finds very good collisions for H, implies that H can be compressed.

Very Good Collisions. We now define the “very good collisions” predicate
vgCol just mentioned. This predicate has a quite intuitive meaning: vgCol(Q*-8)
if there’s a collision, and the H query leading to the collision is fresh, in the
sense that it is not in qryp for some B query R. More formally, for an oPPTM
Q consider the random experiment Q8. where X, Xo, ... , X, denotes the H
queries, and Ry, Ra, ..., R; denotes the B queries made by Q. If col(QH:B), let
Xc,, X, denote the collision found by . Let qryp denote all the H queries
one must make in order to evaluate C# (R,.) on the pseudocollision Zg, Z}, as
sampled by B, i.e.

aryg := ary™ (C*(R, Zr)) Uary™ (CH (R, Z,)) (19)
Then the very good collisions predicate vgCol(Q**F) holds if
col(Q™F) and the collision X.,, X, satisfies VR < X, : Xo, € qryr ~ (20)

13 Unfortunately the Ir’s are not independent, thus Chernoff is not an option here.
14 We leave the term “good collision” for an intermediate kind of collision which will
only come up in the proof.

From Good Collisions to Very Good Collisions.
Lemma 4. If for a PPTM P

P I(PHB)] > 675 21
H,d),P’sr coins[co ()] - ()

then there exists a PPTM Q) where

Pr Col(QTB) > 5 22
Hoo i vECOQTT)] = (22)

and for a constant «

6 =qp ab =qp +aqeqp (23)

We omit the proof of this lemma for space reasons. The basic idea of the proof
is to let QB simply simulate P%B, but whenever P is about to make a B
query R, @@ will additionally sample some random V7, ...,V, and make all the
H queries needed to compute C*(R,V;). One can show that if the output P
gets on his B query R is likely to contain a collision (which will not be a very
good collision), then the H queries @ makes, will also be likely to contain a very
good collision. Tt is the proof of this lemma where we need the fact that B(R)
will output the collision Zg, Z}; only if this is a safe collision.

Very Good Collisions Imply Compressibility.

Lemma 5. Let B be an oracle (sampled as described earlier in this section) and
let H be a random variable taking as values functions {0,1}* — {0,1}". If a
PPTM @ satisfies

Pr Col (OBHY > 5 o
H,$,Q's coins[vg (Q)] = ()

then for any 0 <y <1, H can be compressed to
142" — (1 —p)(v—v —2loggf) (25)

bits, where p := 0.5 + qg cqo - 2770,
Before we prove this Lemma, let us show how Lemma 4 and 5 imply Lemma 3.

Proof (of Lemma 8). A P as in (18) implies by Lemma 4 a @ as in (22), which
by Lemma 5 implies that H can be compressed to (25) bits. This expression is
less than 2%v (as required by the lemma) if

(0.5 — qg “qc - 277") (v —yv —2log qg) >1 (26)

By setting yv := log qg + log gc + 2 the first bracket on the left side of (26)
becomes 1/4, if now v > log ¢g, + log gc + 2log ¢} + 6 + log(£), which by (23) is
exactly the requirement (17) from the lemma, then the second bracket in (26) is
>4, thus as 1/4-4 =1 (26) holds. O

Proof (of Lemma 5). The proof is similar to the proof of Lemma 1, except
that now we must additionally handle the breaking oracle B. For this we will
additionally need some shared randomness for com and dec, namely a pairwise
independent function 7 : {0,1}* — {0,1}7.

If we don’t have a very good collision, the compression com simply outputs
the whole function table

com(H) =0||H if -wgCol?(QP™)

Otherwise let X1, Xs,..., X.,,..., X, denote the H queries, and Ry, R, ..., R;
denote the B queries made by Q5| where X, X., denotes the collision found
by Q. With qryp as defined in (19), let

X :=aqryg, U...UQqryg,

We define the predicate miss as miss <= 3X € X : 7(X) = 7(X,,).
The size of X is upper bounded by 2-j-qc < 2- qg - qc. As we now consider

the case where vgCol (QB), we have X, ¢ X (cf. (20)). Further, because 7
is pairwise independent, for any X # X,., we have Pr[r(X) = 7(X,,)] < 277".
Taking the union bound over all X € X

Pr[miss] < Pr[3X € X : 7(X,,) = 7(X)]

<Y PHr(Xeyy =7(X)] < [X]-277 <25 g0 277" (27)
XeXx

In the case where we have miss, com again simply outputs the whole table.
com(H) =0||H if vgCol (QPH) A miss

We will now define an oracle B, which almost behaves as B, and in particular,
whenever we have —=miss in Q% then the oracle answers of B in Q7 are identical
to the answers of B, in QB . Recall that B on input R samples a pseudocollision
ZR, Zy, by setting Zp := ¢(R) and then computes, for i = 1,2,. . ., the value Z; =
CH(R| (i) until C* (R, Zg) = CH (R, Z;), it then assigns Z} := Z;. The oracle
B, does exactly the same, but if the evaluation of C* (R, Zg) requires to make an
H query X here 7(X) = 7(X,,), then B, does not make this query, but stops and
outputs L. Also, whenever the evaluation of C¥ (R, Z;) requires to make an H
query X here 7(X) = 7(X,,), then B, does not make this query, but proceeds
with Z;11. Note that B(R) and B,(R) will find the same pseudocollision, iff
T(Xcz) ¢ aryr-

Recall that we now only consider the case where vgCol® (QBH) and —miss.
Consider the random experiment Q5 and let Ay, As, ..., A,, where A, = X,
denote all the H queries done by @ plus the H queries made by B, (in the order
as they are made in the random experiment QB up to the “collision finding”
H query X.,, but without repetitions). So each H query by @ increases the
sequence Aj, Ao,... at most by one, whereas a B, query by @ can increase it
by arbitrary many values. Let H~ denote the function table of H, but with the

rows Aq, As, ..., A, deleted. The compression algorithm com for the remaining
cases is now defined as

com(H) = 1||7(Xe,) l{en)1og,,, | {e2hiog, IH(AD] - [H(As—1)I|H™ (28

if vgCol™ (QBH) A —miss (29)

Let us check that this compression really compresses as claimed by eq. (25).

If —vgCol” (QB), or vgCol™ (QBH) A miss then then [com(H)| = 2%v + 1. By

(24),(27) this happens with probability at most p := 0.5+ 0.5(2 - qg cqo - 27Y).

Otherwise by (29) |com(H)| has length only 1+ (2¥ — 1 +~)v + 2log qg. Thus
Eflcom(H)|] < 1+2"0 — (1 —p)(v — 7 — 2log ¢

as required by (25). Decompression is straight forward and omitted for space
reasons. 0

Lower bound for (k,{)-combiners. In the full version of this paper [15]
we prove the following Proposition which implies Theorem 1 for general (k,¢)-
combiners.

Proposition 4. Let C : {0,1}" x {0,1}" — {0,1}"™ be an oracle circuit with
input range'® m := £ - (v + 1) bits and qc oracle gates, where for some t > 0

n:=0U—-k+1) (v—2log(qc)) —t

then, if for some oracle PPTM P which makes qg oracle calls to the breaking
oracle and qg oracle calls to its components it is the case that (C, P) is a p-robust
(k, 0)-combiner with p := 1/ (1) — 2742, then

v <loggp +logge + 2(log(qp + ageqp)) + 6 + log(¢) (30)

in particular, (C, P) is not efficient.

Acknowledgements

I’d like to thank the anonymous reviewers from Crypto’08 for their many helpful
comments and suggestions.

References

1. Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd FOCS,
pages 106-115. IEEE Computer Society Press, October 2001.

2. Dan Boneh and Xavier Boyen. On the impossibility of efficiently combining col-
lision resistant hash functions. In CRYPTO 2006, volume 4117 of LNCS, pages
570-583. August 2006.

15 Remark 4 applies here too.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

Ran Canetti, Ronald L. Rivest, Madhu Sudan, Luca Trevisan, Salil P. Vadhan, and
Hoeteck Wee. Amplifying collision resistance: A complexity-theoretic treatment.
In CRYPTO 2007, volume 4622 of LNCS, pages 264—283. August 2007.

Marc Fischlin and Anja Lehmann. Security-amplifying combiners for collision-
resistant hash functions. In CRYPTO 2007, volume 4622 of LNCS, pages 224-243.
August 2007.

Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In 41st FOCS, pages 305-313. IEEE Computer Soci-
ety Press, November 2000.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. Journal
of the ACM, 38(3):691-729, 1991.

Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding col-
lisions in interactive protocols - a tight lower bound on the round complexity of
statistically-hiding commitments. In 48th FOCS, pages 669-679. IEEE Computer
Society Press, October 2007.

Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In EUROCRYPT 2005,
volume 3494 of LNCS, pages 96-113. May 2005.

Amir Herzberg. On tolerant cryptographic constructions. In CT-RSA 2005, volume
3376 of LNCS, pages 172-190. February 2005.

Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In 21st ACM STOC, pages 44-61. ACM Press, May 1989.
Jeong Han Kim, Daniel R. Simon, and Prasad Tetali. Limits on the efficiency of
one-way permutation-based hash functions. In 40th FOCS, pages 535-542. IEEE
Computer Society Press, October 1999.

Anja Lehmann Marc Fischlin and Krzysztof Pietrzak. Robust multi-property com-
biners for hash functions revisited. In ICALP 2008, LNCS. 2008.

Remo Meier and Bartosz Przydatek. On robust combiners for private information
retrieval and other primitives. In CRYPTO 2006, volume 4117 of LNCS, pages
555-569. August 2006.

Remo Meier, Bartosz Przydatek, and Jiirg Wullschleger. Robuster combiners for
oblivious transfer. In TCC 2007, volume 4392 of LNCS, pages 404-418. February
2007.

Krzysztof Pietrzak. Full version at www.cwi.nl/~pietrzak/publications.html.
Krzysztof Pietrzak. Non-trivial black-box combiners for collision-resistant hash-
functions don’t exist. In EUROCRYPT 2007, volume 4515 of LNCS, pages 23-33.
May 2007.

Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility be-
tween cryptographic primitives. In TCC 2004, volume 2951 of LNCS, pages 1-20.
February 2004.

Phillip Rogaway. Formalizing human ignorance. In Progress in Cryptology - VI-
ETCRYPT 06, volume 4341 of LNCS, pages 211-228. September 2006.

Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In FUROCRYPT’98, volume 1403 of LNCS,
pages 334-345. May / June 1998.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In CRYPTO 2005, volume 3621 of LNCS, pages 17-36. August 2005.
Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
EUROCRYPT 2005, volume 3494 of LNCS, pages 19-35. May 2005.

