New State Recovery Attack on RC4

Alexander Maximov and Dmitry Khovratovich

Laboratory of Algorithmics, Cryptology and Security
University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

Alexander.Maximov@ericsson.com, Dmitry.Khovratovich@uni.lu

Abstract. The stream cipher RC4 was designed by R. Rivest in 1987,
and it is a widely deployed cipher. In this paper we analyse the class
RC4-N of RC4-like stream ciphers, where N is the modulus of opera-
tions, as well as the length of internal arrays. Our new attack is a state
recovery attack which accepts the keystream of a certain length, and re-
covers the internal state. For the reduced RC4-100, our attack has total
complexity of around 29 operations, whereas the best previous attack
(from Knudsen et al.) needs 22%° of time.

The complexity of the attack applied to the original RC4-256 depends
on the parameters of specific states (patterns), which are in turn hard
to discover. Extrapolated parameters from smaller patterns give us the
attack of complexity about 2%*', and it is much smaller than the com-
plexity of the best known previous attack 277°. The algorithm of the new
attack was implemented and verified on small cases.

Keywords: RC4, state recovery attack, key recovery attack.

1 Introduction

RC4 [Sch96] is a stream cipher designed by Ron Rivest in 1987, and since then it
has been implemented in many various software applications to ensure privacy
in communication. It is one of the most widely deployed stream ciphers and
its most common application is to protect Internet traffic in the SSL protocol.
Moreover, it has been implemented in Microsoft Lotus, Oracle Secure SQL, etc.
The design of RC4 was kept secret until 1994 when it was anonymously leaked
to the members of the Cypherpunk community. A bit later the correctness of
the algorithm was confirmed.

In this paper we study a family RC4-N of RC4 like stream ciphers, where NV
is the modulus of operations. The internal state of RC4 is two registers i, j € Zxy
and a permutation S of all elements of Zy. Thus, RC4 has a huge state of
log, (N2N!) bits. For the original version, when N = 256, the size of the state is
~ 1700 bits. This makes any time-memory trade-off attacks impractical. RC4-
256 uses a variable length key from 1 to 256 bytes for its initialisation.

The initialisation procedure of RC4 has been thoroughly analysed in a large
number of various papers, see e.g. [MS01,Man01,PP04]. These results show that

the initialisation of RC4 is weak, and the secret key can be recovered with a small
portion of data/time. Because of these attacks, RC4 can be regarded as broken.
However, if one would tweak the initialisation procedure, the cipher becomes
secure again.

The simplicity of the keystream generating algorithm of RC4 has attracted
many cryptanalysis efforts. In most analyses the scenario assumes that keystream
of some length is given, and either a distinguishing ([Gol97,FM00,Max05,Man05])
or a state recovery (|[KMPT98]) attack is of interest. A state recovery attack can
be used to determine the actual security level of a cipher, if the initial internal
state is considered as a secret key. The first state recovery attack was proposed
by Knudsen et al in 1998 [KMP*98|. This had a computational complexity of
277 Some minor improvements were found in other literature, e.g. [MT98], but
still, there is no attack even close to 27°°. One interesting attempt to improve the
analysis was recently done in [Man05]. However, that attack is only a potential
one ', and the pretending time complexity claimed was around 22%°.

In this paper we propose a new state recovery attack on RC4-N. For the
original design RC4-256 the total time complexity of the attack is less than 2°79,
and under some realistic assumptions (see Section 6) a complexity would drop
to 2241 (2272 under pessimistic extrapolations), requiring keystream of a similar
length. This would mean that there is no additional gain in using a secret key
longer than 30 bytes. We also show that in general if the secret key is of length
N bits or longer the new attack is faster than exhaustive key search.

The idea of the new attack is as follows. The algorithm searches for a
place in the keystream where the probability of a specific internal state, compli-
ant with a chosen pattern, is high. Afterwards, the new state recovery algorithm
is used together with a small portion of data (around 2N output words) in order
to recover the internal state of the cipher in an iterative manner. This algorithm
has been implemented and verified for small values of N, it has determined the
correct internal state in every simulation run. The success rate of the full attack
is shown to be at least 98%. For large values of N, where simulations were
impossible, an upper bound for the average complexity of the attack is derived
and calculated.

In the precomputation stage we search for a proper pattern to use in the
attack. However, in this paper we skip a detailed analysis of that complexity
since it is upper bounded by the time needed for the main stage of the attack
(see Appendix B).

This paper is organized as follows. In Section 2 the new iterative state re-
covery algorithm is described in detail. Afterwards, Section 3 introduces various
properties of a pattern that are needed for the recovering algorithm. An effective
searching algorithm to find such patterns is also proposed in Appendix B (due to
the page limitation and clarity of presentation). Section 4 describes several tech-

! Mantin detects a large number of bytes of the state, and then applies Knudsen’s
attack given those bytes. However, this would reduce the complexity only if the
knowns were located in a short window all together while this is not the case. This
fact is confirmed in [Man05] (Section “State Recovery Attack”).

niques to detect specific states by observing the keystream, and also introduces
additional properties of a pattern needed for detection purposes. Theoretical
analysis of the state recovery algorithm and derivation of its complexity func-
tions are performed in the full version of this paper [MKO08|. All pieces of the
attack are then combined in Section 5. Finally, we perform a set of simulations
of the attack, summarize the results and conclude in Section 6. The paper ends
with suggestions for further improvements and open problems in Section 7.

1.1 Notations

All internal variables of RC4 are over the ring Zy, where N is the size of the
ring. To specify a particular instance of the cipher we denote it by RC4-N. Thus,
the original design is RC4-256. Whenever applicable, + and — are performed in
modulo N. At any time ¢ the notation a; denotes the value of a variable a at time
t. The keystream is denoted by z = (21, 22, ...), where z; is a value 0 < z; < N.
In all tables probabilities and complexities will be given in a logarithmical form
with base 2.

1.2 Description of the Keystream Generator RC4-IN

The new attack targets the keystream generation phase of RC4 and, thus, the
initialisation procedure will not be described. We refer to, e.g., [Sch96] for a full
description of RC4. After the initialisation procedure, the keystream generation
algorithm of RC4 begins. Its description is given in Figure 1.

Internal variables:

i, j — integers in Zn

S[0...N — 1] — a permutation of integers 0... N — 1
S[-] is initialised with the secret key

The keystream generator RC4-N

i=75=0
Looi) until we get enough symbols over Zy
(A)i=i+1
(B) j =4+ Sli]
(C) swap(S[i], S[5])
(D) 2z = S[S[i] + S[]]

Fig. 1. The keystream generation algorithm of RC4-N.

2 New State Recovery Algorithm

2.1 Previous Analysis: Knudsen’s Attack

In [KMP*98] Knudsen et al. have presented a basic recursive algorithm to recover
the internal state of RC4. It starts at some point ¢ in the keystream z given k

known cells of the permutation Sy, which helps the recursion to cancel unlikely
branches. The idea of the algorithm is simple. At every time ¢ we have four
unknowns:

jes Selidl, Silgel, Sp 'zl (1)

One can simply simulate the pseudo random generation algorithm and, when nec-
essary, guess these unknown values in order to continue the simulation. The re-
cursion steps backward when a contradiction is reached due to previously wrong
guesses. Additionally, it can be assumed that some k values are a priori known
(guessed, given, or derived somehow), and this may reduce the complexity of
the attack significantly. An important note is that the known & values should
be located in a short window of the “working area” of the keystream, otherwise
they cannot help to cancel hopeless branches.

The precise complexity of the attack was calculated in [KMP198|, and several
tables for various values of N and k were given in Appendices D.1 and D.2
of [Man01]. As an example, the complete state recovery attack on RC4-256
would require time around 277°.

2.2 Our Algorithm for State Recovery

In this section we propose an improved version of the state recovery algorithm.
Assume that, at some time ¢ in a window of length w + 1 of the keystream z,

all the values j, jet1, jt+2, - - -, jt+w are known. This means that for w steps the
values Sti1[ity1],- -, Sitwlit+w] are known as well, since they are derived as
Serilitr1] = jeyr — Je, Yt (2)

Consequently, w equations of the following kind can be collected:
S,;l[zk]:Sk[ik]+Sk[jk], k=t+1,...,t+w, (3)
where only two variables are unknown,

S zkl, Sklil, (4)

instead of fourin Knudsen’s attack, see (1). Let the set of consecutive w equations
of the form (3) be called a window of length w.

Since all js in the window are known, then all swaps done during these w
steps are known as well. This makes it possible to map the positions of the
internal state S; at any time ¢ to the positions of some chosen ground state S,
at some ground time ¢y in the window. For simplicity, let us set ¢ty = 0.

Our new state recovery algorithm is a recursive algorithm, shown in Figure 2.
It starts with a collection of w equations, and attempts to solve them. A single
equation is called solved or processed if its corresponding unknowns (4) have been
explicitly derived or guessed. During the process, the window will dynamically

increase and decrease. When the length of the window w is long enough (say,
w = 2N), and all equations are solved, the ground state Sy is likely to be fully
recovered.

Now we give a more detailed description of the different parts of the algo-
rithm.

Iterative
Recovering

T recursion
Contradiction? ves backward
no
3.

Window
Expansion
recursion

orward

Guess One S[1]

Are all
equations in the window
solved?

Find and Guess the
recursion Maximum Clique

forward

Fig. 2. New state recovery algorithm.

Iterative Recovering (IR) Block The Iterative Recovering block receives a
number a of active equations (not yet processed) in the window of length w
as input, and tries to derive the values of S;[js]s and S; '[z]s. To do that, the
IR block goes through two steps iteratively, until no more new derivations are
possible. If all previous guesses were correct, then all newly derived values (cells
of the ground state) will be correct with probability 1. Otherwise, when the IR
block finds a contradiction the recursion steps backward. The two steps are as
follows.

A. Assume that, for one of the active equations its output symbol z; is already
allocated somewhere in the ground state. Le., the value S; '[z] is known,
and the second unknown S;[j;] can explicitly be derived using (3).

A contradiction arises if (a) S¢[ji] is already allocated and it is not equal to
the derived value; (b) the derived value already exists in some other cell.

B. Already allocated values may give the value of S:[j;] in another equation.
Consequently, a new value S; *[z] can be derived via (3), which might pos-
sibly cause a contradiction.

Find and Guess the Maximum Clique (MC) Block If no more active
equations can explicitely be solved, S{l[zt] for one t has to be guessed. The
Find and Guess the Mazimum Cligue block analyses given active equations,
and chooses the element that gives the maximum number of new derivations in
consecutive recursive calls of the IR block. This element is then guessed.

The analysis is very simple. Let a active equations be vertices v; in a graph
representation. Two vertices vy and vy are connected if zp = 2z and/or Sy [jy]
and Sy [jir] refer (like pointers) to the same cell of the ground state. Guessing
any unknown variable in any connected subgraph solves all equations involved
in that subgraph. Therefore, let us call these subgraphs cliqgues. The MC block
searches for a maximum clique, and then guess one S; [z for one of the equa-
tions belonging to the clique. Afterwards, the IR block is called recursively.

Window Expansion (WE) Block Obviously, the more equations we have the
faster the algorithm works. Therefore, a new equation is added to the system
as soon as the missing value S[i] in the beginning or in the end of the window
is derived. The Window Expansion block checks for this event and dynamically
extends the window. Sometimes several equations are added at once, especially
on the leafs of the recursion.

Guess One S[i] (GSi) Block If there are no active equations but the ground
state Sy is not yet fully determined, the window is then expanded by a direct
guess of S[i], in front or in back of the window. Then the WE, IR and MC blocks
continue to work as usual. Additional heuristics can be applied for choosing which
side of the window to be expanded for a larger success.

Appendix A provides an example that shows the steps of the outlined algo-
rithm.

3 Precomputations: Finding Good Patterns

The algorithm presented in the previous section is used in the full state recovery
attack as a part of it. Every time when the algorithm is running at some point
of the keystream, its effectiveness depends on certain properties of the current
internal state. Although these properties are not visible for the intruder, she may
have a good guess about places in the keystream where the internal state has
good properties (see Section 4), and apply the state recovery algorithm only at
those places.

In this section we will define patterns (see Definition 1), they determine
huge sets of internal states with common properties. If, for instance, a pattern
has a large window then this certainly helps decreasing the complexity of the
algorithm. However, the probability that the internal state is compliant with a
certain pattern decreases with the number of conditions put on the pattern.

In this section we discuss properties of patterns that influence on the com-
plexity of the attack, and also study their availability. We have also developed
an efficient algorithm for finding these paterns, and it is located in Appendix B.

3.1 Generative States

Let us start with several definitions, some of which were previously defined
in [MS01,Man01,Man05].

Definition 1 (d-order pattern). A d-order pattern is a tuple
A:{ivjaP7V}) iajEZNa (5)

where P and V are two vectors from 7%, with pairwise distinct elements. At a
time t the internal state is said to be compliant with A if iy = i,j; = j, and
d cells of the state Sy with indices from P contain corresponding values from
V. 0

The example in Figure 4 in Appendix A illustrates how a 5-order pattern
allows to receive a window of length 15. However, the higher the order, the less
the probability of such a constraint to happen. Thus, we are interested in finding
a low order pattern which generates a long window.

Definition 2 (w-generative pattern). A pattern A is called w-generative
if for any internal state compliant with A the next w clockings allow to derive w
equations of the form (3), i.e., consecutive w + 1 values of js are known. ad

Table 1 demonstrates a 4-order 7-generative pattern A={-7,-8,{-6, -5, -4,
0}, {6, -1, 2, -2}}, that supports the above definitions. Eight equations involve
symbols of the keystream z;11,..., 2:4s associated with a certain time t. We say
that the keystream is true if the internal state at time ¢ is compliant with the
pattern, otherwise we say the keystream is random.

Let another pattern B be derived from A as

B=A+r={i+7j+7,P+71,V} (6)

for some “shift” 7. The pattern B is likely to be w-generative as well. This
happens when the properties of A are independent of IV, which is the usual case.

i | Jt S[’L] S[]] S[Z] -‘rS[j] zt||-6-5—-4-3-2—-10 12 3 4 5
-7 —8| — - - - 6 —1 2 Tr1 T2 T3 -2 X4 5 Te 7 T8
—6|—2| 6 | x2 6+ 2 ¥ [lwog =1 2 21 6 X3 —2 x4 T5 Tg T7 T8
—5|-3|—1]| x1 —14+x ¥ [lxg 1 2 —1 6 x3 —2 x4 T5 Te T7 T8
—4|1-1| 2 | x3 2+ x3 ¥ ||lxg 1 3 =1 6 2 —2 x4 T5 Te T7 T8
—-3|-2|—-1| 6 5 xs||lxe 1 3 6 —1 2 —2 x4 T5 T6 T7 T8
—2|-3|—1 6 5 g (|2 X1 X3 -1 6 2 =2 X4 Ts5 Te 7 T
—1|—1] 2 2 4 X7 (|2 X1 T3 -1 6 2 =2 X4 Ts5 Te 7 T
0|-3|—-2|—-1 -3 —2||z2 1 3 —2 6 2 —1 x4 x5 T6 T7 X8
1| % |xa| * * *

Table 1. An example of a 4-order 7-generative pattern.

3.2 Availability

We have done a set of simulations in order to find mazimum w-generative d-order
patterns, denoted by J/(,. The results are given in Table 7(a) in Appendix C.
Searching for a high order pattern is a challenging task since the computational
complexity grows exponentially with d. The best result achieved in our work is
a 14-order 76-generative pattern 9, ,.

Real values from our simulations Approximated values
d= 123 45 6 7 8 9 1011121314{{]151617 18 19 20 21
Wnax =|6 10 15 21 27 31 37 42 50 55 61 68 76(|82 88 94 100 106 112 118

Table 2. Dependency of the maximum w from d, simulated and approximated values.

Table 2 shows the dependency of a maximum achievable generativeness wyay
from the order d. We can note that this dependency is almost linear, and it
converges to Wyay = 6d + A\ as d — co. We make the following conjecture.

Conjecture 1. The rate of “== ~ 6 as d — 00.” O

That conjecture allows us to make a prediction about certain parameters
for patterns with large d. These could not be found due to a very high pre-
computation complexity, but they are needed to analyse the attack for large N
(N =128...256 in Table 3). However, given those parameters, d and w, we can
derive theoretical complexities of the attack on average . This has been done
in [MKO8]. An efficient search algorithm for patterns with desired properties is
given in Appendix B.

4 Detection of Patterns in the Keystream

In the previous section we have studied properties of a pattern that are desirable
for the state recovery algorithm to work fast and efficient. We have also shown
(in Appendix B) how these patterns can be found, and introduced an efficient
searching algorithm.

In this section we show how the internal state of RC4, compliant to a chosen
pattern, can be detected by observing the keystream. If the detection is very

2 Indeed, the “jump” of Wgax as d increments by one is the sequence I'={4, 5,6, 6, 4,
6, 5, 8, 5, 6, 7, 8, ...}. Obviously, for small d this “jump” is small, and it is notable
that the “jump” increases for larger d. In our simulations heuristics were used (see
Section B) when searching patterns for d > 6. This means that our “jumps” in the
sequence I' could possibly be larger if an optimal searching technique is applied,
since our heuristic cannot guarantee that we get a pattern with the longest window.
This suggests that the ratio w — 6d as d — oo seems quite a fair conjecture.

3 Because the relation w = 6d + X is a subject of discussions, we show in Table 4 that
even more pessimistic conjectures do not affect the total complexity very much.

good, then the state recovery algorithm might only have to be executed once, at
the right location in the keystream.

The detection mechanism itself can be trivial (no detection at all), in which
case the algorithm has to be run at every position of the keystream. On the
other hand, a good detection may require a deep analysis of the keystream,
where specific properties of the pattern can be used efficiently.

4.1 First Level of Analysis

The internal state of RC4 compliant to a d-order pattern A can be regarded as
an internal event with probability

Pr{Ei} = N1 (7)

When the internal event occurs, there is an external event Eey, observed in
the keystream, which is associated with the pattern A, i.e., Pr{Fext|Fins} = 1.
Applying Bayes’ law we can derive the detection probability Paet of the pattern
A in the keystream as

PI’{Eint}

Paet = Pr{Eint|Eext} = m (8)

Our goal in this section is to study possible external events with high Pyet in
order to increase the detection of the pattern.

Definition 3 (I-definitive pattern). A w-generative pattern A is called I-
definitive if there are exactly | out of w equations with determined S[j]s. ad

It means that in [equations S[i] + S[j] are known. If, additionally, 2’ =
S[S[i]+ S[j]] is also known, then the correct value of z; = 2z’ at the right position
t of the keystream z detects the case “the state at time t is possibly compliant
to the pattern’. Otherwise, when z; # 2/, it says that “the state at time t cannot
be compliant to the pattern”.

For detection purposes a large [(up to d) is important. From our experiments
we found that, however, a large [can be achieved via a slight reduction of the
parameter w. This leads us to one more conjecture.

Conjecture 2. For any d and w = wpax — A there exist a pattern with [= d,
where) is relatively small *. 0

In the following definition we introduce other properties of a pattern that are
important for its good detection via the keystream.

* Table 6(a) in Appendix C contains patterns Xs with [= d where w is still large,
which supports the above conjecture. Indeed, Table 5 in Appendix B shows how
the number of available patterns grows when relaxing the condition put on w. Le.,
a slight reduction of w increases the chance of finding a pattern with d = [. This
makes the conjecture fair.

Definition 4 (by, bg, bv-""ﬂﬁpredictive pattern). Let us have an l-definitive
pattern A and consider only those equations where S[j]s are determined. Then,
the pattern A is called b, -*predictive if for b, of the | equations S[S[i] + S[j]]
is determined. For the remaining | — by, equations two additional definitions are
as follows. The pattern A is called bg-" predictive if for bg pairs of the | — b,
equations the unknowns S[S[i|+S[j]]s must be the same. The set of bg pairs must
be of full rank. The pattern A is called b,-"predictive if the | — b, equations
contain exactly b, different variables of S[S[i] + S[j]]. O

These types of predictiveness are other properties of a pattern visible in the
keystream. For example, it is not only necessary to search for known 2’ values (b,
of such), but one can also require that certain pairs of the keystream symbols (bg
of such) are equal zy = 2+, which also helps to detect the pattern significantly.

The parameter b, is usually quite moderate and to have it larger than 15
is quite difficult. However, the other criteria are more flexible and can be large.
These new parameters follow the constraint

bo +bs+b,=1<d. 9)

Consider the remaining w — [equations of the pattern A where S[j]s are not
determined. Let at time instances t; and t5 one pair of these equations be such
that the S[i] values and the S[j] pointers are equal. If the distance Ay = 2 — ¢
is small, it is likely that the output z; is the same as zo. The probability of this

event is
A 1\ 24
Pr{z = z|A:} > (1 - #) : (1 - N) A exp <_Tt) . (10)

Definition 5 (bs-’predictive pattern). A pattern A is called by-° predictive
if the number of such pairs (described above) is bg. Let the time distances of these
pairs be Ay, ..., Ay, then the cumulative distance is the sum Iy = X, A; O

These four types of predictiveness are direct external events for a pattern.
One should observe the keystream and search for certain b, symbols, check
another bg and by pairs of symbols that they are equal, and also check that a
group of b, symbols are different from the values of V' and from each other.
Thus, we have

(N —a)!
Nb (N —d —b,)! (11)
Pr{Fin} ~ N—d=1. g=2Ile/N,

The example in Table 1 is a 4-definitive b, = 1,05 = 1,b, = 2,by = 0-
predictive pattern. For detection one has to test that z;16 = —2, 2,43 = 2114, and
Zt44, 2t+5 are different from the initial values at V and zy14 # 2145. Le., when,
for example, N = 64, the detection probability is 6475 = (6472 - 60 - 59/64%) ~
6472.96 5_

% Since 7-predictiveness has a minor influence on detection, we skip this parameter in
future calculations.

Pr{Eo} = N7t babe

4.2 Second Level of Analysis

In fact, the first level of analysis allows to detect a pattern with probability at
most N ! (because j is not detectable), whereas with the second level of analysis
it can be 1. Let us introduce a technique that we call a chain of patterns.

Definition 6 (chain of patterns A — B, distance, intersection). Let us
have two patterns A = {ia, ja, Pa, Va} and B = {ip, jb, Py, Vo }. An event when
two patterns appear in the keystream within the shortest possible time distance
o is called chain of patterns, and is denoted as A — B if B appears after A.

The chain distance o between two patterns A and B is the shortest possible
time between A’s ending and B’s beginning of their windows, i.e.,

o =1p— (i + wg) mod N. (12)

The intersection of A and B is the number £ of positions in A that are
reused in B. These positions must not appear as S[i] during o clockings while
the chain distance between A and B is approached. O

For example, let A = {0,0,{1,3,5,6,7,8,22,23},{2,8,-3,—2,1,7,4,—9}}
and B = {34, 34, {35, 36,37, 38,39, 44,48, 52},{8,—-2,1,2,4,—5,5,3} }. After w, =
30 clockings the first pattern becomes A’ = {30, 28, {15, 28, 30, 35, 36, 37, 38, 39},
{-3,-9,7,8,—2,1,2,4}}. Obviously, the last £ = 5 positions can be reused in
B, and after 0 = 4 clockings a new pattern B (wp = 34) can appear if jiy34 = Jp.
The probability that the chain A — B appears is N~ - N~*, multiplied by the
probability that 5 elements from A’ stay at the same locations during the next 4
clockings. This is much larger than the trivial N=2 - N=9. Thus, a more general
theorem can be stated.

Theorem 1 (chain probability). The probability of a chain A — B to appear
18

Picap = Pr{ B} m N™UA 0270 22t Ta)/N =6 (13)

Proof. In [Man01] it has been shown that & elements stay in place during N

clockings with an approzimate probability e=¢. The remaining part comes from

an assumption that the internal state is random, from where the proof follows.
O

Obviously, the probability of the external event for the chain is
Pr{Eext} — N7(b(xa+b[}a+b9a)7(bwb+bﬁb+b9h)7 (14)

which can be smaller than Pr{Ei,.} (see ?4 in Table 6 in Appendix C), confusing
the equation (8). This happens since Pr{FEey} is calculated assuming that the
keystream is random. However, in RC4 only a portion of the observed external
probability space can appear (which is another source for a distinguishing attack,

but it is out of scope of this paper). Therefore, in the case when Pr{FEq.} <
Pr{Fin:} we simply assume that the detection probability is 1.

Table 6 in Appendix C presents a few examples with a good trade-off (based
on our intuition) between w and detectability for various d. Since the computa-
tion time for searching such patterns with multiple desired properties is really
huge, only a few examples for small d were given. However, we believe that for
large d it is possible to detect such patterns with a high probability, up to 1,
applying the two proposed levels of analysis.

5 Complete State Recovery Attack on RC4

5.1 Attack Scenario and Total Complexity

Recall pattern detection techniques from Section 4. In the attack scenario an
adversary analyses the keystream at every time ¢, and applies the state recovery
algorithm if the desired internal event (pattern) is detected. In all cases except
one the recovering algorithm deals with a random keystream.

Proposition 1 (Total Attack Complexities). Let the detection probability
be Paet, then the total time Cr and data Cp complexities of the attack are

CT = PI‘{Eint}_l + (’Pd;i - 1) : CRand +1- CTruev

CD = PI‘{Eint}il. (15)

O

5.2 Success Rate of the Attack

The complexities Crrye and Crandon are upper bounds for the average time the
algorithm requires. It means that for some cases it could take more time than
these bounds. In order to guarantee the upper bound of the total (not aver-
age) time complexity one can terminate the algorithm after, for example, Cypy
operations. In this case the success rate of the attack can be determined.

Figure 3 shows density and cumulative functions for the time complexity
of an example attack scenario. It shows that around 98% of all simulations of
the attack have time smaller than the average 2292® (vertical line). When the
keystream is random the termination makes the average time bound Crangon €ven
smaller, since the random case is likely to be repeated very many times and the
second term in (15) can only decrease.

The plots in Figure 3 also show that even if the termination of the algorithm
is done on the level Cipy = v/Crre (= 21%), the success rate of the attack is still
very high. Le., the state recovery algorithm on RC4-64 can be done in time 2'°
with success probability 35%! If a similar situation happens for large N (e.g.,
N = 256), then the full time complexity can be significantly decreased (perhaps,
down to a square root of the estimated average complexity), and the success
probability can still be very large.

0.07} I SR
0.06/-
. ~08
= ~
005 ~
Il \/0 6
00.04] ol
= =
& & /
0.03f Q /
9—/ 0.4
[—
P00t A
0.2F
0.01F k
0 ‘ ‘ ‘ ‘ ‘ ‘ 0 i ‘ ‘ ‘ ‘
0 5 10 15, 25 30 35 0 5 10 15, 2 2 30 35

Fig. 3. Probability density (left) and cumulative (right) functions of the time Crrye in
logarithmical form (k = logy Crrue). The scenario is N = 64, #(; and 2000 samples.

6 Simulation Results and Conclusions

We have selected a set of test cases with various parameters and patters, and
derived total data and time complexities of the new attack. Table 3 presents the
results of this work. For example, when N = 64, the total complexity of the new
attack is upper bounded by 2%, if the pattern X, is used. This is much faster
than, for example, Knudsen’s attack, which complexity for this case is 2326,
Even if d = 9 elements of the state are known, Knudsen’s attack needs 2981 of
time, which is still much higher. The complexity of a potential attack recently
discussed by I. Mantin in [Man05] is also higher. As it was shown in Section 5.2,
the success rate of the new attack is at least 98%.

Table 3 also contains intermediate probabilities and complexities for the at-
tack, including theoretical (A = 0) and attuned (A = 2) values for Changa and
Crrue- When it was possible, the real attack on a true keystream was simulated
(real complexities for Crrye are shown in italic). In these simulations the complete
state of RC4 was successfully recovered for every randomly generated keystream
compliant with the corresponding pattern.

For larger N, patterns of a high order are needed to receive an attack of low
complexity. The largest pattern that we could find in this work is tW(l 4> and this
was applied to attack RC4-N with N = 128,160, 200, 256. These attack scenarios
are those that we have in our hands already. However, the complexities received
are not optimal, but they are still lower than in Knudsen’s attack. Conjecture 1
and also discussions in Section 4 make it possible to approximate the parameters
of a hypothetical pattern that is likely to exist (x — patterns). To be secure, we
relate d and w as w = 6d—6. The remaining parameters were chosen moderate as
well. As the result, we obtained an attack on RC4-256 with the (upper bounded)
total complexity of 22417, and this is the best state recovery attack known at
the moment.

N N =64 N =100 N =128 N =160 N =200 N = 256
Cases|| T [II JOI[[IV][V VI [VI [VII] IX X [XI XII | XIII
Descriptions of the cases (x — are hypothetical cases)

Pattern|| TG | Vs | Xo 1 Xox [T | Waa | * TG, | * N6 1 * 9, |
dl| 8 8 9 11 13 14 15 14 18 14 23 14 29
w|| 37 | 20 |41 || 49 | 68 | 76 | 84 | 76 | 102 || 76 | 132 || 76 | 168

lj| 6 6 5 11 9 10 10 10 10 10 14 10 17

ba|| 0 4 4 9 0 0 10 0 11 0 10 0 11

bg|| 1 1 0 0 2 2 0 2 0 2 2 2 4

b 5 |1 |12 7| 8 o |ls o8| 2] 8]:2

be|| 0 0 2 0 2 2 0 2 7 2 4 2 12

M 0 | o |afo |44]ol4]-]a]|-1|14

Internal /external/detection probabilities
Pint ||-54.0{-65.8 -60.0(|-79.7-93.0 {|-105.0|-112.0{|-109.8|-139.1||-114.7|-183.5(|-120.0{-240.0
Pext|| -6.0 [-60.0-36.0{[-59.8 |-26.6 || -28.0 | -70.0 || -29.3 |-131.8|| -30.6 |-122.3|| -32.0 |-216.0
Paet ||-48.0| -5.8 |-24.0||-19.9|-66.4 | -77.0 | -42.0 || -80.5 | -7.3 || -84.1 | -61.2 || -88.0 | -24.0
Complexities of the state recovery algorithm
when the keystream is true/random

3 Theor. || 20.5 | 58.2 | 22.8 |{107.8| 10.0 || 71.3 | 71.7 |[{191.1|131.7|{317.4|121.3 || 507.4|217.1
S Attun.|| 15.5 | 57.8 | — |[107.5| - 66.3 | - 179.2| - ||302.6| - |/491.8
. Theor.|| 35.0 | 64.9 {30.9|{120.4| 34.5 || 94.7 [102.0 ||213.0 | 138.2 || 335.6 | 157.5 || 519.6 | 225.4
] Attun.|| 30.3 | 57.6 108.3| 31.8 || 85.5 185.1 309.9 501.8
© Real] 20.3] - | - || - |2901] - | - - | - - | - -
Total data/time complexity, and the comparison
with previous attacks
<, Ck(0) 132.6 236.6 324.8 431.4 572.0 779.7
= L
§ § Ck(d) 101.7‘101.7‘ 98.1 189.3‘181.0 261.3 | 256.9 || 364.6 | 346.1 || 501.9 | 458.2 || 705.9 | 629.3
Mantin’s po- 73 114 147 186 243 290
tential attack
4 Cpl|| 54.0 | 65.8 |60.0| 79.7 |93.0|| 105.0 |112.0|[109.8 |139.1|{ 114.7 |183.4|| 120.0 |240.0
-
S g Cr|| 63.5|63.4 {60.0([127.4|93.1|| 143.4 (113.7||271.7 |140.4|| 386.7 |184.0|| 579.8 (241.7
Table 3. Simulation results and comparisons with previous attacks.
optimistic realistic pessimistic
N =256 w=6.5d — 17 w=6d—6 w=6d— 12 w = bd w=4d
d,w|d =29, w =171|d = 29, w = 168|d = 30, w = 168|d = 33, w = 165|d = 39, w = 156
keystream 240.0 240.0 248.0 272.0 320.0
time 224.9 241.1 243.3 265.9 327.1

Table 4. Complexities of the attack on RC4-256 for various relations w = £d + . All
scenarious show much better attack complexity than the best previous one 2777,

Since Conjecture 1 is discussible, we show in Table 4 that even pessimistic
relations between w and d do not increase the attack complexity of approximated
scenarious (x) significantly. In general, we have noted the following tendency. For
RC4-N with a secret key of length N bits or longer, the new attack can recover
the internal state much faster than an exhaustive search. This observation can
also be seen from the results in Table 3.

As the last point of the discussions we note that the key recovery attack can
be easily converted from a state recovery attack. There are several papers dealing

with recovering the secret key from a known internal state [MS01,Man01,BC0§].
However, this part works much faster than currently known state recovery at-
tacks, and, therefore, we just refer to these papers without giving details.

7 Further Improvements and Open Problems

Pattern detection improvements. With a chain of patterns described in Section 4
one could reach a good detection. However, not only forward direction of chain-
ing can be considered, but also backward one. Additionally, there is a possibility
to analyse longer sequences of patterns in order to have a good detectability. An-
other idea is to use unusual recyclable patternsin a similar manner as in [Man05].
The difference is that these patterns are both recyclable and have a long window.
For example, A = {0,—4,{6,4,1,5,3},{0,1,7,—2,—1}}.

State recovery algorithm improvement. The GSi block can choose the corner
(left or right) of the window to be extended by an additional heuristic analysis of
the current situation during the process. Another improvement is achieved if the
MC block could speculatively run the recursion for additional 1-3 extra forward
steps for every possible guess, and, afterwards, make such a guess for which the
number of sub branches is the minimum. The average time of the attack for this
strategy is reduced.

Derivation and statistics. Our investigation showed that the derived theoret-
ical upper bound gives a much larger complexity than the one received from the
real simulations of the attack. Obviously, a better analysis of the algorithm’s
complexity is needed. This would allow a more accurate estimation of the total
complexity, and it might improve the complexities in Table 3 significantly. An-
other interesting problem is to determine the density function of the recovering
algorithm, likewise in Figure 3. This may allow us to decrease the complexity in
square root times, maintaining a high success rate.

Other open problems. The search for patterns of a higher order with long
windows is another challenging open question. We have shown that there are
chains of patterns with short distances. The first pattern is used for the recover-
ing algorithm, and the second one is for detection. However, another interesting
question is whether or not the second pattern can also be used in the recovering
algorithm.

Acknowledgements

We thank Martin Hell, Lars Knudsen, Matt Robshaw and also anonymous re-
viewers for their valuable comments and efforts which helped us to improve this
paper significantly. This work was partly supported by University of Luxembourg
and Ericsson AB.

References

[BCOS]

[FMOO]

[Gol97]

Eli Biham and Yaniv Carmeli. Efficient reconstruction of rc4 keys from
internal states. In Fast Software Encryption 2008, to appear in Lecture
Notes in Computer Science. Springer-Verlag, 2008.

S. R. Fluhrer and D. A. McGrew. Statistical analysis of the alleged RC4
keystream generator. In B. Schneier, editor, Fast Software Encryption 2000,
volume 1978 of Lecture Notes in Computer Science, pages 19-30. Springer-
Verlag, 2000.

J. Dj. Goli¢. Linear statistical weakness of alleged RC4 keystream generator.
In W. Fumy, editor, Advances in Cryptology—EUROCRYPT’97, volume
1233 of Lecture Notes in Computer Science, pages 226—238. Springer-Verlag,
1997.

[KMP*98] L.R. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege. Anal-

[Man01]

[Man05]

[Max05]

[MKOS]

[MS01]

[MT9g]

[PP04]

[Sch96]

ysis methods for (alleged) RC4. In K. Ohta and D. Pei, editors, Advances in
Cryptology—ASIACRYPT’98, volume 1998 of Lecture Notes in Computer
Science, pages 327-341. Springer-Verlag, 1998.

I. Mantin. Analysis of the stream cipher RC4. Master’s thesis, The Weiz-
mann Institute of Science, Department of Applied Math and Computer
Science, Rehovot 76100, Israel., 2001.

I. Mantin. Predicting and distinguishing attacks on RC4 keystream gener-
ator. In R. Cramer, editor, Advances in Cryptology—EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages 491-506, 2005.
A. Maximov. Two linear distinguishing attacks on VMPC and RC4A and
weakness of RC4 family of stream ciphers. In H. Gilbert and H. Handschuh,
editors, Fast Software Encryption 2005, volume 3557 of Lecture Notes in
Computer Science, pages 342-358. Springer-Verlag, 2005.

A. Maximov and D. Khovratovich. New state recovery attack on RCA4.
Available at hitp://eprint.iacr.org/2008/017 (accessed May 27, 2008), 2008.
I. Mantin and A. Shamir. Practical attack on broadcast RC4. In M. Matsui,
editor, Fast Software Encryption 2001, volume 2355 of Lecture Notes in
Computer Science, pages 152-164. Springer-Verlag, 2001.

S. Mister and S. E. Tavares. Cryptanalysis of RC4-like ciphers. In Selected
Areas in Cryptography—SAC 1998, Lecture Notes in Computer Science,
pages 131-143, 1998.

S. Paul and B. Preneel. A new weakness in the RC4 keystream generator
and an approach to improve the security of the cipher. In B. Roy and
W. Meier, editors, Fast Software Encryption 2004, volume 3017 of Lecture
Notes in Computer Science, pages 245—259. Springer-Verlag, 2004.

B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code
in C. John Wiley&Sons, New York, NY, 2nd edition, 1996. ISBN 0-471-
11709-9.

A Example Support for the State Recovery Algorithm

Figure 4 illustrates an example of the process of the IR block. In the example we
start with specific values of 7 and j, and also d = 5 cells of the state S are filled
with certain values, whereas the remaining cells are unknown. This constraint

The part of the state S; at time ¢, just before the swap-operation

i1 jis1]1 23 4 56 7 8 91011121314 15 16 17 18 19 20 ||S[i] S[j] =

1 8 [4-21 8 -451 52835485 S6 S7 Ss S9 S10 S11 S12 S13 S14 S15 || 4 s3 18
2 6 83 21 8 4 S1 S2 4 S4 S5 S S7 S8 S9 S10 S11 S12 S13 S14 S15 -2 S1 29
3 7 |s3s11 8 -4-2s2 4 s4 55 S¢ S7 S8 S9 S10 S11 S12 S13 S14 S15 1 s2 6
4 15 |s3s182 8 -4-2 1 4 s4 85 Se ST S8 S9 S10 S11 S12 S13 S14 S15 8 si10 16
5 11 [s3 81 82810-4-2 1 4 s4 85 S¢ S7 Sg S9 8 S11 S12 S13 S14 S15 -4 s¢ 5

6 9 83 81 S2 S10 Se 21 4 S4 S5 -4 S7 88 S9 8 S11 S12 S13 S14 S15 -2 S4 4
7 10 83 81 S2 S10 S6 S4 1 4 -2 S5 -4 S7 S8 S9 8 S11 812 S13 S14 S15 1 S5 12
8 14 |s3 51 82 S10 S S4 S5 4 -2 1 -4 s7 sg S9g 8 S11 Si2 S13 S14 Si5 4 s9 -2
9 12 83 S1 S2 S10 S6 S4 S5 S9 21 -4 S7 S8 4 8 S11 S12 S13 S14 S15 -2 S7 21
10 13 |s3 1 52 S10 S6 S4 S5 S9 s7 1 -4 -2 sg 4 8 s11 512 513 S14 S15 1 s3 6
11 9 |s3 8182 810 S6 485 S9 S7s8 -4 -2 1 4 8 s11812813814 s15 ||4 s7 9
12 7 |83 81 82 S10 S6 S4 S5 Sg -4 sg s7 -2 1 4 8 s11 S12 S13 S14 S15 -2 s5 1
13 8 |s3 81 82 810 S6 S4 -2 Sg -4 sg s7 s5 1 4 8 s11 S12 S13 S14 S15 1 s9 10
14 12 83 S1 S2 S10 S6 Sa 21 -4 S8 S7 S5 S9 4 8 S11 S12 S13 S14 815 4 S5 16
15 20 83 81 S2 S10 S6 Sa 21 -4 S8 S7 4 S9 S5 8 S11 S12 S13 S14 S15 8 S15 17
16 7
SISl = ST{z]l<>z SIS = S[z]ww z SIS = S[z]=> 2z

S3 +40 °? 18 S5 +40 o? 18 S+=10 5 440 o? 18 S=10

St 20 0? 29 St 20 0? 29 %75 St 20 0? 29 %75

Se +1o o? 6 So +1o o? 6 So +1o o? 6

S10 +8e °? 16 S0 +80 o? 16 S0 +80 o? 16

S6 40 °? 5 S6 4o 0? 5 S6 4o 0? 5

S; 20 o? 4 10 2010 4.8 10 -20 8 4

S5 +1o o? 12 S5 +1o o? 12 S5 +1o o? 12

So +40 °? -2 5+4o<4L“L@ 5+40) -2

Sy 20 o? 21 S; 26 o? 21 S, 20 o? 21

S8 +1o °? 6 Ss +1o o? 6 Ss +1o o? 6

Sy 4o °? 9 S; 4o o? 9 S; 4o o? 9

S5 20 o? 1 S5 -2 o? 1 S5 -2 o? 1

So +1o °? 10 5410 0? 10 ®+ o0 . ,210.40 o contra-

S5 +40 °? 16 S5 +4o °? 16 S5 +4o °? '

Si5 +80 o? 17 Si15+80 o? 17 Si15+80 o? 17

(a) () (©

SU+Sl = ST'[z]w» z SIS = S'[z]l=>z SIS = S'[z]ww z

3 +do 0?18 71O 7 4o —o?AL(1g) 710 7 +4o 011 18 1710

St 20 o? 29 75 S 20 0? 29 75 S 20 0? 29 75

S +o o? 6 %718 S +lo o? 6 =18 S tlo o? 6 =18

510 +8 °? 16 510 +80 0?16 B/ [s0+8e——»? 16l %7

18 -40 18 I10) 18 -4 014 5 1840 014 5

10 -20 o8 4 10 -20 o8 4 10 -20 o8 4

S5 +lo o? 12 S +1o o? 12 Lss +1 ? 12|

5+40 °9 -2 5+40 °9 -2 SHtd4e 09 -2

S; 20 o? 21 Sy 20 o? 21 Sy =20 _ ___o?_ _ 21

S8 +1o o? 6 Ss +1o o? 6 sg+lo _ _ _ __ oﬁ?fiié\

S 4o °? 9 7 -4 o o? 9 1S, 4o _e? 9

S5 20 o? 1 S5 20 0? 1 5 20— o? 1]

5 +1le o6 10 5 +1e 06 10 5 +le 06 10

S5 +4o o? 16 S5 +4o o? 16 S5 +4o——o? 16

Si15+80 o? 17 Si5+80 o? 17 Si5+80 o? 17

Fig. 4. Example of the iterative reconstruction process.

allows to collect w = 15 equations of the form (3). The keystream is given in the
rightmost column of the table.

The first iteration, in Figure 4(b), finds that z¢ = 4 and zs = —2 are already
allocated, thus solving equations 6 and 8 (s4 = 10,s9 = 5). Afterwards, given
sg = b, the IR block solves the equation 14 and successfully checks for a con-
tradiction, in Figure 4(c). Finally, after the step (e) four additional cells of the
state S were derived with probability 1.

When the IR block is processed, the input to the MC block is the maximum
clique of size 4 equations with 5 unknowns, shown in Figure 4(f). It means that
guessing only one unknown determines four other ones. Furthermore, the space
of possible guesses is significantly reduced due to the higher probability of a
contradiction to occur.

B Searching Technique

Since the search space for a d-order pattern grows exponentially with d, only pat-
terns of order d < 6 were analysed before in various literature, e.g., in [Man05]. In
this section we suggest a few techniques that accelerate this search significantly,
and allow to search and analyse patterns of order up to d < 15, approximately,
on a usual desktop PC.

First, we need to make some observations on the construction of patterns.
Afterwards, several ideas based on the observation for improving the algorithm
follow.

All “good” patterns found have Vs with values from a short interval Iy =
[<d...+ 0], where § = 10...25 is quite conservative. From this we make the
following conjecture.

Conjecture 8. A pattern with the largest w is likely found among all possible
combinations for i = 0, € I5,V € I, with a moderate value of § < N. O

This conjecture will be used as the basis for a significant improvement in the
searching technique of such patterns.

Table 5 provides the number of patterns for 4 = 15, and various values
of d and w. When d and ¢ are fixed, the amount of desired patterns can be
exponentially increased by letting w be slightly less than wpaz. This approach
can help finding patterns with additional properties which are introduced in
Section 4.

The first idea is to set i = 0 due to (6), and for the remaining variables only
a small set of values I for some § should be tested due to Conjecture 3.

A straightforward approach would be to allocate d values in a vector S and
then to check the desired properties of the pattern. The time complexity of this

approach is O ((g) (‘{j‘)|[5|), which is still very large. Our second idea is to

allocate a new element in S only when it is necessary. This will significantly
decrease the time complexity.

The diagram of a recursive algorithm exploiting the first two ideas is shown
in Figure 5, but it can be improved with the following heuristic. The third idea
is to start searching for a desired pattern somewhere in the middle of its future

d The number of patterns Ay when § = 15.

l w—|15141312 11 10 9 8 7 6

4 #{As} —|1 3 10 26 226 863 5234 21702 114563 853012
w—|212019 18 17 16 15 14 13 12

5 #{As} —|1 4 6 15 66 252 652 1879 6832 27202
w —|27 262524 23 22 21 20 19 18

6 #{A¢} —|1 2 7 42 81 177 371 799 2646 10159

Table 5. The number of different constraints for specific d and w, when § = 15.

=0

Loop for j € Is

@) J+=S[il
S[il, S[j
Check the pro- swap(S[i], S[j])
perties of the .
state (w, b, ...) recursion forward
and output if Loop for S[i] € Is
it is "good".

recursion backward

L—

Fig. 5. Recursive algorithm for searching patterns with large w.

window. Let us split d as d = dgyq+dpack and then start the algorithm in Figure 5
allowing to allocate exactly dsyq cells of S. At the point (%) the current length of
the window w is compared with some threshold wepe. If w > wyene, then a similar
recursive algorithm starts, but it goes backward and allocates remaining dpacx
cells of S. This double-recursion results in a pattern with w likely to be close to
the maximum possible length of the window.

Searching of a d-order pattern is a precomputation stage of the attack.

Theorem 2. The complexity of the precomputation stage is less than the total
complezity of the attack.

Proof. Assume we are interested a d-order pattern. To start with, one should
loop j of N wvalues. Afterwards, the algorithm tries to allocate the first value in
V[] at some first location in P[], which is another inner loop of N values, and so
on. At the end we got d+ 1 inner loops, each of N values. Thus, the complezity
of this non-heuristic and non-optimized searching algorithm is O(Nt1). The
attack requires a keystream of the same size, thus, it proofs the statement. O

C Patterns Used in This Paper

Ref. i,j P,V d w l bu by bn, be Hg

WG [0, -1 P={1, 3}, V ={3, -1} 216/0[0[0[0[1|1

w0, -1 P={1, 3,4}, v={3, 2, -1} 3]10{3|0(1]2|0]0

M, [0,-2 P={1,3,4,5}, V={4, 3, -2, 1} 4l15|1|0]0|1|1]2

W |0,-2 P={1,2,4,6,8}, V={5, 2, -3, 6, -1} 5/21{0lolofolo] 0

M (0,0 P={1,23,4,5 20}, V={7,-1, 5,-3, 2, -9} 627|3|0(1]2|0]0

ul0,5 P={1,2,4,6,8,9,16}, V={-2,4,7,1,3,-3,8} |7|31|4|0|0]4]1]2

Wi 0,5 P={1,2 4,6, 14, 18, 19, 25} 813716|0(1]5/0]0
vV ={24,51,3,-3 2, -1}

M, 10,9 P={1,2,3,6,78,11, 20, 24} 942|6|0[1]5|1]2
V ={4,-1, 10, 3, -2, 11, 1, 4, -6}

M,l0,3 P={1,23,5,8, 10, 18, 21, 22, 23} 1o[50[4(1|1]2]1]2
Vv ={1, 5,-3,8,-7,3,-2,-5,9, -1}

m,[0,-1 P={1,2,3,4,6,09, 11, 13, 21, 30, 33} 11/55[10{ 0 |1 |9]0] 0
vV ={6,5,-3,1,4,-4,7, -1, 2, -9, 8}

M,0,6 P={1,2,3,4,5,09,15, 17, 34, 35, 43, 45 } 12/50[8|1|0|7|2]4
vV ={2, -2,1,12,-7,7,8,-3,0, -5, 3, 4}

M,|0,0 P={1,3,5,6,7,8, 22, 23, 31, 32, 34, 44, 52} 13l68[9|0 |2|7|2]4
vV ={2,8,-3,-2,1, 7, 4, -9, 5, 10, -14, -5, 3}

M, [0, 15 P ={1, 2, 3, 4, 5, 11, 13, 30, 31, 39, 40, 42, 52, 60}|14|76/10{ 0 | 2 |8 |2 4
vV ={7-2,1,2,7,8,-3,4,-9, 5, 10, -14, -5, 3}

Table 7. Various patterns that were achieved by our simulations (part II).

g
=
n s
z g
E o 2lel 5|26
RG]] B 2| & |E2 ~ -~
gl & 2|z 25|25k 3 %
12 o AR S| = 2|5 ki s
5| = g|18|E el 21 8% N -~
S|E =B Bl 25| x -
x| & Pattern description 5 %S| 8|2 B €5 Y a3
Ref.|AL| 4,5 PV d|w| 1 |ba|bslbe| || o ||y Int Ext
(a) Trade-off between w and [, the first level of analysis
X, [1°] -18,5 P ={89-17-16 -15 -14 -13 -9} 8[33[5][5f0[2]4] - [-[-|N e N[NT
V={2,-1,-5,-2,1,4, 5, 3}
X, | 1% |20, -23 P ={0, 1, 5, -19, -17, -16, -15, -14, -7} 941/5(4|0(2]4 N—10e=8/N| N6
V ={5,8,3,54,-2,-1,2 1}
X, |15 |-25, -25 P ={6, 8, -24, -22, -20, -19, -18, -17, -3, -2 } 10{47/6 |5|0(2[4 | - |-|-|N"Me¥/N| N7
V={3,4,2,8,-3-21,70,-5}
X, |1 |-37, -37 P ={-36, -35, -34, -33, -30, -29, -28, -15, -13, -10, 5} |11[49|11] 9|0 —|-|-| N7 |N7?
vV ={10, -4, -1, 11, 3,-2,1, 9, -3, -7, 2}
(b) Good detection through the second level of analysis
D, [T -7.-7 P={-6,-5,-3,-1}, V ={3,2, -1, 0} 4]9]4]4]0 N—° [N *
2nd| 2 -1 P ={0, 2, -1}, V' ={0, -1, 2} 314(3[3]0 -4 (3[0] N %3 N7
D, 1% |-24, -19 P ={1, -23, -22, -20, -18, -10, -3} 7126/6(5|0 - |-|-] N8 N7
V ={3,-2,4,51,0,-1}
2| 5,2 P ={0, 1, -4, -3, -2}, V' ={2, -1, 1, 0, -2} 516(5[5[0].]. | -7]4|1] N~ |NT10
V, | 1°]-26, -27 P ={-25, -24, -23, -20, -19, -18, -16, -4} 8129/6(4|1|0]0 N° N~
V={514,-3-1,2 3, -2}
2r| 7,2 P ={0,3, -6, -5, -4,-3,-2}, V' ={-2,3,0,-1,1,-3,2}| 7]10/ 7| 7]|0|0] 0 ||-10/6|1] N~'2e=® N2
Table 6. Various patterns that were achieved by our simulations (part I).

